4,047 research outputs found

    Argumentation Mining in User-Generated Web Discourse

    Full text link
    The goal of argumentation mining, an evolving research field in computational linguistics, is to design methods capable of analyzing people's argumentation. In this article, we go beyond the state of the art in several ways. (i) We deal with actual Web data and take up the challenges given by the variety of registers, multiple domains, and unrestricted noisy user-generated Web discourse. (ii) We bridge the gap between normative argumentation theories and argumentation phenomena encountered in actual data by adapting an argumentation model tested in an extensive annotation study. (iii) We create a new gold standard corpus (90k tokens in 340 documents) and experiment with several machine learning methods to identify argument components. We offer the data, source codes, and annotation guidelines to the community under free licenses. Our findings show that argumentation mining in user-generated Web discourse is a feasible but challenging task.Comment: Cite as: Habernal, I. & Gurevych, I. (2017). Argumentation Mining in User-Generated Web Discourse. Computational Linguistics 43(1), pp. 125-17

    Hypotheses, evidence and relationships: The HypER approach for representing scientific knowledge claims

    Get PDF
    Biological knowledge is increasingly represented as a collection of (entity-relationship-entity) triplets. These are queried, mined, appended to papers, and published. However, this representation ignores the argumentation contained within a paper and the relationships between hypotheses, claims and evidence put forth in the article. In this paper, we propose an alternate view of the research article as a network of 'hypotheses and evidence'. Our knowledge representation focuses on scientific discourse as a rhetorical activity, which leads to a different direction in the development of tools and processes for modeling this discourse. We propose to extract knowledge from the article to allow the construction of a system where a specific scientific claim is connected, through trails of meaningful relationships, to experimental evidence. We discuss some current efforts and future plans in this area

    Explainable Argument Mining

    Get PDF

    Mining arguments in scientific abstracts: Application to argumentative quality assessment

    Get PDF
    Argument mining consists in the automatic identification of argumentative structures in natural language, a task that has been recognized as particularly challenging in the scientific domain. In this work we propose SciARG, a new annotation scheme, and apply it to the identification of argumentative units and relations in abstracts in two scientific disciplines: computational linguistics and biomedicine, which allows us to assess the applicability of our scheme to different knowledge fields. We use our annotated corpus to train and evaluate argument mining models in various experimental settings, including single and multi-task learning. We investigate the possibility of leveraging existing annotations, including discourse relations and rhetorical roles of sentences, to improve the performance of argument mining models. In particular, we explore the potential offered by a sequential transfer- learning approach in which supplementary training tasks are used to fine-tune pre-trained parameter-rich language models. Finally, we analyze the practical usability of the automatically-extracted components and relations for the prediction of argumentative quality dimensions of scientific abstracts.Agencia Nacional de Investigación e InnovaciónMinisterio de Economía, Industria y Competitividad (España

    A critical review of PASBio's argument structures for biomedical verbs

    Get PDF
    BACKGROUND: Propositional representations of biomedical knowledge are a critical component of most aspects of semantic mining in biomedicine. However, the proper set of propositions has yet to be determined. Recently, the PASBio project proposed a set of propositions and argument structures for biomedical verbs. This initial set of representations presents an opportunity for evaluating the suitability of predicate-argument structures as a scheme for representing verbal semantics in the biomedical domain. Here, we quantitatively evaluate several dimensions of the initial PASBio propositional structure repository. RESULTS: We propose a number of metrics and heuristics related to arity, role labelling, argument realization, and corpus coverage for evaluating large-scale predicate-argument structure proposals. We evaluate the metrics and heuristics by applying them to PASBio 1.0. CONCLUSION: PASBio demonstrates the suitability of predicate-argument structures for representing aspects of the semantics of biomedical verbs. Metrics related to theta-criterion violations and to the distribution of arguments are able to detect flaws in semantic representations, given a set of predicate-argument structures and a relatively small corpus annotated with them
    corecore