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Álvaro Mailhos, thank you for everything, always.



“output” — 2021/10/1 — 15:43 — page — #7

This thesis has been possible thanks to funding received from the Spanish Go-
vernment under the Marı́a de Maeztu Units of Excellence Programme (MDM-
2015-0502) and from the National Agency for Research and Innovation (ANII) of
Uruguay (POS EXT 2016 1 135299).



“output” — 2021/10/1 — 15:43 — page — #8



“output” — 2021/10/1 — 15:43 — page — #9

Abstract

Argument mining consists in the automatic identification of argumentative struc-
tures in natural language, a task that has been recognized as particularly challeng-
ing in the scientific domain. In this work we propose SciARG, a new annotation
scheme, and apply it to the identification of argumentative units and relations in
abstracts in two scientific disciplines: computational linguistics and biomedicine,
which allows us to assess the applicability of our scheme to different knowledge
fields. We use our annotated corpus to train and evaluate argument mining mod-
els in various experimental settings, including single and multi-task learning. We
investigate the possibility of leveraging existing annotations, including discourse
relations and rhetorical roles of sentences, to improve the performance of argu-
ment mining models. In particular, we explore the potential offered by a sequen-
tial transfer-learning approach in which supplementary training tasks are used to
fine-tune pre-trained parameter-rich language models. Finally, we analyze the
practical usability of the automatically-extracted components and relations for the
prediction of argumentative quality dimensions of scientific abstracts.

Resum

La mineria d’arguments consisteix en la identificació automàtica d’estructures ar-
gumentatives en el llenguatge natural, una tasca considerada com a especialment
complexa en textos cientı́fics. En aquest treball proposem SciARG, un nou esque-
ma d’anotació, i l’apliquem a la identificació d’unitats i relacions argumentatives
en resums cientı́fics en dues disciplines: lingüı́stica computacional i biomedici-
na, la qual cosa ens permet avaluar l’aplicabilitat del nostre esquema en diferents
camps del coneixement. Utilitzem el nostre corpus per entrenar i avaluar models
de mineria d’arguments en diversos contextos experimentals, entrenant cada tas-
ca per separat i en un entorn multitasca. Investiguem la possibilitat d’aprofitar
anotacions existents, incloent relacions de discurs i funcions retòriques d’oraci-
ons, per millorar el rendiment dels models de mineria de arguments. En particu-
lar, explorem el potencial que ofereix un enfocament d’aprenentatge per trans-
ferència en el qual s’utilitzen tasques d’entrenament suplementàries per afinar
models lingüı́stics pre-entrenats. Finalment, analitzem l’ús pràctic dels compo-
nents i relacions extretes automàticament dels textos per la predicció de diversos
aspectes de la qualitat argumentativa de resums cientı́fics.
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Chapter 1

INTRODUCTION

The accelerated pace at which new scientific knowledge is produced and com-
municated makes it challenging for scholars to keep up with the latest advances,
even in their own research areas.1 The growth in the generation and dissemina-
tion of scientific information also poses a barrier for the discovery and assessment
of relevant findings by editors, research managers and decision makers, limiting
and/or delaying the impact of scientific outcomes in the definition of evidence-
based policies (Rogers, 2010).

Some elements in the evaluation of the scientific production necessarily require
the intervention of human experts. This includes weighting the relevance of the
problem at stake and the in-depth appraisal of the potential impact of the solu-
tions proposed. Language technologies, however, can facilitate the assessment of
other aspects of scientific communication. The verifiability of claims included
in articles, their effectiveness with respect to its communication objectives, and
their reliability in terms of the provided evidence are some areas in which natural
language processing (NLP) tools can make a contribution.

Different quality aspects need to be considered when assessing the argumentative
structure of a research paper, including its logic, rhetoric and dialectic dimensions

1In its most recent overview of scientific and scholarly publishing, in 2018, the International
Association of Scientific, Technical and Medical Publishers (STM) indicate that ”the number of
articles published each year and the number of journals have both grown steadily for over two
centuries, by about 3% and 3.5% per year respectively. However, growth has accelerated to 4%
per year for articles and over 5% for journals in recent years” (Johnson et al., 2018).

1
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(Wachsmuth et al., 2017a). This, in general, involves not only to identify the
information that the authors provide in relation to what they do in their work
and the conclusions that they draw from it–the claims–but also to consider the
motivations/justifications for the proposed intervention and the evidence that they
offer to support their assertions–the premises.

The automatic identification of arguments, its components and relations in texts is
known as argument mining or argumentation mining (Lawrence and Reed, 2020).
The steps involved in the automatic extraction of arguments from texts, including
the identification of claims and premises and the prediction of the argumenta-
tive structure (how they are linked together) is not substantially different to other
text-mining tasks for which supervised learning methods are generally applied
(e.g., text segmentation, sequence labeling and entity linking) (Lippi and Torroni,
2016b). However, state-of-the-art results for these tasks are currently obtained by
means of parameter-rich neural-based architectures that require large amounts of
annotated data. The identification of argumentative units and relations in scien-
tific texts, in particular, has been identified as a particularly challenging task–even
for humans–due to the inherent complexity of the scientific discourse (Stab et al.,
2014). Scarcity of annotated corpora, therefore, can hinder the advance of argu-
mentation mining in this important domain.

1.1 Objectives

In the first part of this thesis we address the identification of argumentative com-
ponents in scientific abstracts and the relations between them. The main goals of
this part include:

i. To propose a new annotation scheme for the argumentative structure of sci-
entific abstracts that can contribute to bridge an existing gap between var-
ious overlapping research areas, including: argument mining in scientific
texts, rhetorical analysis of scientific discourse, and full-fledged discourse
parsing.

2
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ii. To apply and evaluate the proposed scheme in the annotation of abstracts in
two scientific disciplines: computational linguistics and biomedicine, mak-
ing the resulting corpus available as a contribution to the research commu-
nity;

iii. To use the newly created corpus to train and evaluate machine learning
models aimed at predicting the argumentative structure of abstracts–both at
sentence and intra-sentence levels;

iv. To explore the possibility of adapting models trained with texts in one scien-
tific discipline to predict the argumentative structure of abstracts in another
discipline;2

v. To explore potential benefits obtained by leveraging annotations available
for related tasks–in particular, discourse parsing and rhetorical classification
of sentences–for mining arguments in scientific text;

vi. To evaluate two specific transfer learning approaches in the context of our
tasks and domains: supplementary training on intermediate tasks and multi-
task learning;

vii. To investigate whether benefits can be obtained–in particular, for the identi-
fication of argumentative components in scientific texts–by implementing a
rhetorical-complexity-aware pipeline that allows sentence-level and intra-
sentence level tasks to be addressed individually.

In the second part of the thesis we analyze the practical usability of the gold an-
notations and the predictions obtained with the models developed in the first part
for the automatic assessment of argumentative quality dimensions. This includes:

viii. To analyze whether features obtained from the argumentative structure of
scientific abstracts can contribute to predict scores reflecting argumentative
quality dimensions of the abstracts and/or the full papers;

ix. To explore the potential benefits of incorporating annotation-confidence in-
formation in the training process for models aimed at predicting quality
scores.3

2This, in turn, would shed some light about whether the argumentative structure of the abstracts
encoded in these models is tied to the scientific discipline in which they are trained.

3A task with high levels of subjectivity and where with mixed levels of reliability can be ob-
tained for the annotations, as we see in Chapter 8.

3
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1.2 Contributions and outline

In the first part of the thesis we focus on the prediction of the argumentative
structure of scientific abstracts:

• In Chapter 2 we contextualize our work within the fields or argumentative
mining and the analysis of the rhetorical and discourse structure of scientific
texts.

• In Chapter 3 we present the SciARG corpus of scientific abstracts. We de-
scribe our proposed annotation scheme and its application to the annotation
of 225 abstracts in computational linguistics (SciARG-CL). We describe the
annotation process and evaluate the agreement of the produced annotations.

• In Chapter 4 we use the SciARG-CL corpus to train and evaluate BERT-
based (Devlin et al., 2019) models aimed at predicting the argumentative
structure of the abstracts. We consider models trained for each task in-
dependently, as well as jointly, in multi-task settings. We investigate, in
particular, the possibility of leveraging existing discourse-level annotations
by considering, as an intermediate task, the prediction of discourse relations
between sentences before fine-tuning the models for our target tasks.

When considering the first series of experiments, in Chapter 4, we argue that dif-
ferent methods should be applied for the identification of argumentative compo-
nents at sentence and intra-sentence levels, and that the rhetorical complexity of
sentences should be considered to decide which method(s) to apply in each case.

• In Chapter 5 we explore different ways of determining the rhetorical com-
plexity of sentences and conduct experiments to identify the inner rhetorical
and argumentative structures of sentences. We also investigate the possi-
bility of leveraging existing annotations for these tasks. In this case, we
consider existing annotations aimed at describing the rhetorical role both
of sentences and intra-sentence segments in scientific abstracts, as well as
annotations that establish discourse relations within sentences.

• In Chapter 6 we investigate the adaptability of the proposed annotation
scheme to a scientific discipline different to the one for which it was orig-
inally developed, by extending the SciARG corpus with 285 abstracts in

4
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bio-medicine (SciARG-BIO). We analyze similarities and differences be-
tween the new annotations and the ones in SciARG-CL, and report results
obtained in experiments conducted with them. In particular, we examine
whether language models fine-tuned with annotations in computational lin-
guistics can be directly plugged-in in an architecture used to predict the
argumentative structure of biomedical abstracts without further fine-tuning.

In the second part of the thesis we explore the potential use of argumentative
units and relations predicted by means of the methods described in the first part
in a downstream application. In particular, we analyze their potential to predict
argumentative quality dimensions of the texts.

• In Chapter 7 we consider related work and antecedents in the area of argu-
mentative quality assessment.

• In Chapter 8 we conduct experiments aimed at predicting quality scores
assigned by annotators to the abstracts included in the SciARG-CL corpus.

• In Chapter 9 we use scores assigned by reviewers to manuscripts included in
the ACL, CoNLL and ICLR sections of the PeerRead dataset (Kang et al.,
2018), in order to investigate whether a set of features extracted from the
argumentative structure of scientific abstracts can be used as predictors of
specific argumentative quality dimensions of the papers in which they are
included.

Finally, in Chapter 10 we summarize the main conclusions of our work and de-
scribe potential follow-ups.

5
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1.3 Publications

Research conducted in the process of developing this thesis gave origin to peer-
reviewed publications. We list them below.

• Accuosto, P., Neves, M., and Saggion, H. (2021). Argumentation mining
in scientific literature: From computational linguistics to biomedicine. In
Frommholz, I., Mayr, P., Cabanac, G., and Verberne, S., editors. Proceed-
ings of the 11th International Workshop on Bibliometric-enhanced Informa-
tion Retrieval co-located with 43rd European Conference on Information
Retrieval (ECIR 2021); Lucca, Italy, Apr 1, 2021, Volume 2847 of CEUR
Workshop Proceedings, p. 20-36.

• Accuosto P., and Saggion H. (2020). Mining arguments in scientific ab-
stracts with discourse-level embeddings. Data & Knowledge Engineering,
Volume 129, 101840, 2020.

• Accuosto P., and Saggion H. (2019a) Discourse-driven argument mining
in scientific abstracts. In: Métais E, Meziane F, Vadera S, Sugumaran V,
Saraee M, editors. Natural Language Processing and Information Systems.
24th International Conference on Applications of Natural Language to In-
formation Systems; Salford, UK, Jun 26-28, 2019. Heidelberg: Springer;
2019. p. 182-94. (LNCS, no. 11608).

• Accuosto P., and Saggion H. (2019b). Transferring knowledge from dis-
course to arguments: A case study with scientific abstracts. In: Stein B.,
and Wachsmuth H., editors. Proceedings of the 6th Workshop on Argument
Mining; Florence, Italy, Aug 1, 2019. Stroudsburg: Association for Com-
putational Linguistics; 2019. p. 41-51. (Best paper award)

Part of the contents of Chapters 3 and 4 refer to work reported in (Accuosto and
Saggion, 2019a,b, 2020), while part of the contents of Chapter 6 is reported in
(Accuosto et al., 2021).

Some of the publications refer to preliminary work that is not included in the thesis
but which has informed many of the decisions taken in the PhD research process.
In Appendix A we summarize preliminary experiments and results reported in
(Accuosto and Saggion, 2019b) to better contextualize some of these decisions.
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Other works carried out in the period of the PhD research, and in the context of the
Marı́a de Maeztu project Mining the knowledge of scientific publications include:

• Pérez N., Accuosto P., Bravo À., Cuadros M., Martı́nez-Garcı́a E., Saggion
H., and Rigau G. (2020). Cross-lingual semantic annotation of biomedical
literature: Experiments in Spanish and English. Bioinformatics, Volume 36,
Issue 6, 2020, p. 1872â1880.

• Bravo, À, Accuosto, P., and Saggion, H. (2019). LaSTUS-TALN@IberLEF
2019 eHealth-KD Challenge: Deep learning approaches to information ex-
traction in biomedical texts. In Proceedings of the Iberian Languages Eval-
uation Forum (IberLEF 2019) co-located with 35th Conference of the Span-
ish Society for Natural Language Processing (SEPLN 2019); Bilbao, Spain,
Sep 24, 2019. p. 51-59.

• Accuosto P, and Saggion H. (2018). Improving the accessibility of biomed-
ical texts by semantic enrichment and definition expansion. Procesamiento
del Lenguaje Natural, Issue 61, 2018, p. 57-64.

• Accuosto P., Ronzano F., Ferrés D., and Saggion H. (2017). Multi-level
mining and visualization of scientific text collections. In WOSP 2017 Pro-
ceedings of the 6th International Workshop on Mining Scientific Publica-
tions; Jun 19, 2017; Toronto, Canada. New York: ACM; 2017. p. 9-16.

• Saggion H., Ronzano F., Accuosto P., and Ferrés D. (2017). MultiScien:
A bi-lingual natural language processing system for mining and enrichment
of scientific collections. In: Mayr P, Chandrasekaran MK, Jaidka K, edi-
tors. Proceedings of the 2nd Joint Workshop on Bibliometric-enhanced In-
formation Retrieval and Natural Language Processing for Digital Libraries
(BIRNDL 2017); Aug 11, 2017; Tokyo, Japan. CEUR Workshop Proceed-
ings; 2017. p. 26-40.

• Abura’ed A., Chiruzzo L., Saggion H., Accuosto P., and Bravo À. (2017).
LaSTUS/TALN @ CLSciSumm-17: Cross-document sentence matching
and scientific text summarization systems. In: Jaidka K, Chandrasekaran
MK, Kan MY. Proceedings of the Computational Linguistics Scientific Sum-
marization Shared Task (CL-SciSumm 2017); Aug 11, 2017; Tokyo, Japan.
[Aachen]: CEUR-WS; 2017. p. 55-66.
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Part I

Argumentative mining in scientific
abstracts
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Chapter 2

ARGUMENT MINING IN
SCIENTIFIC TEXTS:
BACKGROUND AND RELATED
WORK

In this chapter we introduce argument mining, the research area in which our
work can be contextualized, and briefly review literature related to it. The chapter
is organized as follows:

• In Section 2.1 we describe the main tasks involved in argument mining and
motivate research in the area based on its potential to support informed
decision-making processes. We review the main domains and applications
in which the identification of arguments have been focused, departing from
in-depth surveys developed by other authors that offer a landscape of the
progress of the area in the last decade.

• In Section 2.2 we focus on initiatives that have addressed the possibility of
leveraging existing resources aimed at the analysis of discourse relations for
the identification and characterization of arguments.

• In Section 2.3 we consider the few initiatives that have previously addressed
the analysis of scientific texts from an argument mining perspective.

11
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• In Section 2.4 we refer to key antecedents in the computational analysis of
the rhetorical organization of scientific texts.

• Finally, in Section 2.5 we briefly refer to works in the area of transfer learn-
ing. In particular, to the transfer-learning methods that we adopt in our ex-
periments: multi-task learning and sequential transfer of parameters trained
with an intermediate supplementary task.

2.1 Argument mining

Argument mining (or argumentation mining) is a research area aimed at the auto-
matic identification of arguments in natural language. This involves several tasks,
which range from recognizing the internal components and structure of the argu-
ments, to classifying them according to their characteristics, and to identify how
they relate to each other.

In the past decade argument mining has progressively gained attention in the con-
text of natural language processing (NLP) and computational linguistics (CL) re-
search (Lawrence and Reed, 2020; Lippi and Torroni, 2016b). The increasing
relevance of argument mining as a research area is evidenced by the inclusion of
the topic in the calls for papers of the main venues in NLP/CL, such as the Annual
Meeting of the Association for Computational Linguistics (ACL),1 the Interna-
tional Conference on Computational Linguistics (COLING),2 and the Conference
on Empirical Methods in Natural Language Processing (EMNLP),3 among others,
as well as by the growing participation in the Argument Mining Workshop series
(ArgMining), the premier research forum in the area, which is held annually at
major NLP/CL conferences since 2014.4

After several years of active research in argument mining the area has expanded
to a point were an in-depth review of all its branches is beyond the scope of this
thesis. Stede and Schneider (2018) have taken on the task of writing a mono-
graph volume on the subject, in which they provide a thorough description of the
argument mining field and its evolution.

1aclweb.org/portal/acl
2aclanthology.org/venues/coling/
3aclanthology.org/venues/emnlp/
4uncg.edu/cmp/ArgMining2014/

12
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They first contextualize the analysis of arguments within its philosophical and
linguistic roots to then delve into the study of the main issues around computa-
tional approaches to argumentation–in particular, from an NLP perspective. They
establish links to other related research fields in NLP, such as subjectivity and
sentiment analysis, semantic relation extraction, and discourse parsing, among
others, and offer a systematic review of the main corpora developed for argument
mining research. A large proportion of the book is dedicated to analyzing the vari-
ous sub-tasks involved in the identification of arguments in texts, their constituent
parts and the relations between them, and it also provides insights into the auto-
matic assessment of arguments’ quality. Finally, the authors consider some of the
main potential applications of argument mining.

In the following section we describe motivations for conducting research in argu-
ment mining and point to some of the key works in the area. For this, we rely on
existing surveys, including the mentioned review by Stede and Schneider (2018).

2.1.1 Decision-making support systems

Being able to extract not only what is stated by the authors of a text or their stance
towards a particular issue but also the reasons they provide to back up their claims
can support a wide range of applications across multiple domains. An objective
that captures great interest both in academia and the industry is the possibility of
developing decision-making support systems based on arguments automatically
extracted from natural language. Part of this interest has been fueled by IBM’s
Project Debater (Slonim et al., 2021), in development since 2012, which has re-
cently found considerable echo in media.5,6,7 The project is targeted at develop-
ing an argument-mining-based system that can debate humans on complex topics,
with the ultimate goal of helping people to make well-informed decisions.8

5newyorker.com/news/annals-of-populism/the-limits-of-politica

l-debate
6thetimes.co.uk/article/ibms-robot-debater-holds-its-own-agai

nst-human-opponents-zb8kwhxsl
7elpais.com/ciencia/2021-03-18/las-maquinas-ya-nos-ganaban-ah

ora-tambien-nos-convencen.html
8research.ibm.com/artificial-intelligence/project-debater/
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Valuable resources have been made available to the research community in the
context of this project,9 including one of the first large-scale corpus with argu-
mentative information, in which 547 Wikipedia pages were annotated with claims
and evidence considered relevant for a set of pre-established topics (Aharoni et al.,
2014; Rinott et al., 2015).

The development of argument-based systems to support decision-making pro-
cesses is also relevant from an academic perspective, as it requires to find solutions
to various difficult tasks, including argument search and retrieval, summarization
and visualization of arguments. Active research in all of these areas is currently
being conducted. We briefly summarize some initiatives below.

Initiatives in the area of argument summarization include (Wang and Ling, 2016),
who address the generation of abstractive summaries for opinionated text by means
of an attention-based neural model, and (Egan et al., 2016), who generate struc-
tured summaries of argumentative discussions based on relationships between
points (short statements formed by a verb and its syntactic arguments) around five
political debates from the Internet Argument Corpus (IAC) (Walker et al., 2012).
(Syed et al., 2020) create a corpus of summaries for opinionated news editorials
and evaluate two unsupervised extractive summarization models to identify the
editorials’ main argumentative thesis, and (Alshomary et al., 2020) propose an
extractive snippet generation method to represent the main claim and reason of
an argument. They rank the sentences of an argument with a variant of PageR-
ank based on measures of a sentence centrality in its context and its degree of
argumentativeness.10 In line with these initiatives, in the 2021 Argument Mining
workshop a new key point analysis shared-task was proposed (Bar-Haim et al.,
2020) as a form of quantitative summarization. The goal of the task was, given a
collection of argumentative texts on a certain topic, ”to produce a succinct list of
the most prominent key-points in the input corpus, along with their relative preva-
lence”. The idea is that such a summary could be used to gain insights from public
opinions on topics of interest from multiple sources, which would ”give rise to a
new form of a communication channel between decision makers and people that
might be impacted by the decision”.11

9research.ibm.com/haifa/dept/vst/debating data.shtml
10These measures are based on the representation of sentences’ embeddings as nodes in a graph

where edges are weighted by the nodes similarity.
11github.com/ibm/KPA 2021 shared task
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In relation to argument search and retrieval research, Wachsmuth et al. (2017c)
propose an adaptation to the PageRank algorithm (Page et al., 1999) to objec-
tively assess arguments relevance for a search query at web scale. In addition, in
(Wachsmuth et al., 2017b), the authors introduce an argument search framework
and apply it to build a prototype search engine12 as a practical demonstration of
its capabilities.

Initiatives for the visualization of arguments, in turn, include the VisArgue13 project
for the analysis of political communication (El-Assady et al., 2017), and Debate-
Vis (South et al., 2020), a tool aimed at the visualization of political debate tran-
scripts, including the policies proposed by the different candidates and their debate
techniques.14 In turn, the Centre for Argument Technology at the University of
Dundee (ArgTech) developed the Argument Analytics platform (Reed et al., 2018)
which was used to generate visual analytics of debates in the context of a special
BBC programme on the 50th anniversary of the UK’s Abortion Act (Lawrence
et al., 2018).15

The evaluation of various dimensions of argumentative quality in natural language
is essential for ranking arguments in decision-making systems, but its relevance
goes well beyond this specific use. In fact, it is a key component of most argument
mining applications, including argumentative writing support–an issue addressed
in depth by Stab (2017), as well as the related area of essay scoring–a topic for
which Ke and Ng (2019) provide a thorough state-of-the-art review. In Chapter 7,
in the second part of the thesis, we describe some of the most influential work in
the area of argumentative quality assessment.

Several applications require–or could benefit from–the identification of arguments
in natural language, and substantial research has been conducted to generate an-
notated data for multiple tasks and types of texts, as seen in Section 2.1.2. New
emerging applications make us foresee an even greater development of the area in
the coming years. This includes, for instance, the development of argumentative-
aware conversational search engines (Kiesel et al., 2021) and a greater integration
of argument mining approaches into related research fields, such as automated
fact-checking (Guo et al., 2021).

12args.me
13visargue.uni-konstanz.de/de
14osf.io/6jefk
15bbc.co.uk/programmes/b097c1g3
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Interest in the detection of argumentative information in social media is also grow-
ing. In particular, in relation to the detection of media bias and mis-information,
the topic of a recent PhD thesis by Kailas (2021). In previous research, Lytos et al.
(2019) consider the potential of argument mining applied to the analysis of social
media posts’ reliability as a way to detect fake news and prevent rumour diffu-
sion. The application of argument mining in Twitter, in particular, is addressed
by Schaefer and Stede (2021), where they review initiatives for the annotation of
tweets with argumentative units, relations and stance. Another survey, by Vecchi
et al. (2021), considers argumentation and social media from a different perspec-
tive: they focus on the potential of computational argumentation to address socio-
political issues, and propose to leverage argument mining technologies for social
good, which includes the development of applications for semi-automatic moder-
ation. They suggest to integrate, in the definition of argument quality, the notion
of deliberative quality, which considers the effects of the assessed contribution in
the development of the upcoming discourse.

2.1.2 Application areas and domains

In-depth surveys of argument mining initiatives, including (Lippi and Torroni,
2016b; Cabrio and Villata, 2018; Lawrence and Reed, 2020), as well as one chap-
ter of Christian’s Stab PhD thesis (Stab, 2017), testify the evolution of the area
at different points in time over the last decade. These surveys analyze initiatives
for the generation of annotated corpora in various domains, as well as proposed
approaches to address the sub-tasks involved in the identification of arguments,
their structure and the relations between them.

Cabrio and Villata (2018) conduct a data-driven analysis of argument mining ini-
tiatives between 2015 and 2018, which provides a valuable insight into the appli-
cations, domains and textual genres that captured research interest in the years in
which the area was consolidating.16 They consider nine application areas orga-
nized in the following categories:

16As mentioned, the first Argument Mining workshop took place in 2014.
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• Education

– Persuasive essays

– Scientific articles

• Web-based content

– Wikipedia articles

– Microblogs and web debating platforms

– Online product reviews

– Newspaper articles

– Social media

• Legal documents

• Political debates and speeches

Stab (2017) classifies argument mining annotation initiatives based on various cri-
teria, including the argument granularity, which indicates whether annotations are
done at macro or micro levels in the taxonomy proposed by Bentahar et al. (2010).
In the macro level properties of whole arguments and/or relations between them
are considered, while, in the micro level, the annotations are aimed at identifying
components within arguments. For initiatives at the micro level, the component
granularity is also considered, which indicates the annotation unit (e.g., sentence,
clause).

Lawrence and Reed (2020) focus, in particular, on datasets available on AIFdb
(Lawrence and Reed, 2014),17 a database created and maintained by ArgTech that
contains corpora annotated with argument components and relations in the form
of argument maps, which are made available in the argument interchange format
(AIF). The goal of the initiative is to provide a standardized methodology for an-
notation, as well as a central location for the storage and retrieval of annotated
corpora. The argument maps can be created and edited interactively by means of
an online tool,18 in which arguments are represented as directed graphs with two
types of nodes: argumentative units and argumentative relations, labeled accord-
ing to several possible argumentative frameworks.

17aifdb.org
18ova.arg-tech.org
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Source/Genre Works

Class discussions (Lugini and Litman, 2020), (Olshefski et al., 2020)

Debate platforms (Ajjour et al., 2019), (Al-Khatib et al., 2016), (Anand et al., 2011),
(Biran and Rambow, 2011), (Boltužić and Šnajder, 2014), (Cabrio
and Villata, 2012b), (Cabrio and Villata, 2013), (Habernal and
Gurevych, 2017), (Kwon et al., 2007), (Liebeck et al., 2016), (Park
and Cardie, 2018), (Rosenthal and McKeown, 2012), (Somasundaran
and Wiebe, 2010), (Walker et al., 2012)

Essays (Nguyen and Litman, 2018), (Stab and Gurevych, 2017a)

Legal texts (Mochales-Palau and Moens, 2011), (Poudyal et al., 2020), (Teruel
et al., 2018)

Micro-texts (Peldszus and Stede, 2015a)

News (Eckle-Kohler et al., 2015), (El Baff et al., 2018), (Sardianos et al.,
2015)

Political discourse (Dumani et al., 2021), (Duthie et al., 2016), (Lippi and Torroni,
2016a), (Menini et al., 2018), (Naderi and Hirst, 2015)

Product reviews (Garcı́a-Villalba and Saint-Dizier, 2012), (Ibeke et al., 2017)

Scientific art. (Kirschner et al., 2015a), (Lauscher et al., 2018b)

Social media (Dusmanu et al., 2017), (Schaefer and Stede, 2020), (Wührl and
Klinger, 2021)

Multiple (Cabrio and Villata, 2014), (Florou et al., 2013), (Goudas et al., 2014),
(Lippi and Torroni, 2016c), (Niculae et al., 2017), (Reed et al., 2008),
(Rinott et al., 2015)

Wikipedia (Biran and Rambow, 2011), (Levy et al., 2014)

Table 2.1: Argument mining domains / textual genres. Based on surveys by Lippi and
Torroni (2016b); Stab (2017); Cabrio and Villata (2018); Lawrence and Reed (2020).

From the referred surveys we extract a list of works (Table 2.1) that intend to be
representative of the main types of corpora that have been produced to train and/or
evaluate argument mining systems.19 Since these surveys cover works until 2018,
we complement them with some examples of corpora produced in the last couple

19In many cases, the annotated corpora evolve over time, being enriched/re-purposed for dif-
ferent tasks. In these cases, in general, we also include only one work in which the corpora is
developed or used.
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of years. We indicate, in each case, the domain/textual genre, adopting the taxon-
omy proposed in (Cabrio and Villata, 2018), which we extend with the category
Class discussions (as a sub-category of Education), an emerging application area
in argument mining.20

In the referred surveys, authors consider reported measures of inter-annotator
agreement for the reviewed initiatives. While agreement levels vary depending
on the complexity of the considered tasks and domains (Stab, 2017), there is a
general consensus with respect to difficulty involved in the identification of argu-
ments and its parts (Cabrio and Villata, 2018; Stab et al., 2014), due to the wide
range for subjective interpretation of the speaker’s intentions that frequently exists
in the analysis of arguments. The identification of argument components and re-
lations can become even more difficult when dealing with complex types of texts
and/or in highly specialized domains, as we see in Section 2.3.

2.1.3 Tasks and schemes

Argument mining involves three main sub-tasks. Most works in the area deal
with one or more of them, which can be processed independently, sequentially or
jointly, as we see in more detail in Chapter 4. These tasks are:

1. Identification of argumentative spans of text
This task involves classifying parts of a text (most frequently, sentences)
either as argumentative or non-argumentative.

2. Identification of argumentative components
This task consists in identifying the boundaries and/or types or the argu-
mentative components within text previously classified as argumentative.

3. Identification of the structure of arguments
This task involves establishing argumentative relations between argumenta-
tive components and/or whole arguments.

20We include in the category Debate platforms works that target citizen-participation platforms,
such as (Kwon et al., 2007; Liebeck et al., 2016; Park and Cardie, 2018).
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Lippi and Torroni (2016b) establish correspondences between each of these argu-
ment-mining tasks and other NLP tasks: sentence classification (e.g., sentiment
analysis), sequence labeling (e.g., named-entity recognition), and link prediction
(e.g., semantic textual similarity), respectively.

The relations considered in order to represent the structure of the arguments, as
well as the types used to identify the arguments’ components vary depending on
the specific needs of each application. In the majority of the cases, the annotation
schemes used in argument mining corpora derive from theoretical frameworks
intended to formalize argumentative reasoning, such as Toulmin’s model of argu-
ments (Toulmin, 1958). Toulmin’s model describes the different parts necessary
in a well-formed argument (claim, data, warrant, qualifier, rebuttal, backing),
and it has been adapted in several ways for its application to the computational
analysis of the internal structure of arguments. Habernal and Gurevych (2017)
analyze the suitability of Toulmin’s model for mining arguments in a corpus of
user-generated web content. They conclude that a modified version of the model
containing five argument components (claim, premise, backing, rebuttal, and refu-
tation) is suitable only for short persuasive documents with a clear standpoint on
a controversial topic.

Various authors have pointed out limitations of Toulmin’s model when applying it
in practice to argument mining. Some of these limitations include the ambiguity
in the definition of arguments’ components,21, as well as the narrow scope of the
rebuttal type, which is not well suited to model other types of attacks (Freeman,
2011; Stab, 2017; Lauscher et al., 2018b).

Freeman (2011) proposes a theory of the structure of arguments that considers
a hypothetical dialectical exchange between a proponent who defends (supports)
a claim and an opponent, who questions (attacks) it. Peldszus and Stede (2013)
propose a graph-based annotation scheme that incorporates this dialectical-based
perspective with two main argumentative relations: support and attack. In this
scheme, an annotated text is represented by means of a graph in which the nodes
stand for argument components, called argumentative discourse units (ADU), of
which one is identified as representing the central claim. Relations can be estab-
lished between ADUs or between an ADU and another relation.

21Such as data, warrant, backing, which makes it difficult to choose one over another when
annotating a text.
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The model allows to represent that two (or more) ADUs can participate in a joint
support relation with another one. The support relation can be further specified to
indicate that one ADU provides an example for another one, while the attack re-
lation can be sub-divided into two types: rebuttal, which is established when one
ADU attacks another one (i.e., one ADU is intended to undermine the credibility
of another one), and undercut, which is established when an ADU attacks a rela-
tion between two ADUs, (i.e., one ADU is intended to challenge the acceptability
of the inference from the source to the target node). The GraPAT22 web-based
annotation tool contemplates the annotation of texts based on this scheme (Son-
ntag and Stede, 2014). The scheme and the tool were used to annotate a corpus
of argumentative microtexts (Peldszus and Stede, 2015a), which we describe in
more detail in Section 2.2.

In contrast to Toulmin’s micro-level model of arguments, Dung’s argumentation
framework (Dung, 1995) is aimed at representing attack relations at the macro
level (i.e., between whole arguments). Dung’s framework has been used, for in-
stance, by Cabrio and Villata (2012a), to predict the acceptability of arguments in
online debates by considering how they are attacked by other arguments. This is
done in practice by mapping Dung’s attack relation to the contradiction relation
in a textual entailment classification system.

Walton’s Argumentation Schemes (Walton et al., 2008) is another influential model
in argument mining. The argumentation schemes are templates intended to cap-
ture common structures of arguments used in everyday reasoning. One one hand,
the schemes can be used to guide a reasoning/argumentation process and, on the
other, to evaluate it. Each scheme therefore includes a set of critical questions,
which represent defeasibility conditions that can be used to identify potential
weaknesses of the arguments. The number and types of proposed schemes have
changed over time. (Macagno et al., 2017) provide a detailed description of their
evolution and potential uses.23 Walton’s schemes were adopted and used exten-
sively, for instance, in the Araucaria system (Reed and Rowe, 2004), as a way
of facilitating the identification and visualization of the structure of arguments in
terms of their constituents and the relationships between them.

22Graph-based Potsdam Annotation Tool: github.com/discourse-lab/GraPat
23A list of schemes is available at reasoninglab.com/patterns-of-argument/ar

gumentation-schemes/waltons-argumentation-schemes
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2.2 Relation between argument mining and discourse
analysis

Previous works have explored correspondences between the structure of argu-
ments and discourse coherence relations considered in discourse-analysis frame-
works, such as the Rhetorical Structure Theory (RST) (Mann and Thompson,
1988) or the Penn Discourse Treebank (PDTB) (Prasad et al., 2008), including
(Peldszus and Stede, 2013; Cabrio et al., 2013; Biran and Rambow, 2011; Garcı́a-
Villalba and Saint-Dizier, 2012; Stab et al., 2014; Green, 2018). According to
Stede and Schneider (2018), in spite of all the existing analyses, this relation is is
so far not entirely clear (Stede and Schneider, 2018, p.80).

Peldszus and Stede (2013) explore the possibilities offered by RST to represent
argumentative structures. An RST analysis applies a set of relations24 between
adjacent spans of text. In most of the relations,25 the linked spans do not have
the same relevance in terms of the communicative intentions of the writer: the
segment that carries the most significant information is called the nucleus and the
segment with a supportive role is called the satellite. Most relations can, there-
fore, be seen as directed links from the nucleus to the satellite. An RST analysis
is performed in a hierarchical way, linking together elementary discourse units
(EDU)–the shortest meaningful segments–and then applying the same procedure
recursively in a bottom-up fashion, where the nucleus of a relation is linked to
another nucleus. This process ends up producing a discourse tree representing the
text. An RST tree should therefore reflect a compositional criterion, in the sense
that a relation between two nuclei reflects the relation between the two larger
spans of text that contains them (Marcu, 2000). Not all RST relations are consid-
ered to have the same relevance from an argumentative point of view (although
this depends on the argumentative dimensions considered, as we see in Chapter
7). Azar (1999), for instance, identifies only five RST relations26 as necessary for
an argument-oriented analysis of a text.

24The full set of 32 relations currently considered in RST, with their definitions and examples
is available at sfu.ca/rst/01intro/definitions.html.

25Except seven relations considered as multi-nuclear.
26Evidence, Motivation, Justify, Antithesis, and Concession
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Peldszus and Stede (2013) identify obstacles that arise when trying to apply an
RST analysis directly to the identification of the argumentative structure of a text,
including the fact that argumentative relations do not necessarily respect the adja-
cency criteria adopted in pure RST. Another problem that they identify is the im-
possibility of representing some argumentative relations in RST should the com-
positionality principle be respected. This is the case, in particular, of rebuttal
relations. To illustrate this problem, they provide the following example27 with a
fragment of an argumentation containing two sentences, with the EDUs enclosed
in square brackets and the respective nuclei in bold:

[The building is full of asbestos,]1 [so we should tear it down.]2
[In principle it is possible to clean it up,]3 [but according to the mayor that would
be forbiddingly expensive.]4

The relations in an RST analysis would be:

3 −−−−−−→
Antithesis

4 −−−−−→
Evidence

1 −−−−−→
Evidence

2

The problem is that this does not reflect the full argumentation contained in the
text, which could be represented as:

4 −−−→
rebut

3 −−−→
rebut

1 −−−−→
support

2

In particular, the RST analysis does not contemplate the argumentative relation
of rebuttal between the satellite EDU 3 and [1-2] (i.e: the RST analysis cannot
explicitly reflect the fact that the possibility of cleaning up the building diminishes
the strength of the argumentation conveyed by the first sentence.)

The example is useful to illustrate the differences in terms of the goals of the
two types of analyses, but it also shows that relations between the two tasks, and
triggers the question of whether argumentative graphs could be derived from dis-
course trees obtained by means of RST analyses. This is, in fact, is one of the
main issues addressed by Peldszus and Stede (2016, 2015a); Stede et al. (2016).

27Based on an example of rebuttal and counter-rebuttal by (Freeman, 2011).
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Stede et al. (2016) annotate 112 argumentatively rich texts with three annotation
layers, one argumentative and two discourse-oriented, in order to study the rela-
tionship between discourse and argumentation structures. The arguments included
in the corpus were generated in an experiment in which several participants wrote
short texts of controlled linguistic and rhetorical complexity discussing a contro-
versial issue from a pre-defined list of topics. The argumentation-level annota-
tions are made by means of the scheme adapted from (Freeman, 2011) and de-
scribed in (Peldszus and Stede, 2013), which we summarize in Section 2.1.3. For
the discourse annotations they consider RST as well as the Segmented Discourse
Representation Theory (SDRT) (Asher et al., 2003) and map the three annota-
tion layers to a common dependency tree format in order to facilitate the analysis.
At the argumentative level, the annotation units (ADUs) consist of one or more
EDUs (which are shared by both discourse-level representations). They include
a non-argumentative meta-relation, join, to link together EDUs that are part of
the same ADU. Based on this corpus, the authors provide quantitative and qual-
itative analyses of commonalities and differences between the different levels of
representation.28

As a follow-up to this work, Peldszus and Stede (2016) conduct experiments to
explore the possibility of automatically deriving argumentative components and
relations from RST to argumentative trees. They define the following four tasks
to predict the constituents and relations in the argumentative tree:

• attachment: Given a pair of EDUs, are they connected?
• central claim: Given an EDU, is it the central claim of the text?
• role: Given an EDU, is it in the proponent’s or the opponent’s voice?
• function: Given an EDU, what is its argumentative function?29

They compare three approaches: i) a simple heuristic tree-transformation, which
they consider as baseline, in which RST relations are mapped to argumentative
functions based on the frequency in the respective edge alignments observed in
(Stede et al., 2016), ii) an aligner based on matching sub-graphs in the RST struc-
ture to sub-graphs of the argumentative structure,30 and iii) an evidence-graph

28Venant et al. (2013) compare RST and SDRT and explore transformations of representations
from one formalism to the other.

29One of the fine-grained relations considered in the scheme: support, example, rebut, undercut,
link, to represent linked supports, and the join non-argumentative meta-relation.

30A probability-weighted graph is generated from the RST tree -based on probabilities learned
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model31 (Peldszus and Stede, 2015b). While the baseline tree-transformation
model yields the better performance in the prediction of the argumentative role,32

for the three other tasks the evidence-graph model is the one for which best results
are obtained.

Peldszus and Stede (2016) conduct the experiments with gold RST annotations.
They consider that their results encourage investigating the use of discourse-level
relations obtained by means of discourse parsers to predict the argumentative
structure of texts. This is addressed by Hewett et al. (2019), where the authors
apply RST and PDTB parsers to documents in the microtext corpus. They first
perform a qualitative analysis of correlations between the predicted discourse re-
lations and the annotations in the argumentative layer and, in a second step, they
investigate whether automatically-obtained discourse features can contribute to
improve the predictions of the evidence-graph argument mining model.33 They
find that, in spite of the fact that they observe a low level of alignment between
PDTB and argumentative relations, features derived from the output of the PDTB
parser contribute more than those obtained by means of the RST parser to improve
the performance of argument mining classifiers. In particular, this is the case for
the attachment and function tasks. As they indicate, additional work would be
necessary to fully understand the contribution of the parsers’ output. In an evalu-
ation of the RST parser against the gold RST annotations in the microtext corpus
they report a low performance of the RST parser.34 This can explain in part the
poorer contribution of the RST predictions to the argument mining task.

The work by Peldszus and Stede (2016) is particularly relevant in the context of
our research, as it directly inspired our proposal to leverage RST annotations for
argument mining. In our pilot experiment (Accuosto and Saggion, 2019b)35 we
do not use features obtained as the result of a full-fledged discourse parsing task,

in the training phase with a sub-graph alignment algorithm- and then a the minimum spanning tree
(MST) algorithm is used to generate the argumentative graph.

31In this case a classifier is first trained for each of the four tasks and, in order to predict the
edges of the argumentative tree, the predictions of the four classifiers are combined.

32Which the authors consider as expected, since the sequence of contrastive relations in the
RST tree highly correlates to the sequence of proponent and opponent role assignments in the
argumentative tree

33In these experiments they use an improved version of the evidence-graph model described in
(Afantenos et al., 2018).

34F1 scores of 0.338, 0.264, and 0.115 for span, nuclearity, and relation tasks, respectively
35Summarized in Appendix A.
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but experiment with contextualized word embeddings pre-trained with RST anno-
tations and find that they do contribute to improve the prediction of the argumen-
tative structure of scientific abstracts. The results of these experiments motivate
part of the work described in Chapter 4.

Another line of research explores the possibility of establishing mappings be-
tween argumentation schemes such as those propose by Walton et al. (2008) and
discourse relations. Cabrio et al. (2013) explore to what extent a subset of Wal-
ton’s schemes36 can be mapped to categories of discourse relations used in PDTB.
They do this by comparing the definitions of the argumentation schemes and the
definitions of the discourse relations to find candidate mappings, which are then
evaluated on examples extracted from PDTB. From the analysis of the discourse
relations considered in PDTB they find that in some cases no clear mappings can
be established with existing schemes. The authors suggest the possibility of in-
troducing two new schemes to deal with these cases. Musi et al. (2018), in turn,
propose to extend the microtexts corpus with a new annotation layer based on
schemes derived from the Argumentum Model of Topics (Rigotti and Morasso,
2010). They conduct a pilot annotation of 40 microtexts, which they use to ana-
lyze correspondences between the new schemes-based annotations and the corpus
RST annotation layer.

2.3 Mining arguments in scientific text

There is an important body of work on the identification of the rhetorical compo-
nents of scientific texts.37 Few initiatives, nevertheless, are aimed at the com-
putational analysis of scientific articles from an argument mining perspective
(Al Khatib et al., 2021).38 The reason for this can lie in the fact that the annotation
of arguments in scientific texts has proven to be particularly difficult due to the
complexity and ambiguity of the scientific discourse Stab et al. (2014); Lauscher
et al. (2018b); Green (2015).

36In this work five schemes are considered: Argument from Example, Argument from Cause to
Effect, Argument from Effect to Cause, Practical Reasoning, and Argument from Inconsistency.

37See Section 2.4
38Stede and Schneider (2018) also say that scientific papers constitute a textual genre that

”somewhat surprisingly, so far has not received very much attention in the argumentation mining
community.” (Stede and Schneider, 2018, p. 150)
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In a recent survey on the subject, Al Khatib et al. (2021) consider a set of spe-
cific challenges faced when identifying arguments, their structure and relations in
scientific texts, which include:

1. The lack of adequate argumentation models for the scientific discourse;

2. The specificities of the language used and the document structures em-
ployed in different scientific disciplines;

3. The multiplicity of document types in the scientific domain (including re-
views, method papers, and experimental reports);

4. The extended use of enthymemes39 in scientific arguments;

5. The fact that multiple valid interpretations of the structure of arguments
is particularly challenging in the scientific domain (in particular, by non-
domain-expert annotators);

6. The need to fulfil both the persuasive role and the presentation of objectivity
which scientific writing demands gives origin to texts structurally complex
(e.g., the distance between a claim and its premise may be particularly wide
in scientific discourse).

As mentioned, one of the goals of this thesis is to address the first issue. In Chap-
ters 3 and 6 we confirm some of the other challenges–in particular, points 2, 5,
and 6–when we analyze our own annotations.

The work by Kirschner et al. (2015a), who annotates the introduction and conclu-
sion sections of 24 German scientific articles in the educational domain, is one of
the first works intended for the analysis of the argumentative structure of scien-
tific texts (considering not only argumentative components but also how they are
linked to each other). In this work, argumentative units are considered at the sen-
tence level and they are linked by four types of relations, three directed: support,
attack, detail, and one undirected: sequence. Fig. 2.1 shows an argumentative
graph resulting from an annotation included in (Kirschner et al., 2015a).

The support and attack relations are adopted from the annotation scheme proposed
by Peldszus and Stede (2013), based on Freeman’s proponent/opponent model
(Freeman, 2011).

39An implicit (unstated) premise or conclusion.
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Figure 2.1: Example of an argument with six components annotated with the scheme
proposed by Kirschner et al. (2015a). Source: (Kirschner et al., 2015a)

The sequence relation is introduced to link together sentences that could be con-
sidered in combination to form an greater argumentative unit, while detail sub-
sumes various discourse relations, including non-explicit types of support (such
as background and elaboration in discourse analysis). In order to simplify the
analysis, only relations between sentences separated by at most 5 other sentences
are considered. When they compute the inter-annotator agreement obtained with
the annotation of relation types without considering direction, they observe low to
moderate pair-wise Hubert’s κ40 values, which lie between 0.25 and 0.47.41

The work by Lauscher et al. (2018b) is one of the few other examples to ad-
dress the analysis of argumentation in scientific texts. In this work, they enrich
the DrInventor Scientific Corpus (Fisas et al., 2016) with an argumentation layer.
The DrInventor corpus contains 40 computer graphics articles with four anno-
tation layers, including citation contexts, rhetorical role of sentences, potential
relevance of sentences for their inclusion in a summary, and indication of subjec-
tive information (e.g., novelty/advantages). Lauscher et al. (2018b) annotate ar-
gumentative components of arbitrary lengths with three type of units: own claim,
background claim, and data (evidence for a claim) and three directed relations:

40Hubert’s extension to Cohen’s κ (Hubert, 1977) is used.
41In the paper a weighted average of κ = 0.3912 is reported. The averages are weighted con-

sidering the probability of the relations between two components, based on the distance between
them.
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supports, contradicts, and semantically same (to link together components that
communicate the same information). Four annotators were involved in the an-
notation of the argumentative layer of the corpus, which was conducted in five
iterations. They compute the resulting inter-annotator agreements in terms of F1

scores. For a relaxed version of the agreement–in which components only have to
match in type and overlap in span–in the last annotation iteration they obtain ap-
proximately 0.72 F1 score for component types and 0.48 for relations.42 They per-
form a normalized mutual information (NMI) analysis (Strehl and Ghosh, 2002)
of the information shared by the rhetorical and argumentative layers, in which
they find correspondences between segments annotated as own claim in the argu-
mentative layer and as approach or outcome in the rhetorical layer, and between
segments annotated as background claim and as background or challenge in the
argumentative and rhetorical layers, respectively. In a follow-up work, Lauscher
et al. (2018a) use the annotated corpus to train a model for the automatic identi-
fication of claims and evidence in scientific texts. For token-level classification
models trained with the annotated corpus and evaluated in a test set of 12 ran-
domly selected publications, they obtain a macro-averaged F1 score of 43.8 in the
identification of argument components.

Green (2016), in turn, proposes to parse arguments in biomedical texts by means
of manually-constructed rules derived from argumentation schemes and imple-
mented in a logic programming language such as Prolog. She includes a set of
rules to exemplify the proposed approach. Some of them include domain-specific
predicates such as have-phenotype, have-genotype, and have-protein and would
require a previous text-mining stage. Other predicates, such as similar or cause,
would exploit domain knowledge contained, for instance, in knowledge bases.
The idea of identifying arguments by means of a combination of domain-specific
knowledge and inference rules has also been proposed by Saint-Dizier (2018). In
this case, linguistic and domain knowledge would be encoded by means of Qualia
structures in the Generative Lexicon framework (Pustejovsky, 1998). These rule-
based approaches have not been implemented and evaluated beyond pilot studies.

42The results are presented only graphically so the numbers are approximations.
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2.4 Computational analysis of scientific discourse

2.4.1 Argumentative Zoning

One of the most influential initiatives in the annotation and automatic processing
of rhetorical components of scientific articles is the Argumentative Zoning (AZ)
model (Teufel et al., 1999). The AZ scheme includes annotations that characterize
knowledge claims included in the papers according to whether they are introduced
by the authors of the paper (Own), other researchers (Other) or they are part of
accepted background knowledge (Background). Other AZ categories are aimed at
establishing connections with previous work, and, in that sense, play a role similar
to that of citation functions: Basis is used to refer to work that the current work
is based on, and Contrast to refer to problems/weaknesses of previous work that
the current work addresses. There is one category, Aim, intended to identify the
main knowledge claim of the paper, and another one, Textual, reserved to annotate
presentational information (such as the structure of the paper).

Originally developed and tested with a corpus of computational linguistics arti-
cles, the AZ scheme was later extended and used to annotate a corpus of 61 chem-
istry papers (Teufel et al., 2009). The updated scheme, AZ-II, contains 15 cate-
gories that result from further specifying the AZ categories Other, Basis, Contrast,
and Own, adding two new categories to indicate advantages of a new knowledge
claim (NovAdv), and description of limitations of the described proposal and/or
future work (Fut).

The annotation units in AZ are sentences. Teufel (2010) explains that this was not
an obvious decision. She also considered the possibility of doing the annotations
at the clause level. She justifies her final choice based on the fact that, while
clause-level units could potentially lead to more accurate annotations, ”this effect
would be restricted to the rare cases where a sentence does contain more than
one move.” Teufel argues that this ”has to be weighted against the much larger
number of cases for one move or segment covers the sentence.” (Teufel, 2010, p.
199)
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The AZ model was originally aimed at the annotation of full articles. The AZ
scheme was developed having in mind automatic summarization and citation in-
dexing (Teufel, 2010). The scheme has, nevertheless, been used in other appli-
cations. For instance, in (Feltrim et al., 2006), the AZ model is adapted for the
automatic annotation of scientific abstracts in Portuguese (AZPort). The AZPort
model is integrated as a module of SciPo,43 a web-based tool aimed at support-
ing novice writers of academic texts: given an abstract, the system classifies its
sentences by means of AZPort and, based on a set of rules for well-formed rhetor-
ical structures, it provides feedback for potential improvements (e.g., re-ordering
the elements of the text or adding missing content). Vargas-Campos and Alva-
Manchego (2016), in turn, adapt the AZPort model to Spanish (AZEsp), which is
also integrated into a computer-assisted writing tool for computer science disser-
tations in Spanish (Sci-Esp).

2.4.2 Core Scientific Concepts

The Core Scientific Concepts (CoreSC) annotation scheme adopts the view of a
scholarly paper as a readable representation of a scientific research process by
associating research components to sentences describing them (Liakata et al.,
2012). It is, therefore, also a sentence-based annotation scheme. CoreSC con-
tains 11 categories: Hypothesis, Motivation, Goal, Object, Background, Method,
Experiment, Model, Observation, Result, and Conclusion. In turn, some of these
categories44 can be further qualified, giving origin to sub-categories (e.g., Method-
New-Advantage).

The CoreSC scheme was used originally to annotate 265 papers in physical chem-
istry and biochemistry. The main application foreseen in its development was to
use it to train machine learning models targeted at extractive summarization and
”intelligent querying” of a repository of research articles (Liakata et al., 2010).

While CoreSC was initially intended to annotate each sentence with a single cate-
gory, it has then been adapted to allow the annotation of multiple labels when more
than one concept is expressed within the same sentence (Ravenscroft et al., 2016).
The new scheme was applied to the annotation of the Multi-CoreSC CRA corpus,

43nilc.icmc.usp.br/scipo/
44In particular Method and Object
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which contains 50 research papers on cancer risk assessment (CRA). Even when
multiple concept annotations are allowed in the updated scheme, the annotation
unit is still the sentence. In a similar line to the arguments of Teufel (2010), the
authors justify the decision based on the lack of reliable clause-recognition sys-
tems, which, they understand could introduce noise to the task of automatically
identifying CoreSC concepts ((Ravenscroft et al., 2016, p. 4116)).

Differences and similarities between AZ and CoreSC are studied in depth in (Li-
akata et al., 2010), where correlations between both annotation schemes are con-
sidered. Based on their analysis, the authors conclude that the two schemes are
complementary in their approach, and that a combined scheme could improve the
quality of automatically generated summaries of the papers, since they could bet-
ter reflect both the research process outcomes as well as the knowledge claims and
author attributions contained in them.

2.4.3 Claim Framework

Blake (2010) proposes the Claim Framework for the characterization of claims in
biomedical articles. In this context, a claim captures how the basis of a change in
a relation between two concepts is reported.45 Claims are categorized as explicit
claims, observations, correlations, comparisons, and implicit claims. While the
annotation is also done at the sentence level, annotators can associate more than
one claim category to each sentence.

Blake (2010) provides the following example of a sentence with two explicit
claims, which are marked with square brackets:

Indeed, [glycine prevented Wy-14643-stimulated superoxide production] by Kupffer cells.

Indeed, glycine prevented [Wy-14643-stimulated superoxide production by Kupffer cells].

In the first case, glycine and Wy-14643-stimulated superoxide production are the
concepts involved in the relation and prevented the reported change, while, in the
second case, Kupffer cells and Wy-14643-stimulated superoxide are the concepts
involved in the relation and production the reported change.

45These four elements are referred to facets in the framework.
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Being explicit claim the type most frequently found in the studied domain, the
author develops a system to identify this type of claims by means of a dependency
grammar with semantic and syntactic constrains, which is tested on an annotated
corpus of 29 articles. This work is extended in (Park and Blake, 2012) to identify
sentences containing claims of type comparison. In this case, they use a corpus of
122 annotated documents and the classification of the sentences is done by means
of a Bayesian Network.

Ahmed et al. (2013) explore the applicability of the Claim Framework to social
science literature. They conduct a pilot study in the areas of community infor-
matics (CI) and information and communication technologies for development
(ICT4D) and compare how claims are reported in these fields with respect to the
biomedical domain in which the framework was first tested. They analyze claims
made in different sections of the papers and find various differences between both
disciplines. For instance, they observe that there is a greater proportion of claim
sentences in the abstract section of biomedical research papers when compared to
those found in CI or ICT4D.

2.5 A note on transfer learning

In our experiments we implement transfer learning approaches, including multi-
task learning (Caruana, 1997) and sequential transfer learning (pre-fine-tuning
parameters of attention-based models on an intermediate related task). With the
increased popularity of parameter-rich models, intermediate fine-tuning has be-
come an active research area (Phang et al., 2018). Recent works have focused on
trying to clarify when and why it works–including (Pruksachatkun et al., 2020)–
as well as on how to select the task(s) to use for intermediate training–including
(Park and Caragea, 2020; Poth et al., 2021).

Transfer learning is not one of our research goals. An in-depth review of work
in this area is, therefore, beyond the scope of this thesis. Multiple surveys on
the topic are available, including (Pan and Yang, 2010; Weiss et al., 2016; Tan
et al., 2018; Zhuang et al., 2020), as well as books, including (Azunre, 2021;
Yang et al., 2020). In his PhD thesis, Ruder (2019) provides an in-depth survey of
the application of transfer learning to natural language processing.
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Chapter 3

THE SCIARG CORPUS OF
SCIENTIFIC ABSTRACTS

In this chapter we propose SciARG, a new annotation scheme particularly tai-
lored at the identification of argumentative units and relations in scientific ab-
stracts. We apply this scheme to augment, with an argumentation layer, a subset
of the Discourse Dependency TreeBank for Scientific Abstracts (SciDTB) (Yang
and Li, 2018), which contains annotations with discourse relations between at
elementary-discourse units in computational linguistics abstracts. We refer to the
augmented corpus as SciARG-CL.

This chapter is organized as follows:

• In Section 3.1 we describe the data used in our annotations.

• In Section 3.2 we describe our annotation scheme, including argumentative
unit types and relations, and motivate our decision to consider sentences as
annotation units.

• In Section 3.3 we describe the annotation process and show an example of
the annotation interface.

• In Section 3.4 we report and analyze the inter-annotator agreement obtained.

• In Section 3.5 we provide corpus statistics and analyze correspondences
between the different annotations considered (i.e., types and relations).

• In Section 3.6 we summarize the main contributions of this chapter.
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3.1 Data

In this work we enrich the SciDTB corpus1 with an annotation layer that describes
the argumentative structure of scientific abstracts. In preliminary experiments, de-
scribed in (Accuosto and Saggion, 2019b,a, 2020), we explore the possibility of
leveraging existing discourse annotations for the identification of argumentative
components and relations in scientific abstracts by annotating 60 SciDTB ab-
stracts with and argumentation-level of annotations. These experiments and its
results are summarized in Appendix A. The extended corpus presented in this
chapter includes the 225 abstracts available in the Proceedings of the EMNLP
2014 Conference2.

3.1.1 The SciDTB corpus

SciDTB contains 798 abstracts from the ACL Anthology3 annotated with dis-
course relations based on an adaptation–to the scientific domain–of the Rhetorical
Structure Theory (RST) framework (Mann et al., 1992). As mentioned, RST pro-
vides a set of coherence relations with which adjacent spans in a text can be linked
together in a discourse analysis, resulting in a tree structure that covers the whole
text. The minimal units that are joined together in RST are called elementary
discourse units (EDUs). The SciDTB annotations use 17 coarse-grained relation
types and 26 fine-grained relations (Table 3.1).

The segmentation of sentences into discourse units in SciDTB was performed in
a semi-automated way, with a first automatic segmentation done by means of the
SPADE discourse parser (Soricut and Marcu, 2003), which was then manually
checked. The resulting EDUs were then labeled in order to construct the dis-
course dependency trees, which were made available in JSON format.4 Poly-nary
discourse relations in RST are binarized in SciDTB by applying a ”right-heavy”
transformation used in other works that represent discourse structures as depen-
dency trees (Morey et al., 2017; Stede et al., 2016; Li et al., 2014).

1Section 3.1.1
22014 Conference on Empirical Methods in Natural Language Processing, emnlp2014.org
3aclanthology.org
4The SciDTB corpus is available at github.com/PKU-TANGENT/SciDTB.
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Coarse-grained Fine-grained

ROOT ROOT

Attribution Attribution

Background Related, Goal, General

Cause-effect Cause, Result

Comparison Comparison

Condition Condition

Contrast Contrast

Elaboration Addition, Aspect, Process-step,
Definition, Enumerate, Example

Enablement Enablement

Evaluation Evaluation

Explain Evidence, Reason

Joint Joint

Manner-means Manner-means

Progression Progression

Same-unit Same-unit

Summary Summary

Temporal Temporal

Table 3.1: Fine and coarse-grained relations used in the SciDTB corpus

Let us consider the following example from (Zhang and Wang, 2014), included
in the SciDTB corpus, in which EDUs are numbered and identified by square
brackets. Fig. 3.1 shows the partial discourse tree in SciDTB that includes EDUs
1-4.

[State-of-art systems for grammar error correction often correct errors]1[based on word se-
quences or phrases.]2[In this paper, we describe a grammar error correction system]3[which
corrects grammatical errors at tree level directly.]4
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Figure 3.1: Discourse relations in SciDTB.

3.2 The SciARG annotation scheme

One of the main goals of our work is to facilitate argumentation-based analyses of
scientific abstracts by identifying the way in which authors structure its contents
to persuade potential readers about the relevance and/or validity of their proposals.
For this we propose the SciARG annotation scheme, which aims at making explicit
the underlying argumentative structure of the scientific abstracts by i) identifying
the rhetorical role(s) of annotation units, as well as ii) discourse relations between
them–in particular, those relevant from an argumentative point of view.

For the proposed scheme we adopt a pragmatic perspective that intends to bridge
an existing gap between different annotation levels.

In particular:

• Discourse-level annotation schemes, such as those in the RST framework
(Mann and Thompson, 1988);

• Rhetorical-level annotation schemes, such as Argumentative Zoning (AZ)
(Teufel et al., 1999) and the CoreSC schemes (Liakata et al., 2010);

• Argumentation mining annotation schemes, such as the one proposed in
Peldszus and Stede (2013)).
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3.2.1 Annotation level

When analyzing the argumentative structure of texts, a key consideration is to de-
fine the boundaries of the argumentative units, which can, in theory, range from
a few words to several sentences. In our preliminary studies (Accuosto and Sag-
gion, 2019b,a, 2020), we considered elementary discourse units (EDU) as the
minimal annotation unit and modeled all the tasks as token-classification prob-
lems. Analyzing these annotations we observed that unit boundaries coincided
with sentence boundaries 93% of the times. Models trained with such annotations
would therefore tend to predict sentences as annotation spans, achieving a high
accuracy in the prediction of the boundaries, but not being very useful for the pre-
diction of the more difficult cases, where argumentative spans are shorter than a
sentence. In addition, if we expect units to be sentences in a high percentage of
the instances, modeling the problem as a token-level classification task is not an
optimal solution, as we transform the problem into a more difficult one in cases in
which it is not required.

Based on the above considerations, we decide to define the sentence as the annota-
tion unit in the more general case, and to tackle as separate problems the classifi-
cation of rhetorically/argumentatively complex sentences–those containing more
than one argumentative unit–and the identification of argumentative units within
them. This is described in detail in Chapter 5. The decision of whether it is neces-
sary to consider this second step of analysis in an argumentative mining pipeline
or not depend on the granularity level of argumentative components needed in a
specific downstream application.5

The consideration of rhetorical or argumentative units at the sentence level is an
approach that has been frequently adopted in argument mining works, including,
in the scientific domain (Teufel et al., 1999; Liakata et al., 2012; Kirschner et al.,
2015a). Considering annotations at the sentence level not only facilitates the an-
notation process, it contributes to model the prediction of argumentative types and
relations in a way that is more natural in the majority of the cases. This, as we see
in Chapter 5, can have an impact on the decision of the classification methods that
are better suited for argument mining tasks in each context.

5For instance, in the application described in Part II, we use predictions at the sentence level.
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3.2.2 Types of units

Argumentation mining initiatives across multiple domains frequently divide ar-
gumentative components into two (non-mutually exclusive) types: claims and
premises. The main tasks in this case are i) to identify which spans of texts can
be associated to one or both of these types,6 and ii) to establish links between
premises and the claims that they support or attack, as seen in Chapter 2. In
the case of scientific discourse, however, it is frequent to find that claims are not
explicitly stated in an argumentative writing style but are instead left implicit or
presupposed (Al Khatib et al., 2021).

The description of the work addressed in a given paper, for instance, conveys
implicit claims in relation to the relevance of the problem at stake–which can
be supported by stating existing unsolved problems and/or limitations in current
solutions (motivation), or with respect to the benefits of the proposed approach–
which can be supported by explaining the improvements obtained with the new
approach (results). Works such as AZ and CoreSC go in-depth into the identifica-
tion of the diverse roles7 that different components of the scientific discourse can
play, with an important difference with respect to the general argumentative min-
ing perspective: they put the focus on the characteristics of the constituents and/or
their functions, but not on the structure of the text (i.e., the relations between
them).8

Several works have been dedicated to the study of the rhetorical organization of
scientific texts and their parts, including (Swales, 1990) and (Maeda, 1981). Fo-
cusing in particular on the papers’ abstracts, different authors consider different
preferred or most frequent sequences of rhetorical moves, depending on the spe-
cific scientific discipline they study.

Dos Santos (1996), for instance, analyzes the textual organization of applied lin-
guistics abstracts, Abdollahpour and Gholami (2018) study abstracts included in
medical science databases, Doró (2013) considers articles published in English
studies journals, Cross and Oppenheim (2006) conduct a genre analysis of biol-

6In some works parts of the text that are considered to be uninformative from an argumentative
perspective are previously filtered out.

7The knowledge claim role of sentences, in the case of AZ, and in terms of the type of infor-
mation they convey, in the case of CoreSC.

8With the exception of shared identifiers that link instances of the same concept together.
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ogy abstracts, and Hartley and Betts (2009) explore common weaknesses of social
science abstracts, and compare structured vs. non-structured abstracts from this
perspective. (Orasan, 2001), in turn, studies scientific abstracts across six sci-
entific disciplines, considering lexical, syntactic and discourse patterns. Closer
to our work, Feltrim et al. (2003) use the AZ scheme for the analysis of writ-
ing patterns in computer science abstracts in Portuguese, with the ultimate goal
of supporting the development of assisted-writing tools. Finally, Dayrell et al.
(2012) develop the MAZEA corpus for the identification of rhetorical moves in
abstracts in two disciplines: physical sciences and engineering and life and health
sciences, as we see in more detail in Chapter 5.

Even with the variations observed in the different disciplines analyzed, a broad
categorization of the most frequent rhetorical moves in scientific abstracts can be
considered:

• Contextualize the research topic;

• Expose limitations in existing solutions;

• Explain new proposed approaches;

• Describe the methodologies used;

• Summarize the main results;

• Draw conclusions.

Based on this general categorization of the different types of constituents that can
be found in scientific abstracts, we propose a fine-grained annotation scheme that
contains ten types of unit (Table 3.2).

Each type can, in turn, be mapped to a coarse-grained category. The use of fine or
coarse-grained types depend on the needs of the specific application in which the
annotations are to be used.9

Units identified with the described types can be seen as playing different argu-
mentative roles–either as claims and/or premises–when considered in relation to
other units. Table 3.3 shows an example for each type of unit extracted from the
annotated corpus.

9In the context of this work we use the fine-grained types.
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Fine-grained type / Coarse Argumentative
Description

proposal proposal claim
High level description of the proposed approach/solution

proposal-implementation proposal claim/premise
Processes/tools/methods that are part of the proposal

observation outcomes premise
Data obtained from experiments

result outcomes claim/premise
Direct interpretation of observed data

conclusion outcomes claim/premise
High-level interpretation/generalization of results

means methods premise
Secondary methods/processes not part of the proposal

motivation-problem motivation claim/premise
Known problem/limitation addressed by the proposal

motivation-hypothesis motivation claim/premise
New ideas/paths for known problems/limitations

motivation-background motivation premise
Known information to support the proposed approach

information-additional other premise
Additional information (definitions/examples)

Table 3.2: Fine and coarse-grained types of units with most frequent argumentative roles.
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proposal

We present a novel approach to improve word alignment for statistical machine
translation (SMT).

proposal-implementation

We observe, identify, and detect naturally occurring signals of interestingness in
click transitions on the Web between source and target documents, which we col-
lect from commercial Web browser logs.

observation

Our method produces a gain of +1.68 BLEU on NIST OpenMT04 for the phrase-
based system, and a gain of +1.28 BLEU on NIST OpenMT06 for the hierarchical
phrase-based system.

result

Experimental results show statistically significant improvements of BLEU score
in both cases over the baseline systems.

means

We conducted experiments on two standard benchmarks: Chinese PropBank and
English PropBank.

conclusion

This transfer learning approach brings a clear performance gain over features
based on the traditional bag-of-visual-word approach.

motivation-problem

However, fundamental problems on effectively incorporating the word embedding
features within the framework of linear models remain.

motivation-hypothesis

Combining the two tasks can potentially improve the efficiency of the overall
pipeline system and reduce error propagation.

motivation-background

Recent work has shown success in using continuous word embeddings learned
from unlabeled data as features to improve supervised NLP systems, which is
regarded as a simple semi-supervised learning mechanism.

information-additional

The structure of argumentation consists of several components (i.e. claims and
premises) that are connected with argumentative relations.

Table 3.3: Examples for each type of unit in SciARG
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In order to facilitate the annotation process and reduce the number of decisions
that annotators had to make, we instructed them to annotate all of the sentences
in the abstracts, understanding that specific annotations types could be ignored if
they are considered to not be relevant for a particular downstream application.

Linked to the observation made in the pilot annotation experiment–in relation to
the frequent coincidence between sentence and argumentative units boundaries–is
the fact that most sentences contain only one type of unit. This is in line with find-
ings in the MAZEA corpus, for which the authors indicate that ”the vast majority
of sentences from English abstracts reflect one single rhetorical move” (Dayrell
et al., 2012, p. 1607). Similar results are obtained with CoreSC’s revised schemes
that allows multi-label annotations: although in this case sentences in the whole
text of the papers are annotated–which are expected to be more complex than sen-
tences in abstracts, ”only 3.25% of sentences in the consensus have more than one
annotation” (Ravenscroft et al., 2016, p. 4117).

Similar observations are made by Stab (2017) with respect to his corpus, which
contains a total of 7,116 sentences annotated at clause level: ”There are no sen-
tences that include more than two argument components. [...] In total, there are
583 sentences that include several argument components of which 302 sentences
include two argument components of a different type, e.g. a claim followed by
a premise. Therefore, 8.2% of all sentences need to be split in order to identify
argument components. This shows that classifying sentences as a whole is not
sufficient for identifying argument components” (Stab, 2017, pp. 57-58).

Even when we differ in the way to approach the problem–as we argue that the
differences in proportion between the different types of sentences should be taken
into consideration–we agree with Stab (2017) in relation to the fact that when
multiple rhetorical roles/argumentative components can be identified within a sen-
tence, this can provide significant information to interpret it–for instance, when
analyzing the cogency of the whole argumentation.

In the first iteration of the annotation process, which is described in Section 3.3,
we observed that sentences containing mentions to the means by which results
were obtained where the most frequent cases among those in which more than one
type could be identified.10 In fact, this was corroborated in the final annotations,

10The ways in which results and means are included in the sentences are also syntactically more
diverse than for other combination of types–which are mostly introduced by coordinated clauses.
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where more than one type was identified in 11% of all the sentences. Of those,
53% contained information both about results and the means by which they were
obtained.11

Consider, for instance, the following sentence from the abstract of (Zhang et al.,
2014):12

[Experiments using the IWSLT 2010 dataset show]means [that the system achieves BLEU

comparable to the state-of-the-art syntactic SMT systems]result

In this case we can identify a complement clause that reports the obtained results,
while the subject of the sentence indicates the means through which those results
were obtained.

Based on these observations, and with the goal of reaching a good balance be-
tween facilitating the annotation process and making sure that no essential infor-
mation was missed in the annotations, we adopted the following criteria:13

i. We introduce the type result-means to annotate sentences where both results
and the means by which they were obtained can be identified.

ii. We allow the annotation of a secondary type, in addition to the main type of
the units.

Annotators were asked to weight the relevance of the different types of informa-
tion contained in the sentence to make a decision with respect to the selection of
main and secondary types.

It was possible, therefore, for annotators to identify at most three types of units
in a sentence –in the case where one of the annotated types was result-means.
This occurred very rarely: only in 6 out of 1,199 annotated sentences (0.5% of the
annotations).

11These percentages corresponds to the consensus annotations described in Chapter 4.
12The square brackets correspond to the discourse-level segmentation.
13The guidelines used in the annotation process are available at:

github.com/LaSTUS-TALN-UPF/SciARG/blob/main/Annotation Guideline

s Arguments SciDTB.pdf.
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3.2.3 Relations

Our second annotation level includes directed labeled relations that link pairs of
sentences together, thus forming a directed graph with sentences as its nodes and
the relations between them as the edges. In order to gain in uniformity in the
annotations, reduce the level of ambiguity and simplify the annotation process,
we only consider trees as valid annotations (acyclic graphs where each node, with
the exception of the root node, has one and only one parent).

As explained in Section 3.2, our proposed annotation scheme is intended at expos-
ing the argumentative structure of the abstracts. We are interested, in particular,
in identifying relations insofar they provide information that is relevant to analyze
argumentative dimensions of the texts. We intend our scheme to capture infor-
mation that can contribute, for instance, to analyze the clarity of the abstracts,
as well as the local sufficiency of the given premises in relation to the–explicit
or implicit–claims included in them.14 This goal delimits the repertoire of rela-
tions to consider. It would not be practical, for instance, to include in our scheme
the whole set of fine-grained relations considered in different discourse analysis
frameworks.

Table 3.4 shows the six types of relations that we include in our scheme. Depend-
ing on the particular dimensions of arguments that are of relevance in a down-
stream application, different subsets of relations can be considered.

Relation Description of the child node function

support Provides new supporting information/evidence for the parent
elaboration Provides additional information relevant to specify/contextualize the parent
by-means Describes methods through which supporting evidence is obtained
info-required Provides information essential to understand/contextualize the parent
info-optional Provides non-essential information (e.g.: examples, definitions)
sequence Describes a step that comes after the step described by the parent in a process

Table 3.4: Types of relations

14In line with the argumentative quality dimensions described in (Wachsmuth et al., 2017a).
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Most argument mining initiatives consider the logical dimensions of argumenta-
tion, largely conveyed by relations of type support (or attack). We also consider
the support relation to link premises to claims or to other premises in an argumen-
tation chain. Fig. 3.2 shows three examples of the use of the support relation,
between nodes (5) (observation) and (3) (result), between node (4) (motivation-
problem) and (2) (proposal) and between nodes (3) (result) and (2) (proposal).

Figure 3.2: Example of argumentative tree. The main unit corresponds to the node with
dark background.

In the same line as (Peldszus and Stede, 2013), where they consider example as
a particular type of support, we further specify different types of support that
are specifically tailored to the analysis of the scientific discourse. Should we
consider only pure support relations, our annotations would not fully capture,
for instance, the link between a proposal and its implementation details, which
can contribute to persuade the reader about the relevance and/or validity of the
proposal15 or between a result and the means by which it was obtained, supporting
the credibility and acceptability of the presented results.16 We differentiate them
by considering one relation type for each of these cases: elaboration17 and by-
means, respectively.

15In Fig. 3.2, the link between nodes (2) and (1).
16In Fig. 3.2, the link between nodes (6) and (3).
17Note that, in our scheme, the elaboration relation contains but has a broader meaning than the

elaboration relation used in discourse analysis frameworks such as RST.
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Considering single sentences as annotation units implies that relations have to be
introduced to join groups of sentences that, if looked from a higher perspective,
could be considered to be part of one argumentative block (i.e., the whole block
could potentially be omitted, but no information conveyed by one sentence in the
group can be omitted without affecting the coherence of the text, in contrast, for
instance, to the elaboration relation, where leave nodes could be omitted). Ana-
lyzing the types of constructions present in our dataset, we identify two situations:
i) groups of sentences that describe steps in a process and, ii) groups of sentences
that authors use to build up supporting evidence for–implicit or explicit–claims.
We use, respectively, the labels sequence and info-required for these types of re-
lations.

The info-required relation is illustrated by the link between nodes (4) (motivation-
problem) and (7) (motivation-background) in Fig. 3.2: it can be said that the main
motivation for the proposed approach is given by the sentence that introduces
the problem, in node (4), but this could not be clearly understood/contextualized
without the background information provided by the sentence in node (7). When
looking for supporting evidence for node (2), therefore, we would need to consider
not only their direct children but also the chains of sentences below them linked
by info-required relations.

For an example of the sequence relation, consider, for instance, the following
sentences from the abstract of (Stab and Gurevych, 2014b):

[We consider this task in two consecutive steps.]1 [First, we identify the components of

arguments using multi-class classification.]2 [Second, we classify a pair of argument com-

ponents as either support or non-support for identifying the structure of argumentative

discourse.]3

Sentences (2) and (3) describe a sequence of steps in a process and are therefore
linked together by a sequence relation (in this case, the adopted criterion is that
the direction of the links goes from the last to the first step in a sequence). In this
case, the first step of the sequence–sentence (2)–is finally linked to sentence (1)
by means of an elaboration relation.
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3 −−−−−→
sequence

2 −−−−−−→
elaboration

1

Note that the sequence relation is an exception in the sense that it does not convey
any information that can contribute to assess argumentative dimensions of the text.
In general, we refer to argumentative functions or relations but these terms should
be understood as including also these non-argumentative relations.

As explained in Section 3.2.2, all of the sentences are labeled when applying
the SciARG scheme. Information considered as less essential is annotated as
information-additional and linked to its parent node by means of the info-optional
relation. Consider, for instance, these two sentences from the abstract of (Persing
and Ng, 2014):

[A poll consists of a question and a set of predefined answers from which voters can

select.]1 [We present the new problem of vote prediction on comments, which involves

determining which of these answers a voter selected given a comment she wrote after

voting.]2

Sentence (1) provides a definition that is useful to contextualize the proposal in-
cluded in sentence (2),18 but that is not essential to understand it. Therefore, a
link from sentence (1) to sentence (2) can be established and labeled with the
info-optional relation.

1 −−−−−−−−→
info−optional

2

In contrast to many argument mining works, we do not include attack as a type
of relation in our scheme. This is simply because we could not identify any real
attack relation, neither in the annotations made in the pilot experiment nor in
the final annotations.19 Should it be necessary, our scheme could be extended
with other types of relations without significant alterations to our experiments and
analyses.

18Contributing, therefore, to improve the clarity of the text.
19In (Stab and Gurevych, 2014b) attack relations were also omitted in the experiments due to

their low frequency, although they were kept in the annotation scheme.
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3.2.4 Main unit

In addition to annotating unit types and relations between them, annotators were
asked to identify, in each abstract, the unit that, by itself, best describes the most
relevant contribution of the work. This corresponds to the concept of main claim
in other textual genres. We denominate it the main unit. In Fig. 3.2, for instance,
the main unit is (2).

3.3 Annotation process

We refer as SciARG-CL to the corpus obtained by annotating the 225 computa-
tional linguistics abstracts from SciDTB described in Section 3.1 with the SciARG
scheme.

Three annotators participated in the annotation of the SciARG-CL corpus: two
NLP researchers and one computational linguist. The annotation was done in
three rounds, in the course of six months. The first two rounds were aimed at
training the annotators, clarifying doubts and making the necessary adjustments
to the annotation scheme and tool. The annotation was done by means of the
GraPAT tool (Graph-based Potsdam Annotation Tool) (Sonntag and Stede, 2014),
which was adapted to the specific needs of the task.

The annotation tool was originally tailored to the annotations made in the pilot ex-
periments described in A, for which the annotation units considered were EDUs.
This means that, even when the annotations are done at the sentence level in the
final scheme, annotators were presented with the list of EDUs contained in the
abstract, which were then combined to form the nodes of the argumentative tree,
as shown in Fig. 3.3.

More details of the annotation process are provided in the annotation guidelines.20

As a result of the process, 225 CL abstracts were annotated, having 30 abstracts
annotated by the three annotators to compute inter-annotator agreement (Table
3.5).

20Available at github.com/LaSTUS-TALN-UPF/SciARG/blob/main/Annotati
on Guidelines Arguments SciDTB.pdf.
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3.4 Agreement

In this section we assess the reliability of our annotations by considering inter-
annotators’ agreement, computed in the set of overlapping annotations.

Annotator Individual Overlapping Total

ann1 80 30 110
ann2 77 30 107
ann3 38 30 68

Total 195 30 225

Table 3.5: Number of individual and overlapping annotations by each annotator in the
SciARG-CL corpus.

Table 3.6 shows the agreements obtained in terms of the average of the pair-wise
Cohen’s κs–with their corresponding standard deviations. In order to compute the
agreements we consider pair-wise label matching for four tasks:

• unit type: one of the ten labels in Table 3.2;
• parent position: absolute position of the parent sentence in the document;
• relation type: one of the six labels in Table 3.4;
• main unit: two possible values: main/secondary.

In addition to each task-specific agreement, we report the agreement observed
when considering simultaneous exact matches for all the tasks. Substantial agree-
ment is achieved for all tasks (and almost perfect agreement when coarse-grained
types are considered).

Cohen’s κ coefficient is a standard measure of inter-annotator agreement and, as
such, it makes it possible to compare the reliability of different annotation initia-
tives. It is relevant to note, nevertheless, that in our case the different types of
annotations cannot be consider as completely independent from each other–as a
decision made when annotating one node of the argumentative structure affects
decisions made in other nodes.21 This presents a limitation when interpreting the
significance of Cohen’s κ coefficient in these cases.

21This problem was already pointed out by Marcu et al. (1999) when evaluating inter-annotator
agreement of discourse annotations.
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Task Cohen’s κ

Fine-grained unit type 0.77 (σ = 0.004)

Coarse-grained unit type 0.94 (σ = 0.016)

Parent position 0.72 (σ = 0.075)

Relation type 0.79 (σ = 0.026)

Main unit 0.92 (σ = 0.042)

All combined 0.59 (σ = 0.055)

Table 3.6: Agreement in SciARG-CL. Average pairwise of Cohen’s κ,

In Table 3.7 we report the average of pair-wise accuracies obtained for the dif-
ferent tasks, which provides a better intuition of the degree of agreement between
pairs of annotators.

Task Accuracy

Fine-grained unit type 0.81 (σ = 0.004)

Coarse-grained unit type 0.96 (σ = 0.010)

Parent position 0.77 (σ = 0.062)

Relation type 0.84 (σ = 0.019)

Main unit 0.97 (σ = 0.013)

All combined 0.61 (σ = 0.053)

Table 3.7: Agreement in SciARG-CL. Average of pairwise accuracy.

When considering a pair of annotated documents as labeled trees, the accuracy
indicates the percentage number of changes (with respect to the number of nodes)
that would be necessary to make in one tree to obtain the other one. It can, there-
fore, be interpreted as an edit-distance measure that allows to estimate the degree
of agreement between two annotators when considering the document as a whole.

For instance, let us consider the two graphs in Fig. 3.4, representing two dif-
ferent annotations for the same three sentences, where the letters represent the
type of unit (P=proposal, R=result, C=conclusion, M=means) and the subscript
represents the position of the sentence in the text (we omit here the main unit an-
notation). In order to transform one graph into the other we would need to change
four annotations, as shown in Table 3.8.
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P1

C2 R3

supp supp

P1

R2 M3

supp

by-means

Figure 3.4: Two graphs representing two annotations for units’ types, functions, and
parents of the same three sentences.

Unit Type ann1 Type ann2 Correct

1 proposal proposal 1
2 conclusion result 0
3 result means 0

Unit Relation ann1 Relation ann2 Correct

1 none none 1
2 support support 1
3 support by-means 0

Unit Parent ann1 Parent ann2 Correct

1 0 0 1
2 1 1 1
3 1 2 0

Table 3.8: Example of the computation of the global accuracy for the graphs shown in
Fig. 3.4.

In this example, the accuracy for the unit types, relations and parents are, respec-
tively: acctype = 0.33, accfunc = 0.67 and accpar = 0.67, and, when all the labels
are considered, the global accuracy is accall = 0.56.

The evaluation of argument annotations is an open issue, as traditional agreement
scores might not properly reflect the reliability of the annotations. Different anno-
tations of the same text might reflect distinct interpretations of the authors’ inten-
tions and could, therefore, be considered as fully or partially correct. Kirschner
et al. (2015a) propose a graph-based measure that captures similarity of meaning
in annotations, while Stab et al. (2014) propose to explore, for the evaluation of
argument annotations, methods that consider multiple correct possibilities, such
as those used in text summarization.
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3.5 Corpus analysis

3.5.1 Consensus annotations

For the 30 abstracts with overlapping annotations used to compute inter-annotator
agreement (Table 3.5) we generate a consensus set of annotations by assigning, to
each instance, the majority label. In the infrequent cases22 in which there is total
discrepancy among the three annotators we keep the label assigned by the annota-
tor with the highest average of pair-wise agreement with the other two annotators
for the specific type of label.

3.5.2 Corpus statistics

Table 3.9 shows the overall statistics of the SciARG-CL corpus considering the
consensus annotations.

Statistics

Number of abstracts 225
Total number of units 1,199
Avg. #units/abstract 5.3 (σ = 1.7)
Max. #units/abstract 13
Min. #units/abstract 2
Avg. #tokens/unit 24.4 (σ = 9.9)
Max. #tokens/unit 101
Min. #tokens/unit 5
Forward relations 32%
Backward relations 68%

Table 3.9: Statistics of SciARG-CL

The corpus contains 1,199 annotated sentences. The majority of them (46%) are
annotated as proposals (either proposal or proposal-implementation), 26% corre-
spond to outcomes, being results the most frequent type, while fewer abstracts in-
clude higher-level conclusions and/or explicit data labeled as observations (Table

22This occurs only in six cases.
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3.2). A similar percentage (24%) corresponds to motivation units, being the units
that provide background or state problems in existing solutions the overwhelming
majority.

Main type Number Percentage

proposal 290 24%
proposal-implementation 260 22%

result 157 13%
result-means 70 6%
conclusion 50 4%
observation 40 3%

means 27 2%

motivation-background 159 13%
motivation-problem 102 9%
motivation-hypothesis 21 2%

information-additional 23 2%

Total 1,199 100%

Table 3.10: Distribution of unit types in SciARG-CL.

It is interesting to observe that, in computational linguistics abstracts, there is a
tendency to describe the methods used to obtain the reported results in the same
sentence: while 6% of the units of type are labeled as result-means, only 2%
are considered to be reporting only means (methods/procedures/datasets). The
decision to include the type result-means, therefore, is validated by annotators’
usage of this label. As mentioned in Section 3.2.2, excluding this particular case,
very few sentences (only 6%) are annotated with a secondary type, which is in
line with the observations made in the preliminary annotation experiments, as
mentioned in Section 3.2.2.
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In Table 3.11, statistics for the annotation of relations show that support relations
are the most frequent ones, followed by elaborations. This is expected if we
observe the frequency of the different types and the correspondences between the
types of the units and the relations in which they participate.

Relation Number Percentage

support 420 35%
elaboration 355 30%
info-required 118 10%
sequence 31 2%
by-means 28 2%
info-optional 22 2%

root 225 19%

Total 1199 100%

Table 3.11: Distribution of relations in SciARG-CL.

In Fig. 3.5 we can observe that the root unit is, in most of the cases, a unit of
type proposal (in few cases it is a unit of type proposal-implementation and, in
even fewer cases, of type conclusion). Units of type proposal-implementation
are in general linked by elaboration relations to their parent units. An excep-
tion is the case in which they are part of the description of a sequence of steps.
Units with coarse-grained type outcomes (results, result-means, observation, con-
clusion) are, in general, linked to their parents by support relations. Most of
the info-required relations involve units of type motivation-background. As ex-
plained in Section 3.2.2, it is somewhat frequent to find, in computational lin-
guistics abstracts, that the motivation for the described proposal is built-up with
a combination of motivation-background and motivation-problem units in which
the motivation-problem is the final element in the argumentative chain. Finally,
as expected, means and information-additional units are practically exclusively
linked to their parents with by-means and info-optional relations, respectively.
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In order to measure the level of correspondence between unit types (T ) and re-
lation (R) labels, we compute the normalized mutual information (NMI) coeffi-
cient (Shannon, 1949; Kreer, 1957) for the two sets of labels, obtainingNMIRT =

0.54.23 It is expected that if not only the type of the child node, but also the type
of the parent node is considered, the possibilities for labeling the relation would
be more limited. We therefore compute also the NMI coefficient between the
relation label (R) and the combination of child and parent’s types (TCP ). In this
case we obtain NMIRTCP

= 0.57, indicating that there is, in fact, overlapping
information in the two sets of labels. This means that in computational linguistics
abstracts24 the argumentative function of a sentence (i.e., the relation to its parent
node) is correlated with its type (which can be considered as the relation of the
sentence with the whole text).

These different levels of analysis is what different annotation schemes capture,
depending on whether they focus on the rhetoric role of the sentences, or whether
they focus on their argumentative or discourse function when linked to other sen-
tences. As mentioned, one of the goals of this work is to establish links between
these two levels of analysis.

Not surprisingly, the distance and direction of the relations are also linked to the
types of the units, as shown in Figure 3.6. We can observe that motivation units
precede the proposals that they support, while units describing implementation
details are more naturally placed after the more general proposal has been intro-
duced in the text. This is also the case of units describing outcomes such as results
and conclusions.

23The normalized coefficient is in the range [0, 1], where 1 means that there is a perfect corre-
lation between both sets.

24In Chapter 6 we see that in other disciplines, such as biomedicine, there is more variability.
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Tables 3.12 and 3.13 show the percentage distances between units and their par-
ents in SciARG-CL. We can observe that the most frequent case is that units are
attached to an adjacent unit and that backward relations–i.e., the parent unit occurs
before in the text–are almost 50% more frequent than forward relations.

Distance Number Percentage

1 288 29.6%
2 18 1.8%
3 4 0.4%
4 1 0.1%

Total 311 31.9%

Table 3.12: Forward relations. Distribution of the distances to parent units.

Distance Number Percentage

1 416 42.7%
2 111 11.4%
3 76 7.8%
4 33 3.4%
5 14 1.4%
6 8 0.8%
7 2 0.2%
8 1 0.1%
10 1 0.1%
11 1 0.1%

Total 663 68.1%

Table 3.13: Backward relations. Distribution of the distances to parent units.

It is also more frequent that backward relations are established at longer distances.
While for forward relations in very few cases the parent unit is not adjacent to the
child unit–and, when this happens, there are at most three units in between, while
in the case of backward relations this occurs much more frequently.

In the SciARG-CL corpus the longest distance identified involves a relation in
which there are 10 units between the child and parent nodes. These cases are
exceptional in computational linguistic abstracts.25

25This case corresponds to the abstract of (Li and Fung, 2014), available at aclweb.org
/anthology/D14-1098.pdf, which is considerably longer than the average abstract in

61



“output” — 2021/10/1 — 15:43 — page 62 — #78

3.6 Conclusions

In this chapter we introduced SciARG, our proposed annotation scheme for argu-
mentative units and relations in scientific abstracts, which is informed by previous
works in the areas of argument mining, rhetorical analysis of scientific texts, and
analysis of discourse structures.

We motivated our decisions to adopt sentences as annotation units, to enable the
annotation of sentences with more than one type of unit, and to include the com-
bined type result-means.

We described the annotation process in which the proposed scheme was applied
to the annotation of 225 computational linguistic abstracts from the EMNLP 2014
Conference–included in the SciDTB corpus, generating the SciARG-CL corpus
of scientific abstracts.

We analyzed inter-annotator agreement obtained in SciARG-CL for the four types
of annotations included in the scheme (unit type, relation type, parent attachment
and main unit), observing substantial agreement in terms of both pair-wise Co-
hen’s κ and accuracy, which we propose as a more intuitive measure of the dis-
tance between graphs resulting from two different annotations of the same text.

We identified characteristics of the annotations, including the level of information
shared between different labels (such as units and relations), and, finally, we an-
alyzed the specificities of the argumentative structures of the annotated computa-
tional linguistics abstracts, including the most frequent links between sentences–
both in terms of the direction and distance between them.

computational linguistics. In this case, the last sentence of the abstract is linked by a support
relation to the first one.
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Chapter 4

MINING ARGUMENTS IN THE
SCIARG-CL CORPUS

In this chapter we describe how we use the SciARG-CL corpus described in Chap-
ter 3 to train and evaluate models aimed at predicting the argumentative structure
of scientific abstracts. The chapter is organized as follows:

• In Section 4.1 we describe the four tasks that we propose in order to model
the prediction of the argumentative structure of scientific abstracts.

• In Section 4.2 we briefly overview BERT (Devlin et al., 2019), the base
architecture that we use for all our models.

• In Section 4.3 we describe the experimental setups used in our experiments,
including a description of the loss function used when training all the tasks
jointly, in a multi-task setting.

• In Section 4.4 we explain the strategy implemented for selecting models
that are then used for evaluation or prediction.

• In Section 4.5 we analyze the results obtained with the experiments de-
scribed in the previous sections.

• In Section 4.6 we investigate potential benefits obtained by leveraging discourse-
level annotations. In particular, we explore whether including a supplemen-
tary fine-tuning stage with sentence-level discourse tasks can contribute to
improve the performance of our models. We describe the discourse-level
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tasks and the models trained with them, as well as the new experimental
setups, and compare the results obtained with the ones obtained in Section
4.5. We explore the benefits obtained with the new approach in function of
the size of the training sets for the target tasks. For this, we consider, in
addition to the results obtained with the full SciARG-CL, results obtained
when using only 25% and 50% splits of the corpus.

• In Section 4.7 we propose a set of heuristics to post-process the predictions
obtained with the models that are to be used in downstream applications,
in order to ensure the well-formedness of the predicted trees. We evaluate
the impact that these transformations have in the results obtained for the
parent attachment and main unit tasks (as these are the two tasks that can
be affected by changes made to the structure of the graph).

• In Section 4.8 we summarize the main contributions and results of this chap-
ter.

4.1 Tasks

As mentioned in Chapter 3, in order to capture the argumentative structure of a
text it is necessary to identify its components and how they are linked to each
other. Based on the SciARG-CL annotations, we consider the following set of
tasks for the prediction of the argumentative structure of scientific abstracts:

Unit type: Given a sentence, predict its type. The class to predict in this
case is one of the eleven fine-grained types described in Chapter 3.1

Parent attachment: Given two sentences, predict i) whether they are re-
lated and, if that is the case, ii) whether a forward or backward relation
exists between them (i.e., whether the first unit is a child of the second one
in the argumentative tree or vice versa). We model this task as a three-class
classification problem where, given two sentences, the possible classes to
predict are forw, back or none, indicating, respectively, that there is a di-
rected relation from the first to the second sentence, from the second to the
first sentence, or that the two sentences are not related.

1The ten atomic types plus the most frequent combined type, result-means.
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Relation type: Given a sentence, predict the label of the relation with its
parent. The class to predict in this case is one of the six relations described
in Chapter 3 plus none, for the root node.

Main unit: Given a sentence, predict whether it is the main unit of the text.
The two possible values in this case are main or secondary.

In Chapter 3 we observe that, in SciARG-CL, there is overlapping information
between the types of the units and the relations in which they participate. To
assess what this implies in practical terms, we train a decision tree classifier2 that,
given the types of related child and parent nodes, predicts the relation label. We
train and evaluate this classifier in a 10-fold cross-validation setting, obtaining a
weighted-averaged F1 score of 0.9110 and a macro-averaged F1 score of 0.7493.
This means that, given the types of two related nodes, we could predict with a
high level of accuracy the relation label for the most frequent relations.

We nevertheless consider the prediction of unit types and relation labels as sepa-
rate tasks because: i) even if there is a high correlation there is not a total match
between the two tasks–in particular, for less frequent relations; ii) it is not evident
that these results could be directly extrapolated to abstracts in other domains, with
a higher level of argumentative complexity (we see this in more detail in Chap-
ter 6), and iii) the two annotation levels convey different types of information: it
could be the case that, in a downstream application, we are interested in obtaining
only the labels of the relations in the argumentative structure without having to
predict the types of the nodes beforehand.

It is also relevant to note that we consider the parent attachment and the relation
type as separate tasks. Another alternative would have been to model them as
one single task. If we encoded the type and direction of the relation in the same
label, we would have 13 potential labels for this task (two labels for each of the
six types of relations, each one for each direction, plus one none label when there
is no relation between the two sentences). We opt, instead, to split them into two
tasks, which makes it possible to train them in jointly in a multi-task setting, but
having each one their specialized classifier, each one dealing with a smaller set of
potential labels.

2We use Weka’s implementation of the C4.5 algorithm (Hall et al., 2009)
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4.2 Base architecture

In pilot experiments described in Appendix A,3 we used as base architecture Bi-
directional Long Short-Term Memory (BiLSTM) neural networks (Graves and
Schmidhuber, 2005)4 and ELMo (Embeddings from Language Models) (Peters
et al., 2018) as contextualized representations of the words. After these prelim-
inary experiments, transformer architectures based on the self-attention mecha-
nism were proposed, outperforming recurrent neural network (RNN) architectures
such as BiLSTM in several text-classification tasks (Vaswani et al., 2017; Galassi
et al., 2020).

In 2019 a new transformer-based language representation model, BERT (Bidi-
rectional Encoder Representations from Transformers), was introduced, obtaining
new state-of-the-art results on eleven NLP tasks (Devlin et al., 2019). BERT pre-
trained models were made available to the research community5 and can be easily
fine-tuned for specific tasks by adding different output layers on top of the en-
coders.

BERT models are pre-trained with two training objectives: i) Masked Language
Model (MLM), where, given a sentence, some words are randomly masked and
the objective is to predict the masked words from their context, and ii) Next Sen-
tence Prediction (NSP), where, given two sentences, the objective is to predict
whether the second sentence comes after the first one in a text. BERT is, there-
fore, particularly well-suited both for single sentence classification tasks as well
as for modeling relations between pairs of sentences.

Figs. 4.1 and 4.2 show how single sentences and pairs of sentences are processed
in classification tasks, where Ei represents the input embedding corresponding
to token i and Ti represents the learned contextualized representation of token i.
[CLS]is a special token added in front of the input sentence–or pair of sentences–
and [SEP]is a special token used to separate tokens from the first and second
sentences.

3Included in (Accuosto and Saggion, 2019b).
4In this case, as we designed the tasks as token-classification problems, we used a conditional

random fields (CRF) classifier on top of the BiLSTM network.
5https://github.com/google-research/bert
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The standard practice when fine-tuning BERT is to take, in the pooling layer, the
contextualized representation of the [CLS]token ([C]) and feed it into a classifi-
cation layer that depends on the specific task at stake. A softmax function is then
applied to the classifier’s output in order to obtain the distribution of probabilities
for the predicted labels. The length of the input sequences used in each case is a
hyper-parameter of the model, being 512 tokens the maximum length supported
by BERT. Sequences shorter than the established length are padded with the spe-
cial token [PAD]–which is ignored when performing the attention operation.

Figure 4.1: Classification of single sentence in BERT. Source: (Devlin et al., 2019).

Figure 4.2: Classification of pair of sentences in BERT. Source: (Devlin et al., 2019).
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4.3 Experimental setups

For our experiments we use the cased version of AllenAI’s SciBERT (Beltagy
et al., 2019) as base model, which has shown to improve the performance of sev-
eral NLP tasks in scientific language. SciBERT is a BERT model pre-trained on
a random sample of 1.14M papers indexed by Semantic Scholar6 in computer sci-
ence and biomedical disciplines (18% and 82%, respectively). SciBERT is made
available7 with its own vocabulary (SciVocab) (both in cased and uncased ver-
sions), to match the training dataset.

We use in all our experiments PyTorch implementations of BERT available as part
of HuggingFace’s Transformers library (Wolf et al., 2020).

4.3.1 Training parameters

To fine-tune our models we consider the median number of tokens in the input
sequences and set the maximum sequence length to its double. Longer sequences
are truncated. We found that this provides a good balance between training time
and performance. While the general recommendation is to fine-tune BERT for 2
to 4 epochs (Devlin et al., 2019), we observed that more epochs were required
to train our tasks. Determining the optimal hyper-parameters for each task, in
general, and, the number of training epochs, in particular, is far from trivial. In
Section 4.4 we explain the model selection method used throughout our experi-
ments, both to report the obtained results and to choose the model checkpoints
used for predictions and/or for additional fine-tuning, as described in Section 4.6.

In order to simplify the experiments and the analysis we do not perform hyper-
parameter optimization for each task and setting–with the exception of the num-
ber of epochs. For all the experimental settings described we use Adam with
weight decay (Loshchilov and Hutter, 2018) as optimization algorithm, with a lin-
ear warm-up learning rate schedule.8 We fix the dropout probability in 0.1 for
multi-task settings and 0.2 for single-task ones, as in multi-task settings each task
functions as a regularization factor with respect to the other tasks and it is not nec-

6semanticscholar.org
7github.com/allenai/scibert
8We set an initial learning rate of 2e-5 with a warm-up period of 10% of the learning steps.
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essary to establish a high-dropout to prevent overfitting, which is more likely to
occur in single-task settings (Baxter, 1997). The batch size used is of 16 instances
with gradient accumulation of 2 batches,9 therefore having effective batch sizes
of 32 instances when training.

4.3.2 Multi-task experiments

We observe, in Section 4.1, that the tasks considered in our experiments capture
different perspectives of the information conveyed by the annotations. In partic-
ular, we analyze the association between the prediction of the types of the nodes
in the argumentative tree and the prediction of the labels of the relations between
them, which is the objective of the relation type task. A correspondence can also
be established between the main unit and parent attachment tasks, as the main
unit is, in 98% of the cases, also the root of the argumentative tree. This means
that, for the main unit, the predicted direction of the relation should, in general, be
none when paired with all of the other sentences in the abstract. It is therefore nat-
ural to wonder whether the training signal of one task can contribute to improve
the performance of the others. We explore this possibility by training the tasks
jointly, in a multi-task setting, and compare the results to those obtained when
training each task independently.

4.3.2.1 Input format for training and evaluation

When training multi-task networks with different types of input data for each task,
issues such as the way in which batches are sampled for each task can have a
critical impact on the performance of the models (Subramanian et al., 2018).

We propose to simplify this process by unifying the format of the input data and
training the four tasks in parallel with the same instances–with one label for each
task. We compute a loss function that combines the losses of each individual task
and then update the network’s parameters once, instead of alternating between
task-specific batches.

9As a way to deal with the memory limitations in our computing environment.
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We model the unified input instances as sequences containing pairs of sentences.
In the cases in which we only need to predict a label for one sentence (for instance,
for the unit type task), we predict the label corresponding to the first sentence of
the pair. The second sentence can be thought as providing context. We conducted
exploratory experiments and observed that this not only does not impair the per-
formance of single-sentence tasks, but actually contributes to slightly improve it,
as mentioned below.

Figure 4.3: Multi-task classification in BERT.

Parent attachment task

Let us suppose that we have an annotated text with 5 sentences, represented by
the argumentative graph in Fig. 4.4, where the subscript numbers represent the
absolute position of the corresponding sentence in the text.

s2

s5 s1

s3 s4

Figure 4.4: Graph representing an annotated text with 5 sentences.
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We can represent the graph with the following triplets:

< s1, s2, forw>; < s1, s3, none>; < s1, s4, none>; < s1, s5, none>;
< s2, s3, none>; < s2, s4, none>; < s2, s5, back>;
< s3, s4, none>; < s3, s5, forw>;
< s4, s5, forw>

Training stage

The most probable case, given any two sentences, is that they are not related. This
means that there will be many more instances labeled with none than with forw
or back. In order to provide the model with more positive instances, we sample
related pairs twice, once for each direction. Therefore, in addition to the set of
instances considered above, we include, for training, also:

< s2, s1, back>;
< s5, s2, forw>; < s5, s3, back>; < s5, s4, back>

In order to predict the existence and direction of the relations we have to consider
all the possible combinations of sentences in the text.

Evaluation / prediction stage

For evaluation/prediction, we consider each combination of sentences only once,
in the order in which the occur in the text:

< s1, s2, ?>; < s1, s3, ?>; < s1, s4, ?>; < s1, s5, ?>;
< s2, s3, ?>; < s2, s4, ?>; < s2, s5, ?>;
< s3, s4, ?>; < s3, s5, ?>;
< s4, s5, ?>

Single-sentence tasks

Training stage

As mentioned, in order to train all the tasks in parallel with the same input data,
we feed the model with the same set of instances, with one label for each task.
In the case of single-sentence tasks, the label corresponds to the class of the first
sentence in the pair.
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For instance, let us suppose that in the graph considered in Fig. 4.4, the types of
the units are the ones shown in Table 4.1.

Position Type

s1 motivation-background
s2 proposal
s3 observation
s4 means
s5 result

Table 4.1: Examples for types of nodes in Fig. 4.4

In order to train the unit type classifier, for instance, we feed the model with the
same instances used for the parent attachment task, but in this case the label used
to train the classifier corresponds to the unit type of the first sentence in the pair.
In the example being considered, the instances that the unit type classifier process,
would therefore be:

< s1, s2, motiv-b>; < s1, s3, motiv-b>; < s1, s4, motiv-b>; < s1, s5, motiv-b>;
< s2, s1, prop>; < s2, s3, prop>; < s2, s4, prop>; < s2, s5, prop>;
< s3, s4, observation>; < s3, s5, observation>;
< s4, s5, means>
< s5, s2, result>; < s5, s3, result>; < s5, s4, result>

It can be observed that we are not sampling all the instances in a balanced way.
In the example, s1 is seen by the model four times paired with different context
sentences in every epoch, while s4 is seen just once per epoch.

Neither the sampling strategy nor the fact that single-sentence tasks as modeled
with pairs of sentences impact negatively on the performance of single-sentence
tasks, as described in Section 4.3.3. Based on these considerations, we decide that
we can safely adopt the proposed method, with the benefit of having a unified way
of modeling the input data for all the tasks, independently of whether the objective
is to obtain a label for the pair of sentences or just for the first sentence.
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Evaluation / prediction stage

For the prediction of labels in the case of single-sentence tasks (including the
predictions done for the evaluation of the model), we consider each sentence only
once in the first position of the pair. In the example, we would therefore predict
only the classes for the following instances:

< s1, s2, ?>; < s2, s3, ?>; < s3, s4, ?>; < s4, s5, ?>; < s5, s4, ?>;

This means that each sentence is considered with the next sentence in the text as
context, except for the last sentence, where the previous sentence is considered as
context.

4.3.2.2 Loss function for multi-task models

When training multi-task models the objective is to minimize the combined losses
for all the tasks. We therefore want to minimize:

L =
T∑
t=1

wt.lt

Where T is the total number of tasks, lt is the loss for task t and wt is a weighting
factor that indicates how much the loss of task t should contribute to the overall
loss. These weights are necessary because if the tasks do not have the same level
of difficulty and/or the losses’ scales are very different, it can occur that one task
dominates the overall loss, impacting negatively on the performance of the other
tasks. Determining how to optimally weight each task when computing the overall
loss is therefore very important (Gong et al., 2019).

We follow the proposal by Kendall et al. (2018), in which the tasks’ weights
are learned as parameters of the training process by considering the tasks’ ho-
moscedastic uncertainty.10 This means that the higher the uncertainty of a task,
the smaller its contribution to the total loss.

10Which refers to a level of uncertainty that depends on the task and not on specific inputs.
Please see (Kendall et al., 2018) for a more detailed explanation and the formula used in the
computation of the weights.
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In practice, we consider a set of trainable parameters {η1, . . . , ηT} and compute
as global loss function:

L =
T∑
t=1

(lt.e
−ηt + ηt)

Where the ηt terms are also added as a regularization factors to prevent the net-
work to set them to arbitrarily high numbers. For all our tasks t, we consider cross
entropy as the base loss function lt to optimize.

4.3.2.3 Additional features as special tokens

We observed that the models’ overall performances tend to improve when includ-
ing, as additional tokens, information about the position of the sentences in the
abstract, as well as the relative distance and order of the sentences in the input
pairs.

This information is codified by means of special tokens (such as [POS 1], [DIST 1],
[AFTER], [BEFORE]) added to BERT’s tokenizer and included in the sequence of
tokens representing the pair of sentences before it is processed by the model. For
instance, let us consider the example graph in Fig. 4.4. After the tokenization
process, the input sequence corresponding to the pair < s5, s2 > would be:

[CLS] [AFTER] [POS 5] [DIST 3] T 1
s5...T

N
s5 [SEP] T 1

s2...T
M
s2 [SEP]

Where T isj represents the ith token of sentence j. In the example, [POS 5]indicates
that the first sentence in the pair is in the fifth position (s5) and [AFTER]and
[DIST 3]indicate that it occurs three positions after the second sentence of the
pair (s2). [CLS], [SEP]and [PAD]are the standard BERT special tokens, as ex-
plained in 4.2.

4.3.3 Single-task experiments

In the case of single-task experiments, we fine-tune BERT and train one linear
classifier on top of it for each task independently.
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In this case the input data is not shared among the different tasks. It is therefore
not necessary to keep a unified format: we could model the parent attachment
task as a pair classification task, as described in Fig. 4.2, and, for single-sentence
tasks–such as the prediction of unit types–we could use the single-sequence input
format as described in Fig. 4.1, sampling each sentence once per epoch in the
training phase.

The problem that arises with this approach is that, if we want to compare the per-
formance of single and multi-task models, it would be difficult to assess whether
differences can be attributed to the different architectures or, instead, to the dif-
ferent ways in which the tasks are modeled in each case, and/or to the sampling
strategy, which determines how many times each instance is seen by the model.

We run several cross-validation tests with the training data in order to evaluate
whether modeling single-sentence tasks with pairs of sentences and/or implement-
ing the sampling strategy used for the parent attachment task–where sentences
are weighted in function of their position in the texts and the number of relations
in which they participate–could impact negatively on the performance of single-
sentence tasks. In particular, we explored:

• Training and evaluating single-sentence tasks with the standard single-seg-
ment encoding strategy described in Fig. 4.1;

• Training and evaluating single-sentence tasks with pairs of sentences, in the
same way that we do in the case of the parent attachment task, but with
different sampling strategies:

– Sampling each sentence only once in the first position of the pair;11

– Sampling each sentence in the first position of the pair with every other
sentence in the text in the second position.

Based on these exploratory experiments, we found that:

• Modeling single-sentence tasks as pairs–where the second sentence is con-
sidered as context–does not impact negatively on the performance of single-
sentence tasks. In fact, it contributes to slightly improve their performance
(between 0.01 and 0.03 F1 score points in average);

11With the next sentence in the text as the second element in the pair, as we do for evaluation.
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• There are no significant differences, in terms of performance, between the
different sampling strategies considered for pairs of sentences.

Both observations would require additional investigation to be explained in detail.
Part of the explanation for the first finding might lie in the fact that BERT is de-
signed to clearly distinguish between the first and second segments when the input
is modeled as a pair, so information in the second segment can be taken advan-
tage of, should it provide relevant information, and it can be ignored if does not.
Training for several epochs also seem to contribute to smooth any differences that
might arise due to differences in the number of times each sentence is sampled.

4.4 Model selection

As mentioned in Section 4.3.1, we fix all the training hyper-parameters with the
exception of the number of epochs in which we train the model. In this section we
describe the method used to select the model checkpoints to be used for evaluation
and in downstream applications.

A popular method to determine the value of a parameter in data-driven models–
e.g., the number of clusters in a clustering algorithm–is to plot the improvement
of the model as a function of the parameter to find. In our case, the parameter to
optimize is the number of epochs, and the improvement of the model is measured
in terms of the loss in the training set. Fig. 4.5 shows, as an example, the graph
obtained from plotting the normalized training loss as a function of the number of
epochs when fine-tuning SciBERT with the parent attachment task in a single-task
setting.

In general, in machine learning, the training loss is expected to continue descend-
ing as we continue training our model, but from a given point on the models to
start to overfit the training data, losing generalization power. A standard way to
heuristically determine a number of epochs in which the model has had time to
learn the task and, at the same time, keeps generalization power, is to pick the
value for which an elbow is observed in the plotted loss as a function of the epoch
(Satopaa et al., 2011).
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Figure 4.5: Normalized training loss by epoch when fine-tuning SciBERT for the parent
attachment task.

We use the kneed Python package12 to find the value of elbow epochs by: i) com-
puting a function f to fit the data points, ii) rotating f to obtain a function f ’ such
that the f ′(x1) = f ′(xn) = 0, being x1and xn the first and the last values for
the x axis (in our case, n=25), and iii) finding the value k such that f ′(xk) is a
maximum. The point k is the one for which the elbow is obtained.

The difficulty with this method is that, in many cases, it is not trivial to determine
one single elbow, as can be observed in the graph (the elbow could be considered
to be 7, but also 8, 9 or 10). Depending on the method used to find the interpolating
function f , different elbows might be obtained. The knee package implements two
different methods: i) fitting a spline to the input x and y data,13 and ii) fitting a
polynomial function.14

Fig. 4.6 shows the f ′ functions obtained for both interpolation methods15 and the
two candidate epochs selected for the parent attachment task: epochs 7 and 9 for

12kneed.readthedocs.io
13By means of SciPy’s interp1d function. docs.scipy.org/doc/scipy/reference

/generated/scipy.interpolate.interp1d.html
14By means of NumPy’s polyfit function. numpy.org/doc/stable/reference/gen

erated/numpy.polyfit.html
15We use a cubic polynomial.
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spline and polynomial interpolations, respectively. We consider both elbow can-
didates and return the rounded-up median between them. We therefore consider,
in the example, epoch 8 as the elbow of the loss function.

Figure 4.6: Interpolation methods used to find the elbow for the parent attachment task.

4.5 Results and analysis

In this section we report the results obtained for the four tasks described in Section
4.1 when trained both in single and multi-task learning settings. We perform the
evaluations considering, as validation set, the consensus annotations described in
Chapter 3, using the rest of the annotations for training. Table 4.2 shows the split
of instances intro training/validation sets.

Set Abstracts Instances

Training 195 3431
Validation 30 151

Table 4.2: Number of training/validation documents and instances (pairs of sentences).
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For the unit type and relation type tasks we use weighted-averaged F1 scores as
metric, as we want to consider the contribution of each label to the results in
proportion to their frequency.

For the evaluation of the parent attachment task, instead, we use macro-averaged
F1 scores, which are more sensitive to mis-classifications in minority classes. If
we were to use micro-averaged or weighted-averaged scores in these cases we
would obtain misleading high average F1 scores, given the large proportion of
none labels which are correctly classified, even if the model performs poorly in the
classification of forw and back classes, which are the ones we are most interested
in. Similarly, for the evaluation of the main unit task, we macro-average the F1

scores as we are particularly interested in evaluating how well the models perform
for the minority class–since most of the sentences will be correctly classified as
not being the main unit.

As mentioned in Section 4.4, selecting a single checkpoint model obtained in a
particular epoch is necessary if we want to use the trained model for prediction,
but it is not a trivial task. In fact, no method can ensure that the best possible
model will be selected to predict the labels of unseen instances, so the informa-
tion obtained from evaluating a single model checkpoint can be limited. In fact,
comparing results obtained by any model selection method evaluates not only
how well an architecture performs with unseen data but also the model selection
method itself. In our case, let us suppose that the best checkpoint for a particular
model is obtained in epoch e. If our elbow-based model selection method picks
up instead epoch e-1–or e+1, for instance, this could have a significant impact on
the results obtained when evaluating the model, potentially leading us to wrong
conclusions when assessing how it performs in the validation set. As Ding et al.
(2018) state, ”model selection, no matter how it is done, is exploratory in nature
and cannot be confirmatory”.

We are interested in assessing how the different architectures perform, trying to
isolate as much as possible the potential errors introduced by the model selection
method. Therefore, instead of just looking at the performance of the models in one
epoch, we consider the average metrics obtained by a set of five checkpoints that
include the epoch selected by the elbow method described in 4.4 (elbow epoch),
two epochs before it and two epochs after it. The idea is that we compare the
average performance of five likely good-performing models in the validation set,
knowing that the resulting values will, in general, be below the maximum score.
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Table 4.3 shows the results obtained for the four SciARG tasks trained in single
and multi-task settings and evaluated in the validation set. In addition to the aver-
age scores, we include, for F1, the confidence intervals obtained from the standard
deviations. The results underlined are those statistically significant when consid-
ering the confidence intervals.

We observe that, for all the tasks, the F1 scores tend to improve when the tasks
are trained jointly in a multi-task setting–most significantly in the prediction of
the types of units.

Single-task Average Elbow Epochs P R F1 CIF1

Unit type Weight. 7 5-9 0.8060 0.7748 0.7821 ±0.0167
Relation type Weight. 6 4-8 0.7991 0.7854 0.7832 ±0.0204
Main unit Macro 7 5-9 0.9023 0.9035 0.9026 ±0.0066
Parent attachment Macro 9 7-11 0.8042 0.8293 0.8150 ±0.0207

Multi-task Average Elbow Epochs P R F1 CIF1

Unit type Weight. 7 5-9 0.8230 0.8026 0.8005 ±0.0100
Relation type Weight. 7 5-9 0.8084 0.7907 0.7910 ±0.0129
Main unit Macro 7 5-9 0.9287 0.9376 0.9323 ±0.0109
Parent attachment Macro 9 7-11 0.8202 0.8458 0.8316 ±0.0125

Table 4.3: Results of fine-tuning SciBERT in SciARG tasks in single and multi-task set-
tings. Average of models in epochs [elbow−2, elbow+2] with 95% confidence intervals.

Fig. 4.7 provides a broader picture, as it shows not only the performance of the
models in the vicinity of the elbow epoch, but how the prediction of the four
SciARG tasks evolve when fine-tuning SciBERT in single and multi-task settings
as a function of the number of epochs.

We can observe that, in fact, all of the tasks tend to perform better in a multi-task
setting when given enough time–even if slightly for the parent attachment task
and moderately for the units and relations types.
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Figure 4.8: Training loss in function of the number of epochs for the unit type task in
single and multi-task settings. Values are scaled between 0 and 1 for comparison.

It is not unusual to find that tasks require more training time in multi-task settings
to surpass the performance of the tasks when trained independently.16 Fig 4.8
shows, as a way of example, how the training losses of the unit type task evolve
as a function of the number of epochs in single and multi-task settings.

We can see that the loss decreases more gradually in the multi-task settings than
when the task is trained independently. In general, it is less probable for one par-
ticular task to overfit the training set in a multi-task setting, as the other tasks play
regularization a role (Caruana, 1997). However, an interesting observation in the
case of BERT is that, against intuition–and despite the large number of parame-
ters contained in a BERT model–the fine-tuning procedure is robust to overfitting
even for tasks trained in single-task settings when trained for longer periods (than
the number of epochs originally recommended) and with an appropriately small
learning rate (Hao et al., 2019; Mosbach et al., 2021). This can also be observed
for all of the graphics included in Fig. 4.7, where we do not see single-task mod-
els dropping significantly in performance with more training epochs–in the case
of the main unit, the initial performance is high and it drops sharply after a few
training epochs, but it gradually increases again with more training time until it
gets stabilized.

16Yet, of course, nothing ensures that, as rule-of-thumb, picking a large enough number of
epochs for a task fine-tuned in a multi-task setting will yield better performance: it can be the case
that a single-task setting just performs better–either in the short or long run.
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In summary, if we accept that our results in the set of consensus annotations are
representative of how the models perform in general with unseen instances, we
can expect them to yield acceptably good predictions for the four SciARG tasks,
both when trained independently and jointly in a multi-task setting. The predic-
tion of the four tasks, nevertheless, is shown to benefit from the training signals of
the other tasks–even if, in some cases, more training time is needed for the trans-
ferring to take place. Additional advantages of our multi-task approach are that i)
it takes considerably less time to train–as the same data is used to train the four
classifiers in parallel, and ii) instead of having to deal with four different models,
we can use a single model to predict the four classes at once.

4.6 Leveraging discourse-level relations

The possibility of leveraging existing discourse-annotated corpora for the identifi-
cation of arguments, its components, and the relations between them is a relevant
research topic in argument mining, which has been addressed in works such as
(Cabrio et al., 2013; Stab et al., 2014; Peldszus and Stede, 2016), as mentioned in
Chapter 2.

In our exploratory experiments (Appendix A) we observed that the prediction
of argumentative units and relations in a small set of abstracts improved with a
sequential transfer learning approach in which we used, to train the argument
mining models, word representations17 pre-trained with discourse parsing tasks.
In this section we further explore the possibility of transferring knowledge learned
from discourse-level annotations to improve the prediction of the argumentative
structure of scientific abstracts.

It has been observed that the performance of models based on encoders pre-trained
with unsupervised language-modeling tasks–such as BERT–can improve when
an intermediate stage of training on a supplementary supervised task is applied
before fine-tuning on the target task (Phang et al., 2018; Pruksachatkun et al.,
2020; Gururangan et al., 2020).

17In this case, ELMo embeddings.
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In particular, the gain in performance tends to be more significant when there is a
small number of annotations available for the target task. This approach is known
as STILT (Supplementary Training on Intermediate Labeled-data Tasks).

In this section we explore the potential benefits of pre-fine-tuning AllenAI’s SciB-
ERT model with discourse-level tasks before fine-tuning it with our four target
tasks (Section 4.1).

4.6.1 SciDTB tasks for intermediate fine-tuning

The SciDTB corpus (Yang and Li, 2018) contains 798 abstracts segmented into
sentences which are, in turn, segmented into elementary discourse units (EDUs).
Each EDU is attached to one parent EDU by means of a discourse relation,18 with
the exception of the root EDU. Each abstract can therefore be represented as a
discourse dependency tree, as described in Chapter 3.

As shown in Table 4.4, the 798 unique abstracts were splitted by SciDTB authors
into training, validation and test sets containing 492, 154 and 152 documents, re-
spectively. Of the 492 abstracts in the training set, 200 were annotated by two an-
notators and 51 by three annotators, adding up to a total of 743 annotated abstracts
used for training.19 We therefore consider a total of 1,049 annotated abstracts for
our experiments with the SciDTB corpus.

For the experiments described in this section we focus on SciDTB information
at the sentence level. We define the parent-child relation between sentences in
SciDTB as follows. Given two sentences sc, sp, we consider that the sentence sc
is a child of sp if sc contains an EDU ec, and sp contains an EDU ep, such that
there is an outgoing discourse relation from ec to ep.

There is only one root EDU in a discourse tree, which means that there is also one
root sentence–a parent-less sentence–in each abstract (the sentence containing the
root EDU).20

18The list of relations used in SciDTB is included in Chapter 3.
19Some abstracts in the test and validation sets were also annotated more than once in order to

compute inter-annotator agreement, but the authors of the corpus produced harmonized annota-
tions for these two subsets, which are the annotations that we are using in our experiments. They
refer to these harmonized sets as gold validation/test sets.

20For non-root sentences (sentences without a root EDU), there should be at least one EDU
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Based on RST’s compositionality principle, we can safely assume that sentences
can be predicted to have one parent–i.e., one outgoing discourse relation. This is,
in fact, the case in SciDTB annotations.

Set Abstracts Sentences

Training 743 3,975
Validation 154 819

Training + Validation 897 4,794

Test 152 819

Total 1,049 5,613

Table 4.4: Distribution of number of abstracts and sentences in training and harmonized
(gold) validation and test sets in SciDTB.

We consider the following tasks:

Discourse relation: Given a sentence, predict the label of the discourse
relation with its parent sentence–or ROOT for the root sentence. The class
to predict is one of the 26 fine-grained relations in Table 3.1, in Chapter 3.

Parent attachment: Given a pair of sentences, predict whether i) there is a
relation between them and, if that is the case, ii) whether it is a forward or
backward relation. Analogously as we do for SciARG, we model this as a
three-class classification task where the classes to predict are forw, back or
none, when there is no relation.

For our STILT experiments we first fine-tune SciBERT with SciDTB’s sentence-
level tasks and, then, further fine-tune the resulting model for the four target
SciARG tasks. The intermediate fine-tuning step could be done in different ways:
i) to fine-tune each of the two SciDTB tasks independently, thus obtaining two dif-
ferent models and then use them to fine-tune each of the SciARG tasks, ii) to fine-
tune SciDTB tasks sequentially (adding not one but two pre-fine-tuning stages),21

and iii) training both SciDTB tasks jointly in a multi-task setting, thus obtaining
a single model which we can then use to continue fine-tuning the SciARG tasks.
Options i) and ii) have some drawbacks: in addition to the increased training time,
we would be duplicating the number of results, introducing more complexity in

whose parent is in another sentence. Otherwise, a cycle would be produced, which would not be
compatible with SciDTB annotations.

21In this case we should consider doing the two pre-fine-tuning in both orders.
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the analysis.22 We therefore opt to train both tasks jointly in a multi-task setting.
The model selected to be further fine-tuned with our target tasks is obtained by
applying the elbow-based model selection strategy used for SciARG’s tasks.

4.6.2 SciDTB models

In this section we report the results obtained when training and evaluating the dis-
course relation and parent attachment SciDTB tasks with the training / validation
/ test split of the dataset proposed by the authors of the corpus (Table 4.4).

We are not using these models for anything other than to get an idea of how
well we can expect SciBERT encoders to perform after a fine-tuning stage with
SciDTB annotations. In our STILT experiments, described in Section 4.6.3, we
do not use the original SciDTB split but instead exclude from the training set the
SciARG-CL consensus annotations set that we use to analyze the performance of
the models.

As we fix the parameters with the same values used for SciARG-CL and imple-
ment the same model selection method, we do not use the SciDTB validation set
for hyper-parameter tuning but, instead, use the union of the training and valida-
tion sets for training (4,794 sentences) and then evaluate the selected checkpoint
in the provided test set (819 sentences). In the same way as we do in SciARG-CL,
we report the average metrics of the five models obtained in the elbow epoch, two
epochs before and two epochs after it (Table 4.5.)

Task Average Elbow Epochs P R F1 CIF1

Discourse relation Weight. 7 5-9 0.6036 0.5897 0.5851 ±0.0102
Parent attachment Macro 8 6-10 0.7040 0.6850 0.6898 ±0.0177

Table 4.5: Results of fine-tuning SciBERT with the two SciDTB tasks in multi-task
setting. Average of models in epochs [elbow−2, elbow+2] with F1 confidence intervals.

The SciDTB tasks have moderate performances–in particular, the discourse rela-
tion task. This is expected if we consider that the discourse relation task involves
the prediction of a large number of classes.

22Although it would be relevant to analyze the effect of each of the SciDTB tasks disagreggated.
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4.6.3 STILT experiments with SciDTB and SciARG

In this section we explore the potential benefits of implementing a two-stage fine-
tuning strategy, first with a large set of SciDTB annotations and then with our
smaller-sized SciARG-CL corpus. We are, in particular, interested in exploring to
what extent transferring parameters learned with SciDTB relations can contribute
to improve the prediction of the relations in SciARG-CL (both in terms of their
types and attachment to parents).

We therefore compare the performances of the models obtained when fine-tuning
SciBERT directly with the SciARG tasks to those obtained when including an
intermediate fine-tuning stage with SciDTB annotations.

4.6.3.1 Experimental setup

The experimental setup and evaluation strategy implemented in these experiments
are identical to those described in Sections 4.3 and 4.5.

For the STILT experiments we first fine-tune SciBERT in a multi-task setting for
the two SciDTB tasks. As base model–to continue fine-tuning the SciARG tasks–
we consider the checkpoint obtained in the elbow epoch for the SciDTB’s parent
attachment task (as it is not only the better-performing task according to the re-
sults in Table 4.5, but it is also the potentially most informative task to fine-tune
SciARG).

We use all the SciDTB dataset for fine-tuning, excluding the abstracts that are also
in SciARG’s validation set. We exclude these sentences to make sure that none of
the base models being compared has been previously exposed to instances used
for evaluation.

4.6.3.2 Results and analysis

In Tables 4.6 and 4.7 we consider the results obtained when the target tasks are
trained in single and multi-task settings, respectively. The tables compare the
results obtained when using as base model SciBERT with no previous fine-tuning
to the results obtained by applying the STILT approach with an intermediate fine-
tuning stage with SciDTB tasks.
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Single-task setting

SciBERT model Average Epochs P R F1 CIF1

Unit type Weighted 5-9 0.8060 0.7748 0.7821 ±0.0167
Relation type Weighted 4-8 0.7991 0.7854 0.7832 ±0.0204
Main unit Macro 5-9 0.9023 0.9035 0.9026 ±0.0066
Parent attachment Macro 7-11 0.8042 0.8293 0.8150 ±0.0207

STILT w/SciDTB Average Epochs P R F1 CIF1

Unit type Weighted 4-8 0.8155 0.7960 0.7977 ±0.0106
Relation type Weighted 4-8 0.8113 0.8026 0.8033 ±0.0198
Main unit Macro 5-9 0.9135 0.9093 0.9100 ±0.0077
Parent attachment Macro 6-10 0.8175 0.8386 0.8273 ±0.0052

Table 4.6: Comparison of results fine-tuning SciBERT directly vs. STILT fine-tuning
w/SciDTB models. Both in single-task setting. Average of models in epochs [elbow −
2, elbow + 2] with F1 confidence intervals.

Multi-task setting

SciBERT model Average Epochs P R F1 CIF1

Unit type Weighted 5-9 0.8230 0.8026 0.8005 ±0.0100
Relation type Weighted 5-9 0.8084 0.7907 0.7910 ±0.0129
Main unit Macro 5-9 0.9287 0.9376 0.9323 ±0.0109
Parent attachment Macro 7-11 0.8202 0.8458 0.8316 ±0.0125
STILT w/SciDTB Average Epochs P R F1 CIF1

Unit type Weighted 5-9 0.8138 0.8013 0.8023 ±0.0072
Relation type Weighted 4-8 0.8474 0.8292 0.8295 ±0.0169
Main unit Macro 5-9 0.9572 0.9117 0.9322 ±0.0083
Parent attachment Macro 6-10 0.8272 0.8458 0.8343 ±0.0094

Table 4.7: Comparison of results fine-tuning SciBERT directly vs. STILT fine-tuning
w/SciDTB models. Both in multi-task setting. Average of models in epochs [elbow −
2, elbow + 2] with F1 confidence intervals.

Analogously as in the previous experiments, we consider the five models around
the elbow epoch and average the results obtained with their predictions, in or-
der to minimize potential errors introduced both by the model selection method
and/or by artifacts resulting from the fact that we are using a rather small set for
validation.
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If we observe the average results obtained with the five models containing the
elbow epoch, we can see that the performances tend to improve with an inter-
mediate fine-tuning stage with SciDTB annotations. Nevertheless, the benefits
obtained with an intermediate fine-tuning stage with the whole training set are,
overall, moderate. As mentioned in Section 4.5, the performance of the four
SciARG tasks is already good when fine-tuning SciBERT directly–in particular
for the multi-task setting, which would indicate that the SciARG annotations in-
cluded in the training set provide enough information for the models to extract
the necessary information from them. The task the tends to benefit more from the
STILT approach is the prediction of the relation type–in particular, in a multi-task
setting. This could be in part due to the relational knowledge contained in the
SciDTB base model and, in the case of the multi-task setting, could respond to
a cumulative effect: as the prediction of the types of the units and the relations
between them improve, it is expected that this information contributes to better
determine the label of the relations, considering the mutual information existing
between these tasks, as seen in Chapter 3.

4.6.3.3 STILT experiments with SciARG subsets

The STILT approach has proven particularly useful with small-sized datasets,
where the training set does not provide enough information to directly fine-tune
the target tasks (Phang et al., 2018). Therefore, in addition to consider the results
obtained with models trained with the whole SciARG-CL training set, we are in-
terested in investigating the impact of the STILT training strategy with a limited
number of training instances. To do this, we analyze the results obtained with
SciARG-CL models fine-tuned using only 50% and 25% of the training data.

Experimental setup

We split the training instances randomly into two and four sets–for the 50% and
25% experiments, respectively. We train models with each of the splits and then
average the results obtained when evaluating the models with SciARG-CL valida-
tion set.23 In order to select the elbow epochs we also consider the average of the
training losses obtained in each epoch for all the splits.

23Averaging the results of four models ensures more stable results than if we were to train a
single model with few training instances.
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Results - Models trained with 50% splits of SciARG training set

Single-task settings

SciBERT model Average Epochs P R F1 CIF1

Unit type Weighted 5-9 0.7701 0.7318 0.7367 ±0.0068
Relation type Weighted 5-9 0.7742 0.7437 0.7461 ±0.0186
Main unit Macro 5-9 0.8647 0.8873 0.8733 ±0.0177
Parent attachment Macro 6-10 0.7070 0.7467 0.7125 ±0.0260

STILT w/SciDTB Average Epochs P R F1 CIF1

Unit type Weighted 4-8 0.7995 0.7642 0.7665 ±0.0161
Relation type Weighted 5-9 0.8135 0.7947 0.7905 ±0.0150
Main unit Macro 4-8 0.9097 0.9018 0.9032 ±0.0160
Parent attachment Macro 6-10 0.7520 0.8039 0.7715 ±0.0133

Table 4.8: Results obtained with with two splits of 50% of SciARG’s training set when
fine-tuning SciBERT directly vs. STILT fine-tuning w/SciDTB models. Both in single-
task setting. Average of models in epochs [elbow − 2, elbow + 2].

Multi-task setting

SciBERT model Average Epochs P R F1 CIF1

Unit type Weighted 4-8 0.7478 0.7576 0.7422 ±0.0254
Relation type Weighted 4-8 0.7685 0.7788 0.7632 ±0.0155
Main unit Macro 3-7 0.8976 0.9194 0.9073 ±0.0099
Parent attachment Macro 6-10 0.7462 0.8087 0.7694 ±0.0091

STILT w/SciDTB Average Epochs P R F1 CIF1

Unit type Weighted 4-8 0.7367 0.7530 0.7350 ±0.0141
Relation type Weighted 3-7 0.8285 0.8345 0.8256 ±0.0189
Main unit Macro 3-7 0.9238 0.9155 0.9190 ±0.0069
Parent attachment Macro 4-8 0.7914 0.8368 0.8063 ±0.0150

Table 4.9: Results obtained with with two splits of 50% of SciARG’s training set when
fine-tuning SciBERT directly vs. STILT fine-tuning w/SciDTB models. Both in multi-
task setting. Average of models in epochs [elbow − 2, elbow + 2].
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Results - Models trained with 25% splits of SciARG training set

Single-task settings

SciBERT model Average Epochs P R F1 CIF1

Unit type Weighted 7-11 0.7422 0.7133 0.7093 ±0.0138
Relation type Weighted 6-10 0.6617 0.6692 0.6517 ±0.0180
Main unit Macro 7-11 0.8977 0.8891 0.8885 ±0.0170
Parent attachment Macro 7-11 0.6026 0.6301 0.5944 ±0.0275

STILT w/SciDTB Average Epochs P R F1 CIF1

Unit type Weighted 5-9 0.7329 0.7162 0.7075 ±0.0208
Relation type Weighted 5-9 0.7271 0.7175 0.7067 ±0.0251
Main unit Macro 6-10 0.9109 0.8708 0.8836 ±0.0100
Parent attachment Macro 6-10 0.6905 0.7341 0.7003 ±0.0149

Table 4.10: Results obtained with with four splits of 25% of SciARG’s training set when
fine-tuning SciBERT directly vs. STILT fine-tuning w/SciDTB models. Both in single-
task setting. Average of models in epochs [elbow − 2, elbow + 2].

Multi-task setting

SciBERT model Average Epochs P R F1 CIF1

Unit type Weighted 6-10 0.6486 0.6838 0.6468 ±0.0155
Relation type Weighted 5-9 0.6575 0.6884 0.6605 ±0.0201
Main unit Macro 3-7 0.8776 0.9042 0.8857 ±0.0122
Parent attachment Macro 9-13 0.5994 0.5942 0.5888 ±0.0222

STILT w/SciDTB Average Epochs P R F1 CIF1

Unit type Weighted 4-8 0.6830 0.7152 0.6835 ±0.0185
Relation type Weighted 4-8 0.7695 0.7762 0.7562 ±0.0162
Main unit Macro 2-6 0.9264 0.9218 0.9217 ±0.0082
Parent attachment Macro 7-11 0.7397 0.7826 0.7555 ±0.0129

Table 4.11: Results obtained with four splits of 25% of SciARG’s training set when fine-
tuning SciBERT directly vs. STILT fine-tuning w/SciDTB models. Both in multi-task
setting. Average of models in epochs [elbow − 2, elbow + 2].
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Summary of the results with 50% and 25% of the training data

Adding an intermediate fine-tuning stage with SciDTB relations’ tasks signifi-
cantly improves the prediction of SciARG-CL relations, both in terms of their
types and attachment.

The relative gain in performance becomes more evident as the size of the training
data for the target tasks is reduced. In fact, if we look at the F1 scores obtained
for relation type and parent attachment tasks–in particular, in multi-task settings,
we observe that the performance achieved with the SciDTB fine-tuned models is
comparable to the performance obtained with the whole training set when no pre-
vious fine-tuning is performed. For ease of comparison, in Table 4.12 we include
only the scores obtained for these two tasks in multi-task settings at the respec-
tive elbow epochs with the percentage differences to the results obtained when
fine-tuning the SciBERT model directly with the whole training set.24

Base model Task Training data F1 ∆

SciBERT Relation type 100% 0.7910

STILT w/SciDTB Relation type 100% 0.8295 +5%
STILT w/SciDTB Relation type 50% 0.8256 +4%
STILT w/SciDTB Relation type 25% 0.7562 -4%

SciBERT Parent attachment 100% 0.8316

STILT w/SciDTB Parent attachment 100% 0.8343 +3%
STILT w/SciDTB Parent attachment 50% 0.8063 -3%
STILT w/SciDTB Parent attachment 25% 0.7555 -9%

Table 4.12: Comparison of results obtained when directly fine-tuning SciBERT with
100% of the training set to those obtained with an intermediate fine-tuning stage with
SciDTB with 50 and 25% of the training data. All results obtained in a multi-task setting.

If we consider the F1 scores obtained with 50% of the training data with the
SciDTB fine-tuned models, we observe a decrease in performance of only 3% with
respect to the models obtained when fine-tuning SciBERT directly with 100% of
the training set for the parent attachment task and, more surprisingly, a gain in
performance of 4% for the relation type task.

24With the limitations already pointed out of looking at one single point for evaluation.
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For the prediction of the unit type and the main unit tasks, we also observe sub-
stantial improvements with models trained in a multi-task setting with 25% of the
training set, while there are no significant differences between STILT training or
direct fine-tuning for these two tasks when trained independently. The opposite
occurs with the models trained with 50% of the training data: while both tasks
improve significantly in single-task settings, they perform similarly when trained
jointly, in a multi-task setting (with a moderate improvement for the main unit
task). These results trigger relevant questions with respect to how the transferring
of knowledge occurs with intermediate fine-tuning stages and multi-task settings,
and how these two transfer learning methods interact with small-sized training
sets and for highly related tasks.

In Chapter 5 we apply a similar approach but leveraging information contained in
a corpus annotated with rhetorical types similar to the AZ scheme, where we focus
on the analysis of potential benefits of the STILT approach for the prediction of
unit type labels.

4.6.4 Final model used for predictions

From Tables 4.6, 4.7 we observe that, when averages are considered, the models
trained in a multi-task setting with an intermediate fine-tuning stage tend to per-
form similarly or better for all the tasks than when the tasks are trained indepen-
dently and/or without an intermediary fine-tuning stage. We therefore adopt this
training strategy for the models to be used for predictions in downstream tasks.

In this case, we need to pick just one checkpoint, so we take the model obtained
at the elbow epoch when plotting the training loss in function of the number of
epochs. In this case, the model in trained with the whole SciARG-CL corpus.

In Part II of the thesis we use features derived from predictions obtained with this
model in a downstream task, which allows us to indirectly assess the utility of the
model in a practical application.
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4.7 Heuristics for well-formedness of predicted trees

When using the trained models to predict the argumentative structure of an unan-
notated abstract we consider, for the prediction of the relations, all the possible
combinations of sentences in the order in which they appear in the text. As each
decision is made locally, this could lead to structures that are not necessarily trees.
Another possible violation of the well-formedness of the the argumentative tree
can occur when more than one of the nodes are predicted as main unit or, con-
versely, when there is none. In this section we propose a set of post-processing
steps in order to reduce significantly the possibility of obtaining non-valid trees.

These heuristics take advantage of the fact that, in the overwhelming majority of
the cases in SciARG-CL gold annotations, the main unit corresponds to the root
of the argumentative tree. The high accuracy in the prediction of the main unit,
in turn, greatly facilitates the identification of the root node and the correction of
potential ill-formedness in predicted trees.

I. Nodes with more than one parent

a) The most frequent situation of a node ni being predicted as the child of more
than one parent is when ni is attached both to a node nj and to one or more nodes
nkx such that nkx are ancestors of nj . In fact, the most frequent case is that ni
is attached to two nodes, nj and nk, where nk is the parent of nj , and therefore
a grandparent of ni. Other cases are rare. In this case, we remove the relations
between ni and the ancestors nkx. An example is shown in Fig. 4.9.

Figure 4.9: Example: Remove attachment to ancestor.
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b) If a node ni is attached to more than one node np1 ,... npm as parents–where the
subscripts indicate the position of the sentences in the text–and we are not in the
situation described in a), we take as parent of ni the node np that corresponds to
the closest sentence in the text to ni:

p = pj , such that |i− pj| = min
k=1,...,m

|i− pk|

If there are two nodes npj1 , npj2 at the same distance: |i− pj1| = |i− pj2| (neces-
sarily, one before and one after ni), we consider as parent the node np that occurs
before ni, since background relations are more frequent in the annotations, as seen
in Chapter 3. Therefore, we consider p = pj such that pj = min {pj1, pj2}.

Figure 4.10: Example: Keep closest node as parent.

II. Cycles

After the application of step I, nodes have at most one parent. Therefore, for a
cycle to be formed, there should be a sub-graph without a root node. In practice,
cycles very rarely occur in the predicted graphs.

If a cycle is detected, we consider the nodes included in the sub-graph S contain-
ing the cycle.

a) If a node nk in S is labeled as main unit we make nk a root node–by removing
any relation originating from it.

Figure 4.11: Example: Consider a node labeled as main unit as root node.
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b) If no node in S is labeled as main unit, we consider the subset S ′ of nodes
with the largest number of children. From S ′, we consider the node n that occurs
before in the text and make it the root node of S.

Figure 4.12: Example: Consider the node that occurs before as root node.

III. Main unit

a) If no nodes are labeled as main unit in the predicted graph:

After the application of steps I and II we know that there is at least one root node
in the graph. We label the root node(s) as main unit. Note that it is possible that,
in this step, we label more than one node as main unit (if there are unconnected
trees). This is fixed in the next step.

Figure 4.13: Example: Consider the root node as main unit.

b) If there is more than one node labeled as main unit in the predicted graph:

We consider as main unit the node with the largest number of children. If two or
more nodes have the same number of children, we consider as main unit the one
that occurs first in the text.
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Figure 4.14: Example: Consider the node occurring before as main unit.

IV. Orphan nodes / trees

In a well-formed tree, there should only be one node without a parent, the root
node.

Let us consider the subset R of root candidates (parent-less nodes). If one node r
in R is labeled as main unit we consider it to be the root of the argumentative tree
(from the previous step, we know that we will have at most one node labeled as
main unit).

For the remaining nodes nj in R − {r}, we attach nj as child of a node nk such
that nk is a non-leaf node at the minimum distance from nj in the text.

If there are two non-leaf nodes nk1, nk2 at the same distance from nj–one after and
the other one before, we consider the one that has the largest number of children.
If they have the same number of children, we consider the one that occurs before
in the text.

Figure 4.15: Example: Attaching an orphan tree to its parent.
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4.7.1 Evaluation of structural tasks after post-processing

An analysis of the post-processed predictions shows that the proposed heuristics
are effective to ensure the well-formedness of the predicted argumentative struc-
tures. For all the abstracts in the validation set we obtain single trees with one
predicted main unit. In this section we explore to what extent the modifications
introduced impact on the performance of the main unit and parent attachment
tasks.

Main unit

Tables 4.13 and 4.14 show the scores obtained for the main unit task after apply-
ing the post-processing transformations to the predictions obtained with the best
models described in Section 4.6.3.

Label P R F1 Number

main 0.9615 0.8333 0.8929 30
secondary 0.9600 0.9917 0.9756 121

Macro avg. 0.9608 0.9125 0.9342 151

Table 4.13: Original F1 scores obtained with predicted labels for main unit.

Label P R F1 Number

main 0.9333 0.9333 0.9333 30
secondary 0.9835 0.9835 0.9835 121

Macro avg. 0.9584 0.9584 0.9584 151

Table 4.14: F1 scores obtained with post-processed labels for main unit.

We observe that for the main unit task, the F1 score improves both for main and
secondary labels, resulting in an overall gain of 0.0242 for the macro-averaged F1

score. This is as a consequence, in particular, of a gain of 0.1 points in the recall
of the main label (with a smaller reduction of 0.282 points in precision), and a
more modest improvement, of 0.0235 points, in the precision of the secondary
label (with a smaller reduction of 0.082 points in recall).
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Parent attachment

Tables 4.15 and 4.16 show the evaluation of the original and fixed predictions for
the parent attachment task.

Label P R F1 Number

back 0.8205 0.7191 0.7665 89
forw 0.7692 0.9375 0.8451 32
none 0.8938 0.9099 0.9018 222

Macro avg. 0.8278 0.8555 0.8378 343

Table 4.15: Original F1 scores obtained with predicted labels for parent attachment.

Label P R F1 Number

back 0.8072 0.7528 0.7791 89
forw 0.7368 0.8750 0.8000 32
none 0.9009 0.9009 0.9009 222

Macro avg. 0.8150 0.8429 0.8267 343

Table 4.16: F1 scores obtained with post-processed labels for parent attachment.

For the parent attachment task, in turn, we observe an improvement of 0.0367
in the recall of the back label (with a smaller decrease in precision), while the
changes for the majority class none are not significant.

Overall, the macro-averaged F1 score for the post-processed labels is 0.0111
points below the original predictions. This is due, in part, to a decrease in the
recall of forw labels, which can be explained by the priority given to the assign-
ment of back labels in the post-processing stage. As the number of forw relations
is of less than 10% in the consensus annotations, this does not have a very signif-
icant impact on the overall scores.

In summary, we observe that the simple heuristics implemented in the post-pro-
cessing stage, aimed at ensuring the well-formedness of the predicted argumenta-
tive structure of the abstracts, contribute, as a side effect, to improve the prediction
of the main unit of the trees. As a consequence of the changes operated in the links
between the nodes–in order to avoid cycles or nodes with multiple parents–they
improve the prediction of back relations, while have a slightly negative impact on
the prediction of the less frequent forw labels.
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4.8 Conclusions

In this chapter we addressed the prediction of the argumentative structure of com-
putational linguistics abstracts–in particular, those included in the SciARG-CL
corpus described in Chapter 3, focusing on argumentative types and relations at
the sentence level.

We described our approach to model the identification of the abstracts’ argumen-
tative structure by means of four related tasks, aimed at predicting the types of
the components (unit type task), the existence and direction of the links between
them (parent attachment task), the type of the relations (relation type task), and
the identification of the main unit of the abstract, the one that conveys the most
relevant information.

We briefly introduced BERT (Devlin et al., 2019), the base architecture used in
our experiments, and described our experimental setup–for single and multi-task
settings. We motivated our decision to train all the tasks with a unified input for-
mat and sampling scheme, which facilitates the implementation of the multi-task
settings and enables a fair comparison between the different assessed architec-
tures. We described the loss function used in the multi-task experiments, in which
the weights of the different tasks are trainable parameters that reflect the tasks’
difficulty.

On the goals of this chapter was to explore the possibility of leveraging existing
discourse-level annotations for the identification of the argumentative structure of
scientific abstracts. We proposed to do this by introducing an intermediate training
phase with sentence-level discourse tasks. We used the annotations available in
the SciDTB corpus (Yang and Li, 2018) to fine-tune, in a multi-task setting, the
SciBERT encoder (Beltagy et al., 2019) with parent attachment and discourse
relation type tasks at the sentence level.

We commented on the difficulties involved in performing model selection and de-
scribed the method we implemented to do it, which is based on plotting the loss
function as a function of the number of training epochs and identifying candidate
elbows in the graph. We trained the models with the different architectures and
training strategies considered, and evaluated their predictions. In order o mini-
mize potential errors introduced by the model selection method–in case the se-
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lected epoch does not produce a particularly well-performing model–and/or by
artifacts resulting from the fact that we are using a rather small set for validation,
we proposed to compare the different settings by averaging the results obtained
with five model checkpoints that include the elbow-epoch model as well as the
models obtained two epochs before and two epochs after it during training.

We compared the performance obtained in single and multi-task setting with mod-
els trained with and without including an intermediate fine-tuning stage. In order
to assess the impact of the supplementary training stage with different-sized train-
ing sets, we considered models obtained when using the whole SciARG-CL train-
ing set and also 50% and 25% splits of it.

We observed that the performance of the models trained with the STILT strategy
performed, in general better, than those in which the base encoder–SciBERT–is di-
rectly fine-tuned with the target tasks. We found this to be the case, in particular,
for tasks involving the prediction of relations, confirming our initial hypothesis
with respect to the potential of leveraging discourse relations to improve the pre-
diction of the argumentative structure of abstracts. We also observed that the gains
in performance increases significantly as the size of the training set decreases.

As a result of our experiments, we also observed that SciARG tasks tend to per-
form better when trained jointly in a multi-task setting. This training strategy also
presents additional benefits, including a reduced fine-tuning time, and the fact that
we obtain a single encoder as a result of the process, thus facilitating the joint pre-
diction of labels for the four sub-tasks. These considerations led us to decide to
use this setting to train the models that are to be used in downstream applications
(for instance, in Chapter 9).

Finally, we proposed a set of heuristics to secure the well-formedness of the pre-
dicted argumentative structures, based on a series of transformations that take
into account the predictions obtained for the main unit task, as well as the most
frequent structures observed in the gold annotations. We evaluated how these
transformations impact on the performance of the main unit and parent attach-
ment tasks in the validation set, observing that, in fact, they contribute to improve
the prediction of the main unit and the backward relations, while there is a slight
decrease of performance in forward relations.
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Chapter 5

IDENTIFYING
INTRA-SENTENCE
ARGUMENTATIVE UNITS AND
RELATIONS

In Chapter 3 we take into consideration antecedents in the identification of the
rhetorical organization of scientific texts–such as (Teufel et al., 1999; Liakata
et al., 2012; Kirschner et al., 2015a), as well as our own findings–including the
statistics obtained from the annotation of the SciARG-CL corpus–to motivate our
decision to address the identification of the rhetorical/argumentative1 roles of sen-
tences and intra-sentence segments as separate tasks, each one with its own chal-
lenges and ways of better approaching them.

In Chapter 4 we focus on the identification of the global argumentative structure of
computational linguistics abstracts, taking the sentence as argumentative unit. In
this chapter we focus on the identification of rhetorical/argumentative units within
sentences, their types, and the relations between them.

1In most of this chapter we use the terms rhetorical and argumentative interchangeably when
we refer to the functions of units and when we refer to the complexity of sentences. The same
applies to the terms rhetorical move and unit type or argumentative type. In general–although
not always–when we refer to MAZEA units we use the term rhetorical move, which is the term
used in the original paper and related literature, and when we refer to SciARG-CL we keep the
terminology used in other chapters of the thesis and refer to unit type.
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Our decision to divide the two tasks brings with it the need to distinguish the cases
in which one or the other is to be addressed: one of the first goals, then, is to iden-
tify the cases in which a sentence contains a level of rhetorical complexity–not
necessarily syntactic (Lu et al., 2020)–that makes it necessary to further investi-
gate its potentially multiple argumentative functions. Here again, different levels
of analysis can considered, depending on the needs arising from different appli-
cations: if we are interested in studying, for instance, the soundness dimension
of abstracts, we can accept that a text that includes observations (i.e: hard ev-
idence) is argumentatively stronger than another one that only provides a high-
level interpretation of the results without further evidence about how they were
obtained. For this application, therefore, it might not be necessary to identify the
specific boundaries of each type of unit and to make the relation explicit; it can be
enough to know whether these different types of information are present or not.
Other applications–such as abstractive summarization, fact extraction, etc.–might
require to identify precisely the spans of text in which each type of information is
communicated, and even other applications–including a fine-grained analysis of
the argumentative structure of texts–might require to identify how these different
parts are logically connected. In this Chapter we address these different levels of
analysis.

In the same way in which, in Chapter 4 we investigate the application of a STILT-
learning approach (Phang et al., 2018) to leverage sentence-level discourse infor-
mation, in this chapter we continue exploring potential benefits obtained by means
of including intermediate supplementary tasks in the training process. We focus,
in particular, on the possibility of exploiting existing rhetorical-level annotations–
similar to those used in AZ (Teufel et al., 1999) or CoreSC (Liakata et al., 2012)–
available in the MAZEA corpus of scientific abstracts (Dayrell et al., 2012).

This chapter is organized as follows:

• In Section 5.1 we describe the MAZEA corpus.

• In Section 5.2 we propose a set of sentence-level tasks aimed at identify-
ing the presence of different types of units within a sentence, as well as its
rhetorical/argumentative complexity–in terms of the number of units of dif-
ferent types that it contains. We train and evaluate models for these tasks
both in MAZEA and SciARG-CL.

104



“output” — 2021/10/1 — 15:43 — page 105 — #121

We consider different strategies to determine the complexity of a sentence:
i) to predict it directly by means of a sequence classifier, ii) to consider the
number of the predicted type of units contained in it, and iii) a combination
of both.

• In Section 5.3 we address the identification of intra-sentence unit bound-
aries and their labels. We focus, in particular, on the prediction of rhetori-
cal/argumentative types of intra-sentence units–both in MAZEA and
SciARG–and, in the last part of the section, we briefly address the pre-
diction of intra-sentence relations in SciARG. The core of this section is
dedicated to assess potential benefits obtained by implementing classifi-
cation pipelines in which, given a sentence, we first predict its rhetori-
cal/argumentative complexity, and then, depending on whether the sentence
contains one or more than one unit, we process it by means of sequence-
level or token-level classifiers, respectively. The sentence complexity is
determined by the classification methods analyzed in Section 5.2. For sen-
tences containing more than one unit, we compare the results obtained in
two scenarios to predict the boundaries of its components and their types:
in the first scenario we predict the boundaries and labels jointly, by means
of a token classifier, while in the second scenario we first predict the bound-
aries by means of a token classifier and, in a subsequent step, we predict the
labels of the identified units by means of sequence classifier. We evaluate
all the proposed experimental settings in MAZEA and SciARG-CL.

5.1 The MAZEA corpus

The MAZEA (Multi-label Argumentative Zoning for English Abstracts) corpus
(Dayrell et al., 2012) includes 1,335 scientific abstracts from two different dis-
ciplines: 645 abstracts from physical sciences, computing and engineering (PE)
venues and 690 from life and health sciences (LH) venues. Each sentence in
MAZEA can be segmented in any number of units, and each one is assigned a
label corresponding to one of six rhetorical moves described in Table 5.1.
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Rhetorical move Description

background The context of the study, including any reference to previous work
on the topic, relevance of the topic and main motivations behind the
study.

gap Any indication that the researched topic has not been explored, that
little is known about it, or that previous attempts to overcome a given
problem or issue have not been successful.

purpose The intended aims of the paper or hypotheses put forward.

method The methodological procedures adopted as well as the description of
the data/materials used in the study. Specifications of the structure of
the paper.

result Main findings or, in some cases, indication that the findings will be
described or discussed; discussion or interpretation of the findings,
which includes any hypothesis raised on the basis of the findings pre-
sented in the paper.

conclusion General conclusion of the paper; subjective opinion about the results;
suggestions and recommendations for future work.

Table 5.1: Rhetorical moves used in the MAZEA corpus.

It can be observed that, even if the semantics of some of MAZEA rhetorical moves
and SciARG’s fine and coarse-grained types of units2 overlap, there is not an ex-
act correspondence between them. For instance, there is no distinction in MAZEA
between evidence obtained from observed data and its interpretation: in both cases
the units are labeled as result in MAZEA, while they would be categorized, re-
spectively, as observation or result in SciARG. There are also no distinct moves in
MAZEA to distinguish between procedures that are part of the contributions of the
described work (which, in SciARG we would label as proposal-implementation)
from those that are simply used in the process and which could be replaced by
others without significant impact on the overall proposal (in SciARG these units
would be labeled as means).

Even when MAZEA is specifically aimed at analyzing the occurrence of multiple
rhetorical moves within sentences in scientific abstracts, most of the sentences are
annotated with a single label. Multi-label sentences account for 16.5% of all LH
sentences and for 11.3% of all PE sentences. Coincidentally, in SciARG’s ab-

2Described in Chapter 3.
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stracts also 11.3% of sentences are assigned more than one type. We can hypoth-
esize that, even with the differences in the granularity levels between MAZEA
and SciARG’s labels, results of experiments with MAZEA3 can be a good ap-
proximation of what we can expect the results of the same experiments to be in
SciARG.

The authors of the MAZEA corpus use it to train and evaluate multi-label classi-
fiers aimed at identifying rhetorical moves contained in a sentence, independently
of their order and boundaries. They use a combination of lexical, positional and
grammatical features (52 features in total) that they use to evaluate two multi-
label classification algorithms that work on top of single-label classifiers: i) a
classifier chain (Read et al., 2009), which combines binary classifiers for each
individual label in a chain structure, and ii) the random k-label sets (RAKEL) al-
gorithm (Tsoumakas and Vlahavas, 2007), which predicts combinations of single
labels (by taking into account label correlations). As single-label base classifiers
they use Weka’s (Hall et al., 2009) implementations of support vector machines
(SMO) and of the C4.5 decision-tree algorithm (J48).

To evaluate the performance of their classifiers they consider multi-label example-
based accuracy (Ae), which can be defined as:

Ae =
n∑
i=1

|Yi ∩ Ŷi|
|Yi ∪ Ŷi|

Where n is the number of instances, and Yi and Ŷi are the sets of real and pre-
dicted labels, respectively, for the ith instance. In order to compute the overall
accuracy, Ae, the accuracy across instances is averaged. For instance, if a sen-
tence s contains units of two different moves, Ys = {m1,m2}, and a classifier
predicts Ŷs = {m2,m3}, the example-based accuracy for sentence s would be
|{m2}|

|{m1,m2,m3}| = 1
3

= 0.33.

The authors of the MAZEA paper use half of each subset (LH, PE) to extract
features4 and the other half to train and evaluate the classifiers.5 The best per-
formances are achieved for the chain classifier as multi-label algorithm on top

3In particular, the PE subset.
4They extract formulaic expressions–recurrent combinations of words–which they use as fea-

tures in the classifiers.
5It is not evident from the paper whether they use a cross-validation setting or train-

ing/validation subsets.
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of a support vector machine classifier for single-label predictions: the highest
example-based accuracies obtained are of Ae = 0.56 and Ae = 0.69 for the PE
and LH subsets, respectively.

5.2 Sentence-level tasks

In this section we describe a set of tasks aimed at identifying the presence of
different types of units / rhetorical moves within sentences in MAZEA and in
SciARG corpora–in sub-sections 5.2.1 and 5.2.2.

We address three sentence-level interrelated tasks:

i. Prediction of all occurring rhetorical moves (i.e: for each move, predict
whether it occurs in the sentence);

ii. Prediction of a single–the first occurring–rhetorical move; and

iii. Identification of whether a sentence is rhetorically complex (i.e., contains
more than one rhetorical move) or not.

The goals of carrying out these experiments in MAZEA are two-fold: on one
hand, we are interested in exploring the prediction of MAZEA annotations as
intermediate tasks to train SciARG’s models in a STILT-learning approach; on the
other hand, implementing the prediction of intra-sentence units and their types in
MAZEA allows us to evaluate our proposals on a larger and more diverse dataset,
before validating these approaches in SciARG.

5.2.1 Sentence-level experiments with MAZEA

In this section we describe the experiments carried out with the MAZEA annota-
tions for the prediction and evaluation of the three mentioned sentence-level tasks.

5.2.1.1 Prediction of all rhetorical moves in MAZEA sentences

We model the task of predicting the rhetorical moves that occur in MAZEA sen-
tences by means of a multi-label classifier that combines the predictions obtained
by six move-specific binary classifiers.
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Given a sentence s and a move-specific classifier Cm, the prediction obtained for
the sentence, Cm(s), is either true or false, indicating whether s contains the move
m or not (being m one of the moves described in Table 5.1).

The prediction of all the rhetorical moves occurring in a sentence s (M̂s), is the
set of moves m for which the corresponding move-specific classifier Cm returns
true:

M̂s = {m | Cm(s) = true}

Experimental setup

For each type of move we train a linear classifier on top of a BERT encoder that
takes as input the contextualized representation of the [CLS] token, in the same
way as described in Chapter 4.

On of the main drawbacks observed when using single-label binary classifiers to
model multi-label tasks is that knowledge about relations between the different
labels is ignored. For instance, in our case, the prediction of the occurrence of one
rhetorical move in a sentence is strongly linked to the prediction of the remaining
types of moves. In order to capture existing relations between the different labels
we propose a multi-task architecture in which the parameters of a BERT model
are shared among all the tasks.

The experimental setup is generally equivalent to the one described for multi-task
classifiers in Chapter 4. The only difference is that we model the task as single-
segment classification, instead of classification of pairs of sentences.6

We use AllenAI’s SciBERT model (Beltagy et al., 2019) as the base BERT model
to fine-tune and we fix the training hyper-parameters with the values used for the
sentence-level classification tasks in Chapter 4, leaving the number of epochs as
the only parameter to be determined. Analogously as we do in other classification
tasks, we consider the training losses for each task and select the model check-
points by means of the elbow method described in Chapter 4.

In contrast to the evaluation strategy in Chapter 4, where we use the set of consen-
sus annotations as validation set, in this chapter we train and evaluate the models

6To conduct additional experiments to assess the effect of providing context by means of in-
cluding a second sentence as we do in Chapter 4 seems to unnecessarily complicate the task in this
case.
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in five-fold cross-validation settings.7 The generation of the training/validation
folds is stratified with respect to whether the sentence contains one or more rhetor-
ical moves. The main reason to do cross-validation in this case is that we are
interested in using the same experimental setup for MAZEA and SciARG. The
number of sentences with more than one type in SciARG’s validation set is too
small to be considered as representative of the predictions that we would obtain
with unseen sentences in general in computational linguistics abstracts. This, in
turn, modifies the way in which the results are reported, as explained below.

The sequence of steps in this series of experiments is described in Algorithm 1,
which can be summarized as:

1. Split the dataset into five folds containing a training / validation sets;

2. Fine-tune the base model–in a multi-task setting–with each of the five cross-
validation training sets, obtaining six classifiers for each training set–one for
each move;8

3. Use the fine-tuned models to classify all the instances of the corresponding
cross-validation validation set as containing (true) or not containing (false)
the considered move;

Algorithm 1 Fine-tuning the six rhetorical-move classifiers and obtaining predic-
tions for the whole dataset in a five-fold cross validation setting
cvFolds← STRATIFIEDSPLIT(mazeaAnnotations, 5)
for f = 1 to 5 do

(trainf , validationf )← GETTRAINVALFOLD(cvFolds, f )
allEpochsModelsf ← MULTITASKFINETUNE(scibert, trainf )
predictionsf ← ∅
for move ∈ {background, gap, purpose,method, result, conclusion} do

modelMovef ← MODELSELECTION(allEpochsModelsf , move)
predsMovef ← PREDICTMOVE(modelMovef , validationf )
predictionsf ← predictionsf ∪ predsMovef

end for
end for

7Unlike the original paper, where part of the corpus was used to compute features, we can use
the whole dataset–in a cross-validation setting–for training and validation.

8The model checkpoints are obtained by applying the elbow method to the training loss.
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In this way, we obtain, for each sentence of the dataset and for each move, a binary
prediction indicating whether the move occurs in the sentence or not.

Note that, in this case, we obtain predictions for the models obtained in the elbow
epochs for the training set in each fold. The difference with the approach followed
in Chapter 4 it is that, in this case, for each task we use the whole dataset for
validation.9 In Chapter 4 we deal with a small validation set, so we consider
the averaged performance of five checkpoints around the elbow epoch to reduce
the possibility of picking by chance an exceptionally good–or bad–performing
model. The added complexity introduced by evaluating five models for each fold
does not seem to be justified in this case, as it would unnecessarily complicate the
interpretation of the results.

Results and analysis

In the same line as the authors of the MAZEA paper, we consider example-based
metrics to be more suitable than label-based metrics for assessing the performance
of classifiers in the context of a multi-label task.

In addition to the example-based accuracy defined in Section 5.1, we are inter-
ested in analyzing the balance between example-based precision and recall scores
for single-move and multiple-move sentences.

We compute example-based precision (Pe) and recall (Re) as:

Pe =
n∑
i=1

|Yi ∩ Ŷi|
|Ŷi|

Re =
n∑
i=1

|Yi ∩ Ŷi|
|Yi|

Where n is the number of instances, and Yi and Ŷi are the sets of real and predicted
labels, respectively, for the ith instance.

As in their label-based metrics counterparts, the example-based precision (Pe)
indicates to what extent the labels predicted for a particular sentence si are correct,
while the example-based recall (Re) indicates whether the labels annotated in si
are in fact predicted.

9Obtained with five different cross-validation-trained models.
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Based on them we can compute the example-based F1 score (F1e) in the standard
way, as the harmonic mean of Pe and Re:

F1e = 2× Pe ×Re

Pe +Re

One of the goals of this chapter is to assess how the different algorithms perform
in the subsets of sentences that contain one and more than one rhetorical moves to
determine which tasks would benefit from processing these two subsets as sepa-
rate tasks. We refer to these subsets as single-move and multiple-move sentences,
respectively.

In turn, we refer to algorithms that do not discriminate between single and multiple-
move sentences as rhetorical-complexity-agnostic algorithms, while algorithms
that are provided with this information are referred to as rhetorical-complexity-
aware algorithms. The multi-label classification algorithm described in this sec-
tion does not handle explicit information about the rhetorical complexity of the
sentences. It is, therefore, an example of a rhetorical-complexity-agnostic algo-
rithm.

Table 5.2, shows the performance of the multi-label rhetorical-move classifica-
tion algorithm for single-move and multiple-move sentences. In Tables 5.3 and
5.4 we show the same results disaggregated by MAZEA discipline: LH and PE,
respectively.

Both disciplines (LH+PE) Ae Pe Re F1e

Single-move sentences 0.8092 0.8272 0.8486 0.8223
Multiple-move sentences 0.7372 0.9441 0.7462 0.8085

All sentences 0.7991 0.8437 0.8343 0.8203

Table 5.2: Prediction of all rhetorical moves in MAZEA. Example-based metrics, evalu-
ated in five-fold cross-validation.
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LH abstracts Ae Pe Re F1e

Single-move sentences 0.8764 0.8909 0.9107 0.8878
Multiple-move sentences 0.7717 0.9616 0.7774 0.8358

All sentences 0.8594 0.9025 0.8891 0.8794

Table 5.3: Prediction of all rhetorical moves for the LH subset in MAZEA. Example-
based metrics, evaluated in five-fold cross-validation.

PE abstracts Ae Pe Re F1e

Single-move sentences 0.7056 0.7277 0.7529 0.7213
Multiple-move sentences 0.6476 0.8984 0.6650 0.7377

All sentences 0.6997 0.7456 0.7439 0.7230

Table 5.4: Prediction of all rhetorical moves for the PE subset in MAZEA. Example-
based metrics, evaluated in five-fold cross-validation.

The example-based accuracies obtained in the MAZEA original paper for feature-
based classifiers when all sentences are considered10 are of Ae = 0.69 and Ae =

0.56 for the PE and LH subsets, respectively. Our results cannot be directly com-
pared to theirs because we use 80% of the corpus for training and 20% for eval-
uation in each of the five-fold cross validation splits, while, as mentioned, in the
original paper 50% of the corpus is used for training and validation. We observe,
nevertheless, that in line with the original results, the performance–both for single
and multiple-move sentences–in the PE subset are significantly lower than those
obtained in the LH subset. This can be due to a number of reasons, including
the smaller size of the PE subset, the lower level of agreement obtained for the
PE annotations in MAZEA (0.652 and 0.535 κ scores for LH and the PE, respec-
tively),11 and, particularly, the differences in the percentages of multiple-move
sentences in both subsets. These differences in performance in MAZEA subsets
is observed for all the experiments–and provides some hints about what we can
expect to find when we conduct the experiments in SciARG-CL.12

10They do not discriminate between sentences containing one or more than one move.
11The MAZEA authors use Siegel and Castellan’s κ (Siegel and Castellan Jr, 1988) to measure

inter-annotator agreement.
12As PE includes computation among other engineering disciplines.
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We do not report discipline-disaggregated results in all the cases for brevity sake,
as in this chapter we are more interested in comparing differences in performance
between single and multiple-move sentences, rather than in the different disci-
plines.

Not surprisingly, the combined classifiers perform significantly worse in terms
of recall13 for multiple-move sentences. This confirms our intuition in the sense
that, if the prediction of multiple rhetorical moves in a sentence is important for a
downstream application in which the predictions are to be used, it is not enough to
look at the overall performance but, instead, it is necessary to identify rhetorically-
complex sentences and implement methods specifically targeted at identifying the
multiple moves occurring in them. In the following sections we consider these
problems.

Modeling the multi-label classification problem by means of multiple binary clas-
sifiers does not ensure that every sentence is labeled with at least one rhetorical
move. In fact, in the case of our classifiers, there are 210 instances (almost 2%
of all instances) that are not assigned any rhetorical move. This does not seem to
have a significant impact in terms of the overall accuracy, but can be a significant
problem when using the prediction in downstream applications.

5.2.1.2 Prediction of first rhetorical move in MAZEA sentences

In order to deal with cases in which, given a sentence, the six move-specific binary
classifiers predict false–i.e., the combined multi-label algorithm fails to predict a
sentence as containing at least one rhetorical move–we train a single-label clas-
sifier RM that, given a sentence s, directly predicts a label RM(s) = m̂s that
corresponds one of the six moves described in Table 5.1:

RM(s) = m̂s ∈ {background, gap, purpose,method, result, conclusion}

While SciARG’s annotators were asked to assign one main type to each sentence–
based on the perceived relevance of its argumentative/discursive function(s)–this
distinction is not made in the case of MAZEA annotations. We therefore consider,
for this task, the prediction of the first rhetorical move of the sentence.

13And, conversely, higher in terms of precision.
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Experimental setup

We implement the same BERT-based architecture and parameters used in previ-
ous experiments in single-task settings, leaving the number of epochs as the sole
parameter to optimize, which we do based on the training loss, and we also use
SciBERT as the base model to fine-tune.

We train and evaluate the models in a five-fold cross-validation setting, analo-
gously as we do for the binary move-classifiers described in Section 5.2.1.1. In
this case we use the label to be predicted (the first move in the sentence) to gener-
ate the stratified training/test splits.

Results and analysis

Table 5.5 shows the results obtained when predicting the first rhetorical move
of each sentence in the MAZEA corpus by means of the single-label classifier.
We use example-based evaluation metrics for this task so we can compare its
performance to the multi-label predictions obtained with the combination of the
six move-specific classifiers (Table 5.5).

Both disciplines (LH+PE) Ae Pe Re F1e

Single-move sentences 0.8383 0.8383 0.8383 0.8383
Multiple-move sentences 0.4635 0.9350 0.4635 0.6194

All sentences 0.7858 0.8519 0.7858 0.8076

Table 5.5: Prediction of first rhetorical move in MAZEA. Example-based metrics, eval-
uated in five-fold cross-validation.

As expected, the classifier that predicts a single rhetorical move performs better–in
terms of example-based metrics–than the combination of the move-specific binary
classifiers for single-move sentences (Ae = 0.8383 vs. Ae = 0.8092).

For completeness’ sake we include the results for multiple-move sentences in the
table but, as expected, it is not a suitable alternative for this subset, even if this
fact is not evident just by looking at the disaggregated accuracies (where the dif-
ferences are Ae = 0.7991 vs. Ae = 0.7858) due to the difference in size of the
two subsets.14

14Note that for single-move sentences, Ae = Pe = Re because as we are predicting a single
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5.2.1.3 Union classifier for MAZEA rhetorical moves

In this section we investigate the results obtained by combining the predicted
rhetorical moves obtained with the single and multi-label methods described in
Sections 5.2.1.2 and 5.2.1.1, respectively, which solves the problem of sentences
not being assigned any rhetorical move.

Experimental setup

For each sentence s we consider the set of predicted rhetorical moves M̂s ob-
tained by the combined six move-specific classifiers, and the rhetorical move m̂s

predicted by the single-label classifier. We take their union as the final set of
predictions:

M̂U
s = M̂s ∪ {m̂s}

Results and analysis

We compute example-based metrics with the set of predictions obtained by the
union of the single and multi-label classifiers. In Table 5.6 we report the results of
the predictions obtained by the three methods to simplify their comparison. Sig-
nificant gains are obtained in terms of example-based accuracy and F1 when we
add the predicted label obtained by the first-move classifier to the moves obtained
from the combined six move-specific classifiers.

The union classifier produces a gain of 0.0424 recall points when considering the
subset of multiple-move sentences, with a loss of only 0.007 precision points in
this subset.15

In the case of the proposed union classifier, even when there is an expected loss
of 0.0163 points in precision for single-move sentences with respect to the first-
move classifier, this does not determine the overall outcome. It is noteworthy to
consider that this occurs in spite of the difference in size of both subsets: there are
9,056 instances of single-move sentences vs. 1,476 sentences with more than one
move.

label m̂i, for each instance i we get that either Mi = M̂i (i.e., m̂i = mi) or Mi ∩ M̂i = ∅ (i.e.,
m̂i 6= mi)

15This is relevant because, as we see in subsequent sections, when implementing methods to
process the two subsets of sentences separately, it is less problematic to consider single-move
sentences as potentially containing multiple rhetorical moves than the other way around.
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All-moves classifier Ae Pe Re F1e

Single-move sentences 0.8092 0.8272 0.8486 0.8223
Multiple-move sentences 0.7372 0.9441 0.7462 0.8085

All sentences 0.7991 0.8437 0.8343 0.8203

First-move classifier Ae Pe Re F1e

Single-move sentences 0.8383 0.8383 0.8383 0.8383
Multiple-move sentences 0.4635 0.9350 0.4635 0.6194

All sentences 0.7858 0.8519 0.7858 0.8076

Union classifier Ae Pe Re F1e

Single-move sentences 0.8220 0.8220 0.9098 0.8508
Multiple-move sentences 0.7677 0.9368 0.7886 0.8356

All sentences 0.8144 0.8381 0.8928 0.8487

Table 5.6: Comparison of results obtained in MAZEA when using single and multi-label
classifiers and a classifier that takes the union of predictions made by both.

Based on these observations, we conclude that the union classifier is the best
overall option to identify rhetorical moves in the MAZEA corpus when the rhetor-
ical complexity of the sentences is not known (i.e: when considering rhetorical-
complexity-agnostic methods).

5.2.1.4 Prediction of rhetorical complexity of sentences in MAZEA

As mentioned, we are interested in being able to distinguish between single-move
and multiple-move sentences. In this section we address the prediction of the
rhetorical complexity of a sentence in terms of whether it contains one or more
than one rhetorical moves.16

16We use the term rhetorically complex in this section to refer to sentences containing more
than one move.
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Experimental setup

We model the prediction of a sentence rhetorically complexity by means of a
single-task sentence-classification architecture based on SciBERT with a binary
linear classifier on top, that takes as input the representation of the [CLS] token
and returns one move or two move+ as possible labels, to indicate, respectively,
that the sentence contains one or two-or-more rhetorical moves. Given a sentence
s and the rhetorical-complexity classifier RC, therefore:

RC(s) = ˆrcs ∈ {one move, two move+}

We train and evaluate the models in a five-fold cross-validation setting and fix the
hyper-parameters to the same values used to train other single-task models. The
cross-validation training/test sets are generated so they are stratified with respect
to the sentences’ rhetorical complexity. The selection of the model is done, as in
the other experiments, by means of the elbow method applied to the training loss
as a function of the number of epochs.

Results and analysis

In Table 5.7 we report the performance of the rhetorical complexity classifier.

In addition, we compare it to the performance obtained by a classification method
that considers the number of rhetorical moves predicted by the union classifier
described in the previous section.

We define the predicted rhetorical complexity ˆrcUs based on the number of pre-
dicted moves by the union classifier as:

ˆrcUs =

{
one move if |M̂U

s | = 1

two moves+ otherwise

Where M̂U
s is the set of moves predicted by the rhetorical-moves union classifier

for sentence s.

In this case we address a single-label classification task, so we evaluate it by means
of label-based precision, recall and F1 scores (by class and macro-avg).
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#Rhet. moves w/union classifier P R F1

one move 0.9394 0.8074 0.8684
two moves+ 0.3654 0.6802 0.4754

Macro-avg. 0.6524 0.7438 0.6719

Rhetorical complexity classifier P R F1

one move 0.9246 0.9596 0.9417
two moves+ 0.6772 0.5200 0.5883

Macro-avg. 0.8009 0.7398 0.7650

Table 5.7: Prediction of sentence complexity in MAZEA with, evaluated in five-fold
cross-validation.

The rhetorical-complexity classifier performs, as expected, better in terms of the
F1 score. For both classification methods, the recall/accuracy17 obtained for
multiple-move sentences (sentences that belong to the two moves+ class) is con-
siderably lower when compared to single-move ones, but this difference is more
evident in the rhetorical-complexity classifier: while only 4% of single-move sen-
tences are mis-classified as two moves+, mis-classification in the other direction,
two moves+ sentences classified as one move ones, occurs 48% of the times.
The union classifier for rhetorical moves yields the best recall for multiple-move
sentences: in this case, the number of multiple-move sentences mis-classified falls
to 31.98%.18

Ensemble classifier for rhetorical complexity

In this section we explore whether it is feasible to combine both rhetorical-complex-
ity classifications methods considered (i.e., directly predicting the rhetorical com-
plexity of sentences, or alternatively, deducing it from the number of predicted
rhetorical moves).

We are interested in, particular, in evaluating whether this contributes to improve
the recall of multiple-move sentences, thus reducing the number of rhetorically
complex sentences that are erroneously considered as containing only one move.

17Note that in the case of single-label tasks the class-specific label-based accuracy equals the
class recall.

18Of course, the counterpart to this is that we have a decrease in terms of precision: 19.26% of
single-move sentences are mis-classified as having more than one rhetorical move.
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As seen in Table 5.7, this is the tendency of the rhetorical-complexity classifier
due to the unbalance between the two sets of sentences.

We define the prediction of the ensemble-based rhetorical-complexity, ˆrcEs , as:

ˆrcEs =

{
one move if |M̂U

s | = 1 and ˆrcs = one move

two moves+ otherwise

Where RC(s) = ˆrcs is the class predicted by the rhetorical-complexity classifier
for sentence s, and M̂U

s is the set of moves predicted by the union classifier for
rhetorical moves–which, as seen is the best performing algorithm to obtain all the
rhetorical moves present in a sentence.

We consider the new predicted class ( ˆrces) to be one move (i.e., s is a single-move
sentence) only if both methods19 predict this label.

Rhet-compl. ensemble P R F1 ∆uc ∆rc

one move 0.9508 0.7920 0.8641 -1.54% -16.76%
two moves+ 0.3697 0.7486 0.4950 +6.26% +22.86%

Macro-avg. 0.6603 0.7703 0.6796

Table 5.8: Prediction of sentence complexity in MAZEA obtained by combining the
predictions of the rhetorical-move and rhetorical-complexity classifiers.

Table 5.8 shows a significant gain in recall for multiple-move sentences with the
proposed ensemble method. The table shows the differences in percentage of
mis-classified instances with respect to the rhetorical-moves union classifier (∆uc)
and the rhetorical-complexity classifier (∆rc): the percentage of two moves+ in-
stances that are mis-classified is reduced from the original 48% obtained with
the rhetorical-complexity classifier (R = 0.5200) to 25.14% (R = 0.7486), and
it also improves recall for two moves+ sentences obtained with the rhetorical-
moves union classifier, which mis-classifies 31.98% of two moves+ instances
(R = 0.6802), 6.26% more instances than the ensemble method. The counter-part
is, naturally, an increased mis-classification of single-move sentences, although
lower in percentage.

19i.e., Counting the number of predicted moves and directly predicting the rhetorical complexity
label.
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5.2.2 Sentence-level experiments with SciARG-CL

In this section we apply the proposed methods to identify rhetorical-moves and the
rhetorical complexity of sentences in MAZEA annotations to predict unit types in
SciARG-CL in the cases in which, in addition to the main type, a secondary type
was annotated.

We evaluate the results obtained from fine-tuning SciBERT directly with SciARG
tasks, and also we investigate whether a STILT-learning approach, in which we
add a pre-fine-tuning stage with MAZEA annotations, can contribute to improve
the prediction of SciARG types, in the same line as the experiments in which
SciDTB discourse-level annotations are leveraged to improve the prediction of
SciARG relations.

5.2.2.1 Intra-sentence annotations in SciARG-CL

SciARG-CL20 contains 136 sentences in which annotators identified more than
one argumentative unit. This includes 70 sentences annotated with the type result-
means. In eight cases sentences were assigned the type result-means and another–
main or secondary–type, effectively assigning three different types.

The final segmentation and labeling of the intra-sentence units in SciARG-CL
was done by the author of this work taking into consideration the discussions on
the identification of multiple units within sentences held with annotators in the
process of refining the annotation criteria, which is reflected in the annotation
guidelines.21 In the case of computational linguistics abstracts, given a sentence
with two types of units it is, in general, straightforward to identify which part of
the sentence corresponds to which type, based on the definitions of the types of
units included in the guidelines (and described in Table 3.2). In cases of potential
ambiguity in the determination of unit boundaries, we considered the boundaries
of the elementary discourse units included in SciDTB annotation layer, under the
assumption that an argumentative unit contains one or more elementary discourse
units.

20We consider the consensus annotations in these experiments.
21Available at github.com/LaSTUS-TALN-UPF/SciARG/blob/main/Annotati

on Guidelines Arguments SciDTB.pdf
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As a general rule, we did not divide contiguous segments of text with the same
argumentative type within a sentence, as this would blur the frontiers between our
argumentation-oriented annotations and more general discourse parsing annota-
tions, such as those included in SciDTB. The only contemplated exception to this
is where there is a visual separation of elements in the sentence (for instance, in
an enumeration with numbered items). In the annotated texts this was observed
only in two cases. We did consider the possibility of identifying discontinuous
segments of the same type in a sentence, but, again, this was find to occur very
rarely: in our final annotation there are only 13 sentences containing discontin-
uous units. As a result of the this process, 295 intra-sentence units were finally
identified (only 23 units more than what we would get if all of the sentences con-
tained only two units).

Units corresponding to the type annotated as main type were considered as root
units within the sentence. In practically all of the cases, this determines the di-
rection of the relations.22 The assignment of the types of the relations (the argu-
mentative function of the units) was done considering the table of most frequent
relations, included in the annotation guidelines. This implies, for instance, that in
the cases in which sentences were labeled as result-means, the unit corresponding
to the result is considered as the parent, while the segment corresponding to the
means is considered as child and linked to the parent with a by-means relation.

5.2.2.2 Prediction of all types of units in SciARG-CL sentences

Analogously as we do for MAZEA rhetorical moves, we train type-specific classi-
fiers to predict whether a given fine-grained type of unit is present in a sentence in
SciARG-CL. We jointly train ten binary classifiers: one for each of SciARG’s
fine-grained atomic types included in Table 3.2 in Chapter 3. Even when in
the current SciARG annotations each sentence can include at most three atomic
types,23 we do not force this constraint in the classifier.24

22As there is, in general, only one unit of each type and very few sentences include more than
two units.

23In case one of the types is result-means.
24In order to keep the generality of the method.
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Experimental setup

We train ten SciARG-CL type classifiers in a multi-task setting with the same
architecture and hyper-parameters that we use for MAZEA rhetorical moves clas-
sifiers. We also train and evaluate each classifier in a five-fold cross-validation
setting.

A minor difference with respect to MAZEA experiments is that in the case of
SciARG-CL the cross-validation splits are not stratified with respect to the class.
Instead, we manually split similarly-sized training/test splits so all the sentences
of an abstract are included in the same sets. The same training/validations splits
in all the experiments, including the prediction of relations, which are established
between units both within and across sentences, and require all the potentially
linked sentences to be in the same training or validation set. Using the same
training sets across all the tasks facilitates identifying which set of sentences are
used to train a model that is then used to predict labels of another sentence. This
is important, in particular, for the implementation of the pipelines described in
Section 5.3, where we need to make sure that none of the models that are used in
any of the steps of the pipelines have seen a sentence that is used for evaluation.

For the STILT-based experiments we pre-fine-tune SciBERT to predict the six
rhetorical types in MAZEA with the same multi-task architecture described in
Section 5.2.1.1, using the whole MAZEA dataset. We select the checkpoint to be
used for further fine-tuning by means of the training loss elbow, as in the other
experiments.

Results and analysis

In Table 5.9 we compare the results obtained for the multi-label classification
based on the ten type-specific classifiers when fine-tuning SciBERT directly, and
when including an intermediate fine-tuning stage with MAZEA rhetorical moves.
We use the same example-based metrics described in Section 5.2.1. The models
pre-fine-tuned with MAZEA produce slightly better results–in terms of example-
based accuracy–than directly fine-tuning SciBERT with SciARG tasks. In partic-
ular, this is the case for sentences containing more than one type of unit (multiple-
type sentences). The non-STILT approach produces a slightly better F1 score
for sentences labeled only with one type of unit (single-type sentences), due to a
higher recall in this subset.
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Results in MAZEA and SciARG-CL are not directly comparable beyond a qualita-
tive analysis. Having this in mind, we can observe that the example-based metrics
obtained for SciARG-CL are lower than those obtained for MAZEA when we
consider both domains (Table 5.2).

While in MAZEA the example-based accuracy obtained with the multi-label clas-
sifier for the whole set of sentences is Ae = 0.7991, in SciARG, with the STILT-
trained models, we obtain Ae = 0.7121. This is expected considering that in
SciARG we have a significantly smaller dataset (1,199 instances vs. 10,532 in
MAZEA) and that we have ten potential fine-grained types in SciARG while in
MAZEA there are only six rhetorical moves.

If we compare the accuracies obtained for the PE subset in MAZEA, which in-
cludes documents in disciplines more similar to those in SciARG-CL, we ob-
serve that the differences are reduced (Table 5.4). In fact, the overall example-
based accuracy for SciARG-CL (Ae = 0.7121) is higher than the one obtained in
the PE subset (Ae = 0.6997), although when we focus particularly on multiple-
move/type sentences, better accuracies are still obtained in MAZEA’s PE subset
(Ae = 0.6476 in MAZEA’s PE vs. Ae = 0.5766 in SciARG-CL).

SciBERT model Ae Pe Re F1e

Single-type sentences 0.7269 0.7696 0.7582 0.7372
Multiple-type sentences 0.5650 0.8043 0.5956 0.6525

All sentences 0.7085 0.7736 0.7398 0.7276

STILT w/MAZEA all-moves classifiers Ae Pe Re F1e

Single-type sentences 0.7294 0.7808 0.7460 0.7349
Multiple-type sentences 0.5766 0.8647 0.5980 0.6772

All sentences 0.7121 0.7907 0.7292 0.7283

Table 5.9: Combined predictions for the ten SciARG unit types. Comparison between
results obtained when fine-tuning SciBERT with a STILT-approach with an intermediate
fine-tuning stage with MAZEA rhetorical moves.

5.2.2.3 Prediction of main type in SciARG-CL sentences

Following the same strategy applied for the prediction of MAZEA rhetorical
moves, in this section we train a single-label classifier to predict the main type
in SciARG annotations.
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The labels to predict are the fine-grained types described in Chapter 3. We follow
the same experimental design described for the prediction of the first rhetorical
move in MAZEA, in Section 5.2.1.2. The only difference is that, as in the rest of
the experiments in this section, we compare the results obtained with and with-
out a STILT-learning approach. In this case, the intermediate supplementary task
considered is the prediction of MAZEA first rhetorical move.

Experimental setup

We implement for this task the same architecture that we use throughout the rest
of the experiments: the [CLS]token representation obtained with a BERT-based en-
coder is fed into a single-label linear classifier that predicts one of the 11 SciARG
fine-grained types: the ten atomic SciARG types plus the combined type result-
means.

We use the same five training/validation folds used throughout all the SciARG-CL
experiments, as described in Section 5.2.2.2. For each fold we train models fine-
tuning SciBERT and, for the STILT-learning experiments, we consider a model
checkpoint trained with the whole MAZEA corpus and selected by means of the
elbow method applied to the training loss. All the training hyper-parameters are
fixed as in the rest of the experiments.

Results and analysis

We observe (Table 5.10) that the models pre-fine-tuned with MAZEA annota-
tions perform, in all cases, better than when fine-tuning SciBERT directly. It is
relevant to note that the most significant gain is obtained for the recall score of
multiple-type sentences. We can reasonably expect this classifier to contribute to
the identification of multiple types when its predictions are combined with the
predictions obtained by means of the multi-label classifier described in Section
5.2.2.2.

Note that, in the case of SciARG, the combined type result-means is one of the
potential predicted labels. This means that, in fact, this classifier can predict two
types for this specific case. For the example-based evaluation metrics, sentences
labeled as result-means are considered to include both result and means atomic
types.
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SciBERT model Ae Pe Re F1e

Single-type sentences 0.7399 0.7399 0.7498 0.7432
Multiple-type sentences 0.4988 0.7978 0.5025 0.5990

All sentences 0.7125 0.7465 0.7217 0.7268

STILT w/MAZEA first-move task Ae Pe Re F1e

Single-type sentences 0.7498 0.7498 0.7592 0.7529
Multiple-type sentences 0.5294 0.8088 0.5368 0.6257

All sentences 0.7248 0.7565 0.7339 0.7385

Table 5.10: SciARG main type task predictions. Comparison between results obtained
when fine-tuning SciBERT with a STILT-approach with an intermediate fine-tuning stage
with MAZEA’s first rhetorical move.

5.2.2.4 Union classifier for SciARG-CL unit types

In the same way as we do in Section 5.2.1.3 for MAZEA rhetorical moves, in
this section we consider a classification method for SciARG types of units that
takes into account the predictions obtained both by the combined ten type-specific
classifiers as well as the main-type single-label classifier.

Experimental setup

The implementation of the union classifier is the same as the one described in
Section 5.2.1.3 for MAZEA: for each sentence s we consider the union of the type
t̂s predicted by the main-type classifier described in Section 5.2.2.3 and the com-
bined output of the jointly trained type-specific classifiers described in Section
5.2.2.2 (T̂s):

T̂Us = T̂s ∪ {t̂s}

We compare, again, the results obtained when directly fine-tuning SciBERT, and
when using the corresponding MAZEA tasks for intermediate pre-fine-tuning.25

25For SciARG’s multi-label classifier we use the encoder obtained by jointly fine-tuning
MAZEA’s six move-specific classifiers, while for the single-label classifier we use the encoder
obtained by fine-tuning MAZEA’s first-move classifier.
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Results and analysis

Table 5.11 shows that the union classifier based on single and multi-label classi-
fiers pre-trained with MAZEA tasks improves the prediction of SciARG’s types
of units both for single-type and multiple-type sentences, with a more marked
difference in the case of the latter.

The most significant gain is observed in terms of recall for both subsets of sen-
tences. While there is an expected decrease in terms of precision with respect to
the multi-label classifier considered alone, it is not so significant and, therefore,
best accuracies and F1 scores are obtained in all cases.

As expected, considering that this was the case for the individually-considered
classifiers, the STILT-based union classifier also perform also better than the mod-
els trained without an intermediate fine-tuning stage.

SciBERT model STILT w/MAZEA tasks

All-types classifier Ae Pe Re F1e Ae Pe Re F1e

Single-move sent. 0.7269 0.7696 0.7582 0.7372 0.7294 0.7808 0.7460 0.7349
Multiple-move sent. 0.5650 0.8043 0.5956 0.6525 0.5766 0.8647 0.5980 0.6772

All sentences 0.7085 0.7736 0.7398 0.7276 0.7121 0.7907 0.7292 0.7283

Main-type classifier Ae Pe Re F1e Ae Pe Re F1e

Single-move sent. 0.7399 0.7399 0.7498 0.7432 0.7498 0.7498 0.7592 0.7529
Multiple-move sent. 0.4988 0.7978 0.5025 0.5990 0.5294 0.8088 0.5368 0.6257

All sentences 0.7125 0.7465 0.7217 0.7268 0.7248 0.7565 0.7339 0.7385

Union classifier Ae Pe Re F1e Ae Pe Re F1e

Single-move sent. 0.7344 0.7344 0.8137 0.7600 0.7535 0.7535 0.8175 0.7744
Multiple-move sent. 0.6158 0.7984 0.6838 0.7105 0.6446 0.8370 0.6875 0.7314

All sentences 0.7209 0.7417 0.7990 0.7543 0.7412 0.7630 0.8028 0.7695

Table 5.11: Comparison of results obtained in SciARG when using single and multi-label
classifiers and an ensemble classifier that considers the predictions made by both.

5.2.2.5 Prediction of argumentative complexity of SciARG-CL sentences

In this section we address the identification of sentences in SciARG as argumen-
tatively complex, considering whether they contain one or more than one atomic
types.
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Experimental setup

We implement two classification methods analogous to the ones used to determine
the rhetorical complexity of MAZEA sentences:

i. A binary argumentative-complexity classifier AC that returns whether a
sentence s contains one or more than one type:

AC(s) = âcs ∈ {one type, two types+};

ii. A argumentative complexity of a sentence s based on the number of types
T̂Us obtained by means of the union classifier for SciARG types of units:

ˆacUs =

{
one type if |T̂Us | = 1

two types+ otherwise

We also consider an argumentative-complexity ensemble classifier, which com-
bines both classification methods, analogous to the ensemble classifier imple-
mented to predict the rhetorical complexity of sentences in MAZEA, described in
Section 5.2.1.4. We therefore define the ensemble-based argumentative-complexity
prediction, ˆacEs , as:

ˆacEs =

{
one type if |T̂Us | = 1 and âcs = one type

two types+ otherwise

Where âcs is the class predicted by the argumentative-complexity classifier AC
for sentence s, and T̂Us is the set of types predicted by the union classifier for
SciARG types.

As in the previous experiments in this section, the performances of STILT-trained
and directly fine-tuned models are compared, and for the intermediate fine-tuning
tasks, the equivalent tasks in MAZEA are considered.

Results and analysis

Table 5.12 shows the results for the sentence complexity task obtained with all the
considered classification schemes. Analogously to what we observe in the case
of MAZEA, the classifiers specifically trained to predict the sentence complexity
in SciARG-CL perform better in terms of label-based F1 scores (both for each
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class and the average) than the other considered alternatives. In this case the
STILT and non-STILT trained models perform, overall, similarly, yet the non-
STILT classifier yields a better recall score for multiple-type sentences, which is
reflected in the final F1 score.

SciBERT model STILT w/MAZEA tasks

Types w/union classifier P R F1 P R F1

one type 0.9459 0.8053 0.8699 0.9485 0.8495 0.8963
two types+ 0.2959 0.6397 0.4047 0.3522 0.6397 0.4543

Macro-average 0.6209 0.7225 0.6373 0.6504 0.7446 0.6753

Arg. complexity classifier P R F1 P R F1

one type 0.9356 0.9567 0.9460 0.9310 0.9643 0.9473
two types+ 0.5893 0.4853 0.5323 0.6122 0.4412 0.5128

Macro-average 0.7624 0.7210 0.7392 0.7716 0.7027 0.7301

Arg. complexity ensemble P R F1 P R F1

one type 0.9497 0.7808 0.8570 0.9599 0.8325 0.8917
two types+ 0.2831 0.6765 0.3991 0.3574 0.7279 0.4794

Macro-average 0.6164 0.7286 0.6281 0.6586 0.7802 0.6856

Table 5.12: Prediction of argumentative complexity in SciARG-CL, evaluated in five-
fold cross-validation. Best F1 scores in bold, best precision and recall in italics.

If we focus on the recall (or class-accuracy) for multiple-type sentences, we ob-
serve, as is also the case in MAZEA, that the ensemble classifier obtained by
combining both classification methods performs significantly better than the other
options and, in particular, than the argumentative-complexity classifier alone.

The combination of the STILT-trained classifiers perform significantly better for
this metric than the one obtained with the non-STILT models (R = 0.7279 vs.
R = 0.6765), which represents over 5% improvement in accuracy for this class.
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5.3 Intra-sentence tasks

In this section we address the identification of intra-sentence rhetorical moves in
MAZEA and argumentative unit types and relations in SciARG-CL. We propose
two alternative methods:

1. Token-level classifiers that jointly predict unit boundaries and task-specific
labels (move/unit type, relation type, parent attachment) for all the sen-
tences, without taking into account whether they contain one or more than
one unit.

2. Classification pipelines that include two steps:

i. Classification of sentences according to the number of moves/units
that they contain (one or more than one);

ii. Identification of units by means of separate classifiers for sentences
containing one or more than one unit.26

We compare the results obtained with both methods for sentences containing one
and more than one unit, and assess our initial hypothesis with respect to the ben-
efits obtained by considering the level of rhetorical/argumentative complexity of
sentences in order to determine the best way to process them.

5.3.1 Token-level base architecture

All the token-level tasks described in this section share the same basic architec-
ture: a BERT-based encoder with a linear classifier on top. The only significant
difference with respect to the sequence-level architecture described in Chapter 4,
is that the linear classifier predicts labels for the encodings of all the input tokens,
instead of considering only the pooled representation of the sequence (the repre-
sentation of the [CLS]token). The predictions obtained for BERT special tokens
([CLS], [SEP], [PAD]) are ignored when computing the loss (as in the rest of the
experiments, we use cross-entropy as loss function).

26Based on the idea that, while it is necessary to include boundary-detection as part of the
classification task for sentences containing more than one unit, this is not necessary for sentences
which we know contain only one unit type.
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Figure 5.1: Token-level classification in BERT. Source: (Devlin et al., 2019).

5.3.1.1 Input format and tokenization

For all the token-based tasks, the unit spans are indicated in the input text by
means of opening and closing tags, with or without indicating the span type, de-
pending on the task being considered (e.g., unit type). For instance, for the identi-
fication of argumentative unit boundaries without any other information, the tags
used are (<adu>, </adu>). These tags are assigned new special tokens ([ADU],
[/ADU]), which are added to the tokenizer.27

After the tokenization process, the corresponding labels are assigned to each token
using the BIO-tagging scheme. In this process the added tokens indicating the
span boundaries/types are removed.

For instance, consider the following sentence from (Landwehr et al., 2014), in-
cluding the types of the units:28

<prop-imp> We empirically study the model for biometric reader identification
using eye-tracking data collected from 20 individuals </prop-imp> <obs> and
observe that the model distinguishes between 20 readers with an accuracy of up to
98% . </obs>

27Otherwise, they would be considered as text and splitted as: ’[’,’ADU’,’]’.
28In the example the sentence contains two units: proposal-implementation and observation.
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A particular consideration in the case of BERT is that it uses the WordPiece sub-
word tokenization algorithm to deal with infrequent words (Schuster and Naka-
jima, 2012).

Token Label Token Label

[CLS] - and B-OBS

We B-PROPIMP observe I-OBS

empirical I-PROPIMP that I-OBS

##ly I-PROPIMP the I-OBS

study I-PROPIMP model I-OBS

the I-PROPIMP distinguishes I-OBS

model I-PROPIMP between I-OBS

for I-PROPIMP 20 I-OBS

bio I-PROPIMP readers I-OBS

##metric I-PROPIMP ... ...

reader I-PROPIMP 98 I-OBS

identification I-PROPIMP % I-OBS

using I-PROPIMP . I-OBS

eye I-PROPIMP [SEP] -

- I-PROPIMP [PAD] -

tracking I-PROPIMP [PAD] -

... ... ... ...

individuals I-PROPIMP [PAD] -

Table 5.13: Example of tokenization and label assignment.

In the example that we are considering, the words empirically and biometric are
splitted into the tokens [’empirical’, ’##ly’]and [’bio’, ’##metric’],
respectively. The hyphenated compound word eye-tracking is also splitted into
two tokens: [’eye’, ’tracking’]. We have to take this fact into considera-
tion in the label-assignment stage for training and evaluation, so we provide the
model with the correct list of labels to be predicted.

After the tokenization and label-assignment processes, we obtain the list of la-
beled tokens shown in Table 5.13.

5.3.2 Token-level experiments with MAZEA

In this section we describe the implementation of the two methods proposed in or-
der to determine intra-sentence units and their rhetorical functions in the MAZEA
corpus:
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• Rhetorical-complexity-agnostic token-level classifiers, trained without dis-
tinguishing between single and multiple-move sentences (Section 5.3.2.3);

• Rhetorical-complexity-aware pipelines, which first classify sentences based
on the rhetorical complexity and then predicts the boundaries and types of
the moves that it contains by means of classifiers specialized for each type
of sentence (Section 5.3.4).

5.3.2.1 General settings for MAZEA token-level experiments

As in previously experiments, we use a five-fold cross-validation setting, which
allows us to obtain predictions for all the sentences in the dataset for evaluation.

In all the experiments the classifiers are trained by fine-tuning AllenAI’s SciBERT
encoder and the model checkpoints used to obtain the predictions are selected by
means of the elbow method considering the training losses in each fold, as in
previous experiments.

The same cross-validation training/test splits are used for all the experiments de-
scribed in this section. The folds are generated so they are stratified with respect
to: i) the sentence complexity (i.e., whether it contains one or more rhetorical
moves) and, ii) the type of the first occurring move.

In sake of simplicity, we often refer in this section to classifier in singular. This
should be understood as the combined predictions obtained with the five classifiers
trained with the respective cross-validation training sets.

The sequence labeling evaluation for the token-level tasks is done by means of the
seqeval framework.29 We consider label-based metrics obtained with strict mode
evaluations with the IOB2 labeling scheme. In strict mode, both the boundaries
and the labels should match between a real and a predicted unit to be considered
as a true positive.

29github.com/chakki-works/seqeval
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5.3.2.2 Token-level prediction of move boundaries in MAZEA

Move-boundaries classifier trained with all sentences

Experimental setup

We implement token-level classifiers for the prediction of the boundaries of rhetor-
ical moves with the described general architecture and settings.

In this case we have, in theory, three possible labels: L = {B,I, O} to represent
a token where a new move begins, a token inside a move, and a token that is not
included in any move, respectively.30

We first train and evaluate the classifiers using all the sentences in the dataset in a
five-fold cross-validation setting as described above.

As all the sentences are used for training/validation without previously consider-
ing whether the sentences contain one or more than one rhetorical move, we refer
to this classifier as rhetorical-complexity-agnostic classifier.

Results and analysis

Table 5.14 shows the results obtained for the whole dataset and considering the
disaggregated results in the subsets of single and multiple-move sentences.

Complexity-agnostic classifier - trained with all sentences

Move boundaries P R F1

Single-move sentences 0.8997 0.9482 0.9233
Multiple-move sentences 0.5716 0.4336 0.4931

All sentences 0.8357 0.8186 0.8271

Table 5.14: Token-level prediction of rhetorical move boundaries in MAZEA, disaggre-
gated by type of sentence. Weighted-averaged metrics at unit level with strict boundary
matching.

30In practice, both in MAZEA and in SciARG, all tokens are included in some unit. The label
O is therefore not assigned to any token.
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The complexity-agnostic token-level classifier obtains a good performance in the
prediction of boundaries for single-move sentences, as the majority of the pre-
dicted move boundaries coincide, in fact, with sentence boundaries. This, in turn,
implies that the performance of this classifier for multiple-move sentences is sub-
stantially lower. Due to the difference in size of the two subsets, this fact is not
evident when the aggregated set of sentences is considered.

As mentioned, in this section we are interested in exploring the possibility of
discriminating between the way in which sentences are processed depending on
their rhetorical complexity. If we can predict that a sentence contains only one
move there is no need to determine its boundaries.

We wonder, therefore, how the results for multiple-move sentences would change
if we only used this set of sentences to train and evaluate the models.

Move-boundaries classifier trained with multiple-move sentences

Experimental setup

In this experiment we consider the results obtained when training and evaluat-
ing move-boundaries classifiers in five-fold cross-validation using only multiple-
move sentences, being this the only difference with respect to the previous exper-
imental setup.

Results and analysis

Classifier trained with multiple-move sentences

Move-boundaries P R F1

Multiple-move sentences 0.6846 0.7300 0.7066

Table 5.15: Token-level prediction of rhetorical-move boundaries in MAZEA for
multiple-move sentences. Weighted-averaged metrics at unit level with strict boundary
matching.

We observe in Table 5.15 that, as expected, the predictions obtained by classi-
fiers specifically trained with sentences containing more than one rhetorical move
perform significantly better for this type of sentences than those obtained by clas-
sifiers trained with the full dataset.

135



“output” — 2021/10/1 — 15:43 — page 136 — #152

The F1 score obtained in this case (0.7066), indicates the theoretical upper-bound
to which we could aspire for this subset if we could use this classifier for multiple-
move sentences. Of course, this would require being able to exactly differentiate
sentences based on their rhetorical complexity.

The theoretical F1 upper-bound for unit boundaries in the case of sentences that
contain only one rhetorical move is F1 = 1 as, if we know that a sentence contains
only one unit, we can trivially determine its boundaries.

5.3.2.3 Joint token-level prediction of rhetorical move types and bound-
aries in MAZEA

In this section we analyze the results obtained when predicting both the boundaries
and labels31 of rhetorical moves in MAZEA sentences. The set of potential labels
is therefore:

L = {B-BACKGROUND, I-BACKGROUND, B-GAP, I-GAP, B-PURPOSE, I-PURPOSE,

B-METHOD, I-METHOD, B-RESULT, I-RESULT, B-CONCLUSION, I-CONCLUSION, O}32

Experimental setup

We implement token-based classifiers analogous to the ones described in Section
5.3.2.2, where the only difference is the set of labels considered.

We evaluate two scenarios:

• Training and evaluating classifiers with all the sentences;

• Training and evaluating classifiers only considering multiple-move sentences.

As in the previous section, we refer to the first classifier, as rhetorical-complexity
agnostic classifier.

The second classifier is the one that we would use as a second step in a pipeline if
we are able to determine before the rhetorical complexity of the sentences.

31One of the six rhetorical moves included in Table 5.1
32In practice, the label O is not used as all the words are included in some span. This applies

both to MAZEA and SciARG-CL.
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Results and analysis

Tables 5.16 and 5.17 show the results obtained when training a classifier with all
the sentences and with multiple-move sentences, respectively.

In this case we report weighted-averaged metrics, which consider the relative rel-
evance of each type of rhetorical move according to their frequency.

Complexity-agnostic classifier - trained with all sentences

Move boundaries+types P R F1

Single-move sentences 0.6840 0.7173 0.6993
Multiple-move sentences 0.5573 0.4166 0.4756

All sentences 0.6580 0.6415 0.6490

Table 5.16: Token-level prediction of rhetorical move boundaries and types in MAZEA.
Weighted-averaged metrics at unit level with strict matching of boundaries and types.

Classifier trained with multiple-move sentences

Move boundaries+types P R F1

Multiple-move sentences 0.6422 0.6122 0.6254

Table 5.17: Token-level prediction of rhetorical move boundaries and types in MAZEA.
Classifier trained/evaluated with multiple-move sentences. Weighted-averaged metrics at
unit level with strict matching of boundaries and types.

In the same line of reasoning as in the previous experiment, the results obtained
for the classifier trained and evaluated with multiple-move sentences provides the
theoretical upper-bound for this subset in a classification pipeline that could per-
fectly distinguish single and multi-move sentences.

5.3.3 Sequence-level prediction of rhetorical moves in MAZEA

We are interested in comparing the results obtained by means of the token-level
classifier described in Section 5.3.2.3, where the rhetorical moves and their bound-
aries are jointly predicted, with results obtained by a pipeline in which we predict
the boundaries and the types of the moves in two subsequent steps.
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In this section we therefore train a single-label sequence classifier that predicts a
segment’s type of move assuming that we already know its boundaries.

Experimental setup

We use, for the classification of intra-sentence segments, the same sequence-label
classification architecture and parameters used to predict rhetorical moves at the
sentence-level, described in Section 5.2.1.2.

The only difference is that we now include, as special tokens, the position of the
segment within the sentence–in addition to the position of the sentence in the
abstract, which we also include when training the sentence-level models.

The classifiers are trained and evaluated only with moves from multiple-move sen-
tences (i.e., single-move sentences are excluded from the training and validation
sets).

Results and analysis

We evaluate here the results obtained in a five-fold cross-validation setting when
considering the gold segmentation of multiple-move sentences into rhetorical units.
In Section 5.3.4 we consider a pipeline in which we evaluate the classification
of automatically segmented sequences for sentences predicted to be rhetorically
complex.

We compute label-based scores for each label and report their weighted average.

Classifier trained with multiple-move sentences

Move types (sequence-level) P R F1

Macro-avg. 0.9166 0.9163 0.9164

Table 5.18: Sequence-level prediction of intra-sentence rhetorical move types in
MAZEA. Classifier trained/evaluated with multiple-move sentences, evaluated in five-
fold cross-validation.

We observe a high performance in the predictions when weighted-averaged met-
rics are considered. This can be explained due to the fact that only three types
of rhetorical moves (method, result, and purpose) are included in the vast major-
ity of multiple-move sentences (89%), with sequences of type method being the
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most frequent ones (41.4% of all the units) and the ones for which the highest
scores are obtained (F1 = 0.9510). In turn, units of type conclusion are the least
frequent ones (1.4% of all the units) and, as expected, the F1 score for this class
is significantly lower (F1 = 0.4468)–but this does not impact significantly in the
weighted-averaged scores.

5.3.4 Rhetorical-complexity-aware pipelines for the prediction
of rhetorical moves in MAZEA

In this section we compare the results obtained when predicting rhetorical-move
boundaries and types by means of a rhetorical-complexity agnostic classifier, as
described in Section 5.3.2.3, to results yielded by sequential rhetorical-complexity-
aware pipelines in which we first predict whether a sentence is rhetorically com-
plex or not. Given a sentence s:

I. We predict its rhetorical complexity ( ˆrcs) by means of the classification
methods described in Section 5.2.1.4;

II. If s is predicted to contain a single rhetorical move ( ˆrcs = one move), we
use the first-move sentence-level classifier described in Section 5.2.1.2 to
predict its type. In this case, there is no need to predict the boundaries–as
the move covers the whole sentence–and we can directly label all the tokens
with the predicted type.33

III. If s is predicted as being a multiple-move sentence ( ˆrcs = two moves+),
we predict the boundaries and types of each move contained in s.
For this we implement two approaches:

i. We jointly predict move boundaries and types in s by means of a
token-level classifier as described in 5.2.1.2, and

ii. We predict move boundaries and types in s in two sequential steps:

1) We predict move boundaries in s by means of a token-level bound-
ary classifier, as described in Section 5.3.2.2, obtaining intra-sentence
segments s1, . . . , sn, and

2) We predict the move types of the segments s1, . . . , sn by means
of a sequence-level classifier as described in Section 5.3.3.

33We need the token-level classification for comparison between the different approaches.
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In the report of the results, below, we refer to the pipeline in which the bound-
aries and types of multiple-move sentences are predicted jointly (III.i) as two-step
pipeline, while the pipeline in which we first predict the move boundaries and then
the types (III.ii) is referred to as three-step pipeline.

Experimental setup

The model architectures used in this section, as well as the method to obtain model
checkpoints used for making the predictions–based on the training losses–are the
same as the ones described in the previous sections.

Determining whether a sentence s should be considered as rhetorically complex
or not is the first step of the pipelines described in this section. In Section 5.2.1.4
we examine different methods to predict the rhetorical complexity of a sentence:

i. We train and evaluate a binary rhetorical-complexity classifier that directly
predicts whether the sentence contains more than one move or not ( ˆrcs), and

ii. We implement an ensemble rhetorical-complexity classifier that returns a
prediction ˆrcEs considering both the predicted rhetorical complexity ob-
tained by the binary classifier ( ˆrcs), and also the number of rhetorical moves
predicted to occur in the sentence (|M̂U

s |).

We compare the results obtained when using both types of classifiers in first step
of the pipelines.

We observe in Section 5.2.1.4 that, while the simple binary classifier ( ˆrcs) per-
forms better overall, a much higher recall is obtained for rhetorically-complex
sentences with the ensemble classifier (Table 5.8).

This means that, when using the prediction obtained by the ensemble rhetorical-
complexity classifier ( ˆrcEs ) in the first step of the pipelines, significantly more
sentences are to classified as two moves+, and, therefore passed to the prediction
of their intra-sentence move boundaries and types in subsequent steps.

Conversely, when using directly the prediction of the binary rhetorical-complexity
classifier ( ˆrcs), more sentences are being classified as one move and, therefore,
processed by the sentence-level first-move classifier in the following step.
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Results and analysis

In Table 5.19 we compare the results obtained with the different configurations
considered. We also reproduce the results obtained with the rhetorical-complexity
agnostic classifier (Table 5.16) for ease of comparison.

No pipeline. Joint prediction of move bound+type for all sentences

Complexity-agnostic classifier P R F1

Single-move sentences 0.6840 0.7173 0.6993
Multiple-move sentences 0.5573 0.4166 0.4756

All sentences 0.6580 0.6415 0.6490

Two-step pipeline (III.i). Joint pred. of move bound+type for two moves+ sentences

W/Basic rhetorical-complexity classifier P R F1

Single-move sentences 0.7939 0.8178 0.8046
Multiple-move sentences 0.5133 0.3721 0.4298

All sentences 0.7379 0.7057 0.7206

W/Ensemble rhetorical-complexity classifier P R F1

Single-move sentences 0.7068 0.7736 0.7361
Multiple-move sentences 0.5934 0.4954 0.5384

All sentences 0.6824 0.7036 0.6914

Three-step pipeline (III.ii). Sequential pred. of move bound→type for two moves+ sentences

W/Basic rhetorical-complexity classifier P R F1

Single-move sentences 0.7795 0.8139 0.7954
Multiple-move sentences 0.4900 0.3789 0.4258

All sentences 0.7191 0.7044 0.7109

W/Ensemble rhetorical-complexity classifier P R F1

Single-move sentences 0.6450 0.7486 0.6902
Multiple-move sentences 0.5726 0.5199 0.5438

All sentences 0.6265 0.6910 0.6561

Table 5.19: Comparison of token-level prediction of rhetorical unit boundaries and types
in MAZEA with and without rhetorical-complexity-aware pipelines. Weighted-averaged
metrics at unit level with strict matching of boundaries and types.
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Processing single and multiple-move sentences into two independent sub-tasks,
as done with the proposed pipelines, improves the overall results with respect to
a classifier that predicts unit boundaries and types for the whole set of sentences
without considering their complexity (F1 = 0.7206 vs. F1 = 0.6490).

In most scenarios, this is a consequence of the better performance of the pipeline
classifiers for single-move sentences which, as seen, constitute the vast majority
of sentences–in the particular case of MAZEA but also in many other datasets,
including SciARG. This confirms our hypothesis in the sense that applying token-
level classification indiscriminately is a sub-optimal solution when most of the
rhetorical moves cover whole sentences.

Implementing a rhetorical-complexity aware pipeline can also improve signifi-
cantly the prediction of intra-sentence units for multiple-move sentences. In this
case, though, we need to make sure to use, in the first step of the pipeline, a clas-
sifier that is more sensitive to the mis-classification of multiple-move sentences,
as is the case of the proposed ensemble rhetorical-complexity classifier.

Table 5.19 shows that there is no significant difference between the results ob-
tained with two-step or the three-step pipelines for multiple-move sentences in
terms of their F1 scores. This is in line with our previous observation in the sense
that the main difficulty in this task relies on the prediction of the unit boundaries.
Once they are known, the classification of the unit types can be done with a high
level of reliability (5.18).

We can see that the performances obtained for multiple-move sentences improve
significantly with classifiers specifically trained for this type of sentences over
the performance obtained with a complexity-agnostic classifier. Yet there is a
considerable space for improvement to reach the theoretical F1 = 0.6254 that
would be obtained should all multiple-move sentences were correctly classified in
the first step of the pipeline (Table 5.17).

As mentioned, the prediction of boundaries and types of moves in single-move
sentences improve considerably when these sentences are processed by sentence-
level classifiers, as with the considered pipelines. Of course, the overall perfor-
mance for this type of sentences depends, as in the case of multiple-move sen-
tences, on their being correctly identified in the first step of the process.
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It is natural, then, that the pipelines using the basic rhetorical-complexity classi-
fier–that yield a higher recall for this type of sentences–produce better results for
this subset.

Finally, it is relevant to notice that the two-step pipeline with the ensemble rheto-
rical-complexity classifier improves the prediction of both single and multiple-
move sentences with respect to the complexity-agnostic classifier, which makes
this method the best candidate if a balance between the performance of both types
of sentences is important.

5.3.5 Token-level experiments with SciARG

In this section we report the results of the identification of intra-sentence units
and their labels in the SciARG corpus. We first consider the prediction of types of
units and analyze the results obtained for SciARG of experiments analogous to the
ones conducted with MAZEA for the prediction of rhetorical moves in sentences
with different levels of complexity.

In the case of SciARG, and in line with experiments conducted in previous sec-
tions, we compare the results obtained when fine-tuning the SciBERT encoder
directly to those obtained when including an intermediate fine-tuning considering
the corresponding MAZEA tasks.

As we do in the case of MAZEA, we consider the results obtained with complexity-
agnostic classifiers, which do not distinguish between sentences according to their
predicted argumentative complexity, and compare them to pipelines in which sen-
tences are first classified as containing one or more than one unit (argumentatively
simple or argumentatively complex, respectively) so specially trained classifiers
are used in subsequent steps, depending on the sentence complexity.

5.3.5.1 Joint token-level prediction of types and boundaries in SciARG-CL

Experimental setup

Analogously as we do with MAZEA for rhetorical moves, we train token-based
classifiers for the joint prediction of SciARG’s unit boundaries and types.
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As in previous experiments, we use SciARG’s fine-grained types described in
Table 3.2 in Chapter 3. The experimental setup is the same as described in in
Section 5.3.2.3, in which we train classifiers in a five-fold cross-validation scheme
and select the model checkpoint to obtain the predictions by means of the elbow
method applied to the training loss.

As we do in the case of MAZEA, we consider two scenarios:

i. A complexity-agnostic classifier, trained and evaluated with all the sen-
tences;

ii. A classifier trained and evaluated only with multiple-type sentences.

Results and analysis

Unit boundaries+types - Complexity-agnostic class.

SciBERT model P R F1

Single-type sentences 0.6559 0.6642 0.6480
Multiple-type sentences 0.2033 0.0959 0.1298

All sentences 0.5964 0.5417 0.5563

STILT w/MAZEA P R F1

Single-type sentences 0.6339 0.6548 0.6291
Multiple-type sentences 0.2724 0.1644 0.2006

All sentences 0.5775 0.5491 0.5479

Table 5.20: Token-level prediction of argumentative unit boundaries and types in
SciARG with and without an intermediate fine-tuning stage with MAZEA’s tasks.
Weighted-averaged metrics at unit level with strict matching of boundaries and types.

We observe in Table 5.20 that, as expected, when the unit types and boundaries are
predicted jointly without considering whether the sentences contain one or more
units, the performance within the subset of multiple-type sentences is very low.

When the BERT model is pre-fine-tuned with MAZEA annotations, even if there
is an improvement in terms of the F1 score in this subset of over 50%, the classifier
still performs poorly. In particular, in terms of the recall in the set of multiple-type
sentences.
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Unit boundaries+types - Class. w/multiple-type sent.

SciBERT model P R F1

Multiple-type sentences 0.2258 0.1336 0.1613

STILT w/MAZEA P R F1

Multiple-type sentences 0.4005 0.1986 0.2166

Table 5.21: Token-level prediction of rhetorical unit boundaries and types in SciARG.
Classifiers trained/evaluated with argumentatively complex sentences with and without
considering an intermediate fine-tuning stage with MAZEA’s task. Weighted-averaged
metrics at unit level with strict matching of boundaries and types.

In turn, the improvement in the detection of intra-sentence units obtained by the
transfer of learned parameters from MAZEA to SciARG, which makes the model
more sensitive to the presence of multiple units within sentences, has a negative
impact on precision in the subset of single-type sentences. This is, of course, not
so relevant since, if we are able to determine that a sentence contains only one
unit, we would not use a token-level classifier to determine its type.

When we train and evaluate the model only considering sentences containing
more than one unit–which determines the theoretical limit that we could obtain
with a perfect sentence complexity classifier) for this type of sentences–we ob-
serve that the performance improves with respect to the models trained with the
whole dataset. Nevertheless, the best result obtained–obtained when pre-fine-
tuning SciBERT with MAZEA annotations–is still low (Table 5.21).

Even if they are not directly comparable, it is important to note that, in the case
of MAZEA we obtain an F1 score of 0.6254 for sentences with more than one
rhetorical type for this experiment (Table 5.17). The difference in performance
in both cases is not surprising if we consider the different sizes of both datasets:
while MAZEA includes 10,532 sentences, of which 1,476 (14%) contain more
than one rhetorical type, we have 1,199 sentences in SciARG, of which 136 (11%)
have been annotated with more than one type. In addition, while there are six
possible labels in MAZEA for rhetorical moves, in SciARG we are predicting ten
fine-grained types.
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This is relevant because the results obtained for this task in MAZEA make it feasi-
ble to consider the implementation of the described two-step pipeline in which we
first determine whether a given sentence is rhetorically complex and, in a second
step, we directly predict the boundaries and types of the units that it contains. In
fact, in the case of MAZEA, this pipeline performs competitively when compared
to a three-step pipeline in which the boundaries of the units and their types are
predicted in two successive steps (Table 5.19).

In the case of SciARG-CL, however, this does not seem like a feasible possibility.
We will, therefore, only evaluate the results obtained when implementing a three-
step pipeline–where the prediction of unit boundaries and types are conducted in
two successive steps.

5.3.5.2 Token-level prediction of unit boundaries in SciARG-CL

As we do in the case of rhetorical moves in MAZEA (Section 5.3.2.2), we train
models to predict the boundaries of intra-sentence units, which is an essential step
in the proposed complexity-aware pipeline.

Experimental setup

We use the same architecture and methodology implemented for the token-level
prediction of unit boundaries in MAZEA, as described in Section 5.3.2.2. In this
case, based on the previous evidence obtained, and for simplicity sake, we only
train and evaluate the models with multiple-type sentences.

As in the other experiments with SciARG, we consider the results obtained with
and without a STILT-learning approach. The difference, in this case, is that the
labels to predict in MAZEA and SciARG are the same, which allows us to not
only take advantage of the encoder weights obtained in the preliminary fine-tuning
stage, but also of the weights learned by the linear classifier.
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Results and analysis

We observe in Table 5.22 that a significant gain is obtained for the token-level
prediction of unit boundaries in SciARG-CL when leveraging MAZEA rhetorical-
move boundary annotations for pre-training the model.

Unit boundaries - Class. w/multiple-type sent.

SciBERT model P R F1

Multiple-type sentences 0.4656 0.3938 0.4267

STILT w/MAZEA P R F1

Multiple-type sentences 0.6082 0.6062 0.6072

Table 5.22: Token-level prediction of unit boundaries in SciARG. Weighted-averaged
metrics at unit level with strict boundary matching.

5.3.6 Sequence-level prediction of intra-sentence unit types in
SciARG-CL

Experimental setup

For the prediction of the argumentative types of pre-segmented units in SciARG-
CL we use the same sequence classification architecture used in MAZEA and
described in Section 5.3.3.

As in the other experiments conducted in SciARG-CL, we compare the results
obtained with an without a supplementary fine-tuning stage. In this case we use
MAZEA annotations of rhetorical moves, considering the subset of multiple-move
sentences.

Results and analysis

Table 5.23 shows the results obtained for the classification of intra-sentence unit
types. We compute the scores obtained for each of the ten SciARG atomic types
and report the macro-averaged scores.
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Unit boundaries - Class. w/multiple-type sent.

SciBERT model P R F1

Macro-avg. 0.6332 0.6942 0.6576

STILT w/MAZEA P R F1

Macro-avg. 0.6748 0.6873 0.6780

Table 5.23: Sequence-level prediction of intra-sentence unit types in SciARG. Classifier
trained/evaluated with argumentatively complex sentences, evaluated in five-fold cross-
validation.

In Table 5.23 we observe a gain in performance when pre-fine-tuning SciBERT
with MAZEA in terms of the macro-averaged precision and F1 scores, while both
models perform almost equivalently in terms of recall, with a minor advantage
of the non-STILT model. When looking more in detail at the disaggregated re-
sults by class we observe that this is due to the fact that the STILT-trained model
does a better job at discriminating classes with fewer instances, while the non-
STILT model tends to favor the majority classes–in particular, result, means, and
proposal-implementation that, together, constitute 76% of all the intra-sentence
units.

5.3.7 Argumentative-complexity-aware pipelines for the pre-
diction of argumentative units in SciARG-CL

In Section 5.3.5.1 we explore the joint prediction of boundaries and types both
when training and evaluating a token-level classifier with all the sentences, inde-
pendently of their argumentative complexity, which we refer to as argumentative-
complexity-agnostic classifier, and we also train and evaluate a classifier that is
specifically targeted at sentences containing two or more units, observing that,
in the case of SciARG the results obtained when jointly predicting unit types and
boundaries for multiple-type sentences are too low to make it a feasible alternative
for a two-step pipeline as the one considered for MAZEA in Section 5.3.4.

In this section we compare the results obtained for the identification of argumen-
tative unit boundaries and their types in SciARG by means of the argumentative-
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complexity agnostic classifier with the results obtained when implementing a
three-step pipeline analogous to the one described for MAZEA, where unit bound-
aries and types are predicted in two subsequent steps for sentences that are previ-
ously identified as containing more than one type.

When a sentence is classified as containing only one unit by the argumentative-
complexity classifier in the first step of the pipeline, its type, parent attachment
and type of relation are predicted with a sentence-level classifier implemented as
described in Chapter 4. In this case, the models are trained in a five-fold cross-
validation setting–with the same training/test splits used for all the SciARG-CL
experiments in this chapter–so we can obtain predictions for the whole dataset.
The classifiers are trained in a multi-task setting with pairs of sentences, and con-
sidering sentence-level relations in SciDTB as intermediate task, as described in
Chapter 4.

In summary, given a sentence s:

I. We predict its argumentative complexity (âcs) by means of the classification
methods described in Section 5.2.2.5.

II. If s is predicted to contain a single unit (âcs = one type), we predict its
type–as well as parent attachment and relation type–by means of a multi-
task classifier implemented as in Chapter 4.

III. If s is predicted as containing more than one unit (âcs = two types+), we:

i. Predict the boundaries of each unit contained in s: s1, . . . , sn.

ii. Predict the type of each intra-sentence unit s1, . . . , sn by means of a
sequence-level classifier as described in Section 5.3.6.

Table 5.24 shows the results obtained for the described pipeline when using in the
first step, to determine the argumentative complexity of the sentences, i) the pre-
dictions obtained by a basic argumentative complexity classifier (âcs) described in
Section 5.2.2.5, or ii) the predictions obtained by means of the ensemble argumenta-
tive-complexity classifier ( ˆacEs ) described in the same section.

In order to facilitate the comparison, we include also the results of the joint bound-
ary and type predictions obtained with the token-level argumentative-agnostic
classifier described Section 5.3.5.1
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No pipeline. Joint prediction of unit bound+type for all sentences

Complexity-agnostic classifier P R F1

Single-type sentences 0.6339 0.6548 0.6291
Multiple-type sentences 0.2724 0.1644 0.2006

All sentences 0.5775 0.5491 0.5479

Three-step pipeline (III). Sequential pred. of unit bound→type for two types+ sent.

W/Basic argumentative-complexity classifier P R F1

Single-type sentences 0.6812 0.7140 0.6941
Multiple-type sentences 0.3797 0.2621 0.3055

All sentences 0.6283 0.6171 0.6210

W/Ensemble argumentative-complexity classifier P R F1

Single-type sentences 0.6216 0.6723 0.6419
Multiple-type sentences 0.3885 0.3103 0.3431

All sentences 0.5763 0.5947 0.5837

Table 5.24: Comparison of token-level prediction of unit boundaries and types in
SciARG with and without sentence complexity-aware pipelines. All models trained with
an intermediate fine-tuning stage. Weighted-averaged metrics at unit level with strict
matching of boundaries and types.

We observe that the argumentative-complexity-aware pipelines improve the pre-
dictions of units and its types both for single and multi-type sentences with respect
to the argumentative-complexity-agnostic. As in the case of MAZEA, when the
ensemble argumentative-complexity classifier is used as first step of the pipeline
more sentences are classified as two types+ and are subsequently processed by
the specialized classifier for the detection of the units contained in it. Conversely,
when the basic argumentative-complexity classifier is used, more sentences are
classified as one type and processed by the sentence-level classifier. This can be
observed, in particular, in the gains in recall for the respective types of sentences
in each of these scenarios.

As in the case of MAZEA, using one or the other classification strategy as the first
step of the pipeline would depend on the specific needs of the application where
the predictions are to be used.
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5.3.8 Prediction of intra-sentence relations in SciARG-CL

We consider that a sentence as a whole has an argumentative function through
which it is linked to another sentence and, on a different level of analysis, we
consider how the various parts of the sentence interplay from an argumentative
point of view. In this section we evaluate the results obtained when combining the
predicted relations at both levels, which conforms the fine-grained argumentative
structure of the abstracts.

Note that we consider that each sentence is linked to another one only through
one segment, the sentence argumentative root. Therefore, the parents of non-root
segments can only be other units within the same sentence. In this sense, we are
adopting the composionality principle of discourse-based analysis.

In this section we evaluate the performance of the argumentative-complexity-
aware classification pipelines for the prediction of intra-sentence relations.

Note that, based on the results obtained for the prediction of units types in Section
5.3.7 we can discard the complexity-agnostic classifier as the best alternative for
the prediction of units and their types within sentences–even more so for determin-
ing the relations between them. In addition, there is a practical difficulty in that
we would need to model two different token-level classification tasks–prediction
of relations between sentences and prediction of relations between units–in a uni-
fied way for the different models to be comparable. A way to do this would be
to model the tasks at the document (abstract) level and use, to model the parent
attachment task, token positions–or the position of the discourse units as we did
in our preliminary experiments, described in Appendix A. The practical complex-
ities that this involves34 does not seems to be justified in this case, based on the
previous results.

As observed in Section 5.3.7, in the case of SciARG-CL the only feasible alter-
native is to implement a three-step pipeline in which, in the first step, sentences
are classified according to their argumentative complexity and, for sentences pre-
dicted to contain more than one unit, their boundaries and labels are predicted in
two subsequent steps.

34Including, for instance, the need to consider the possibility of having input sequences longer
than BERT’s maximum sequence length of 512 tokens.
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In the case of sentences predicted to be argumentatively not complex (i.e., clas-
sified as one type), its parent and type of relation are predicted–jointly with its
type–by means of a multi-task classifier pre-fine-tuned with SciDTB sentence-
level tasks and trained in a five-fold cross-validation setting, as described in 5.3.7.

When a sentence is classified as argumentatively complex in the first step of the
pipeline (i.e., classified as two types+), the boundaries of its components are ob-
tained by means of the classifier described in Section 5.3.2.2. For each of the
identified units, the relative positions of their parents within the sentence (parent
attachment task) and their argumentative function (relation type task)35 are pre-
dicted jointly by means of a multi-task pair classifier similar to the ones used to
predict relations at sentence-level. In this case, the segments considered to train
the models are not full sentences but intra-sentence units paired together with the
same criteria applied for training the models at the sentence level and described in
Chapter 4. Similarly, these classifiers are also trained with a STILT-learning ap-
proach. In this case, instead of considering discourse-relations only at the sentence
level, the annotations used as intermediate pre-training task are the fine-grained
discourse relations between elementary discourse units in SciDTB described in
Chapter 3.

To indicate the attachment of a sentence to its parent we consider the relative posi-
tion of the parent sentence within the text. Analogously, to indicate the attachment
of an intra-sentence unit to its parent, we consider their respective positions within
the sentence. Units for which no parents are predicted are considered to be root
units at the sentence level. In an additional step, we label the intra-sentence root
units with the argumentative function and parent position of the sentence as a
whole. For instance, consider the following example from (Kolhatkar and Hirst,
2014), where we represent sentence-level argumentative function (the type of the
relation though which it is linked to its parent) by means of the attribute afu

and the parent attachment by means of the attribute par, while unit types are
expressed by the tag labels (e.g., <prop>). At the intra-sentence level, the type
of the relation and the parent position are expressed by the attributes sent-afu
and sent-par, respectively. The absolute position of the sentence in the text is
represented by the attribute sent and the unit position within the sentence by the
attribute segm.

35The relation types considered are the same as the ones used at sentence level and described in
Chapter 3 (Table 3.4).
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<motiv-back sent=1 segm=1 afu=info-req par=1>
Shell nouns, such as fact and problem, occur frequently in all kinds of texts.
</motiv-back>

<motiv-prob sent=2 segm=1 afu=support par=1>
These nouns themselves are unspecific, and can only be interpreted together
with the shell content. </motiv-prob>

<prop sent=3 segm=1 afu=root>
We propose a general approach to automatically identify shell content of
shell nouns. </prop>

<prop-imp sent=4 segm=1 afu=elab par=-1>
Our approach exploits lexico-syntactic knowledge derived from the linguis-
tics literature. </prop-imp>

<means sent=5 segm=1 sent-afu=by-means sent-par=1>
We evaluate the approach on a variety of shell nouns with a variety of syn-
tactic expectations, </means>
<obs sent=5 segm=2 sent-afu=root-sent afu=support
par=-2> achieving accuracies in the range of 62% (baseline=33%) to 83%
(baseline=74%) on crowd-annotated data. </obs>

Note that, in the example, only the fifth sentence of the abstract contains two units,
of types means and observation, respectively, being observation the main type.

In the pipeline, this sentence should be classified as argumentatively complex, the
boundaries of the units contained in it would have to be determined and, in the
following step, the intra-sentence parent and argumentative function of each of
the predicted units would be obtained by means of intra-sentence sequence-level
classifiers. We should obtain, as predictions, that the first unit (of type means) is a
child of the second unit (of type observation) and, therefore, the predicted relative
parent position of the first unit within the sentence is 1–indicating that the parent
is one position ahead, while the label of the relation is by-means.

The observation segment (in the second position in the sentence) would be pre-
dicted as being the root unit of the sentence. The sentence-level parent and type
of relation predicted using the full sentence36 are therefore assigned to this unit

36By means of the sentence-level classifier
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with the attributes afu and par. Table 5.25 shows the intermediate and final
predictions at token-level for this sentence for the relation type task.

Token Intermediate prediction Final prediction

We B-BY-MEANS B-BY-MEANS

evaluate I-BY-MEANS I-BY-MEANS

the I-BY-MEANS I-BY-MEANS

approach I-BY-MEANS I-BY-MEANS

...

expectations I-BY-MEANS I-BY-MEANS

, I-BY-MEANS I-BY-MEANS

achieving B-ROOT-SENTENCE B-SUPPORT

accuracies I-ROOT-SENTENCE I-SUPPORT

in I-ROOT-SENTENCE I-SUPPORT

... I-ROOT-SENTENCE I-SUPPORT

annotated I-ROOT-SENTENCE I-SUPPORT

data I-ROOT-SENTENCE I-SUPPORT

. I-ROOT-SENTENCE I-SUPPORT

Table 5.25: Example of predicted relation types at token level.

Table 5.27 shows the results obtained for the combined prediction of intra and
inter-sentence relations. As in the previous experiments described in this chapter,
the evaluation is done at the token-level with strict matching of boundaries and
labels.

The pipeline that uses in its first step the basic argumentative-complexity classifier
performs better for single-type sentences, and therefore also is the one for which
the best overall results are obtained, while the pipeline that uses the ensemble
argumentative-complexity classifier performs better for multiple-type sentences.

The performances obtained for the different tasks cannot be compared to each
other, but we can observe that, as expected, the relative differences obtained for
single-type sentences are in line with the differences observed for these tasks in
Chapter 4. In the case of multiple-type sentences, once the boundaries and types
of units are defined within sentences, identifying how they are linked to each other
is quite straightforward. It is therefore expected that the difficulty of the prediction
of relations is to some extent capped by the difficulty in the prediction of the types
of units.

154



“output” — 2021/10/1 — 15:43 — page 155 — #171

Three-step pipeline. Sequential pred. of unit bound→rel. type for two types+ sent.

W/Basic argumentative-complexity classifier P R F1

Single-type sentences 0.7323 0.7366 0.7336
Multiple-type sentences 0.3570 0.2207 0.2671

All sentences 0.6339 0.6260 0.6288
W/Ensemble argumentative-complexity classifier P R F1

Single-type sentences 0.7032 0.7015 0.7016
Multiple-type sentences 0.4070 0.2793 0.3214

All sentences 0.6102 0.6109 0.6094

Table 5.26: Token-level prediction of unit boundaries and relation types in SciARG-CL
with three-step complexity-aware pipeline. Models trained with an intermediate fine-
tuning stage with SciDTB relations. Weighted-averaged metrics at unit level with strict
matching of boundaries and labels.

Three-step pipeline. Sequential pred. of unit bound→parent for two types+ sent.

W/Basic argumentative-complexity classifier P R F1

Single-type sentences 0.7239 0.7357 0.7260
Multiple-type sentences 0.3310 0.1986 0.2415

All sentences 0.6204 0.6215 0.6167

W/Ensemble argumentative-complexity classifier P R F1

Single-type sentences 0.6759 0.6817 0.6752
Multiple-type sentences 0.3453 0.2648 0.2938

All sentences 0.5766 0.5930 0.5798

Table 5.27: Token-level prediction of unit boundaries and parents in SciARG-CL with
three-step complexity-aware pipeline. Models trained with an intermediate fine-tuning
stage with SciDTB relations. Weighted-averaged metrics at unit level with strict matching
of boundaries and labels.
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5.4 Conclusions

In this chapter we focused on the identification of intra-sentence unit bound-
aries and types. We compared results obtained by token-level classifiers that pre-
dict intra-sentence units without considering the level of rhetorical/argumentative
complexity of the sentences, to those obtained by means of pipelines in which
this information is taken into consideration in order to decide the type of classifier
better suited in each case. These pipelines rely on the possibility of classifying the
complexity of sentences. We therefore explored different approaches to this task,
including a basic sentence-level classifier to directly predict the sentence com-
plexity, as well as methods that include predicting the–potentially multiple–types
of units contained in a sentence, and a combination of both.

The results obtained confirm our initial hypothesis in relation to the potential ben-
efits obtained by discriminating the way in which sentences are processed depend-
ing on their rhetorical/argumentative complexity. In particular, in cases where the
overwhelming majority of the sentences contain only one rhetorical move, as in
the case of SciARG-CL, MAZEA and several other corpora–including AZ (Teufel
et al., 1999) and CoreSC (Liakata et al., 2012).
One alternative–which is the one that we adopted in our SciARG annotation
scheme and the tasks described in Chapter 4–is to prioritize the most frequent
type of sentences (in this case, sentences containing only one type of unit). This,
in turn, simplifies the annotation process, making it more probable to obtain more
reliable annotations.
If the identification of intra-sentence units is necessary for a particular down-
stream application, several aspects are to be weighted, including how determining
it is to get a high recall for these units, knowing that this will impact negatively on
the classification of rhetorically simpler sentences. Depending on these decisions,
different strategies for determining the complexity of the sentences and for the
identification of their components can be considered, as described in this chapter.

We also continued exploring the benefits obtained by leveraging existing annota-
tions. In this case, we considered, for supplementary training, the rhetorical-level
annotations included in the MAZEA corpus of scientific abstracts (Dayrell et al.,
2012) by means of a STILT transfer learning approach (Phang et al., 2018). The
results obtained show that in general this strategy leads to better performances in
the target tasks.
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In addition to use MAZEA annotations as intermediate fine-tuning tasks, we took
advantage of the availability of this corpus to validate our results. This contributed
to confirm that the results obtained in SciARG-CL for the tasks considered in this
chapter are not qualitatively different from those obtained in a larger corpus that
covers significantly more scientific disciplines.
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Chapter 6

EXTENDING SCIARG: FROM
COMPUTATIONAL
LINGUISTICS TO
BIO-MEDICINE

The SciARG annotation scheme introduced in Chapter 3 and used in the exper-
iments described in Chapters 4 and 5 was specifically developed to account for
argumentative types and relations in computational linguistic abstracts. In this
chapter we explore the applicability of this scheme to other scientific disciplines.
In particular, we analyze if it can be successfully used to annotate argumentative
information in biomedical abstracts.

As an additional research question, we are interested in exploring the extent to
which models obtained from computational linguistics annotations capture disci-
pline-independent knowledge. We therefore investigate the predictive potential of
these models when used in abstracts that, as we analyze in Section 6.1.3, have a
significantly more complex discourse structure than the texts used to train them.

To respond to these questions, we use the SciARG annotation scheme to annotate
a set of biomedical abstracts and use these annotations in experiments aimed at
predicting their argumentative structure.
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It is relevant to note that, as our goal is to test our original annotation scheme
in a scientific discipline different to the one in which it was initially developed,
we are not proposing an alternative scheme specifically tailored to the analysis of
discourse and/or the rhetorical classification of sentences in biomedical abstracts,
which is an area that has been studied in other works. In particular, two of the most
studied datasets in the biomedical area are the NICTA-PIBOSO corpus, devel-
oped by Kim et al. (2011), in which 1,000 medical abstracts were hand-annotated
at sentence level by domain experts with the PICO schemes,1 which is used in
the analysis of randomized controlled trials (RCT); and the PubMed 200k RCT
dataset released in 2017 by Dernoncourt and Lee (2017), proposed as a resource
to train automatic sentence classifiers for unstructured abstracts. This dataset was
constructed by retrieving 195,654 RCT structured abstracts from the 2016 MED-
LINE/PubMed Baseline Database2 and automatically labelling each sentence with
the name of the section it belongs to. As we see in Chapter 3 is the case of cor-
pora developed in other scientific disciplines (such as computational linguistics),
the NICTA-PIBOSO corpus and the PubMed 200k RCT dataset are aimed at iden-
tifying the type of information conveyed by sentences but do not contain explicit
annotations that evidence discourse or logical relations between them.

The rest of this chapter is organized as follows:

• In Section 6.1 we describe the application of the SciARG scheme to the
annotation of a set of biomedical abstracts, thus generating a new annotated
corpus: SciARG-BIO. This allows us to assess the applicability of our pro-
posed annotation scheme to a new scientific discipline. We describe the
annotation process, analyze the observed inter-annotator agreement, and re-
port corpus statistics. We analyze, in particular, differences between the
argumentative structures of computational linguistics and biomedical ab-
stracts, observing a higher level of complexity and ambiguity in the latter.

1Which classifies text according to whether it provides information about the popula-
tion/participants in the trail (P), the intervention (I) carried on, comparison (C) with other works,
and the outcomes (O) of the intervention.

2The MEDLINE database of life sciences and biomedical information (nlm.nih.gov/
bsd/medline.html) is maintained by the U.S. National Library of Medicine and available
through the PubMed (pubmed.ncbi.nlm.nih.gov) search engine.
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• In Section 6.2 we implement and evaluate experiments aimed at predicting
argumentative components and relations in SciARG-BIO. We explore, in
particular, to what extent a BERT model fine-tuned with SciARG-CL an-
notations embeds knowledge about the tasks being considered that makes it
possible to use it directly–without further fine-tuning of the encoder para-
meters–in the prediction of argumentative components and relations in the
biomedical domain.

• In Section 6.3 we summarize the main conclusions of this chapter and re-
flect on the potential need to incorporate domain experts in the annotation
process for the interpretation–and disambiguation–of specific types of in-
formation contained in biomedical texts.

6.1 SciARG-BIO Corpus

In this section we describe the application of the SciARG annotation scheme de-
veloped for the generation of a new corpus of biomedical texts (SciARG-BIO).
We analyze the main differences between both sub-corpora and the resulting an-
notations and evaluate the level of agreement obtained.

6.1.1 Data and annotation process

The annotation of the biomedical subset of SciARG (SciARG-BIO) is part of
a collaboration developed with Mariana Neves, from the German Federal Insti-
tute for Risk Assessment (BfR).3 The dataset used in these experiments includes
285 abstracts of MEDLINE/PubMed articles which had previously been used in
a work aimed at the evaluation of different annotation schemes and tools used
for ranking biomedical abstracts based on their textual similarity (Neves et al.,
2019). In this work, 562 articles were collected and clustered based on their sim-
ilarity4 to seven initial MEDLINE documents. A stratified subset of these articles
was selected for our annotations so it includes approximately the same number of
documents from each cluster.

3bfr.bund.de
4According to PubMed’s similar articles functionality.
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In the computational linguistics documents originally included in SciARG-CL,
sentences had already been identified as part of the development of the SciDTB
corpus. In the case of SciARG-BIO, the segmentation process, needed to prepare
the abstracts for the sentence-level annotation, is done automatically by means of
the syntok tool.5

Two annotators participated in the annotation of the SciARG-BIO corpus, which
took 8 months to complete. In this case no training phase was considered, as both
annotators had already taken part in the annotation of SciARG-CL and, in fact,
the experiment implied that no modifications were to be done to the annotation
scheme described in Chapter 3. Likewise, no changes were made to the annotation
guidelines or to the tool used. From the 285 total annotated abstracts, 50 (476
sentences) were annotated by both annotators in order to compute inter-annotator
agreement.

6.1.2 Agreement

Table 6.1 shows the agreement obtained for the 50 abstracts annotated by both
annotators. As in the case of SciARG-CL, we compute Cohen’s κ as well as the
accuracy obtained when considering one of the annotations as the gold standard.

Task Cohen’s κ Accuracy

Fine-grained unit type 0.66 0.72
Coarse-grained unit type 0.93 0.96
Parent position 0.49 0.54
Relation type 0.43 0.58
Main unit 0.94 0.99

All combined 0.39 0.40

Table 6.1: Agreement in SciARG-BIO (Cohen’s κ and accuracy)

We observe substantial agreement between annotators for the fine-grained type
of the units and moderate agreement for the relations, both in terms of the labels
and the parent attachments. A lower level of agreement when moving from one
discipline to the other is expected, taking into consideration that i) the annotation

5github.com/fnl/syntok
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scheme was designed and adjusted specifically for the CL domain, ii) while an-
notators have a high level of familiarity with computational linguistics texts it is
not the case for the BIO domain, and iii) biomedical abstracts have a considerably
higher level of complexity when compared to computational linguistics ones in
terms of their structure, the number of units that they contain and their lengths, as
shown in Section 6.1.3.

When analyzing discrepancies in the SciARG-BIO annotations we observe that
units of types observation and result give origin to the most frequent disagree-
ments between annotators. In fact, one annotator labeled as observation 64% of
the units that the other annotator labeled as result, which makes us believe that a
clear distinction between these two types is difficult to establish without specific
domain knowledge. When coarse-grained types are considered, in fact, these two
types are not distinguished and the level of agreement reaches 0.93 Cohen’s κ,
similar to the observed in SciARG-CL (0.94). This can explain, in part, the lower
level of agreement in the annotation of unit types. It is, nevertheless, relevant to
consider in more detail the possible reasons for the differences in agreement ob-
served between the different tasks and, in particular, in the identification of the
parent units,6 as, in contrast to what we observe in SciARG-BIO, in SciARG-CL
there was a similar level of agreement for all the main tasks.

If we consider the annotations in which the two annotators disagreed with respect
to the parent attachment, we observe that in 79.3% of the cases the child unit
was annotated as either observation or result, with 67.3% of the cases in which at
least one of the annotators assigned the type observation to the unit. What might
be more surprising is that in 35.9% of all the disagreements with respect to the
parent, both annotators annotated the child unit as observation (this is more than
53% of the cases of disagreements that involve an observation unit). This indicates
that it is considerably difficult (at least for non domain experts) to identify how
the different observations are linked to each other and to the outcomes of multiple
experiments. In fact, the frequency and role of observation units in biomedical
abstracts constitute the main difference with respect to computational linguistics
ones, as described in Section 6.1.3. For other types of units, such as those used
to introduce motivations and to describe proposals, there is less ambiguity in their
identification by annotators with familiarity with the scientific language but who

6Differences in the attachment of a unit to its parent would also explain differences in terms of
assessing the argumentative role that it plays and, therefore, in the labels assigned to the relation
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are not experts in the specific domain.

The difficulty that arises from the inherent subjective interpretation of argument in
scientific text has already been pointed out in Section 2.3. Al Khatib et al. (2021)
refer specifically to the challenge that this poses for non-expert annotators in the
biological domain:

A common dilemma in argument mining is that an argumentative text may have

multiple valid interpretations of its structure. This is a concern for scientific doc-

uments, where the connection between a claim and its evidence can be implicit,

i.e., the author leaves this connection to the readersâ interpretations. In particu-

lar, experimental papers can follow a line of reasoning that makes e.g. âbiological

senseâ, i.e. where a specific experiment follows another experiment to address a

potential alternate interpretation of the previous experiment. For a non-biologist,

this reasoning is unclear, and the reason for these subsequent results are generally

never explicitly stated in the text. (Al Khatib et al., 2021, p.58)

Another consideration to be made is that, as part of the experiment we decided
to keep, in the annotation of the biomedical texts, the same annotation guidelines
and criteria used for the annotation of computational linguistics abstracts where,
in general, there is less ambiguity with respect to the role of observation units, as
seen in Fig. 3.5 in Chapter 3. Therefore, it is likely that with minor modifications
in the guidelines which contemplate in more detail alternative uses of observation
and result units in biomedical texts, part of the ambiguity could have been cleared
up. We believe, nevertheless, that the inclusion of domain experts is required for
the fine-grained annotation of specific parts of the abstracts (in particular, the out-
comes). We leave as future work the exploration of a hierarchical annotation pro-
cess, in which difficult and/or domain-knowledge-dependent annotations are left
for domain experts. The implementation of a semi-automatic annotation pipeline
could make such a process more feasible in terms of time and resources.
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6.1.3 Corpus statistics and analysis

In Tables 6.2, 6.3, and 6.4 we show overall statistics for the SciARG-BIO cor-
pus, the distribution of the different types of units and relations, and the distances
between children and parent units.

Statistics CL BIO

Number of abstracts 225 285
Total number of units 1199 2787
Avg. #units/abstract 5.3 (σ = 1.7) 9.8 (σ = 3.1)

Max. #units/abstract 13 25
Min. #units/abstract 2 2
Avg. #tokens/unit 24.4 (σ = 9.9) 30.1 (σ = 14.2)

Max. #tokens/unit 101 155
Min. #tokens/unit 5 5
Forward relations 32% 34%
Backward relations 68% 66%

Table 6.2: Statistics of SciARG-BIO

We include also the statistics for SciARG-CL in order to facilitate the comparison
between both sub-corpora. Substantial differences can be observed between CL
and BIO. Abstracts in BIO are, in average, longer and argumentatively more com-
plex than those in CL, as can be seen in Table 6.2. In part this can be explained
because it is frequent in BIO that abstracts describe a series of experiments, each
one with their respective outcomes.

In some cases, observations/results from one experiment are used as motivation
and/or justification for additional experiments. This makes the description of re-
search outcomes and their interpretation much more complex in BIO abstracts,
which leads to a significant difference in the number of units of type observation,
result and conclusion when compared to CL abstracts, as observed in Table 6.3.
Fig. 6.1 also shows how the proportion of proposal units (proposal, proposal-
implementation) and outcomes units (observation, result, conclusion) are inverted
in CL and BIO.
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Consider, for instance, the abstract from (Walsh et al., 2000)7:

[The progressive aggregation and deposition of amyloid beta-protein (Abeta) in brain re-

gions subserving memory and cognition is an early and invariant feature of Alzheimer’s

disease, the most common cause of cognitive failure in aged humans.]1 [Inhibiting Abeta

aggregation is therapeutically attractive because this process is believed to be an exclusively

pathological event.]2 [Whereas many studies have examined the aggregation of synthetic

Abeta peptides under nonphysiological conditions and concentrations, we have detected

and characterized the oligomerization of naturally secreted Abeta at nanomolar levels in

cultures of APP-expressing CHO cells [CIT].]3 [To determine whether similar species
occur in vivo, we probed samples of human cerebrospinal fluid (CSF) and detected
SDS-stable dimers of Abeta in some subjects.]4 [Incubation of CSF or of CHO condi-

tioned medium at 37 degrees C did not lead to new oligomer formation.]5 [This inability to

induce oligomers extracellularly as well as the detection of oligomers in cell medium very

early during the course of pulse-chase experiments suggested that natural Abeta oligomers

might first form intracellularly.]6 [We therefore searched for and detected intracellu-
lar Abeta oligomers, principally dimers, in primary human neurons and in neuronal
and nonneural cell lines.]7 [These dimers arose intracellularly rather than being derived

from the medium by reuptake.]8 [The dimers were particularly detectable in neural cells:

the ratio of intracellular to extracellular oligomers was much higher in brain-derived than

nonbrain cells.]9 [We conclude that the pathogenically critical process of Abeta oligomer-

ization begins intraneuronally.]10

The text reports a sequence of experiments, described by the proposal-imple-
mentation sentences (4) and (7) (in bold). The justification for the second ex-
periment is the result reported by sentence (6) (underlined), which, in turn, is
supported by the observation included in sentence (5).

7pubmed.ncbi.nlm.nih.gov/10978169/
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Type CL BIO CL (%) BIO (%)

proposal 290 289 24 10
proposal-implementation 260 274 22 10
observation 40 505 3 18
result 157 703 13 25
conclusion 50 301 4 11
means 27 58 2 2
result-means 70 31 6 1
motivation-problem 102 97 9 4
motivation-background 159 487 13 17
motivation-hypothesis 21 16 2 1
information-additional 23 26 2 1

Total 1199 2787 100 100

Table 6.3: Distribution of unit types in SciARG-BIO

Relation CL BIO CL (%) BIO (%)

support 420 1581 35 57
elaboration 355 535 30 19
info-required 118 303 10 11
sequence 31 2 2 0
by-means 28 57 2 2
info-optional 22 24 2 1

root 225 285 19 10

Total 1199 2787 100 100

Table 6.4: Distribution of relations in SciARG-BIO

Overall, the distinction between the plain report of observed data, the interpreta-
tion of results and the extraction of conclusions from them is more ambiguous in
BIO than in CL and, therefore, differentiating these types of units is more difficult,
as we observe in Section 6.1.2 when we analyze inter-annotator agreement in this
domain.
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Figure 6.1: Comparison of percentages of each type of unit in CL and BIO.

The distances between units and their parents are also greater in BIO, as seen in
Tables 6.5 and 6.6.

In fact, 20.8% of the times a unit is five or more units away from its parent. In
CL this occurs only in 2.7% of the cases. In 85.5% of the cases CL units are only
one or two units away from its parent. In BIO this occurs 64.2% of the times. The
distribution between forward and backward relations is similar in both domains.
In both cases backward relations are more frequent: the parent occurs before the
child 68.1% and 66.2% of the times in CL and BIO, respectively.
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Distance Number Percentage

1 648 25.9%
2 80 3.2%
3 46 1.8%
4 28 1.1%
5 15 0.6%
6 13 0.5%
7 6 0.2%
8 5 0.2%
9 2 0.1%

10 2 0.1%

Total 845 33.8%

Table 6.5: Forward relations. Distribution of the distances to parent units.

Distance Number Percentage

1 673 26.9%
2 203 8.1%
3 155 6.2%
4 147 5.9%
5 129 5.2%
6 105 4.2%
7 75 3.0%
8 58 2.3%
9 40 1.6%

10 25 1.0%
11 17 0.7%
12 12 0.5%
13 10 0.4%
14 4 0.2%
15 2 0.1%

Total 1655 66.2%

Table 6.6: Backward relations. Distribution of the distances to parent units.
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6.2 Experiments with SciARG-BIO

In this section we conduct experiments with the newly annotated SciARG-BIO
and assess the performance of models trained with it. As mentioned, we are par-
ticularly interested in exploring whether models trained with annotated abstracts
in one scientific discipline can be easily adapted so they can be leveraged to pre-
dict the argumentative structure of texts in another discipline.

6.2.1 Experimental setups

We train and evaluate models for the four main tasks described in Section 4.1 in
Chapter 4, considering units at the sentence level: i) given a unit, predict whether
it is the main unit of the abstract, ii) given a unit predict its type, and iii) predict
relations between units, which, we model by means of two two sub-tasks: given
two units s1, s2, predict, on one hand, whether there is a link from s1 to s2 or from
s2 to s1 and, on the other hand, predict the type of the relation.

We train the SciARG-BIO models both in single and multi-task settings, with
the same architectures and methods described in Chapter 4 for the SciARG-CL
corpus, using also SciBERT (Beltagy et al., 2019) as base model.

In the case of SciARG-BIO we do not reproduce the experiments done with CL
in order to investigate the potential benefits of leveraging annotations included in
other corpora. Based on the previous results we understand that improvements
in performance could probably be obtained, for instance, by pre-fine-tuning mod-
els with the life-sciences and health section of the MAZEA corpus and/or with
discourse-annotated corpora in the biomedical domain,8 but this would divert us
from the main objective of this chapter: to analyze the potential flow of informa-
tion between SciARG tasks when trained in two different scientific disciplines.

In addition to comparing the results obtained by fine-tuning SciBERT with SciARG-
BIO annotations in single and multi-task settings, we consider models obtained by

8Such as BioDRB, which includes 24 full-text biomedical articles annotated with 16 types
of discourse relations adapted from the Penn Discourse Treebank (PDTB) (Prasad et al., 2011),
or BioCause, which contains 19 full-text documents been manually annotated with biomedical
entities and events for the study of causality relations. (Mihăilă et al., 2013)
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fine-tuning SciBERT with the union of SciARG-CL and SciARG-BIO annotations
at the same time.

In order to explore to what extent an encoder trained with SciARG annotations
captures task-specific information that can be used to predict the argumentative
structure of abstracts in different disciplines, we explore results obtained when
using a BERT encoder fine-tuned with SciARG-CL annotations in SciARG-BIO
models, without additional fine-tuning. To do this, we fine-tune SciBERT with
SciARG-CL annotations in a multi-task setting and then freeze all BERT atten-
tion layers. We compare the results obtained with the SciARG-CL encoders to the
results obtained when applying the same procedure to SciBERT. To do a fair com-
parison between the performance of both encoders, we train linear classifiers on
top of them with SciARG-BIO tasks. For these experiments SciARG-BIO tasks
are trained independently in single-task settings (as there are not shared parame-
ters modified in the training process).

6.2.2 Results and analysis

In the SciARG-CL domain we use, as validation set, the consensus annotations
obtained from 30 abstracts annotated in common by the three annotators. This
set is used for evaluation, while the remaining 195 abstracts are used to train the
models.9 In the case of SciARG-BIO we have 50 abstracts annotated by two
annotators (ann1, ann2). In order to build the validation set we consider, from
these 50 abstracts, the subset of 35 abstracts annotated by ann1 with the highest
levels of agreement with ann2 (when all tasks are considered), and use the other
250 abstracts annotated by ann1 for training.10

In order to compare the results obtained when implementing the different training
settings, we follow the same criteria applied in Chapter 4 for the evaluation of
the SciARG-CL experiments: we consider the mean of the metrics obtained when
taking a set of five models including the model at the training loss elbow epoch,11

as well as the models obtained two epochs before and two epochs after it. We
include in the tables the confidence intervals for the mean F1 scores.

9With a proportion of 87% of documents used for training and 13% for validation.
10With a proportion of 88% of documents used for training and 12% for validation.
11Calculated automatically by applying the method described in 4.4 in Chapter 4.
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SciBERT fine-tuned and evaluated with SciARG-BIO

Single-task

Task Avg. Elbow Epochs P R F1 CIF1

Unit type Weight. 6 4-8 0.6993 0.6568 0.6560 ±0.0092
Relation type Weight. 6 4-8 0.7448 0.7481 0.7334 ±0.0132
Main unit Macro 6 4-8 0.8302 0.8749 0.8498 ±0.0158
Parent attachment Macro 9 7-11 0.7206 0.6747 0.6908 ±0.0058

Multi-task

Task Avg. Elbow Epochs P R F1 CIF1

Unit type Weight. 6 4-8 0.7034 0.6865 0.6791 ±0.0092
Relation type Weight. 6 4-8 0.7568 0.7703 0.7515 ±0.0113
Main unit Macro 6 4-8 0.8954 0.9286 0.9108 ±0.0140
Parent attachment Macro 8 6-10 0.7169 0.6928 0.6992 ±0.0086

Table 6.7: Results of fine-tuning SciARG-BIO in single and multi-task setting. Average
of models in epochs [elbow − 2, elbow + 2] with confidence intervals for F1.

In Table 6.7 we observe that the SciARG-BIO models yield significantly poorer
performances when compared to the results obtained in SciARG-CL (Chapter 4).
In particular, for the unit type and parent attachment tasks, the results in BIO
are between 0.12 and 0.13 F1-points below those obtained in CL in single-task
settings without pre-fine-tuning.

Differences in performance in both disciplines are, to some extent expected, con-
sidering the greater argumentative complexity of biomedical abstracts, which, as
seen in Section 6.1.2, is also reflected in the lower levels of inter-annotator agree-
ment.

As it is also the case in SciARG-CL, the models in which the tasks are trained
jointly in a multi-task settings perform better than those in which the tasks are
trained independently, in line with our observations with respect to the level of
shared information between the different SciARG tasks.

Training with the full SciARG corpus (SciARG-CL+SciARG-BIO)

Tables 6.8, 6.9, 6.10 show the performance of a single-task model trained with
the full SciARG training set (the union of SciARG-CL and SciARG-BIO) and
evaluated both with discipline-specific validation sets as well as with their union.
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We compare the results with the ones obtained by the models trained and evaluated
within a single discipline. We consider only models trained in single-task settings
so we can clearly assess the differences obtained when we use instances in both
disciplines for training. In the case of multi-task models it is difficult to determine
to what extent an observed variation responds of the interaction of the training
signals or to the characteristics of the training data.

Evaluation in SciARG-BIO

Train w/SciARG-BIO (single-task)

Task Avg. Elbow Epochs P R F1 CIF1

Unit type Weight. 6 4-8 0.6993 0.6568 0.6560 ±0.0092
Relation type Weight. 6 4-8 0.7448 0.7481 0.7334 ±0.0132
Main unit Macro 6 4-8 0.8302 0.8749 0.8498 ±0.0158
Parent attachment Macro 9 7-11 0.7206 0.6747 0.6908 ±0.0058

Train w/SciARG-CL+SciARG-BIO (single-task)

Task Avg. Elbow Epochs P R F1 CIF1

Unit type Weight. 6 4-8 0.6971 0.6833 0.6770 ±0.0114
Relation type Weight. 6 4-8 0.7245 0.7405 0.7238 ±0.0046
Main unit Macro 7 5-9 0.8729 0.9117 0.8900 ±0.0181
Parent attachment Macro 8 6-10 0.7424 0.6881 0.7085 ±0.0099

Table 6.8: Single-task fine-tuning SciARG-BIO and SciARG-CL+BIO, evaluated in
SciARG-BIO. Avg. of models in epochs [elbow − 2, elbow + 2] with conf. int. for F1.

We observe that–with the exception of the main unit task for SciARG-BIO–the re-
sults obtained with the models trained with the whole SciARG corpus (SciARG-
CL+SciARG-BIO) are not significantly different to those obtained when training
only with the domain-specific training set. Only minor to moderate gains in the
averaged scores are obtained, in general. As differences fall within the confidence
intervals, no definite conclusions can be drawn, but a tendency for improved per-
formances is observed in the prediction of unit type and parent attachment tasks in
the case of SciARG-BIO, and for the relation type task in the case of SciARG-CL.

In the case of the main unit task a more significant gain is observed in SciARG-
BIO, in line with the lesser ambiguity of this task in both domains (in the case of
SciARG-CL there is less margin for improvement as the original score is already
high).
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Evaluation in SciARG-CL

Train w/SciARG-CL (single-task)

Unit type Weight. 7 5-9 0.8060 0.7748 0.7821 ±0.0167
Relation type Weight. 6 4-8 0.7991 0.7854 0.7832 ±0.0204
Main unit Macro 7 5-9 0.9023 0.9035 0.9026 ±0.0066
Parent attachment Macro 9 7-11 0.8042 0.8293 0.8150 ±0.0207

Train w/SciARG-CL+SciARG-BIO (single-task)

Task Avg. Elbow Epochs P R F1 CIF1

Unit type Weight. 6 4-8 0.8189 0.7947 0.7985 ±0.0100
Relation type Weight. 6 4-8 0.8069 0.8013 0.8017 ±0.0158
Main unit Macro 7 5-9 0.9139 0.9127 0.9124 ±0.0101
Parent attachment Macro 8 6-10 0.8063 0.8260 0.8154 ±0.0101

Table 6.9: Results of fine-tuning SciARG-CL alone and SciARG-CL+BIO, evaluated in
SciARG-CL. Avg. of models in epochs [elbow − 2, elbow + 2] with conf. int. for F1.

Train and evaluation in full SciARG corpus (SciARG-CL+SciARG-BIO) (single-task)

Task Avg. Elbow Epochs P R F1 CIF1

Unit type Weight. 6 4-8 0.7339 0.7156 0.7146 ±0.0086
Relation type Weight. 6 4-8 0.7525 0.7581 0.7500 ±0.0059
Main unit Macro 7 5-9 0.8920 0.9128 0.9014 ±0.0100
Parent attachment Macro 8 6-10 0.7618 0.7239 0.7391 ±0.0065

Table 6.10: Results of fine-tuning and evaluating models trained with the full SciARG
corpus. Avg. of models in epochs [elbow − 2, elbow + 2] with conf. intervals for F1.

For ease of comparison, we also include a summary of the results obtained for the
considered tasks within each discipline and with the combined corpora in Table
6.11, where the differences in performance of the various models in their respec-
tive validation sets can be seen. The results obtained with the full SciARG corpus
are, for all the tasks and settings, in between of the results obtained within the
specific subsets, being the identification of the unit types and their attachment to
the parent unit the tasks for which the greatest differences are observed.
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Summary of F1 scores in SciARG-CL, SciARG-BIO and SciARG-CL+BIO

Single-task

Task SciARG-CL+BIO SciARG-CL SciARG-BIO

Unit type 0.7146 0.7821 0.6560
Relation type 0.7500 0.7832 0.7334
Main unit 0.9014 0.9026 0.8498
Parent attachment 0.7391 0.8150 0.6908

Multi-task

Task SciARG-CL+BIO SciARG-CL SciARG-BIO

Unit type 0.7130 0.8005 0.6791
Relation type 0.7873 0.7910 0.7515
Main unit 0.9138 0.9323 0.9108
Parent attachment 0.7343 0.8316 0.6992

Table 6.11: Summary of average F1 scores in SciARG-CL, SciARG-BIO and SciARG-
CL+BIO.

Performance of SciARG-CL encoder in SciARG-BIO models

We now evaluate the results obtained when we keep the parameters of the BERT
encoder trained with SciARG-CL (in a multi-task setting) fixed, and contrast them
to the results obtained when freezing SciBERT’s encoder. We compare the perfor-
mance of linear classifiers for SciARG-BIO tasks trained on top of both encoders.

We observe in Table 6.12, that significant gains are obtained with the frozen BERT
encoder pre-trained with SciARG-CL annotations when compared to the results
obtained with the original SciBERT encoder. Considering the notable differences
in computational linguistics and biomedicine papers, both in terms of the types of
problems addressed and the implemented methodologies, these results encourage
to consider the possibility that the information encoded by means of fine-tuning
SciBERT with SciARG annotations conveys knowledge about the argumentative
structure of the abstracts that does not depend on their specific discipline. In
addition, we observe that the results obtained with the frozen SciARG-CL encoder
are very similar–and better in the case of relation type and main unit tasks–to the
results obtained when fine-tuning SciBERT with SciARG-BIO’s annotations in a
single-task setting.
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SciARG-BIO classifiers trained on top of frozen BERT encoders

SciBERT encoder without further fine-tuning

Task Avg. Elbow Epochs P R F1 CIF1

Unit type Weight. 6 4-8 0.5159 0.5535 0.5144 ±0.0224
Relation type Weight. 6 4-8 0.6229 0.6519 0.6026 ±0.0414
Main unit Macro 6 4-8 0.8390 0.7852 0.8084 ±0.0303
Parent attachment Macro 5 3-7 0.6239 0.4740 0.5090 ±0.0195

SciARG-CL encoder without further fine-tuning

Task Avg. Elbow Epochs P R F1 CIF1

Unit type Weight. 7 5-9 0.6711 0.6514 0.6429 ±0.0125
Relation type Weight. 8 6-10 0.7321 0.7437 0.7347 ±0.0055
Main unit Macro 6 4-8 0.8650 0.8780 0.8713 ±0.0045
Parent attachment Macro 6 4-8 0.7962 0.6414 0.6986 ±0.0060

Table 6.12: Results of training SciARG-BIO classifiers on top of frozen SciBERT and
pre-fine-tuned SciARG-CL BERT encoders. Average of models in epochs [elbow −
2, elbow + 2] with confidence intervals for F1.

The fact that the BERT encoders fine-tuned with SciARG-BIO do not perform
substantially better in its own validation set can be a result of the higher complex-
ity in SciARG-BIO’s training and validation annotations. We could hypothesize
that the training signal that the models obtain from SciARG-BIO annotations does
not add significantly to the information that can be obtained from the less com-
plex SciARG-CL annotations. In other words, with the current amount of data
in SciARG-BIO, the benefit that the models could obtain from being trained with
texts similar to the ones used for evaluation seems to be counter-balanced by their
greater complexity.

Note on intra-sentence unis in SciARG-BIO

Only 99 sentences (3.5%) are annotated with a second type in SciARG-BIO, and
only 31 sentences (1.1%) are assigned the type result-means, in contrast with the
5.8% observed in the case of SciARG-CL (Table 6.3).

It is likely that the low number of sentences annotated with more than one type
is a consequence of the annotators not having domain-specific knowledge and,
therefore, not being able to identify fine-grained information within them.
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The high level of complexity of the biomedical discourse and the minimal number
of examples in which more than one argumentative type is identified makes it
unfeasible to implement the tasks described in Chapter 5 for the identification of
intra-sentence units and relations in SciARG-BIO.

6.3 Conclusions

In this chapter we explored the application of the SciARG scheme to the annota-
tion of a corpus of abstracts in biomedicine, a scientific discipline different to the
one for which it was originally developed. The analysis of the annotations and
the results of the experiments conducted with them encourage us to think that the
SciARG annotation scheme can be successfully applied to scientific disciplines
other than computational linguistics, even when we identified some significant
differences in the argumentative structure of the biomedical abstracts with re-
spect to the computational linguistic ones–in particular, in terms of their higher
complexity and ambiguity. Some of these aspects had not been originally con-
templated in the original annotation guidelines (for instance, in the way in which
results of multiple related experiments are reported in biomedicine). We believe
that, without changing the annotation scheme, minor adaptations to the guidelines
could contribute to avoid some level of ambiguity in the annotations and to im-
prove the inter-annotator agreement for the most difficult tasks–in particular, the
identification of relations and their types. Nevertheless, some characteristics of
the discourse structure and the language used in biomedical abstracts seem to re-
quire specific domain knowledge for the proposed annotation tasks. This could
explain in part the low percentage of sentences annotated with more than one type
of unit.

We conducted experiments in single and multi-task settings with the new anno-
tated corpus, SciARG-BIO, and analyzed their results, which confirm our pre-
vious observations regarding the potential benefits of training argument mining
tasks jointly in a multi-task setting. We also explored results obtained by training
a model with the combined annotations in SciARG-CL and SciARG-BIO, observ-
ing only minor improvements with respect to the models trained with the smaller,
discipline-specific, training sets.
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More relevantly, we conducted experiments that showed that BERT encoders
fine-tuned with computational linguistics annotations capture knowledge about
the argumentative structure of the abstracts–as modeled by the considered tasks–
that makes them perform significantly better than the base BERT model with-
out fine-tuning for the prediction of biomedical argumentative units and rela-
tions. Even more, the SciARG-CL-trained encoder performs competitively–and
for some tasks better–when compared to an encoder fine-tuned with annotations
in SciARG-BIO, the same discipline as the texts included in the validation set.
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Part II

Prediction of argumentative quality
dimensions
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Chapter 7

ARGUMENTATIVE QUALITY
ASSESSMENT: BACKGROUND
AND RELATED WORK

In this chapter we provide context for the topics addressed in the second part of
the thesis and review preceding works closely related to them.

• In Section 7.1 we first consider works aimed at assessing argumentative
quality in diverse types of texts, and then examine few initiatives in which
scientific text mining and argumentative quality analysis intersect, includ-
ing the assessment of scientific claims. Finally, we briefly describe a theory-
grounded systematization of the multiple dimensions involved in the assess-
ment of arguments, which we adopt as framework for our analyses in the
two following chapters.

• In Section 7.2 we consider antecedents in the prediction of scores assigned
by referees in peer-review processes, which are designed to capture quality
aspects the papers–including some argumentative dimensions–in order to
decide their acceptance or rejection in a particular venue.
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7.1 Argumentative quality assessment

The quality of arguments can be analyzed from many different perspectives (Tin-
dale, 2007; Johnson and Blair, 2006), and work aimed at clarifying what a good ar-
gument is can be traced back to Aristotle (Rapp, 2010). Depending on the adopted
viewpoint, assessing argumentation can be so difficult as to consider somewhat
intangible aspects–such as the intentions and ethical frameworks adopted by the
participants in a debate.

Research aimed at assessing the quality of natural language arguments from a
computational perspective has, expectably, focused on argumentative dimensions
that can be ranked in terms of their persuasive effectiveness (e.g., the rhetorical
organization of arguments, the type and amount of evidence provided to support
a claim). This is the case, for instance, of scores assigned to student essays.

7.1.1 Textual genres and argumentative dimensions

Persing and Ng (2015) is one of the first works to propose a feature-rich model to
predict an argument strength score of student essays.1 In addition to features that
are common to several NLP tasks (such as POS n-grams, cue words, etc.) they
introduce information about the argumentative structure of the essays by consid-
ering major claims, claims and premises. They find that the feature-rich proposal
outperforms a simpler rule-based approach that had been previously considered
in a pilot experiment by Ong et al. (2014). Similarly, Ghosh et al. (2016) propose
a rich set of argumentative features that includes the number of claims, premises,
relations (number of supported claims) and typology of argumentative structure
(chains or trees) to train a machine learning model that predicts human scores in
a dataset of 107 TOEFL2 essays. Both Persing and Ng (2015) and Ghosh et al.
(2016) adopt the approach by Stab and Gurevych (2014a) to identify argumenta-
tive units and relations in texts.

Stab and Gurevych (2017b) propose as a task the automatic assessment of whether
arguments in student essays are sufficiently supported (i.e., whether its premises

1From the International Corpus of Learner English (ICLE) (Granger et al., 2009).
2Test of English as a Foreign Language (TOEFL): ets.org/toefl.
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provide enough evidence for accepting its claim). They find that insufficiently
supported arguments exhibit specific lexical indicators and can be identified with
high accuracy using convolutional neural networks (CNN). In turn, in (Stab and
Gurevych, 2016), they address a related task:3 the recognition of myside biases–
the tendency in a document to ignore opposing viewpoints. They compare the per-
formance obtained with different sets of features (including syntactic, semantic,
discourse and sentiment-based features), finding that lexical indicators–in particu-
lar, unigrams and adversative transitional phrases–are the most predictive features
for this task.

Wachsmuth et al. (2016) explore the possibility of leveraging the argumentative
structure automatically extracted from persuasive essays to predict four argumen-
tative quality dimensions: organization, thesis clarity, prompt adherence, and
argument strength. They consider the argumentative components proposed by
Stab and Gurevych (2014a) and a simplified version of the model by (Stab and
Gurevych, 2014b) in which argumentative units are considered at the sentence
level. For the argument mining experiments, they investigate six types of features
that provide information about content, style, and position of sentences,4 finding
the latter to be the most predictive for the classification of the type of argumen-
tative component. For the prediction of essay scores they consider the argumen-
tative structure of the essays in terms of the sequences of argumentative units
that they contain, which they compare to standard content-based features (tokens,
POS n-grams), and to features derived from considering sequences of paragraph-
level discourse functions, sentence-level discourse relations, and paragraph-level
sentiments.5 Their results show that automatically-extracted argumentative infor-
mation does contribute to predict argumentative quality aspects of the essays. In
particular, those related to the textual organization.

The automatic assessment of argumentative quality dimensions has been explored
in textual genres other than persuasive essays, including online debates. The ini-
tiative by Cabrio and Villata (2012a) described in Chapter 2, leverages textual
entailment relations in order to construct a graph of arguments which is used to
predict the acceptability of arguments on Debatepedia.org.6

3As the inclusion of opposing arguments in essays is correlated with their argumentation qual-
ity (Wolfe et al., 2009).

4Within paragraphs and the full text of the essay.
5These features are described in (Wachsmuth et al., 2014, 2015).
6Now iDebate: idebate.org/debatabase
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Other works have focused, for instance, on the assessment of the persuasiveness
of user posts on web fora and debate portals. Wei et al. (2016) compare the perfor-
mance of argumentative and non-argumentative features to predict a persuasive-
ness score–as voted by the community of users–of posts on the ChangeMyView
Reddit community.7 Among the non-argumentative features, they consider stan-
dard surface features (e.g., length of the post), as well as interaction features in
which the post is taken in the context of the debate (e.g., position of the post
in a discussion thread). Within the argumentative features they consider, for in-
stance, the comment’s relevance (by computing the similarity with the original
post), as well as the number and percentage of sentences classified as argumenta-
tive by a binary classifier trained with features from (Stab and Gurevych, 2014b).
Their results show that argumentation-based features work well for short threads,
while interaction features perform better as the number of comments in the thread
grows.

Habernal and Gurevych (2017) approach the prediction of arguments’ convinc-
ingness, which they assess in a collection of posts from debate portals. They rely
on crowd-sourced annotations and model the task as the classification of pairs of
arguments, based on the idea that the relative assessment of arguments can be eas-
ier and/or more reliable than scoring arguments individually.8 As a result of this
work, the UKPConvArg1 corpus was made available, which cover 16,000 pairs of
arguments over 32 topics. In addition to the annotation work, the authors investi-
gate ordering properties of the ”more convincing” relation, which can contribute
to characterize graphs to represent sets of related arguments. They empirically
confirm that the relation can be considered to define a total strict order, a fact that
they use to generate additional datasets, including UKPConvArgRank, where in-
dividual arguments are ranked based on their convincingness. As a follow-up to
this work, Habernal and Gurevych (2016a) are interested in assessing qualitative
properties of convincingness, for which they gather–by means of a crowd-source
platform–26,000 explanations written in natural language describing why an ar-
gument is more or less convincing. They apply automatic discourse-parsing and
pattern-matching strategies to extract, from the users’ texts, a set of reason units.
After additional crowd-sourced validation processes, they end up with a set of 19

7reddit.com/r/changemyview
8Additional research, including (Wachsmuth and Werner, 2020; Toledo et al., 2019), has shown

that this is not necessarily the case.
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classes9 representing reasons for argumentative convincingness, which they use in
a final question-guided annotation through which they obtain argument pairs an-
notated with multiple labels that indicate the reasons for considering one argument
to be more convincing than the other one. The reason-annotated corpus, UKPCon-
vArg2 was also made available to the research community. Based on these initial
investigations in the assessment of arguments’ convincingness, additional works
were developed, including (Potash et al., 2017; Simpson and Gurevych, 2018;
Gleize et al., 2019; Toledo et al., 2019).

7.1.2 Assessing scientific claims

The automatic assessment of argumentative quality of scientific texts from an ar-
gument mining perspective is a largely unexplored area. A somewhat related task–
even if more narrowly focused–is the identification of potential contradictions in
research literature, which requires the identification of some types of argumenta-
tive units, such as claims. This task is addressed by Blake (2010); Park and Blake
(2012), as mentioned in Chapter 2. To the best of our knowledge, most of the
methods that have been proposed for the identification of contradictory claims are
tied to specific domains and therefore not easily extended. Sarafraz (2011), for
instance, identify conflicting claims in the report of chemical interactions in the
BioNLP09 corpus by means of exploiting domain-specific features (type of event,
participants, anatomical location), the degree of assertiveness of the statements,
and their polarity.

The detection of contradictory claims in biomedical abstracts is the subject of
Abdulaziz Alamri’s PhD thesis (Alamri, 2016), where one of the challenges that
he addresses is the lack of annotated corpora for the identification of conflict-
ing claims. He therefore proposes both a manual and an automated method to
facilitate these annotations. For the automated process, claims are identified by
exploiting subject-predicate-object triples extracted from PubMed abstracts and
contained in the SemMedDB repository (Kilicoglu et al., 2012). Both the manual
and the automatically generated corpora are used to train and evaluate a classifi-
cation pipeline for the identification of sentences in documents that can be consid-
ered as potentially affirmative or negative answers with respect to a given research
question. The system achieves an F1 score of 0.83 using the manually-annotated

9The number of classes used in other experiments has then changed.
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corpus, and an F1 score of 0.78 with the automatically generated one. Pinto and
Balke (2020) also explore the possibility of identifying potential contradictions
between claims10 included in a document with those obtained from querying a
repository. They also work with biomedical documents and, in the same line as
Alamri (2016), use semantic knowledge contained in the SemMedDB repository
for claim identification.

While in the past years there has been a growing body of research in the area of
automated fact checking (Vlachos and Riedel, 2015; Thorne and Vlachos, 2017;
Thorne et al., 2018; Hanselowski et al., 2019), it is only recently that resources and
methods for the automatic verification of scientific claims have been proposed.
Wadden et al. (2020) take steps to start filling this void by developing SciFACT,11

a dataset of scientific claims paired with evidence-annotated abstracts that sup-
port or refute them. The authors use the annotated dataset to train a model that
they then evaluate by assessing the verifiability of claims concerning COVID-19,
where the retrieved pro and against evidence for the considered claims is eval-
uated by a domain expert. The authors affirm that the results show the practical
value of the corpus and encourage further research with it. To this end, a scientific-
claim verification shared-task (SCIVER) was proposed, the first edition of which
took place within the context of the Second Workshop on Scholarly Document
Processing.12

7.1.3 Theory-grounded assessment of arguments

As seen in Section 7.1.1, with increased interest in assessing different facets of
arguments, initiatives targeting multiple tasks began to proliferate in various do-
mains and textual genres. In some cases, works embraced argumentative quality
criteria based on theories of argumentation and, in others, practical approaches
were adopted, with ad hoc definitions of argumentative quality. It became nec-
essary, therefore, to establish a common framework through which links could
be established between proposals for the computational assessment of arguments
with each other and with existing theories of argumentation quality.

10They define this task as assessing the plausability of a document within the current state-of-
the-art.

11github.com/allenai/scifact
12sdproc.org/2021/sharedtasks.html#sciver
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This emerging need was identified and addressed by Wachsmuth et al. (2017a).
In this work the authors conduct a thorough review of theories for the assessment
of argumentation as well as NLP initiatives for the automatic assessment of argu-
mentative quality. Based on this analysis, they distill a taxonomy that provides
a common ground for the quality assessment of natural language arguments. In
Chapters 8 and 9 we adopt this taxonomy. The taxonomy includes three top-level
argumentative quality dimensions: cogency, effectiveness, and reasonableness,
which represent, respectively, the logical, rhetorical, and dialectical aspects of
argumentative quality–even if the authors make it clear that there are no clear-cuts
between the different aspects of argumentation. The three top-level dimensions
are, in turn, divided into 15 fine-grained dimensions, as shown in Table 7.1.

Wachsmuth et al. (2017a) evaluate the applicability of the theory-motivated tax-
onomy by using the quality dimensions to annotate 320 arguments from UKP-
ConvArgRank (Habernal and Gurevych, 2016b) with a 3-point scale, producing
the Dagstuhl-15512 ArgQuality Corpus, which is made available for further re-
search. The annotators assess the 15 quality dimensions in the taxonomy, and
also score the texts’ overall quality. Wachsmuth et al. (2017a) analyze the corpus
statistics and inter-annotator agreement in terms of the Krippendorff’s α (Krip-
pendorff, 2007) for the most agreeing pair of annotators. In addition, they study
the level of correlation between quality dimensions, as well as with the overall
score.13 The agreement analysis shows that the largest α values are obtained for
the assessment of the overall quality, which is a positive indicator of the usability
of the taxonomy to guide the assessment of arguments. The variation in agreement
for some theory-motivated dimensions, in turn, yields some light on their level of
subjectivity and, therefore, difficulty for being evaluated–even by human experts.
Finally, the analysis of correlations between coarse and fine-grained dimensions,
as well with the overall score, shows expected results, which suggests the ade-
quacy of the proposed taxonomy. In (Wachsmuth and Werner, 2020), a follow-up
work to (Habernal and Gurevych, 2016a) and (Wachsmuth et al., 2017a), the au-
thors compare the theory-based absolute quality ratings assigned by experts in the
Dagstuhl-15512 ArgQuality Corpus with the relative quality scores assigned by
crowd annotators in UKPConvArg2, finding that there is a clear correlation be-
tween the two annotations. They also observe that the explanations offered by
lay annotators–in relation to why one argument is more convincing than another
one–are well-captured by the theory-based quality dimensions.

13Majority scores are considered for the corpus statistics and correlation analyses.
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At the same time, considering the dimensions that prove to be more feasible to
assess in practice can contribute to simplify the theory-based taxonomy, thus im-
proving its applicability.

Dimension Definition

Cogency An argument is cogent if it has acceptable premises that are relevant to
its conclusion and that are sufficient to draw the conclusion.

Local acceptability A premise of an argument is acceptable if it is rationally worthy of
being believed to be true.

Local relevance A premise of an argument is relevant if it contributes to the acceptance
or rejection of the argument’s conclusion.

Local sufficiency An argument’s premises are sufficient if, together, they give enough
support to make it rational to draw its conclusion.

Effectiveness Argumentation is effective if it persuades the target audience of (or
corroborates agreement with) the author’s stance on the issue.

Credibility Argumentation creates credibility if it conveys arguments and similar
in a way that makes the author worthy of credence.

Emotional Appeal Argumentation makes a successful emotional appeal if it creates emo-
tions in a way that makes the target audience more open to the author’s
arguments.

Clarity Argumentation has a clear style if it uses correct and widely unam-
biguous language as well as if it avoids unnecessary complexity and
deviation from the issue.

Appropriateness Argumentation has an appropriate style if the used language supports
the creation of credibility and emotions as well as if it is proportional
to the issue.

Arrangement Argumentation is arranged properly if it presents the issue, the argu-
ments, and its conclusion in the right order.

Reasonableness Argumentation is reasonable if it contributes to the issue’s resolution in
a sufficient way that is acceptable to the target audience.

Global acceptability Argumentation is acceptable if the target audience accepts both the con-
sideration of the stated arguments for the issue and the way they are
stated.

Global relevance Argumentation is relevant if it contributes to the issue’s resolution, i.e.,
if it states arguments or other information that help to arrive at an ulti-
mate conclusion.

Global sufficiency Argumentation is sufficient if it adequately rebuts those counterargu-
ments to it that can be anticipated.

Table 7.1: Taxonomy of argumentation quality. Source: (Wachsmuth et al., 2017a).
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7.2 Prediction of scores for peer-reviewed manuscripts

In Chapter 9 we explore whether features conveying information about the ar-
gumentative structure of abstracts can contribute to predict scores assigned by
referees in a peer-review process. Closely related to this task is the prediction of
the acceptance/rejection of research manuscripts in scientific venues, which has
been addressed in several works, either by exploiting content-features extracted
from the texts, meta-data of the manuscripts (e.g., keywords, authors and their af-
filiations), information about the venues to which the manuscripts are submitted,
or a combination of them all.

Some of the recent research around the prediction of reviewer’s decision was moti-
vated by the availability of the PeerRead dataset14 (Kang et al., 2018), which con-
tains a collection of submitted manuscripts to computational linguistics and ma-
chine learning conferences–Neural Information Processing Systems (NIPS) 2013-
2017, Annual Meeting of the Association for Computational Linguistics (ACL)
2017, Conference on Computational Natural Language Learning (CoNLL) 2017
and International Conference on Learning Representations (ICLR) 2017–as well
as papers published on the arXiv.org15 platform between 2007 and 2017. Kang
et al. (2018) first describe the dataset and provide statistical information about
how reviewers’ scores–both overall and aspect-specific scores, such as novely,
substance, etc.–are distributed in the different venues, and then propose two tasks
based: i) given a manuscript, predict whether it is accepted in a target conference,
and ii) given the truncated text of a review and/or a manuscript,16 predict the as-
pect scores assigned by the reviewers. For the first task they use a set of features
obtained from the paper’s abstract (e.g., occurrence of certain words, standard
information-retrieval features), the structure of the paper (e.g., sections, number
of equations, figures, tables), its metadata (e.g., number of authors), and refer-
ences (e.g., number and years of references). They test multiple standard clas-
sifiers, obtaining significant gains with respect to a majority-class classifier that
they consider as baseline.

14github.com/allenai/PeerRead
15arxiv.org
16They consider three scenarios: only the text of the review, only the text of the paper, and both

texts together, truncating the texts of the papers to the first 1,000 tokens and the texts of the reviews
to the first 200 tokens. It is not said explicitly, but we assume that when only using the text of the
manuscript the predicted values are the average scores.
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The second task is modeled as a regression problem, where the mean of the scores
assigned by the reviewers as is taken as baseline. They use GloVe embeddings
(Pennington et al., 2014) and different neural-network architectures, including a
convolutional neural network (CNN) (Zhang et al., 2015), a long short-term mem-
ory (LSTM) network (Hochreiter and Schmidhuber, 1997), and a deep averaging
network (DAN) (Iyyer et al., 2015). They report the results in the ACL and ICLR
subsets, observing that for some aspects the mean score is difficult to beat. Over-
all, the best performing models are those trained with the combined texts of the
manuscript of the review, while–somewhat surprisingly–considering only the texts
of the reviews yields, in general, poor performances.17

Since the presentation of PeerRead and the publication of the results obtained
with the preliminary experiments conducted with it, the tasks and dataset have
been adopted as benchmarks by several subsequent works. Qiao et al. (2018),
for instance, use the PeerRead data to train and evaluate a hierarchical model that
combines CNN and LSTM modules, with the goal of obtaining better representa-
tions of the manuscripts’ structure and content, obtaining moderate gains for sev-
eral (not all) of the predicted aspect scores over simpler CNN or LSTM networks.
Skorikov and Momen (2020) address the classification of the acceptance/rejection
of PeerRead manuscripts, with a similar approach to that implemented in the orig-
inal paper. The most significant difference is that they use a smaller set of features,
which prove to perform comparatively better with a Random Forest algorithm. In
a more innovative proposal, Ghosal et al. (2019) consider the predicted sentiment
of the reviews to predict manuscripts’ acceptance and recommendation scores in
PeerRead, presenting their work as a contribution to the prediction of the reliabil-
ity of the reviews.

17A potential explanation to this could lie in the fact of the reviews being truncated.
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Chapter 8

PREDICTING CLARITY AND
SUFFICIENCY IN SCIARG-CL

From the three top-level theory-based argumentative quality dimensions included
in the taxonomy proposed by Wachsmuth et al. (2017a)–cogency, effectiveness
and reasonableness–we are interested is predicting the logical quality of abstracts
included in the SciARG-CL corpus in terms of their cogency or argumentative
strength, and their rhetorical quality in terms of their persuasive effectiveness. In
this chapter we explore whether features obtained from the argumentative struc-
ture of abstracts can contribute to predict these specific argumentative quality di-
mensions.

When we analyze the quality scores assigned by different annotators we observe
that there is a significant variation in terms of the consistency of the annotations,
in line with the high level of subjectivity involved in the task. We propose a sim-
ple method to incorporate information about the annotators–and, therefore, their
reliability–into the models, either explicitly, or by weighing training instances ac-
cording to who annotated them.

This chapter is organized as follows:

• In Section 8.1 we describe the specific argumentative quality dimensions
that we deem feasible to assess in the SciARG-CL corpus.
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• In Section 8.2 we describe the annotation process, analyze annotation statis-
tics and agreement, and finally propose a method to incorporate information
about the annotations’ reliability when training models.

• In Section 8.3 we describe the experimental setup, including a description
of the algorithms and features considered, and the weighting strategy pro-
posed.

• In Section 8.4 we report the results obtained by means of the proposed ma-
chine learning algorithms and sets of features, and analyze to what extent
correspondences can be established between the features automatically ex-
tracted from the argumentative structures of the abstracts and the quality
dimensions being assessed.

• In Section 8.5 we summarize the main findings of the chapter and provide
some concluding remarks.

8.1 Argumentative quality dimensions

As mentioned, in this work we focus on two broad argumentative quality dimen-
sions of the texts: their cogency and their effectiveness. In turn, for each of them
we consider which specific dimensions are the most applicable to the assessment
of the argumentative structure of scientific abstracts. For instance, the analysis
of the emotional appeal of the texts was considered not to be directly applica-
ble in our case, while other dimensions such as local acceptability, credibility, or
appropriateness were expected to have little variation within a set of published
abstracts.

While we initially aimed at evaluating also the arrangement and relevance of the
abstracts, after a preliminary round of annotations and subsequent discussions
with the annotators, we observed that these dimensions were either too difficult to
assess within a manageable level of subjectivity and/or could not be clearly distin-
guished from others. For instance, the perspectives on what was perceived as the
preferred arrangement varied greatly from one annotator to the other–depending,
also, with their familiarity with the discipline, while it was difficult for annotators
to identify information that could be deemed as not relevant in the abstracts. This
is expected as we are working with abstracts accepted in top-level conferences in
the area.
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These considerations led us to score only two specific dimensions: clarity and
(local) sufficiency. We hypothesize that, in the case of scientific abstracts, these
specific dimensions can be considered as proxies for the evaluation of the cor-
responding top-level ones–effectiveness and cogency, respectively. This idea is
supported by the analysis of correlations between general and specific dimensions
in other textual genres–in particular, in arguments from online debate portals–as
described in (Wachsmuth et al., 2017a).

8.2 Annotation of quality dimensions

The CL section of the SciARG corpus, SciARG-CL, contains 225 computational
linguistics abstracts from the ACL Anthology annotated with discourse and argu-
mentative annotation layers. The three annotators involved in the annotation of
argumentative units and relations in the CL section of the SciARG corpus were
asked to rank each abstract with a score in a three-point scale for the considered
argumentative quality dimensions. We asked the annotators to first read the ab-
stracts and assign the scores before proceeding to annotate the argumentative units
and relations.

In order to assign the scores, the annotators were asked to respond to the following
questions:

Clarity: For the reasonably well-prepared reader, is it clear what was done
and why?

Sufficiency: Are the premises (motivation, evidence) provided enough to
justify the proposed solution / approach?

Table 8.1 shows how the correlation between the scores assigned to clarity and
sufficiency vary depending on the annotator. We analyze both overall and individ-
ual Pearson’s correlation coefficients r.1 While there is a clear correlation between
both dimensions for annotator ann3, this is not the case for annotators ann1 and
ann2. Taking into consideration these results, we assume that, at least for annota-
tors ann1 and ann2 the two tasks can be clearly distinguished from each other.

1We also analyzed mutual information coefficients obtaining the same results, so we omit them
here.
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Annotator Correlation

ann1 0.17
ann2 0.10
ann3 0.44

All 0.29

Table 8.1: Pearson’s correlation coefficients for clarity and sufficiency scores, by anno-
tator and overall. Statistically significant values in italics.

It is also relevant to analyze the trends followed by the different annotators in the
use of the different scores. Figs. 8.1 and 8.2 show the percentage of use of each
score by each annotator for the clarity and sufficiency dimensions, respectively.

We can observe that annotator ann1 tends to annotate abstracts with the lowest
score (1) much more frequently than annotators ann2 and ann3, while the oppo-
site occurs in the annotation of the sufficiency dimension. In turn, the contrary
situation is observed with respect to the annotation of the highest score (3). These
seemingly different criteria confirms the high level of subjectivity involved in this
task.

It is relevant to note that these statistics are calculated over the full set of anno-
tations. In the next section we analyze how score assignments by each annotator
translates into inter-annotator agreements when computed in the subset of over-
lapping annotations.
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Figure 8.1: Percent distribution of clarity scores by annotator.

Figure 8.2: Percent distribution of sufficiency scores by annotator.
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8.2.1 Agreement and confidence scores

In order to evaluate the level of inter-annotator agreement we compute Krippen-
dorff’s α coefficients (Krippendorff, 2007) for overlapping SciARG-CL anno-
tations–both globally and pairwise.

Dimension Overall ann1 − ann2 ann2 − ann3 ann1 − ann3

Clarity 0.33 0.34 0.29 0.33
Sufficiency 0.27 0.37 0.08 0.26

Table 8.2: Agreement in SciARG argumentative quality annotations: Krippendorff’s
overall and pairwise αs.

Even if moderate, the overall level of agreement for the clarity and sufficiency di-
mensions are acceptable for these tasks and comparable to the results obtained for
larger-scale argumentative quality annotation efforts in other domains (Ng et al.,
2020).

Full discrepancy between the annotators–i.e., each annotator assigning a differ-
ent score–is observed only in 2 cases (0.07%) for clarity and in no cases for the
sufficiency dimension.

We use MACE (Multi-Annotator Competence Estimation)2 (Hovy et al., 2013)
both to obtain a unique score for each quality dimension in the overlapping anno-
tations and to attach a reliability score to each annotator. The results are shown in
Table 8.3.

Dimension ann1 ann2 ann3

Clarity 0.70 0.37 0.31
Sufficiency 0.96 0.29 0.12

Table 8.3: MACE confidence scores for annotators.

In line with the differences in confidence scores, the resulting MACE scores co-
incide, in fact, with ann1’s annotations for both dimensions.

2isi.edu/publications/licensed-sw/mace/
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The high degree of subjectivity involved in the assignment of quality scores poses
a challenge when using these annotations to train machine learning models. A
question that emerges is how can we feed the models with reliable enough data so
they can learn how to produce useful predictions. If we had multiple predictions
for all instances, an alternative could be to use majority annotations for training
(although depending on the task and distribution of the labels we might risk ap-
proximating all the scores to a middle point).

Given the rather small size of our dataset for these tasks and the fact that only a
small fraction of it was annotated by more than one annotator, we propose to in-
corporate information about the annotators and/or their reliability into the models.
We compare two approaches:

• To provide the models with information about who (which annotator) as-
signed the score to be predicted. The idea is that the models, in the training
phase, might be able to learn the differences in criteria followed by the dif-
ferent annotators.
This information would be included by means of an additional feature indi-
cating the annotator of each instance.
For prediction/evaluation, the value of this feature would be constant and
represent the most reliable annotator.

• To explicitly weight training instances according to the annotator that pro-
duced them. The machine learning algorithms implemented in this chapter
can handle weighted instances. If this were not the case, this is equivalent
to over-sampling or under-sampling instances in the training set proportion-
ally to the weight that we want them to have.
The computation of the weights is based on the annotators’ confidence
scores, as described below.
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8.3 Experimental setup

For the prediction of the argumentative quality scores we consider a set traditional
machine learning algorithms: Naı̈ve Bayes with and without kernels (NBK and
NB, respectively), Decision lists (DL),3 Nearest neighbours (NN), Random forests
(RF) and Support Vector Machines (SVM). These algorithms are suited for the size
of the corpus–as for these tasks each abstract gives origin to one single training
instance–and have the advantage of being more interpretable than algorithms with
a larger number of parameters. In these experiments we use implementations
available in the Weka software package (Witten et al., 2016).4

How to best model tasks with ordinal scales is an open issue and greatly depends
on the semantics of the scale. We choose to model the score prediction task as
three-class classification rather than a regression problem, as we do not attach any
meaning to in-between values nor impose any assumption on the equivalence of
the distances between adjacent scores. We therefore consider the scale as a dis-
crete qualitative measure rather than continuous quantitative one. This allows us
to make use of simple algorithms and evaluate them with metrics that are eas-
ily interpretable such as F1 score. Other alternatives that would allow to exploit
the ordering between classes would have been to transform the task into two bi-
nary classification problems or to implement cost-sensitive algorithms, so mis-
classification of instances between classes 1 and 3 were highly penalized. We did
some preliminary attempts in this direction without obtaining significant improve-
ments, but further exploration of these alternatives is interesting and left as future
work.

As the goal of these experiments is not to obtain the best possible performing
models for the prediction of quality scores but, instead, to assess the potential
benefits of using features derived from the argumentative structure of the abstracts,
we fix the hyper-parameters for all the algorithms across this set of experiments.

For these experiments we consider 36 features derived from the argumentative
structure of the abstracts.5

3As decision list classifier we use the PART algorithm introduced in (Frank and Witten, 1998)
4cs.waikato.ac.nz/ml/weka/
5In a previous pilot experiment–for the prediction of recommendations by peer-reviewers–we

used directly the sequences of labels predicted for each of the argument mining tasks–type of units,
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The features include:

• Length (number of characters) (1 feature)

• Number of children of the main unit (1 feature)

• Number of units for each type of unit (coarse and fine-grained types) (16
features)

• Number of children for each type of unit (11 features)

• Number of relations for each type of relation (7 features)

Different combinations of the features can be considered in order to capture dif-
ferent aspects of the argumentative quality. For instance, the number of support
relations can be considered to provide relevant information about the sufficiency
dimension while the number of elaboration relations could be more closely related
to the clarity of the abstract.

We train models with the full set of features as well as with subsets that convey
information about the quality dimensions being considered. In total, we consider
37 potential combinations of argumentative structure features.

It is relevant to note that the length of texts has been observed to correlate strongly
with some argumentative quality dimensions (Potash et al., 2017; Wachsmuth and
Werner, 2020). We are therefore interested in evaluating the extent to which argu-
mentative structure features can contribute to improve predictions that are based
on the length.

For each algorithm we consider 76 potential combination of features:

• Each of the 37 subsets of features considered to provide argumentative qual-
ity information with and without including the length (74 subsets);

• The length alone;

• The full set of features.

We consider as baselines a majority-class classifier and a rules-based classifier
with the length of the abstract as sole feature.

position of the parent and type of the relation (Accuosto and Saggion, 2019b).
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As mentioned, we would like our models to perform as similarly as possible to
the annotator with the highest confidence score.

We have, in our dataset, the following distribution of annotations:

Annotator Individual Overlapping Total

ann1 80 30 110
ann2 77 30 107
ann3 38 30 68

Total 195 30 225

Table 8.4: Number of individual and overlapping annotations by each annotator in the
SciARG-CL corpus.

We train and evaluate the models in a five-fold cross validation setting, which
ensures more stable results than evaluating only on one validation set, and allows
us to use the whole dataset for training.

We use the 110 annotations made by ann1 (the most reliable annotator) both for
training and evaluation, while the annotations by annotators ann2 and ann3 are
used only for training, weighted according to their respective confidence score.

We generate the training-validation sets for each of the five folds stratified by
annotator and class, obtaining the following distribution of instances:

Fold Training instances Total training Validation instances

ann1 ann2 ann3 ann1

1 89 61 30 180 21
2 87 62 31 180 23
3 87 61 32 180 23
4 88 62 30 180 22
5 89 62 29 180 21

Table 8.5: Number of training/test instances by annotator in each fold.
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In order to compute weights for each annotator’s instances, we consider the con-
fidence scores obtained by MACE and the number of annotations present in the
training set. As mentioned, another way of looking at this is to consider that we
are down-sampling annotations by ann2 and ann3 so for each annotation by ann1

there is only a fraction of annotations by ann2 and ann3, in proportion to their
respective confidence scores.

For instance, suppose that we had two annotators, anna and annb and that annb’s
annotations are half as reliable as the annotations made by anna. If we had the
same number of annotations by both annotators in the training set, we would need
to weight annb’s annotations with 0.5, to indicate that every two annotations by
anna, it should consider one annotation by annb.
If in the original set of annotations we do not have the same number of annotations
by both anna and annb, but instead have twice as many annotations by annb as
the number of annotations by anna, we should take this factor into consideration
and assign a weight of 0.25 to annb’s annotations to make sure that their overall
weight reflect the fact that they are half as reliable than anna’s.

We therefore calculate the weight Wannx for annotations by a given annotator
annx, with the following formula:

Wannx =
Nwannx

Ntannx

where Nwannx =
Ntmra
Cfannx

; Cfannx =
Csmra
Csannx

Which can be interpreted in the following way:

Cfannx− Confidence correction factor for annx;

Csmra− Competence score of the most reliable annotator (mra);

Csannx− Competence score of annx;

Ntmra− Number of annotations by the most reliable annotator in training
set;

Ntannx− Number of annotations by annx in training set.

Cfannx is a correction factor that tells us how many annotations by the most reli-
able annotator (mra) should be in the training set for each annotation of annx.
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For instance, if anni is half as reliable as mra, Cfanni
= 2, meaning that there

should be two instances by mra for each instance of anni.

Nwannx tells us how many annotations by annx should be in the training set con-
sidering annx’s correction factor and the number of instances of mra.
For instance, if anni is half as reliable as mra, and there are 10 annotations by
mra, there should be 10

2
= 5 annotations by anni.

Finally, Wannx tells us how much each annotation by annx should weight consid-
ering how many annotations there are effectively in the training set and how many
there should be.6

For instance, if anni is half as reliable as mra, there are 10 annotations by mra,
and there are 20 annotations by anni, each annotation by anni should weight
5
20

= 0.25.

8.4 Results and analysis

As the classes are not perfectly balanced we report, in each case, macro-averaged
F1-scores, which provides information about how well the classifier performs for
the minority class.

In order to simplify the analysis and have a clear picture of the impact of the dif-
ferent combinations of features we consider, in addition to the baseline classifiers,
the results obtained with the overall three best performing algorithms, with their
respective combination of features.

8.4.1 Clarity

As expected, introducing information about the annotators or their reliability con-
tributes to improve the models’ performance when predicting the most reliable
score.

6In practice, we use 10 as weight for the annotations made by ann1 (the most reliable annota-
tor) and 10.Wannx

for instances annotated by ann2 or ann3.
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Clarity scores without weights nor annotator feature

Algorithm F1 Features

Majority 0.2140 −
RuleL 0.3598 length

NB 0.5878 child-main, prop-impl, elab, seq
NBK 0.5488 child-main, prop-impl, elab, seq, supp, child-prop
NN 0.4936 child-main, prop-impl, elab, seq

Table 8.6: Results for clarity five-fold CV classification with no weights nor annotators.
Top-performing classifiers: Naı̈ve Bayes with and without kernels, Nearest neighbours.

Clarity scores with weights

Algorithm F1 ∆ Features

Majority 0.2140 − −
RuleL 0.3623 + 0.0025 length

NB 0.5990 + 0.0112 length, prop-impl, elab, seq
NBK 0.5853 + 0.0365 length, prop-impl, elab, seq, supp, means
NN 0.5345 + 0.0409 prop-impl, elab, seq

Table 8.7: Results for clarity five-fold CV classification with weighted instances.
∆ indicates the difference with respect to the models with no weights nor annotators.

Clarity scores with annotator feature

Algorithm F1 ∆ Features

Majority 0.2140 − −
RuleL 0.3598 − length

NB 0.6129 + 0.0251 length, prop-impl, elab, seq, supp, ch-resu
NBK 0.5894 + 0.0406 prop-impl, elab, seq
NN 0.5335 + 0.0399 prop-impl, elab, seq

Table 8.8: Results for clarity five-fold CV classification with annotator feature.
∆ indicates the difference with respect to the models with no weights nor annotators.
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In particular, for the clarity task, explicitly including the annotators as a feature
improves in 4% the macro-averaged F1 score for the best performing algorithm.
The performance gain when weighting the training instances is lower (2%) for the
best performing algorithm. As expected, the gain in performance when consider-
ing weights and/or annotators as a feature is greater for the algorithms with initial
lower performances.

A small number of the 36 considered features intervene in the best performing
configurations: in particular, the number of units of type proposal-implementation
and the number of relations of types elaboration and sequence are present in all
cases. These relations are used to provide more detailed information (in terms of
implementation) about the solutions proposed by the authors.

The number of children of units of type proposal, which is present in one of the
configurations, conveys similar information. In turn, the number of children of
units of type result–and, in particular, those of type means–are used to provide
precise information about methods and/or resources used to obtain the results.
It is expected, then, that these features are predictive of the perceived clarity in
which the authors explain what was done and why. The fact that this is the case
confirms that information provided by the analysis of the argumentative structure
of the abstracts contribute to predict this quality dimension.

It is interesting to observe that the number of children of the main unit is present
in the best three configurations only in the models with no information about the
annotators. This can be explained considering the differences in the correlation of
this feature with the class depending on the annotator. This feature is correlated
with the class with r = 0.50 (p < 0.001) for ann3, but only with r = 0.19 (in the
limit of significance) for annotator ann1, and with r = 0.22 (p < 0.005) for ann2.
It is natural, then, that when the number of instances of ann3 are down-weighted
this feature loses relevance. It is also possible that when no information about
the annotators is present, this feature can contribute to discriminate instances by
different annotators, which would no longer be relevant when this information is
provided explicitly.

The length of the abstracts is positively correlated with its perceived clarity for
all the annotators, even if this feature by itself does not discriminate well between
the predicted classes. The correlation coefficient for ann1 is r = 0.49, for ann2,
r = 0.42 and, for ann3, r = 0.33 (in all cases, with p < 0.001).

204



“output” — 2021/10/1 — 15:43 — page 205 — #221

Conversely to what happens with the number of children of the main unit, it is
expected that the length gains in relevance as a discriminating factor as the models
are instructed to give more weight to the annotations by ann1.

8.4.2 Sufficiency

Sufficiency scores without weights nor annotator feature

Algorithm F1 Features

Majority 0.2275 −
RuleL 0.4111 length

NB 0.5995 length, child-prop, motiv-prob
NBK 0.5696 length, child-prop, child-main, motiv-prob, supp
DL 0.5592 child-prop, motiv-prob

Table 8.9: Results for sufficiency five-fold CV classification with no weights nor annota-
tors. Top-performing classifiers: Naı̈ve Bayes with and without kernels, Decision lists.

Sufficiency scores with weights

Algorithm F1 ∆ Features

Majority 0.2275 − −
RuleL 0.4111 − length

NB 0.6185 + 0.0190 length, child-prop, motiv-prob, supp
NBK 0.6092 + 0.0396 length, child-prop, motiv-prob
DL 0.5738 + 0.0146 coarse-motiv, motiv-prob

Table 8.10: Results for sufficiency five-fold CV classification with weighted instances.
∆ indicates the difference in performance with respect to the models with no weights nor
annotators.
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Sufficiency scores with annotator feature

Algorithm F1 ∆ Features

Majority 0.2275 − −
RuleL 0.4111 − length

NB 0.6052 + 0.0057 length, child-prop, motiv-prob, supp

NBK 0.5776 + 0.0080 child-prop, child-main, coarse-motiv,
motiv-prob, supp

DL 0.5571 - 0.0021 child-prop, child-main, coarse-motiv,
coarse-out, supp

Table 8.11: Results for sufficiency five-fold CV classification with annotator feature.
∆ indicates the difference in performance with respect to the models with no weights nor
annotators.

For the prediction of the sufficiency dimension we observe, again, that a small
number of features give origin to the best performing models. As expected, the
number of motivation units, in general (as expressed by the coarse-motivation
type)–and, in particular, those indicating existing problems addressed by the pro-
posed solution–are consistently relevant to predict the perceived sufficiency of the
abstracts.

The number of relations of type support appear in some of the best performing
subset of features for the prediction of the clarity dimension, but the weight of
this feature in the prediction of the perceived sufficiency is more evident–in par-
ticular, when information about the annotators or their relevance is included in the
models. It is expected that this feature provides relevant information about the
abstracts’ perceived sufficiency, as the support relation is used precisely to pro-
vide evidence for claims. In particular, this feature is highly correlated with the
class for annotator ann2 (r = 0.56, with p < 0.001) and it has also a positive
correlation for ann1 (r = 0.38, with p < 0.001). For ann3 the correlation is less
significant (r = 0.28, with p < 0.005). It is therefore natural that this feature
gains in relevance when information about the annotators’ confidence is reflected
in the training instances.
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The number of children of the main unit and of all units of type proposal also
play an important role in the prediction of the abstracts’ sufficiency, as would be
expected, since these units provide explanations and/or justifications for the main
explicit or implicit claims of the abstract. In this case, and in contrast to what
happens in the clarity dimension, the sufficiency score and the number of children
of the main unit are more similarly correlated across annotators, with Pearson’s
correlation coefficients of r = 0.35, r = 0.45 and r = 0.45 (with p < 0.01) for
ann1, ann2 and ann3, respectively.

Another difference that we can see between the prediction of the clarity and suf-
ficiency scores is that, in the latter, the greatest improvement in performance is
not obtained with the explicit inclusion of the annotators as a feature but, instead,
when instances are weighted according to the annotators’ reliability. This could
be explained by the significant differences in inter-annotator agreements for the
sufficiency dimension, as observed with the pairwise Krippendorff’s α coefficients
and the MACE confidence scores. This would indicate that the information avail-
able, including the identification of the annotators, is not enough for the models
to learn the differences in criteria and, instead, it is more important in this case to
explicitly weight (or, equivalently, to up or down-sample) the instances according
to their reliability.

The best performing algorithm for both quality dimensions is Naı̈ve Bayes, while
other simple algorithms like Decision lists and Nearest neighbours classifiers also
perform well for sufficiency and clarity, respectively. This might be explained by
the fact that Naı̈ve Bayes can produce good results with small-sized datasets with-
out much hyper-parameter fine-tuning. In these experiments, as mentioned, we
focused more on the set of features than on the algorithms themselves, so addi-
tional investigation would be required to determine whether better results could be
obtained for other algorithms with more data and/or other hyper-parameter values.

8.5 Conclusions

In this chapter we explored whether argumentation-level annotations from the
SciARG-CL corpus could be used to obtain features that reflect argumentative
quality dimensions of the abstracts. In particular, we focused on the assessment of
the abstract’s clarity and sufficiency dimensions. To do this, we considered scores
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assigned by annotators for these two dimensions and trained machine learning
models with different subsets of features that convey information about the com-
ponents found in the abstracts and the relations between them. The results ob-
tained show that, in fact, argumentation-informed features can significantly con-
tribute to predict the abstracts’ perceived clarity and sufficiency. Moreover, the
better-performing sets of features in each case can be considered to convey in-
formation that is in line with the argumentative quality dimension intended to be
assessed.

We also considered the difficulties posed by the high level of subjectivity involved
in the annotation of argumentative quality dimensions, which is reflected in high
differences in the levels of pairwise inter-annotator agreements, as well as in the
confidence scores assigned by the MACE algorithm (Hovy et al., 2013) to anno-
tators. We proposed to deal with differences in the reliability of the annotations
either by weighting the training instances with a factor that takes into account
the annotators’ confidence score, or by explicitly including information about an-
notators in the training instances–as an additional feature. The results obtained
show that these strategies can in fact contribute to improve the performance of the
models when predicting the scores assigned by the most reliable annotator. This
leads to potentially relevant follow-up research, in order to determine whether this
approach could be extended to other cases in which annotations are produced by
annotators with different levels of reliability.

As a final observation, it is relevant to consider that, when analyzing the correla-
tions between the features and the quality scores assigned to the abstracts it does
not look as if ”automatic” decisions were made by the annotators. Nevertheless,
we cannot exclude the possibility that the annotators’ perception of the abstracts’
clarity and sufficiency could somehow be biased by their own analysis of the argu-
mentative structure of the texts–even when they were asked to assign these scores
as a first step in the annotation process.

In the experiments included in this chapter we used gold annotations of argumen-
tative units and relations to produce the features used to train and evaluate the
models. In the next section we explore whether features obtained by the predicted
argumentative structure of the abstracts can contribute to anticipate quality scores.
In this case, the scores considered are those assigned by reviewers in a peer-review
process.
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Chapter 9

PREDICTING PEER REVIEW
SCORES: CLARITY, SOUNDNESS
AND OVERALL
RECOMMENDATIONS

In this chapter we investigate whether argumentative information automatically
extracted from the abstracts of the manuscripts conveys information that can con-
tribute to predict fine-grained and overall recommendation scores assigned by re-
viewers in a peer-review process.1

We address these questions by:

• Automatically extracting, from abstracts included in the ACL, CoNLL and
ICLR subsets of PeerRead, the argumentative-structure features described
in Section 8.3.

• Identifying, from seven manuscript assessment areas included in the ACL
2017 review form,2 those that capture argumentative quality information
and are feasible of being predicted by means of the argument-based features
considered for SciARG-CL in Chapter 8.

1The goal of this chapter is, therefore, not to produce models to be used for the automatic
prediction of argumentative quality dimensions of research manuscripts.

2The form used in reviews for ACL 2017 is available as an appendix in (Kang et al., 2018)
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• Conducting experiments aimed at predicting the identified argumentative
quality scores for the ACL and CoNLL subsets of PeerRead, as well as
overall recommendation scores assigned by reviewers for the ACL, CoNLL
and ICLR subsets.

This chapter is organized as follows:

• In Section 9.1 we briefly describe the PeerRead dataset and, in particular,
the sub-sections used in the experiments reported in this chapter;

• In Section 9.2 we identify, from the scores assigned to manuscripts in ACL-
ConLL, the ones that can be considered to convey argumentative informa-
tion: clarity and soundness. We conduct experiments aimed at predicting
a weighted average of the scores assigned by peer-reviewers and analyze
the results obtained. We finally consider, from a qualitative point of view,
similarities and differences found when predicting argumentative scores in
SciARG-CL and ACL-CoNLL;

• In Section 9.3 we address the prediction of overall recommendation scores
assigned by reviewers in the ACL-CoNLL and ICLR datasets. We propose
the prediction of these scores as binary classification tasks, describe the
implemented experiments and its results, and analyze differences observed
between the outcomes of the experiments in both subsets.

• In Section 9.4 we summarize the main results obtained. Finally, we briefly
discuss the limitations of the experiments conducted in this chapter and how
they should be contextualized according to the objectives pursued in this
work.

9.1 The PeerRead dataset

The PeerRead dataset (Kang et al., 2018) contains manuscripts submitted to com-
putational linguistics and machine learning conferences (NIPS 2013-2017, ACL
2017, CoNLL 2017 and ICLR 2017) as well as papers published on the arXiv plat-
form between 2007 and 2017. The papers submitted to peer-reviewed venues in-
clude also their corresponding reviews: opted-in, in the case of ACL and CoNLL,
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and available on the OpenReview platform3 in the case of ICLR. For NIPS, the re-
views are available together with the papers in the conference proceedings (there-
fore, the available reviews correspond only to accepted papers).

The ACL, CoNLL and ICLR subsets include drafts and reviews both for accepted
and rejected papers and include recommendation scores assigned by the review-
ers: a numeric score between 1-5 for ACL and CoNLL and between 1 and 10 for
ICLR. Reviews for these datasets also contain reviewers confidence scores in the
range 1-5 for ACL and CoNLL and in the range 1-10 for ICLR. The ACL and
CoNLL subsets contain, in addition to the overall recommendation, scores for
seven specific areas of assessment.4 In the case of ICLR, the original reviews do
not contain fine-grained scores assigned by reviewers but the scores were added
in the corpus development process by two of the PeerRead paper’s authors based
on the contents of the reviews. We will only use in our experiments the scores
directly assigned by reviewers.

Venue Manuscripts Reviews Accepted/Rejected

ACL 2017 137 275 88/49
CoNLL 2016 22 39 11/11
ICLR 2017 427 1304 172/255

Table 9.1: Distribution of ACL, CoNLL and ICLR manuscripts and reviews in the Peer-
Read dataset. Source: (Kang et al., 2018).

9.2 Prediction of argumentative quality aspects

The abstracts of scientific manuscripts can provide insights of what a reviewer can
expect to find in the full paper in terms of its relevance for a particular venue, its
originality, or even its potential impact. These aspects are part of the items that
referees are asked to assess in a peer-review process. Most of these elements, nev-
ertheless, are aimed at assessing the contents of the paper. For our experiments we
are interested in considering the aspects included in reviews–and, in particular, the
scores assigned to them–that can be linked to argumentative quality dimensions.

3openreview.net
4in (Kang et al., 2018) and in ACL’s instructions for reviewers these assessment areas are

referred to as aspects
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The questions included in the ACL 2017 review form address seven assessment
areas: impact, substance, appropriateness,5 comparison, soundness/correctness,
originality and clarity. For each of these areas we consider whether i) they re-
flect, to some extent, theory-motivated argumentative dimensions considered in
(Wachsmuth et al., 2017a), and ii) whether it is reasonable to assume that the in-
formation contained in the abstract is aligned–in terms of its quality and quantity–
with the information contained in the body of the paper for the considered area.
The two ACL review areas that come closest to what we are looking for are clarity
and soundness/correctness. The specific questions included in the instructions for
ACL reviewers for the assessment of these two aspects of the manuscripts are:

Clarity:

For the reasonably well-prepared reader, is it clear what was done and
why?; Is the paper well-written and well-structured?

Soundness / correctness:6

(a) Theoretical: Is the technical approach sound and well-chosen?; Can
one trust the empirical claims of the paper – are they supported by
proper experiments and are the results of the experiments correctly
interpreted?

(b) Empirical: Is the mathematical approach sound and well-chosen?;
Are the arguments in the paper cogent and well-supported?

We can observe that, even when there are clear overlaps between these ACL as-
sessment areas and dimensions considered in the taxonomy by Wachsmuth et al.
(2017a), no perfect mappings can be established. While the soundness / correct-
ness questions assess, to some degree, all of the cogency dimensions of the argu-
ments contained in the manuscript, the clarity questions are intended to assess the
clarity and the arrangement of the texts but not other specific dimensions such as
their credibility, emotional appeal or appropriateness.

5Appropriateness here refers to whether the paper would fit in the venue and has no relation to
the type of language used by the authors.

6While this is separated into theoretical and empirical soundness/correctness in the ACL 2017
form for reviewers, the PeerRead data contains only one score for this area, which is the one that
we use in our experiments.
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9.2.1 Experimental setup

For this set of experiments we adopt the same experimental setup used for the ex-
periments with the SciARG-CL corpus, including the considered sets of features,
as well as the algorithms used and their hyper-parameters.7 The difference is
that, in this case, the features are obtained from the predicted argumentative struc-
tures of the abstracts obtained by means of sentence-level models trained with
the SciARG-CL corpus in a multi-task setting and pre-fine-tuned with SciDTB
sentence-level tasks, as described in Chapter 4.

As mentioned, only the ACL 2017 and CoNLL 2016 subsets of PeerRead contain
scores for each assessment area assigned directly by the reviewers so we are us-
ing these two subsets of PeerRead for the experiments described in this section.
As the information available for both subsets is the same, and there are only 22
CoNLL manuscripts included in PeerRead, we consider these sets jointly for our
experiments. In Table 9.1 we include the number of manuscripts and reviews in
each subset as well the number of accepted/rejected papers.8

Each manuscript in the ACL and CoNLL sections of PeerRead contains between
one and three reviews. In addition to providing an integer score between 1 and 5
for their overall recommendation and each considered area, reviewers are asked to
indicate their own confidence about their evaluation, also with scores from 1 to 5.
We use these confidence scores to obtain weighted averages, which we then use
to place each manuscript in a classification bin as described below.

Fig. 9.1 shows the distribution of scores for clarity, soundness and overall recom-
mendation in all of the ACL-CoNLL reviews.

Suppose, for instance, that three reviewers r1, r2, r3 assigned the scores s1 = 4,
s2 = 3, s3 = 2 to a manuscript, and reported confidence scores c1 = 2, c2 = 5,
c3 = 4.

Naturally, given the discrepancy of criteria, the score assigned by the reviewer that
reported the highest confidence (r2) should have a greater weight when computing
the final score.

7We use the same set of fixed hyper-parameters.
8As reported in (Kang et al., 2018), as acceptance/rejection information for this subset is not

available in the published data.
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Figure 9.1: Distribution of scores for clarity, soundness and overall recommendation
scores in ACL-CoNLL.

To compute the weighted average Ws for score s in a given manuscript m, we use
the following formula:

Ws =
nrm∑
r=1

Wr.sr

Where nrm is the number of reviews available for the manuscriptm, sr is the score
assigned by reviewer r, and Wr is the reviewer’s confidence weight, computed as:

Wr =
cr∑nrm
i=1 ci

where ci is the confidence value reported by reviewer i

In the example of the three reviewers mentioned above, the reviewers’ weights are
computed:

Wr1 =
2

11
= 0.18; Wr2 =

5

11
= 0.45; Wr3 =

4

11
= 0.36

And the final score:

Ws = 0.18× 4 + 0.45× 3 + 0.36× 2 = 0.73 + 1.36 + 0.73 = 2.82

Figures 9.2 and 9.4 show the distribution of scores averaged with the described
weighting method for the clarity and soundness dimensions, respectively.
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To have a detailed picture of how the scores are distributed, we consider the num-
ber of manuscripts whose weighted average falls within 0.25-width ranges from 1
to 5.

We observe in Fig. 9.2 that, for clarity, the distribution is left-skewed and a large
percentage (33%) of the manuscripts fall in a small range between 4 and 4.25
points.

Figure 9.2: Distribution of clarity average scores weighted by reviewers’ confidence in
ACL-CoNLL.

Figure 9.3: Final distribution of classes for clarity scores.

215



“output” — 2021/10/1 — 15:43 — page 216 — #232

The percentages of manuscripts falling to the left or to the right of this range
are mostly balanced, with 32% and 33% of the manuscripts, respectively. As
mentioned in Section 8.3, we do not believe that such a fine-grained distinction
between different values is relevant–and very unlikely to be predictable with the
available data. We therefore distribute the manuscripts according to their aver-
age scores into three classification bins, seeking to establish cutting points that
make the resulting classes as balanced as possible. The resulting distribution of
manuscripts in their classes is shown in Fig. 9.3.

Formulating the task as a three-class classification problem allows us to adopt the
same experimental setup that we used in the prediction of argumentative quality
dimensions in the SciARG corpus and qualitative compare the results between
both experiments–even if, as mentioned, the meaning of the dimensions assessed
in each case do not perfectly coincide.

We proceed analogously with the soundness scores. The fine-grained distribution
of the averaged scores is shown in Fig. 9.4. We can observe, again, a left-skewed
distribution in this case but, unlike the previous situation, the bottom, middle and
top values are all concentrated in three small ranges. It is, therefore, even more
natural to formulate the prediction of soundness scores as a three-class classifica-
tion problem.

Figure 9.4: Distribution of soundness average scores weighted by reviewers’ confidence
in ACL-CoNLL.
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Figure 9.5: Final distribution of classes for soundness scores in ACL-CoNLL.

Unlike what happens with the clarity scores, the resulting classes are more poorly
balanced in the soundness tasks, with the majority of the manuscripts being as-
signed to the top-valued class.

9.2.2 Results and analysis

As in the previous experiments, we analyze the performance of different com-
binations of algorithms and features by considering macro-averaged F1 scores
resulting from five-fold cross-validation experiments.

9.2.2.1 Clarity

Table 9.2 shows the results obtained for the prediction of the clarity score.

Similarly as what we observe in the experiments carried out with the SciARG-CL
corpus, there are also small sets of features that contribute to the best performing
models. The number of proposal-implementation units seem again to be relevant
for the prediction of the clarity dimension–in particular, in combination with the
length. The number of elaboration, sequence and support relations also

Features derived from the number of units that provide details about reported re-
sults–in particular, the number of units of type observation–seem to have a rele-
vant weight in the prediction of the clarity score.
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Clarity scores for ACL-CoNLL

Algorithm F1 Features

Majority 0.1721 −
RuleL 0.3132 length

SVM 0.4355 length, prop-impl, obs, result, supp
NN 0.4289 coarse-motiv, motiv-problem
DL 0.4118 length, prop-impl, obs, means, supp, elab, seq

Table 9.2: Results for clarity five-fold CV classification. Top-performing classifiers:
Support Vector Machine, Nearest neighbours, Decision list.

As mentioned, the meaning of clarity in ACL covers other dimensions of the
argumentative effectiveness of the texts. This could explain the apparently greater
weight of the number of support relations for this task and, in particular, the fact
that a nearest neighbours algorithm performs close to the top, based solely on the
number of motivation units.9 It is not evident, nevertheless, the difference in the
selection of the best features for this particular algorithm, while there is a greater
overlap in the set of preferred features for SVM and decision lists.

9.2.2.2 Soundness

Soundness scores for ACL-CoNLL

Algorithm Macro F1 Features

Majority 0.1900 −
RuleL 0.2948 length

NN 0.4498 child-main, child-prop, supp, coarse-motiv, coarse-out
RF 0.4414 child-main, child-prop, supp, coarse-motiv, coarse-out
DL 0.4267 child-main, child-prop, supp

Table 9.3: Results for soundness five-fold CV classification. Top-performing classifiers:
Nearest neighbours, Random Forest, Decision list.

9In SciARG these features play a relevant role for the prediction of the sufficiency score.
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We observe a great overlap between the set of features that give rise to the best per-
forming algorithms when predicting SciARG’s sufficiency scores and the features
for which the best configurations are obtained for ACL-CoNLL’s soundness.

All of the involved features indicate how well proposals–and, in particular, the
main proposal of the abstract–are supported by premises.

Units of type motivation–in general–seem to play a relevant role in the perceived
quality of this dimension. This is to some point expected as, in the case of scien-
tific texts, authors persuade the potential readers about the validity and relevance
of the proposed solutions in part referring to background information and describ-
ing existing unsolved problems.

9.2.2.3 Comparison with SciARG argumentative quality predictions

Even if the quality dimensions in SciARG cannot be mapped to the aspects consid-
ered in ACL reviews, it is interesting to compare–from a qualitative perspective–
the respective gains obtained for SciARG and ACL-CoNLL scores predicted by
means of models trained with argumentation-based features.

Table 9.4 shows the gains obtained with the top performing argumentative-aware
classifiers in each case, with respect to majority baselines.

SciARG-CL ACL-CoNLL

Clarity Sufficiency Clarity Soundness

Majority classifier (macro F1) 0.2140 0.2275 0.1721 0.1900
Model w. arg. feat. (macro F1)10 0.5878 0.5995 0.4355 0.4498

Absolute gain 0.3738 0.3729 0.2634 0.2598
Percent gain 175% 164% 153% 137%

Table 9.4: Comparison of SciARG and PeerRead best argumentative-aware models with
respect to majority classifier.

It is important to have in mind the differences between the way in which these
numbers should be interpreted which, as mentioned, makes it impossible to com-
pare them directly:
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• SciARG dimensions are more narrowly defined than ACL assessment ar-
eas, and were annotated with the specific objective to assess argumentative
quality dimensions of the abstracts;

• SciARG models predict the score assigned by the most reliable annotator,
while ACL-CoNLL models predict the average weighted by the reviewers’
reported confidence (for the whole review);

• We use gold annotations for argumentative units and relations in SciARG,
while in the ACL-CoNLL subset of PeerRead we use predicted argumenta-
tive units and relations;

• While SciARG scores directly assess argumentative dimensions of the ab-
stracts, the scores in PeerRead reflect the opinion of the reviewer about the
whole manuscript.

Taking these considerations into account, the gains in performance for ACL-
CoNLL’s models provide an interesting ground for further research. These gains
would indicate not only that features obtained from the automatically-extracted
argumentative structure of the abstracts can be useful to improve the prediction of
the specific quality scores being considered, but also that these quality dimensions
in abstracts and in full manuscripts are, up to a certain point, aligned. Additional
experiments would be needed to confirm whether the prediction of these dimen-
sions in abstracts could be used as an estimation of what can be expected to occur
when assessing the full texts.

9.3 Prediction of recommendation scores

As mentioned, the quality of argumentation is expected to play only a partial role
in the overall assessment of manuscripts by reviewers. Yet, it is relevant, in the
context of this work, to explore the persuasive potential of the manuscripts’ ab-
stracts and, in particular, to what extent their argumentative structure can influence
reviewers’ overall recommendations.

The reviewers’ recommendation scores are some of the main elements considered
to determine the acceptance or rejection of a manuscript in a conference. In any
conference, yet, acceptance decisions involve not only the quality of the submitted
manuscript but several other practical considerations, including the balance in the
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number of papers among the different sub-disciplines and topics covered by the
conference, as well as the number and quality of all the submitted manuscripts. As
the ACL 2017 chairs indicate, ”different areas had different average acceptance
scores”.11 In fact, the ACL 2017 chairs made it clear that they ”did not use score
cutoffs to determine acceptances but instead used scores as a guide towards argu-
ing for paper acceptances”. Therefore, we prefer to consider as a task predicting
the recommendation score assigned by the manuscript reviewers and not whether
it was actually accepted or not.

9.3.1 Experimental setup

The PeerRead dataset contains overall recommendation scores assigned by re-
viewers for the ACL, CoNLL and ICLR subsets. We use these three datasets for
our experiments. As with the previous experiments, there is no relevant distinc-
tion to be made between ACL and CoNLL manuscripts and reviews (in particular
considering the small number of CoNLL manuscripts/reviews available) so we
consider them together as one dataset.

Overall recommendations are assigned integer values between 1 and 5 in ACL-
CoNLL, like for specific area scores. In contrast, in the case of ICLR, recommen-
dation scores range between 1 and 10. Reviewer confidence scores, yet, follow the
same criteria as in ACL-CoNLL and are assigned values between 1 and 5. While
in ACL-CoNLL all the manuscripts have three reviews, in ICLR a small percent-
age (5%) includes four reviews and a yet smaller percentage (1%) includes five
reviews. The are some important distinctions to consider between both datasets:

• ICLR contains 2.7 times more manuscripts (and 4 times more reviews) than
ACL-CoNLL.

• While for ACL-CoNLL the acceptance rate of the manuscripts included in
PeerRead is of 62%, in ICLR it is only of 40%.

• ICLR abstracts have 24% more sentences than those in the ACL-CoNLL
dataset. This could indicate that they are argumentatively more complex.

11acl2017.wordpress.com/2017/07/31/a-final-look-at-the-decisio

n-process/
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Based on these distinctions and the different scoring criteria used in ACL-CoNLL
and ICLR, we understand that it is better to conduct experiments with each dataset
separately and then analyze the results obtained in each case.

For the experiments described in this section we use the same algorithms and
hyper-parameters as in the prediction of the argumentative dimensions in SciARG
and the fine-grained assessment scores in ACL-CoNLL.

9.3.1.1 Experiments with the ACL-CoNLL dataset

Fig. 9.6 shows the distribution of recommendation scores for the ACL-CoNLL
subset, weighted-averaged according to the reviewers’ confidence scores, in the
same way as do for clarity and soundness and described in Section 9.2.1.

Similarly to what happens with clarity scores, most of the averages (37%) fall
within the range [4, 4.25). The difference is that, in the case of the overall recom-
mendation, there are few values (only 6%) above this range and most of the other
scores (55%) are scattered in the range [1, 3.75).

Figure 9.6: Distribution of overall recommendation average scores weighted by review-
ers’ confidence in ACL-CoNLL.
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The most natural option in this case, therefore, is to consider two classification
bins: the first one for manuscripts with average scores in the range [1, 3.75) and
the second one for scores in the range [3.75, 5]. In this way we obtain a split with
55-45 percent of instances in each class, which is shown in Fig. 9.7.

Figure 9.7: Final distribution of classes for overall recommendation scores in ACL-
CoNLL.

9.3.1.2 Experiments with the ICLR dataset

Fig. 9.8 shows the distribution of recommendation scores for ICLR, weighted-
averaged according to the reviewers’ confidence scores.

It can be seen that, in this case, we obtain a more normal distribution of scores
when compared to ACL-CoNLL. We can split the scores at the considered value
closest to the median (which is 5.67) obtaining two fairly balanced classes with
52 and 48% of instances in each case, as show in Fig. 9.9

Having two classes for the evaluation of the overall recommendation scores for
both PeerRead subsets allows us to compare results obtained in dataset. In ad-
dition, the classes can be considered as an approximation of what the review-
ers’ consensus recommendation would be in terms of acceptance/rejection of the
manuscript,12 although, as mentioned, this does not necessarily indicate whether
that the manuscript would actually be accepted or not.

12This is not available in the dataset. Only final acceptance/rejection is indicated.
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Figure 9.8: Distribution of overall recommendation average scores weighted by review-
ers’ confidence in ICLR.

Figure 9.9: Final distribution of classes for overall recommendation scores in ICLR.

9.3.2 Results and analysis

Tables 9.5 and 9.6 show the results obtained for the prediction of the overall rec-
ommendation score for ACL-CoNLL and ICLR, respectively. In both cases, ran-
dom forest is the best performing algorithm and, for both, the best configurations
are obtained with features than can be considered to provide information about the
cogency of the texts, except for the case of the second-top performing classifier
for ICLR, where features such as the number of proposal-implementation units
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and the number of elaboration and sequence relations, more clearly aligned with
the effectiveness dimension, are the most predictive ones one when used by a SVM
classifier.

Overall recommendation scores for ACL-CoNLL

Algorithm F1 Features

Majority 0.3551 −
RuleL 0.4609 length

RF 0.6944 child-main, child-prop, motiv-prob, supp, coarse-motiv
NN 0.6696 child-main, child-prop, motiv-prob, supp, coarse-motiv
DL 0.6398 child-main, child-prop, motiv-prob, supp

Table 9.5: Results for overall recommendation scores five-fold CV classification in ACL-
CoNLL. Top-performing classifiers: Random Forest, Nearest neighbours, Decision list.

Overall recommendation scores for ICLR

Algorithm F1 Features

Majority 0.3421 −
RuleL 0.4692 length

RF 0.5631 child-prop, motiv-prob
SVM 0.5524 child-main, prop-impl, elab, seq
NBK 0.5466 obs, result, supp

Table 9.6: Results for overall recommendation scores five-fold CV classification in
ICLR. Top-performing classifiers: Random Forest, Nearest neighbours, Decision list.

We can observe that there is a considerable difference in performance of classifiers
in both datasets. We cannot discard a hypothesis formulated by the authors of the
PeerRead dataset with respect to a potential bias with respect to a higher degree
of confidence of the ACL scores: ”We note, however, that ACL 2017 reviews were
explicitly opted-in while the ICLR 2017 reviews include all official reviews, which
is likely to result in a positive bias in review quality of the ACL reviews included
in this study”. (Kang et al., 2018)
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In addition, we can observe, when comparing the distribution of scores in both
datasets (in Figs. 9.7 and 9.9, respectively) that in ICLR the scores are much
more concentrated around the median and, therefore, the two-class division is less
straightforward than in the case of ACL-CoNLL. There are many more ambiguous
instances which are, naturally, more difficult to classify–in particular, considering
the size of the dataset and the algorithms used in these experiments. In order to
explore to what extent this effect could impact on the performance of the classi-
fiers, we conduct another experiment in which we split the ICLR dataset into two
classes but excluding manuscripts with weighted-average scores too close to the
median (less than 0.5 points in the 10-points scale). We thus obtain the distribution
of manuscripts in two classes shown in Fig. 9.10.

Figure 9.10: Final distribution of classes for overall recommendation scores in ICLR
with gap between classes.

Table 9.7 shows the results obtained for the predicted classes in this case. Even
considering that with the difficult training instances we are probably throwing
away useful ones, we can see that with the same classifier and features (ran-
dom forest with number of children of proposal units and number of motivation-
problem units) we obtain a 5% gain-0,03 macro-averaged F1 points.
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Overall recommendation scores for ICLR w/gap between classes

Algorithm Macro F1 Features

Majority 0.3375 −
RuleL 0.4656 length

RF 0.5927 child-prop, motiv-prob
NN 0.5948 child-prop, motiv-prob
SVM 0.5489 obs, result, supp, prop-impl

Table 9.7: Results for overall recommendation scores five-fold CV classification in ICLR
with gap between classes. Top-performing classifiers: Random Forest, Nearest neigh-
bours, Support Vector Machine.

9.4 Conclusions

In this section we explored both the prediction of overall recommendation scores
as well as of scores that inform about two argumentative quality dimensions of the
texts: their cogency and their effectiveness–and, more specifically, sub-dimensions
including their clarity, arrangement, and local sufficiency.

The experiments described and their results indicate that a small set of features
derived from argumentative units and relations automatically extracted from ab-
stracts do convey information that can contribute to predict scores assigned to the
whole manuscripts in a peer review process. Furthermore, the features involved
in the best performing models can in fact be interpreted as providing relevant in-
formation for the two considered aspects (clarity and soundness).

In the prediction of the overall recommendation scores we observe differences
in the performance of the classifiers depending on the venue and the method by
which the reviews were obtained–opted-in vs. available online–which might indi-
cate differences in the quality of the reviews themselves, as suggested by (Kang
et al., 2018). Further experiments are be necessary to confirm whether the cer-
tainty of the predictions obtained can, in some way, provide information about the
reliability of the reviews.
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These experiments are intended as a downstream application of our argument min-
ing models and, therefore, address very broad questions in relation to the appli-
cability of the predictions obtained by our models–in particular, for the compu-
tational assessment of argumentative quality of scientific abstracts. The results
obtained–in particular, when analyzing the scores for the clarity and soundness
aspects–show that, even significant gains can be obtained when using these fea-
tures when compared to very simple baselines.

It is evident, nevertheless, that these models alone cannot be used to obtain reliable
predictions about the argumentative quality of the manuscripts and that our results
provide only a starting point for further research in this direction.
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Chapter 10

CONCLUSIONS AND FUTURE
WORK

In this thesis we addressed the identification of argumentative components and re-
lations in scientific abstracts. We proposed a new annotation scheme intended to
bridge the gap between fine-grained discourse-level analysis, high-level classifi-
cation of rhetorical components, and the identification of argumentative structures
in scientific texts. In addition, we aimed to contribute to the advancement of ar-
gument mining research in a domain that, according to several authors, has not
received sufficient attention (Al Khatib et al., 2021).

Even when we took as reference works that rely on theoretical approaches to
argumentation and discourse analysis–both in general and in scientific texts–we
adopted a pragmatic perspective in our work. In Chapter 3 we described our pro-
posed annotation scheme, SciARG, and explained several of the decisions that
guided its development, including the repertoire of types of units and relations
considered, the choice to adopt sentences as main annotation units, and the possi-
bility of annotating sentences with more than one type. We applied the proposed
scheme to generate the SciARG-CL corpus, which enriches a subset of the ab-
stracts included in the SciDTB corpus (Yang and Li, 2018) with an argumentation
annotation layer. The decision of considering the SciDTB corpus as the basis for
our annotations was made expressly with the purpose of analyzing potential bene-
fits of leveraging discourse-level annotations in the identification of argumentative
units and relations.
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By making the SciARG corpus available, we expect it to serve as a basis for
future research on how the various discourse and argumentative levels of analyses
interplay.

We proposed to model the identification of argumentative structures in SciARG
annotations by means of four related tasks (unit type, parent attachment, relation
type, main unit). These tasks, as well as the experimental setups considered to
train and evaluated them, were described in Chapter 4. We investigated the poten-
tial benefits obtained by leveraging discourse-level SciDTB annotations by means
of a sequential transfer learning approach consisting in using SciDTB annotations
to pre-fine-tune SciBERT (Beltagy et al., 2019), the base BERT model used in our
experiments, before fine-tuning it with our target tasks. We observed that, in fact,
this procedure contributed to improve the performance of our argument mining
models. Moreover, the observed gains were inversely proportional to the size of
the target training data, confirming the adequacy of exploiting existing discourse-
level annotations for argument mining tasks. Intermediate fine-tuning is as a sim-
ple transfer learning method (Phang et al., 2018) which has mainly been applied
to low-level tasks. Our results contribute to validate its effectiveness also in high-
level, difficult semantic tasks. We also took into consideration the fact that the
four SciARG tasks are closely linked to each other and therefore proposed to train
them in a multi-task setting, observing that, in general, combining the training
signals of the four tasks contributed to improve the models performances with re-
spect to the models obtained when training the tasks independently. We adopted,
as multi-task loss function, the sum of all the tasks’ losses weighted according
to the task difficulty, which was learned by the network as a trainable parame-
ter. In order to deal with the fact that automatically identifying the argumentative
structure of the abstracts by means of four different tasks could lead to predicted
graphs that are not necessarily trees, we proposed and evaluated a set of heuris-
tics for changing edges that violate the structure well-formedness–making sure, in
addition, that in each abstract one and only one sentence is identified as main unit.

One of the stated objectives of this thesis (Section 1.1) was to test our hypothesis
that, in the frequent cases in which the proportion of sentences containing two or
more argumentative units is significantly lower than that of sentences containing
only one unit, it is not the best option to use indiscriminately a method designed
to deal with the most difficult cases. We proposed, instead, to first distinguish be-
tween these two types of sentences and then apply the method that best suits each
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case: sequence-level classification for sentences with a single unit and token-level
classification for sentences with more than one unit, for which we must also pre-
dict their boundaries. In Chapter 5 we addressed this issue. As the proposed
method requires the implementation of pipelines that rely on the possibility of
classifying the rhetorical/argumentative complexity of sentences, we explored dif-
ferent approaches for this task, including: i) a basic sentence-level classifier that
predicts the complexity directly, ii) predicting the–potentially multiple–types of
units contained in a sentence, and iii) a combination of both. The results obtained
confirm that discriminating sentences according to their complexity and applying
specific methods in each case can contribute to improve the overall predictions–as
well as the predictions of each subset. In this chapter we took advantage of the
availability of the MAZEA corpus of scientific abstracts (Dayrell et al., 2012),
which we used to conduct several of our experiments–both for the identification
of multiple types of rhetorical moves within scientific abstracts and for the clas-
sification of sentences according to their rhetorical complexity. In addition, we
continued exploring the potential benefits obtained by leveraging existing annota-
tions by means of an intermediate fine-tuning approach, considering, in this case,
the prediction of rhetorical-level annotations in MAZEA as supplementary task,
thus confirming the utility of this approach in yet another context.

In Chapter 6 we evaluated the application of the SciARG annotation scheme to
biomedical abstracts. We observed that, in spite of the fact that the it was orig-
inally developed and refined for computational linguistics, the scheme accounts
for the types of units and relations likely to be found in biomedical abstracts.
Somewhat lower levels of agreement between annotations in this scientific dis-
cipline were attributed to the greater complexity of the biomedical discourse, as
evidenced when analyzing the number and length of the components identified
and the way in which they are linked to each other. In particular, disagreement
was observed in the way in which the reported outcomes were analyzed in dif-
ferent annotations. After studying the sources of discrepancies, we observed that
some these ambiguities could be partly solved by updating the annotation guide-
lines. For more precise results, although, we considered that it would be required
to include domain expert annotators in the process. How to best incorporate this
knowledge (for instance, by refining non-expert annotations, by fully annotating
new texts, or by identifying only some types of units and relations–the ones for
which domain knowledge is most needed), and to what extent this process can be
partially automated, opens up new and interesting research questions.
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The experiments conducted with the biomedical annotated abstracts, SciARG-
BIO, confirmed some of the results that we had previously observed with SciARG-
CL, in Chapter 4, including the benefits derived from training the tasks jointly in a
multi-task setting. More relevantly, the experiments showed that BERT encoders
fine-tuned with annotations in one scientific discipline capture knowledge about
the argumentative structure of the abstracts that is useful to predict argumentative
units and relations in abstracts from a different discipline–even in research fields
where different argumentative complexity levels could be observed.

In the second part of this thesis we explored the practical usefulness of the pro-
posed annotations and the models trained with them. In particular, we addressed
the prediction of argumentative quality scores, both assigned directly to the ab-
stracts, or attached to full papers in a peer-review process. We observed, in both
cases, that a small set of features, which could be assigned semantics aligned
with argumentative quality dimensions, could in fact contribute to predict scores
intended to reflect those dimensions. These results can motivate many potential
follow-ups. The models described in this chapter–both in terms of the features
used and the algorithms implemented–were eminently exploratory. Should the
assessment of argumentative quality be the main research focus, additional exper-
iments would be necessary to identify more precisely the types of features that
best convey different argumentative dimensions, as well as the best algorithms
to use with them. Optimization of these algorithms’ parameters would also be
needed. Other works, including (Kang et al., 2018), use features extracted from
the manuscripts’ abstracts, among others, to predict scores assigned to papers in
a peer-review process. In our experiments, we used review scores assigned to
manuscripts as a proxy for argumentative quality scores of abstracts. While it is
natural to expect some degree of alignment between them, they are clearly two
different things. Additional research would therefore be needed to confirm their
correlation, and to explore in more depth in which contexts and for which tasks
information extracted from the abstracts can be considered as representative of
information expected to be obtained from the full papers.

In the two chapters included in the second part of the thesis we considered the re-
liability of the quality scores assigned to the texts. In the case of the peer reviews,
in Chapter 9, a confidence score is provided by the reviewers explicitly. In this
case we had multiple scores for the same instance and used the reviewers’ confi-
dence scores to compute a weighted average. In the case of the scores assigned
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to SciARG-CL abstracts, in Chapter 8, we were in a different situation: for most
of the instances we had only one score but, in the set of instances annotated in
common, we could observe significant differences in the criteria followed to as-
sign them. Moreover, we observed differences in the levels of reliability between
annotators. Proposals have been made to select annotators and/or instances when
a large number of instances is available (for instance, in the context of crowd-
sourcing annotation initiatives). This was not our case. We therefore proposed to
reflect the observed differences in reliability in the training process, so the final
models could weight differently instances produced by different annotators. We
observed that, either including information about the annotators explicitly in the
training process, or weighting the instances according the the annotator’s reliabil-
ity, led to improvements in the predictions of the most reliable scores. This also
opens up some relevant research questions. In particular, on how to best reflect
the different levels of reliability of different annotators in the process of training
models with a limited number of instances for highly-subjective tasks.

Even when our annotation scheme was developed specifically for abstracts, we
believe it to have a level of generality that could make it applicable to other parts
of scientific publications, such as papers’ introduction and/or conclusion sections.
Further research to confirm this hypothesis would be a natural continuation to the
work described in this thesis. To extend the annotation of argumentative units and
relations to other sections of the papers, and to explore potential mappings be-
tween the argumentative structure of the abstract and the argumentative structure
of other sections, could also lead to interesting follow-up research, such as the
generation of argumentative summaries based on predictions obtained by models
trained with our proposed annotations.

233



“output” — 2021/10/1 — 15:43 — page 234 — #250



“output” — 2021/10/1 — 15:43 — page 235 — #251

Bibliography

Abdollahpour, Z. and Gholami, J. (2018). Rhetorical structure of the abstracts of
medical sciences research articles. La Prensa Medica Argentina, 105(2):1–5.

Accuosto, P., Neves, M., and Saggion, H. (2021). Argumentation mining in scien-
tific literature: From computational linguistics to biomedicine. In Frommholz,
I., Mayr, P., Cabanac, G., and Verberne, S., editors, Proceedings of the 11th
International Workshop on Bibliometric-enhanced Information Retrieval co-
located with 43rd European Conference on Information Retrieval (ECIR 2021),
Lucca, Italy (online only), April 1st, 2021, volume 2847 of CEUR Workshop
Proceedings, pages 20–36. CEUR-WS.org.

Accuosto, P. and Saggion, H. (2019a). Discourse-driven argument mining in sci-
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L. d., Matwin, S., Mladenič, D., and Skowron, A., editors, Machine Learning:
ECML 2007, pages 406–417, Berlin, Heidelberg. Springer Berlin Heidelberg.

Vargas-Campos, I. and Alva-Manchego, F. (2016). SciEsp: Structural analysis of
abstracts written in Spanish. Computación y Sistemas, 20(3):551–558.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,
Kaiser, L. u., and Polosukhin, I. (2017). Attention is all you need. In Guyon,
I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and
Garnett, R., editors, Advances in Neural Information Processing Systems, vol-
ume 30, pages 5998–6008. Curran Associates, Inc.

Vecchi, E. M., Falk, N., Jundi, I., and Lapesa, G. (2021). Towards argument
mining for social good: A survey. In Proceedings of the 59th Annual Meeting
of the Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing (Volume 1: Long Papers),
pages 1338–1352, Online. Association for Computational Linguistics.

258



“output” — 2021/10/1 — 15:43 — page 259 — #275

Venant, A., Asher, N., Muller, P., Denis, P., and Afantenos, S. (2013). Expres-
sivity and comparison of models of discourse structure. In Proceedings of the
SIGDIAL 2013 Conference, pages 2–11, Metz, France. Association for Com-
putational Linguistics.

Vlachos, A. and Riedel, S. (2015). Identification and verification of simple claims
about statistical properties. In Proceedings of the 2015 Conference on Em-
pirical Methods in Natural Language Processing, pages 2596–2601, Lisbon,
Portugal. Association for Computational Linguistics.

Wachsmuth, H., Al-Khatib, K., and Stein, B. (2016). Using argument mining to
assess the argumentation quality of essays. In Proceedings of COLING 2016,
the 26th International Conference on Computational Linguistics: Technical Pa-
pers, pages 1680–1691, Osaka, Japan. The COLING 2016 Organizing Commit-
tee.

Wachsmuth, H., Kiesel, J., and Stein, B. (2015). Sentiment flow - a general model
of web review argumentation. In Proceedings of the 2015 Conference on Em-
pirical Methods in Natural Language Processing, pages 601–611, Lisbon, Por-
tugal. Association for Computational Linguistics.

Wachsmuth, H., Naderi, N., Hou, Y., Bilu, Y., Prabhakaran, V., Thijm, T. A., Hirst,
G., and Stein, B. (2017a). Computational argumentation quality assessment in
natural language. In Proceedings of the 15th Conference of the European Chap-
ter of the Association for Computational Linguistics: Volume 1, Long Papers,
pages 176–187, Valencia, Spain. Association for Computational Linguistics.

Wachsmuth, H., Potthast, M., Al-Khatib, K., Ajjour, Y., Puschmann, J., Qu, J.,
Dorsch, J., Morari, V., Bevendorff, J., and Stein, B. (2017b). Building an ar-
gument search engine for the web. In Proceedings of the 4th Workshop on
Argument Mining, pages 49–59, Copenhagen, Denmark. Association for Com-
putational Linguistics.

Wachsmuth, H., Stein, B., and Ajjour, Y. (2017c). “PageRank” for argument
relevance. In Proceedings of the 15th Conference of the European Chapter of
the Association for Computational Linguistics: Volume 1, Long Papers, pages
1117–1127, Valencia, Spain. Association for Computational Linguistics.

Wachsmuth, H., Trenkmann, M., Stein, B., and Engels, G. (2014). Modeling
review argumentation for robust sentiment analysis. In Proceedings of COL-

259



“output” — 2021/10/1 — 15:43 — page 260 — #276

ING 2014, the 25th International Conference on Computational Linguistics:
Technical Papers, pages 553–564, Dublin, Ireland. Dublin City University and
Association for Computational Linguistics.

Wachsmuth, H. and Werner, T. (2020). Intrinsic quality assessment of arguments.
In Proceedings of the 28th International Conference on Computational Linguis-
tics, pages 6739–6745, Barcelona, Spain (Online). International Committee on
Computational Linguistics.

Wadden, D., Lin, S., Lo, K., Wang, L. L., van Zuylen, M., Cohan, A., and Ha-
jishirzi, H. (2020). Fact or fiction: Verifying scientific claims. In Proceedings
of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pages 7534–7550, Online. Association for Computational Linguis-
tics.

Walker, M., Tree, J. F., Anand, P., Abbott, R., and King, J. (2012). A corpus for
research on deliberation and debate. In Proceedings of the Eighth International
Conference on Language Resources and Evaluation (LREC’12), pages 812–
817, Istanbul, Turkey. European Language Resources Association (ELRA).

Walsh, D. M., Tseng, B. P., Rydel, R. E., Podlisny, M. B., and Selkoe, D. J. (2000).
The oligomerization of amyloid β-protein begins intracellularly in cells derived
from human brain. Biochemistry, 39(35):10831–10839.

Walton, D., Reed, C., and Macagno, F. (2008). Argumentation schemes. Cam-
bridge University Press.

Wang, L. and Ling, W. (2016). Neural network-based abstract generation for
opinions and arguments. In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computational Linguistics: Human
Language Technologies, pages 47–57, San Diego, California. Association for
Computational Linguistics.

Wei, Z., Liu, Y., and Li, Y. (2016). Is this post persuasive? ranking argumentative
comments in online forum. In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume 2: Short Papers), pages
195–200, Berlin, Germany. Association for Computational Linguistics.

Weiss, K., Khoshgoftaar, T. M., and Wang, D. (2016). A survey of transfer learn-
ing. Journal of Big data, 3(1):1–40.

260



“output” — 2021/10/1 — 15:43 — page 261 — #277

Witten, I. H., Frank, E., Hall, M. A., and Pal, C. J. (2016). Data Mining, Fourth
Edition: Practical Machine Learning Tools and Techniques. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 4th edition.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P.,
Rault, T., Louf, R., Funtowicz, M., Davison, J., Shleifer, S., von Platen, P., Ma,
C., Jernite, Y., Plu, J., Xu, C., Le Scao, T., Gugger, S., Drame, M., Lhoest, Q.,
and Rush, A. (2020). Transformers: State-of-the-art natural language process-
ing. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations, pages 38–45, Online. Associa-
tion for Computational Linguistics.

Wolfe, C. R., Britt, M. A., and Butler, J. A. (2009). Argumentation schema and the
myside bias in written argumentation. Written Communication, 26(2):183–209.
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Appendix A

PRELIMINARY EXPERIMENTS

In this appendix we report preliminary experiments aimed at mining arguments
in scientific abstracts as well as a pilot application in which we used the au-
tomatically identified units and relations to predict the acceptance/rejection of
manuscripts in a computer-science venues.

The experiments described in this section and its results were presented at ArgMin-
ing 2019 (6th Workshop on Argument Mining)1.

This appendix is a summary of (Accuosto and Saggion, 2019b), included in the
workshop proceedings.

1webis.de/events/argmining-19/
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A.1 Argument mining annotations

A.1.1 Data

In order to explore the possibility of leveraging discourse information for the iden-
tification of argumentative components and relations we add a new annotation
layer to the Discourse Dependency Tree-Bank for Scientific Abstracts (SciDTB)
(Yang and Li, 2018). SciDTB contains 798 abstracts from the ACL Anthology
(Radev et al., 2009) annotated with elementary discourse units (EDUs) and re-
lations from the RST Framework (Mann and Thompson, 1988). Poly-nary RST
discourse relations are binarized in SciDTB by means of a right-heavy transfor-
mation in order to represent discourse structures as dependency trees (Li et al.,
2014).

We consider a subset of the SciDTB corpus consisting of 60 abstracts from the
Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP) and transformed them into a format suitable for the GraPAT
graph annotation tool (Sonntag and Stede, 2014),2 which had been previously tai-
lored to the specificities of our proposed annotation scheme, described in Section
A.1.2.

The corpus enriched with the argumentation3 level contains a total of 327 sen-
tences, 8012 tokens, 862 discourse units and 352 argumentative units linked by
292 argumentative relations.

A.1.2 Annotation scheme

Several argumentation mining works (Lippi and Torroni, 2016b) use claims and
premises as basic argumentative units. In the case of scientific discourse, how-
ever, it is frequent to find that claims are not explicitly stated in an argumentative
writing style but are instead left implicit (Hyland, 1998).

2angcl.ling.uni-potsdam.de/resources/grapat.html
3The annotations are made available to download at scientmin.taln.upf.edu/argmi

n/scidtb argmin annotations.tgz
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The description of the problem addressed in the paper, for instance, usually con-
veys implicit claims in relation to the relevance of the problem at stake and/or the
adequacy of the proposed approach.

We introduce a fine-grained annotation scheme aimed at capturing information
that accounts for the specificities of the scientific discourse, including the type
of evidence that is offered to support a statement (e.g., background information,
experimental data or interpretation of results). This can provide relevant informa-
tion, for instance, to assess the argumentative strength of a text.

The types of proposed units considered in our scheme can be mapped–even if with
a different level of granularity–to concepts in CoreSC (Liakata et al., 2010) and
AZ categories, which would enable additional research on the potential of using
existing annotated corpora for argument mining tasks.

Like (Peldszus and Stede, 2016), we consider EDUs as the minimal spans that can
be annotated. Argumentative units can, in turn, cover multiple sentences.

The proposed units include:

• proposal (problem or approach)
• assertion (conclusion or known fact)
• result (interpretation of data)
• observation (data)
• means (implementation)
• description (definitions/other information)

In line with (Kirschner et al., 2015b), we adopt in our annotation scheme the
classic support and attack argumentative relations and the two discourse relations
detail and sequence.

Fig. A.2 shows a subset of the argumentative components and relations annotated
in an abstract from (Zhang and Wang, 2014),4 including a proposal and two sup-
porting units: an assertion and a result. Fig. A.1 shows the original discourse
units and relations as annotated in SciDTB.

4aclweb.org/anthology/D14-1033
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Figure A.1: Partial discourse structure Figure A.2: Partial argumentative structure

In the subset of SciDTB annotated for our experiments, the types of argumenta-
tive units are distributed as follows: 31% of the units are of type proposal, 25%
assertion, 21% result, 18% means, 3% observation, and 2% description.

In turn, the relations are distributed: 45% of type detail, 42% support, 9% addi-
tional, and 4% sequence. No attack relations were identified in the set of currently
annotated texts.

When considering the distance5 of the units to their parent unit in the argumenta-
tion tree, we observe that the majority (57%) are linked to a unit that occurs right
before or after it in the text, while 19% are linked to a unit with a distance of 1 unit
in-between, 12% to a unit with a distance of 2 units, 6% to a unit with a distance
of 3, and 6% to a unit with a distance of 4 or more.6

5By distance we refer to the number of argumentative units that occur between two units in the
text.

6According to the position of the parent unit, there are 200 relations pointing forward and 92
in which the parent occurs before in the text.
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A.2 Argument mining experiments

The experiments in this section, are aimed at exploring the potential of applying
a transfer learning method to improve the performance of argument mining tasks
trained with a small corpus of 60 abstracts by leveraging the discourse annotations
available in the full SciDTB corpus.

A.2.1 Tasks

We define the following set of argument mining tasks:

• AFu (argumentative function): Identify the boundaries and argumentative
functions of the components. In the example in Fig. A.2, it would imply to
identify the boundaries of the three nodes and the two support relations that
link them.

• ATy (argumentative unit): Identify the boundaries and types of the com-
ponents. In the example, the proposal, assertion and a results units.

• APa (argumentative attachment): Identify the boundaries of the compo-
nents and the relative position of the parent argumentative unit. For in-
stance, the assertion unit in Fig. A.2 is attached to the proposal unit with a
relative distance of one unit in the forward direction (as the assertion occurs
right before the proposal in the text). The result unit, in turn, is attached to
the proposal with a distance of four units in the background direction (the
units that occur between these two nodes are omitted in the figure).

A.2.2 Experimental setup

We train each of the tasks described in A.2.1 separately and compare the results
obtained with those obtained by an inductive transfer learning method in which
we use encoders trained with the RST annotations available in the SciDTB corpus.
These encoders are then used to produce contextualized representations of the
input tokens that are fed to the argument mining learning processes.
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The discourse parsing tasks considered to train the specialized encoders are:

• DFu (discourse function): Identify the boundaries and discourse roles of
the EDUs (attribution, evaluation, progression, etc.).

• DPa (discourse attachment): Identify the boundaries of the EDUs and the
relative position of the parent units in the RST tree.

The discourse tasks (DFu and DPa) are trained with the 738 abstracts left in the
SciDTB corpus when excluding the 60 abstracts annotated with arguments. This is
done in order to avoid introducing a bias that would not reflect the results obtained
when no discourse annotations are available.

All of the argument mining models (AFu, ATy, APa) are trained and evaluated in
a 10-fold cross-validation setting.

In all cases the models are generated by means of bi-directional long short-term
memory (BiLSTM) networks, as this type of architecture has proven to perform
reasonably well in argument mining tasks across different classification scenarios
(Eger et al., 2017). In order to simplify the experiments and the interpretation of
their results we use the same architecture for all tasks: two layers of 100 recurrent
units, Adam optimizer, naive dropout probability of 0.25 and a conditional random
fields (CRF) classifier as the last layer of the network. We use, for the BiLSTMs,
the implementation made available by the Ubiquitous Knowledge Processing Lab
of the Technische Universität Darmstadt (Reimers and Gurevych, 2017).7 As our
intention is to compare the different approaches and not necessarily obtain the
best possible models for these tasks, no hyper-parameter optimization is done in
these experiments and, in all of the cases, the networks are trained for 100 epochs.

All of the tasks are modeled as sequence labeling problems in which the tokens
are tagged using the beginning-inside-outside (BIO) tagging scheme. The tokens
are encoded as the concatenation of 300-dimensional dependency-based word em-
beddings (DEmb)8 (~k) (Komninos and Manandhar, 2016) and 1024-dimensional
contextualized word embeddings (ELMo) (~e) (Peters et al., 2018). In these exper-
iments we use the 5.5 billion-token version of ELMo trained with Wikipedia and
monolingual news from the WMT 2008-2012 corpora.9

7https://github.com/UKPLab/elmo-bilstm-cnn-crf
8https://www.cs.york.ac.uk/nlp/extvec/
9https://allennlp.org/elmo
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For the experiments with the RST encoders we include the 200-dimensional em-
beddings obtained from the concatenation of the backward and forward hidden
states of the top layers of the DFu or DPa models (RSTEnc) (~f and ~p, respec-
tively). Table A.1 summarizes the sets of embeddings used in these experiments
and their dimensions.

Each argument mining task is paired with one discourse parsing task for the trans-
fer learning experiments. While AFu and ATy are paired with DFu, APa is paired
with DPa. This means that the input for the AFu and ATy tasks is obtained as the
concatenation of the vectors [~k,~e, ~f ], while in the case of APa the input is [~k,~e, ~p].

Abbreviation Notation Dimensions

DEmb ~k 300
ELMo ~e 1024
GloVe ~g 200

RSTEnc (DFu/DPa) ~f / ~p 200

Table A.1: Word embeddings used in the experiments

A.2.3 Results

We adopt the ConNLL criteria for named-entity recognition10 to evaluate the per-
formances obtained in the identification of argumentative components and rela-
tions. Table A.2 shows the average F1-measures obtained for each of the settings
considering the epochs 10 to 100.11

Setting AFu ATy APa

DEmb+ELMo 0.66 0.63 0.38
DEmb+ELMo+GloVe 0.65 0.65 0.38

DEmb+ELMo+RSTEnc 0.69 0.67 0.40

Table A.2: Average F1-measures in epochs 10-100

10A true positive is considered when both the boundary and the type of the entity match.
11The epochs before the 10th are not significant as the models have not had enough time to learn

anything.
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Figure A.3: Trend lines for F1-measures in epochs 10-100 for AFu
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Figure A.4: Trend lines for F1-measures in epochs 10-100 for ATy
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Figure A.5: Trend lines for F1-measures in epochs 10-100 for APa
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The argument mining models trained with the representations produced by the
RST encoders (DEmb+ELMo+RSTEnc) yield better performances, with gains of
0.03, 0.04 and 0.02 F1 points for AFu, ATy and APa, respectively, over the models
trained solely with the dependency-based and ELMo embeddings (DEmb+ELMo).

In order to determine whether the better performance of the RST encoders is
due to the knowledge conveyed by the task-specific representations we conducted
an additional experiment in which we concatenated 200-dimensional GloVe em-
beddings12 (Pennington et al., 2014) (~g) obtaining 1524-dimension embeddings
[~k,~e,~g] used as input of each of the argument mining models. In this case, the
results obtained are mixed, with an increase in performance of 0.02 F1 points in
average–for the epochs 10 to 100–for ATy, a worse performance of 0.01 F1 points
for AFu and no difference in performance for APa. The models with the GloVe
embeddings (DEmb+ELMo+GloVe) have, therefore, worse performances in av-
erage of 0.04, 0.02 and 0.02 F1 points for AFu, ATy and APa with respect to the
models that include the embeddings obtained by means of the RST encoders.

Figures A.3, A.4 and A.5 show the trend-lines of F1-measures obtained with the
different models for the epochs 10 to 100 for the AFu, ATy and APa tasks, respec-
tively. The graphs show that the models with information from the RST encoders
not only learn better the argument mining tasks but they also do it in less time
with respect to the other settings.

These results support out initial hypothesis in the sense that transferring discourse
knowledge by means of representations learned in discourse parsing tasks can
contribute to improve the performance of argument mining models trained with a
rather small number of instances.

12We used the 6 billion tokens versions trained with Wikipedia 2014 and Gigaword 5 available
at https://nlp.stanford.edu/projects/glove/
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A.3 Acceptance prediction experiment

As a pilot application we explore the possibility of predicting the acceptance/rejection
of papers in computer science conferences13 based on the annotations generated
by the best-performing argument mining models.

Quality assessment metrics that consider elements such as clarity and simplic-
ity, lack of redundancy and comprehensiveness of scientific reporting have been
developed for abstracts in other domains–in particular, in life sciences–(Timmer
et al., 2003). These instruments were used in studies that show that abstracts with
higher formal quality scores–as measured by human experts–are more frequently
accepted for presentations in conferences (Timmer et al., 2001). We do not believe
that these results can be directly extrapolated to the quality assessment of scien-
tific abstracts in computer science, an area in which full manuscripts are most
frequently considered for review and where abstracts have less fixed structures.
Furthermore, clearer links between the formal quality of scientific reporting and
the overall quality of research in computer science still need to be established.
Considering all these limitations, we were interested in exploring whether the au-
tomatically identified argumentative structure of the abstracts could reflect some
quality aspects of the full manuscripts and if this, in turn, could contribute to
predict their acceptance in conferences in a specific research area in the field of
computer science.

A.3.1 Dataset

As training set for the acceptance prediction experiment we use 117 abstracts
of manuscripts submitted to the Compact Deep Neural Network Representation
with Industrial Applications (CDNNRIA) and the Interpretability and Robust-
ness for Audio, Speech and Language (IRASL) workshops held in the context of
the Thirty-second Conference on Neural Information Processing Systems (NIPS
2018). As test set we use 30 abstracts of manuscripts submitted to the Sixth In-
ternational Conference on Learning Representations (ICLR 2018). All of the ab-
stracts were collected from the OpenReviews website (Soergel et al., 2013).14

13In particular, in the areas of neural-based systems and its applications to speech and language.
14openreview.net
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The distribution of accepted/rejected papers in the training and test sets is shown
in Table A.3

Set Conference Accepted Rejected

Train CDNNRIA 35 23
Train IRASL 30 29

55 52

Test ICLR 15 15

Table A.3: Accepted/rejected papers in training and test sets

A.3.2 Experimental setup

The CDNNRIA, IRASL and ICLR abstracts are used as input to the AFu, ATy and
APa models described in Section A.2 obtaining sequences of argumentative units,
types and parent attachments. These sequences are then used as features to train
and evaluate a binary classifier aimed at predicting the acceptance or rejection of
the corresponding papers. Table A.4 shows sample training/test instances. As
the number of argumentative units identified in each abstract might differ we use
padding values (nofunc, notype and 100 for AFu, ATy and APa, respectively) to
generate training and test instances with a fixed number of features (equal to three
times the maximum number of argumentative units identified in the dataset).

Considering that we are dealing with a small set of features with a reduced num-
ber of potential values for each one, we use a decision tree algorithm for our pilot
classification experiment. In addition to the training and evaluation speed of the
algorithm we consider that the higher interpretability of the results–by examin-
ing the decision points–can also contribute to assess to what degree the different
elements of the predicted argumentative structure are used in the classification.
We use Weka’s implementation of the C4.5 algorithm (Quinlan, 1993) (J48) with
default parameters with the exception of the confidence factor used for pruning
the tree, which was selected evaluating the different models obtained against a
random split of 20% of the test set used for validation.15

15weka.classifiers.trees.J48 -C0.6 -M2
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x1 x2 ... xn

none additional ... support
support support ... none

... ... ... ...
support nofunc ... nofunc
proposal assertion ... assertion

result assertion ... proposal
... ... ... ...

observation notype ... notype
0 1 ... 1
1 1 ... 0
... ... ... ...
-5 100 ... 100

y1 y2 ... yn

REJECT ACCEPT â¦ ACCEPT

Table A.4: Example of input instances to the classifier

As the training set is not perfectly balanced, we pre-process the data with Weka’s
ClassBalancer algorithm, which assigns weights to each instance so that each class
has the same total weight.

A.3.3 Results

The classifier trained with the argumentative units and relations extracted from the
CDNNRIA/IRASL abstracts has a performance of 0.67 F1-score when evaluated
with the training set obtained from processing the ICLR abstracts,16 0.17 F1 points
above a random binary classification in a balanced set.

As expected, the main decision points in the tree correspond, broadly, to those
attributes that are also ranked higher when measuring their contribution to reduce
the entropy with respect to the class.17

1620 of the abstracts were correctly classified and ten were mis-classified: five as false positives
and five as false negatives

17As calculated by means of Weka’s InfoGainAttributeEval algorithm.
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Type Func. Distance par.

proposal 210 support 381 1 242
assertion 522 attack 0 2 439
result 35 detail 69 3 69
observation 3 additional 73 4 24
means 15 sequence 3 5 9
description 1 6 0

7 1

Table A.5: Statistics of predicted argumentative units and relations in the training set

Observing these features, we can see that the most relevant decision elements are
the parent attachment of the first argumentative unit, the argumentative functions
of the first two units and the argumentative type of the first unit. Also relevant are
the features that mark the end of the sequences of argumentative types and func-
tions for the majority of the instances. This means that the number of identified
units also have a relevant role in the predictions. However, the number of units by
itself is not a good predictor of the class. In fact, executing the same experiment
but replacing the non-padding values for function, type and attachment for fixed
values we obtain an F1-measure of 0.59 due, in particular, to a higher number of
false negatives (accepted papers classified as rejected).

Features P R F1

Arg. units alone 0.67 0.53 0.59

Arg. units with types, functions and parents 0.67 0.67 0.67

Table A.6: Precision, recall and F1-measures for the acceptance prediction classifiers
with and without fine-grained argumentative information
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