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Abstract

As the volume of data we produce continues to grow, manual techniques in-

creasingly struggle to keep up with the pace at which it is being generated, and

greater emphasis is being placed on the automatic extraction of meaning from

this data. Opinion mining and sentiment analysis provide valuable informa-

tion on the views expressed in a text, however, they tell us only what opinions

are being put forth and not why people hold the opinions they do. This is

the task addressed by argument mining. The majority of argument mining

techniques explored to date have focused on applying existing computational

linguistic techniques to identify specific facets of the argumentative structure

(for example, classifying premise/conclusion or argument/non-argument). The

techniques presented in this thesis complement and extend these existing ap-

proaches by taking as a starting point the rich heritage of philosophical research

in the analysis and understanding of argumentation, and drawing inspiration

from the ways in which humans understand the structure of an argument.

The argument mining techniques presented here cover: a study of explicit

linguistic expressions of the relationship between statements (e.g. “because”,

“therefore” or “however”); contextual knowledge in the form of premise-

conclusion topic models which capture common patterns of statements

matching one topic being used to support or attack statements matching an-

other topic; relating similarity and topical changes to underlying argu-

mentative structure; properties of large scale argument networks such

as how central a proposition is to the text, offering a clue to the argumentative

structure often intuitively employed by a human annotator, who will naturally

connect a range of supporting arguments to a central conclusion; and argu-

mentation schemes, common patterns of human reasoning which have been

detailed extensively in philosophy and psychology.
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Whilst each of these approaches produces reliable results, illuminating a

facet of the full argumentative structure, it is in their combination that these

techniques find their greatest strength. The final part of the work presented

here looks at combining the output from these individual approaches whilst

maintaining explainability of where the structure comes from. Allowing us, for

example, to say that there is an inference relation between x and y because

they form an instance of a particular argument scheme, or between y and z

because of the presence of a discourse indicator. By leveraging the strengths of

each, this combined explainable approach is shown to achieve an identification

of the argumentative structure that is both more detailed and more accurate

than existing argument mining techniques when tested on a corpus of debate

from the US 2016 Presidential election, and comparable results to state of the

art techniques when tested on widely used third-party corpora.

The work presented in this thesis offers two principal contributions, the

development of a range of argument mining techniques grounded in argumen-

tation theory, and, the introduction of Explainable Argument Mining (XAM).



Chapter 1

Introduction

As research on specific tasks in data mining has matured, it has been picked up

commercially and enjoyed rapid success, with, for example, the sentiment ana-

lytics market alone estimated to reach approximately $6bn by 20231. Existing

techniques are, however, limited in their ability to identify more complex struc-

tural relationships between concepts. Although opinion mining and sentiment

analysis provide techniques which are proving to be enormously successful in

marketing and public relations (where major brands use the techniques to

track opinion of both their own and competitor brands amongst existing and

potential customer groups), and in financial market prediction (where large-

scale aggregation of sentiment can be used to give insight into likely trends),

they can only tell us what opinions are being expressed and not why people

hold the opinions they do.

The study of argumentation, and in particular, the analysis of argument

structure, aims to address this issue by turning unstructured text into struc-

tured argument data and thereby giving an understanding not just of the

individual points being made, but of the relationships between them and how

they work together to support (or undermine) the overall message. Figure 1.1,

for example, shows an analysis of the argumentative structure contained in the

following text:

Trump’s speech was poor. The speech was “lacking in policy prescriptions,” and its

“strident rhetoric masked a lack of depth,” said Robert McFarlane, a former national security

1https://www.marketresearchfuture.com/reports/sentiment-analytics-market-4304

1



2

adviser. However, his popularity in the polls continues to rise, perhaps because of his recently

self-declared high IQ.

Figure 1.1: An example of analysed argumentative structure

This analysis shows the conflict between the statements that “Trump’s

speech was poor” and “his popularity in the polls continues to rise”, with

the former being supported by the statements of former national security ad-

viser Robert McFarlane shown as an instance of argument from expert opinion

(where the words of someone knowledgeable in a field are used to support a

given claim), and the latter supported by the suggested reason of “his recently

self-declared high IQ”.

Whilst there is evidence that argument analysis aids comprehension of large

volumes of data, the manual extraction of argument structure is a skilled

and time consuming process. For example, Robert Horn talking about the

argument maps he produced on the debate as to whether computers can think,

quotes a student as saying “These maps would have saved me 500 hours of time

my first year in graduate school”2, however Metzinger (1999) notes that over

7,000 hours of work was required in order for Horn and his team to create

these maps.

Although attempts have been made to increase the speed of manual argu-

ment analysis (Bex et al., 2013), it is clearly impossible to keep up with the rate

of data being generated across even a small subset of domains and, as such,

2http://www.stanford.edu/~rhorn/a/topic/phil/artclTchngPhilosphy.html
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attention is increasingly turning to Argument Mining3(Stede and Schneider,

2018; Lawrence and Reed, 2020), the automatic identification and extraction

of argument components and structure.

The field of Argument Mining has been expanding rapidly in recent years

with ACL workshops on the topic being held annually, from the first in 20144,

up to the most recent in 20195 which received a record number of 41 sub-

missions. Academic research groups as well as commercial initiatives such as

IBM’s Project Debater6 are pushing forward our ability to understand the

arguments contained in natural language text.

Due in part to this rapid growth and development, the majority of argu-

ment mining techniques explored to date have focused on applying existing

computational linguistic techniques to identify specific facets of the argumen-

tative structure (for example, classifying premise/conclusion or argument/non-

argument). The techniques presented in this thesis complement and extend

these existing approaches by taking as a starting point the rich heritage of

philosophical research in the analysis and understanding of argumentation,

and drawing inspiration from the ways in which humans understand the struc-

ture of an argument.

By virtue of this approach, the work presented here offers two principal

contributions: the development of a range of argument mining techniques

grounded in argumentation theory (see Section 1.1); and, the introduction

of Explainable Argument Mining (XAM).

Explainability in Artificial Intelligence (Adadi and Berrada, 2018; Gunning

et al., 2019) is a growing concern, with, for example, 67% of business leaders

surveyed in the PwC global CEO survey7 stating that they believe “AI and

automation will impact negatively on stakeholder trust levels”. Such concerns

are especially prevalent in areas dealing with sensitive decisions (such as legal

judgements), or involving strict editorial control (such as journalism). XAM

addresses these issues, providing results which match state of the art techniques

3Sometimes also referred to as argumentation mining
4http://www.uncg.edu/cmp/ArgMining2014/
5https://argmining19.webis.de/
6https://www.research.ibm.com/artificial-intelligence/project-debater/
7https://pwc.to/2pZTNuJ
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for accuracy, whilst also drawing inspiration from the ways in which humans

understand the structure of an argument to explain the decisions made in

the machine extracted argument structure (for example to say that the sys-

tem believes there is an inference relation between x and y because they form

an instance of a particular argument scheme, or between y and z because of

the presence of a discourse indicator). XAM has already been adopted as a

key component of the BBC Evidence Toolkit project8, an online application

designed to encourage users to dissect and critically appraise the internal rea-

soning structure of news reports which uses XAM to automatically analyse

user selected news stories. XAM unlocks a wide range of potential future

applications, a number of which are explored in Chapter 10.

1.1 Explainable Argument Mining Techniques

The first, and simplest, technique presented here is that of using discourse in-

dicators to determine the argumentative connections between adjacent propo-

sitions in a piece of text. Discourse indicators are linguistic expressions of the

relationship between statements (e.g. “because”, “therefore” or “however”),

and the identification of such indicators in a text is often the first method of

analysing argumentative structure taught to students. The results show that,

whilst such indicators can predict with high accuracy the argumentative struc-

ture of a text in those cases where they occur, they are very rarely present in

real-world arguments. Fewer than a third of the argumentative relations in

the corpus studied here are marked by any kind of discourse indicator, mean-

ing that this technique on its own is clearly insufficient. Figure 1.1 shows

two examples of this, with the default conflict relation being indicated with

“however”, and the default support being indicated with “because”.

Those discourse indicators that have been shown to have the highest pre-

cision can, however, be used to harvest weakly labelled data (data which has

not been explicitly labelled, but for which certain assumptions can be said to

hold) on a given topic, creating a corpus of inference (or conflict) relations

8https://www.bbc.co.uk/taster/pilots/evidence-toolkit-moral-maze
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that are common in that topic area. This captures the idea of an analyst

using contextual knowledge of the common arguments on a topic to identify

potential support and conflict relations. In this technique, the weakly labelled

data is used to create premise-conclusion topic models which capture an

understanding of an argument being made, not just from the words said, but

from an understanding of the broader issues. This weakly labelled data is used

to produce a matrix representing the inferential relationships between different

aspects of the topic, and from this matrix, we are able to determine inference

relations between statements in the original text.

Knowledge of the topics under discussion is also key to following lines of

reasoning, relating similarity and topical changes to the underlying argu-

mentative structure. This technique starts with the hypotheses that, firstly,

the argument structure to be determined can be represented as a tree, and

secondly, that this tree is generated depth first. Based on these assumptions

we can determine the structure by looking at how similar the topic of each

proposition is to its predecessor. If they are similar, then we assume that they

are connected and the line of reasoning is being followed. If they are not suffi-

ciently similar, then we first consider whether we are moving back up the tree,

and so compare the current proposition to all of those made previously and

connect it to the most topically similar previous point. Finally, if the current

point is not related to any of those made previously, then it is assumed to be

unconnected to the existing structure. Figure 1.1 highlights this technique,

with the topic first relating to Trump’s speech, before then moving on to look

at his popularity in the polls.

Some topics, or even particular propositions may be more central to the

argument than others. Again, this offers a clue to the argumentative structure

often intuitively employed by a human annotator, who will naturally connect

a range of supporting arguments to a central conclusion. This is studied by

considering the properties of large scale argument networks as a whole,

and looking at the complex interactions between their constituent propositions.

We investigate metrics for analysing properties of these networks, and present

techniques for determining these features directly from natural language text.
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We show that there is a strong correlation between these automatically iden-

tified features and the argumentative structure contained within the text.

Such patterns in the argumentative structure also exist at a more fine-

grained level, and are captured by argumentation schemes; patterns of

human reasoning which have been detailed extensively in philosophy and psy-

chology. In the final approach presented here, it is demonstrated that the

structure of such schemes can provide rich information for the task of auto-

matically identifying complex argumentative structures. By training a range

of classifiers to identify the individual proposition types which occur in these

schemes, it is possible not only to determine where a scheme is being used, but

also the roles played by its component parts. This work extends that already

carried out on scheme identification, removing the need for the structure to

have already been determined, and providing valuable ‘partial’ results where

some of the components of a scheme instance are correctly identified.

Whilst each of these approaches produces reliable results, illuminating a

facet of the full argumentative structure, it is in their combination that these

techniques find their greatest strength. The final part of the work presented

here looks at combining the output from these individual approaches whilst

maintaining explainability of where the structure comes from. It is shown that,

by leveraging the strengths of each, it is possible to achieve an identification

of the argumentative structure that is both more detailed and more accurate

than existing argument mining techniques.

1.2 Outline

The main content of this thesis begins in Chapter 2 with an in-depth review of

the argument mining field. This includes: foundational techniques that relate

to argument mining (Opinion Mining, Controversy Detection, Citation Min-

ing, and Argumentative Zoning); a detailed look at manual argument analysis

providing inspiration for many of the techniques presented in later chapters;

a framework for breaking down existing argument mining work into differ-

ent application areas (Identifying Argument Components, Identifying Clausal
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Properties, Identifying Relational Properties); and a thorough exploration of

existing work in each of these areas.

In Chapter 3, Argument Data is explored, looking first at available argu-

ment corpora, then techniques to automatically generate or extend the volume

of argument data available, before finally looking in detail at the corpora used

throughout the rest of the work presented here.

Chapters 4-8 then each introduce one of the techniques developed for this

work. These are: Discourse Indicators, providing the first study of the preva-

lence of such indicators and exploring their applicability to the argument min-

ing task; Premise-Conclusion Topic Models, an approach to automatically gen-

erate topic models from online data, representing common themes of inference

or support, on any given topic; Similarity, looking at a range of methods to

determine whether a pair of propositions are in some way similar in what

they express, and studying the connections between this similarity and argu-

ment structure; Graph Properties, investigating whether properties of large

scale argument graphs, such as the centrality of a particular proposition in the

graph, can be determined directly from linguistic cues in the text, and then

used to determine the argument structure, rather than the other way around;

Argument Schemes, presenting a technique for identifying individual scheme

components, and using these to both automatically label schemes, as well as

give clues as to how they fit in a larger argument structure.

Chapter 9 combines all of these approaches, presenting a rule-based method

of combination, which has the advantage of maintaining the explainability in-

herent in each individual approach. A representation of these results, com-

pliant with the Argument Interchange Format (Chesñevar et al., 2006) and

Inference Anchoring Theory (Budzynska and Reed, 2011) is further proposed,

showing how the reasons for the decisions made can be viewed as supporting

Searle’s (Searle, 1969) first preparatory rule for assertion (the speaker has ev-

idence (reasons etc.) for the truth of the proposition being asserted). The

results for the rule based combination method are compared to, and shown to

outperform, a number of machine learning based methods of combining the

same. This shows that not only does such a rule-based approach maintain
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explainability, but also does not lose out in performance compared to alter-

native combination approaches. Finally, the rule based combination method

is evaluated against two widely used argumentation corpora (the Argument

Annotated Essays corpus (Stab and Gurevych, 2017), and the Argumenta-

tive Microtext corpus (Peldszus and Stede, 2016)) and the results compared to

existing work on these datasets. This comparison shows that the combined ap-

proach can produce comparable results to state of the art techniques developed

specifically for use on this data.

Finally, Chapter 10 looks ahead to a number of potential downstream appli-

cations of argument mining. These range from applications which rely directly

on argument mining algorithms to provide their functionality, to software for

visualising and analysing arguments once the argumentative structure has been

successfully mined.

1.3 Published Work

The different chapters composing this work are, in many cases, extended and

revised versions of published research works. Below is a collected list of the

published articles which have formed the foundation of each chapter. Where

any of these papers have multiple authors, only work directly contributed by

the author of this thesis is included in these chapters. The most relevant texts

are marked in bold.

• Chapter 2: Literature Review

– Lawrence, J. and Reed, C. (2020). Argument mining: A

survey. Computational Linguistics, 45(4):765–818

• Chapter 3: Argument Data

– Visser, J., Duthie, R., Lawrence, J., and Reed, C. (2018a). In-

tertextual correspondence for integrating corpora. In Proceedings

of the 11th International Conference on Language Resources and

Evaluation (LREC), pages 3511–3517, Miyazaki, Japan. European

Language Resources Association (ELRA)
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– Reed, C., Budzynska, K., Duthie, R., Janier, M., Konat,

B., Lawrence, J., Pease, A., and Snaith, M. (2017). The ar-

gument web: an online ecosystem of tools, systems and ser-

vices for argumentation. Philosophy & Technology, 30(2):137–

160

– Konat, B., Lawrence, J., Park, J., Budzynska, K., and Reed, C.

(2016). A corpus of argument networks: Using graph properties to

analyse divisive issues. In Proceedings of the 10th edition of the

Language Resources and Evaluation Conference

– Duthie, R., Lawrence, J., Budzynska, K., and Reed, C. (2016b). The

CASS technique for evaluating the performance of argument min-

ing. In Proceedings of the 3rd Workshop on Argumentation Mining,

pages 40–49, Berlin, Germany. Association for Computational Lin-

guistics

– Lawrence, J., Janier, M., and Reed, C. (2015). Working

with open argument corpora. In Proceedings of the 1st

European Conference on Argumentation (ECA 2015), Lis-

bon. College Publications

– Lawrence, J. and Reed, C. (2014). AIFdb corpora. In

Parsons, S., Oren, N., Reed, C., and Cerutti, F., editors,

Proceedings of the Fifth International Conference on Computational

Models of Argument (COMMA 2014), pages 465–466, Pit-

lochry, Scotland. IOS Press

– Janier, M., Lawrence, J., and Reed, C. (2014). OVA+: An argument

analysis interface. In Parsons, S., Oren, N., Reed, C., and Cerutti,

F., editors, Proceedings of the Fifth International Conference on

Computational Models of Argument (COMMA 2014), pages 463–

464, Pitlochry, Scotland. IOS Press

– Bex, F., Lawrence, J., Snaith, M., and Reed, C. (2013). Implement-

ing the argument web. Communications of the ACM, 56(10):66–73

– Lawrence, J., Bex, F., Reed, C., and Snaith, M. (2012b).
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AIFdb: Infrastructure for the argument web. In Proceedings

of the Fourth International Conference on Computational

Models of Argument (COMMA 2012), pages 515–516, Vi-

enna, Austria. IOS Press

– Bex, F., Gordon, T. F., Lawrence, J., and Reed, C. (2012). In-

terchanging arguments between Carneades and AIF – Theory and

practice. In Proceedings of the Fourth International Conference on

Computational Models of Argument (COMMA 2012), pages 390–

397, Vienna, Austria. IOS Press

• Chapter 4: Discourse Indicators

– Lawrence, J. and Reed, C. (2015). Combining argument

mining techniques. In Proceedings of the 2nd Workshop on

Argumentation Mining, pages 127–136, Denver, CO. Asso-

ciation for Computational Linguistics

• Chapter 5: Premise-Conclusion Topic Models

– Lawrence, J. and Reed, C. (2017a). Mining argumentative

structure from natural language text using automatically

generated premise-conclusion topic models. In Proceedings

of the 4th Workshop on Argument Mining, pages 39–48,

Copenhagen, Denmark. Association for Computational Lin-

guistics

• Chapter 6: Similarity

– Lawrence, J., Park, J., Budzynska, K., Cardie, C., Konat,

B., and Reed, C. (2017a). Using argumentative structure

to interpret debates in online deliberative democracy and

erulemaking. ACM Transactions on Internet Technology

(TOIT), 17(3):25

– Murdock, J., Allen, C., Borner, K., Light, R., McAlister, S., Raven-

scroft, A., Rose, R., Rose, D., Otsuka, J., Bourget, D., Lawrence, J.,
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and Reed, C. (2017). Multi-level computational methods for inter-

disciplinary research in the hathitrust digital library. PLOS ONE,

12(9):1–21

– Lawrence, J., Reed, C., Allen, C., McAlister, S., and Ravenscroft,

A. (2014). Mining arguments from 19th century philosophical texts

using topic based modelling. In Proceedings of the First Workshop

on Argumentation Mining, pages 79–87, Baltimore, MD. Associa-

tion for Computational Linguistics

• Chapter 7: Graph Properties

– Lawrence, J. and Reed, C. (2017b). Using complex argu-

mentative interactions to reconstruct the argumentative

structure of large-scale debates. In Proceedings of the

Fourth Workshop on Argumentation Mining, Copenhagen.

Association for Computational Linguistics

• Chapter 8: Agumentation Schemes

– Visser, J., Lawrence, J., Reed, C., Wagemans, J., and Wal-

ton, D. (2021). Annotating argument schemes. Argumentation,

35:101–139

– Visser, J., Lawrence, J., Wagemans, J., and Reed, C. (2018c). Revis-

iting computational models of argument schemes: Classification, an-

notation, comparison. In Modgil, S., Budzynska, K., and Lawrence,

J., editors, Proceedings of the Seventh International Conference on

Computational Models of Argument (COMMA 2018), pages 313–

324, Warsaw. IOS Press

– Lawrence, J. and Reed, C. (2016). Argument mining using

argumentation scheme structures. In Baroni, P., Stede, M.,

and Gordon, T., editors, Proceedings of the Sixth International

Conference on Computational Models of Argument (COMMA

2016), pages 379–390, Potsdam, Germany. IOS Press

• Chapter 10: Applications of Argument Mining
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– Lawrence, J., Visser, J., and Reed, C. (2018). BBC Moral

Maze: Test your argument. In Modgil, S., Budzynska,

K., and Lawrence, J., editors, Proceedings of the Seventh

International Conference on Computational Models of Argument

(COMMA 2018), pages 465–466, Warsaw. IOS Press

– Lawrence, J., Snaith, M., Konat, B., Budzynska, K., and

Reed, C. (2017b). Debating technology for dialogical ar-

gument: Sensemaking, engagement, and analytics. ACM

Transactions on Internet Technology (TOIT), 17(3):24:1–

24:23

– Pease, A., Lawrence, J., Budzynska, K., Corneli, J., and Reed, C.

(2017). Lakatos-style collaborative mathematics through dialecti-

cal, structured and abstract argumentation. Artificial Intelligence,

246:181–219

– Snaith, M., Medellin, R., Lawrence, J., and Reed, C. (2017). Arguers

and the Argument Web. In Bex., F., Grasso, F., Green, N., Paglieri,

F., and Reed, C., editors, Argument Technologies: Theory, Analysis

& Applications, pages 57–72. College Publications

– Lawrence, J., Duthie, R., Budzysnka, K., and Reed, C.

(2016). Argument analytics. In Baroni, P., Stede, M., and

Gordon, T., editors, Proceedings of the Sixth International

Conference on Computational Models of Argument (COMMA

2016), pages 371–378, Berlin. IOS Press

– Bex, F., Lawrence, J., and Reed, C. (2014a). Generalising argument

dialogue with the dialogue game execution platform. In Parsons, S.,

Oren, N., Reed, C., and Cerutti, F., editors, Proceedings of the Fifth

International Conference on Computational Models of Argument

(COMMA 2014), pages 141–152, Pitlochry, Scotland. IOS Press

– Bex, F., Snaith, M., Lawrence, J., and Reed, C. (2014b). Argublog-

ging: An application for the argument web. Web Semantics: Science,

Services and Agents on the World Wide Web, 25:9–15
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– Pease, A., Budzynska, K., Lawrence, J., and Reed, C. (2014). Lakatos

games for mathematical argument. In Parsons, S., Oren, N., Reed,

C., and Cerutti, F., editors, Proceedings of the Fifth International

Conference on Computational Models of Argument (COMMA 2014),

pages 59–66, Pitlochry, Scotland. IOS Press

– Lawrence, J., Bex, F., and Reed, C. (2012a). Dialogues

on the argument web: Mixed initiative argumentation with

arvina. In Proceedings of the 4th International Conference

on Computational Models of Argument (COMMA 2012),

pages 513–514, Vienna, Austria. IOS Press

• Chapter 11: Conclusion

– Lawrence, J., Visser, J., and Reed, C. (2019a). An online anno-

tation assistant for argument schemes. In Proceedings of the 13th

Linguistic Annotation Workshop, pages 100–107, Florence, Italy.

Association for Computational Linguistics

– Lawrence, J., Visser, J., Walton, D., and Reed, C. (2019b). A de-

cision tree for annotating argumentation scheme corpora. In 3rd

European Conference on Argumentation (ECA 2019), pages 97–

114, Groningen, Netherlands

– Visser, J., Duthie, R., Lawrence, J., and Reed, C. (2018b). Inter-

textual Correspondence for Integrating Corpora. In Calzolari, N.,

Choukri, K., Cieri, C., Declerck, T., Goggi, S., Hasida, K., Isahara,

H., Maegaard, B., Mariani, J., Mazo, H., Moreno, A., Odijk, J.,

Piperidis, S., and Tokunaga, T., editors, Proceedings of the Eleventh

International Conference on Language Resources and Evaluation

(LREC 2018), pages 3511–3517, Miyazaki, Japan. European Lan-

guage Resources Association (ELRA)

– Lawrence, J., Visser, J., and Reed, C. (2017c). Harness-

ing rhetorical figures for argument mining. Argument &
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Chapter 2

Literature Review

In this chapter, we look first, in Section 2.1, at existing work in areas which

form the foundation for many of the current approaches to argument mining,

including opinion mining, controversy detection, citation mining and argumen-

tative zoning. In Section 2.2 we look at the task of manual argument analysis,

considering the steps involved and tools available, as well as the limitations of

manually analysing large volumes of text. Section 2.3, provides an overview of

the tasks involved in argument mining before giving a comprehensive review

of each in Sections 2.4, 2.5 and 2.6.

2.1 Foundational Areas and Techniques

In this section, we look at a range of different areas which constitute precursors

to the task of argument mining. Although these areas are somewhat different

in their goals and approach, they all offer techniques which at least form a

useful starting point for determining argument structure. We do not aim to

present a comprehensive review of these techniques in this section, but instead,

to highlight their key features and how they relate to the task of argument

mining.

In Section 2.1.1, we present an overview of Opinion Mining, focusing specif-

ically on its connection to argument mining. Section 2.1.2 looks at Controversy

Detection, an extension of opinion mining which aims to identify topics where

opinions are polarised. Citation Mining, covered in Section 2.1.3, looks at

14
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citation instances in scientific writing and attempts to label them with their

rhetorical roles in the discourse. Finally, in Section 2.1.4, we look at Argumen-

tative Zoning, where scientific papers are annotated at the sentence level with

labels that indicate the rhetorical role of the sentence (criticism or support for

previous work, comparison of methods, results or goals, etc.).

2.1.1 Opinion Mining

As the volume of online user-generated content has increased, so too has the

availability of a wide range of text offering opinions about different subjects,

including product reviews, blog posts and discussion groups. The information

contained within this content is valuable not only to individuals, but also to

companies looking to research customer opinion. This demand has resulted in

a great deal of development in techniques to automatically identify opinions

and emotions.

Opinion mining is “the computational study of opinions, sentiments and

emotions expressed in text” (Liu, 2010). The terms ‘opinion mining’ and

‘sentiment analysis’ are often used interchangeably. Although much of the

published work mentioning sentiment analysis focuses on the specific applica-

tion of classifying reviews by polarity (either positive or negative), Pang and

Lee (2008) point out that “many construe the term more broadly to mean the

computational treatment of opinion, sentiment, and subjectivity in text”.

The link between sentiment, opinion and argumentative structure is de-

scribed in Hogenboom et al. (2010), where the role that argumentation plays in

expressing and promoting an opinion is considered and a framework proposed

for incorporating information on argumentation structure into the models for

sentiment discovery in financial news. Based on their role in the argumenta-

tion structure, text segments are assigned different weights relating to their

contribution to the overall sentiment. Conclusions, for example, are hypothe-

sised to be good summaries of the main message in a text and therefore key

indicators of sentiment. The interesting point here, from an argument mining

perspective, is that this theory could equally be reversed and sentiment be

used as an indicator of the argumentative process found in a text. Taking the
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example of conclusions, those segments which align with the overall sentiment

of the document are more likely to be a conclusion than those which do not.

Many applications of sentiment analysis are carried out at the document

level to determine an overall positive or negative sentiment. For example, in

Pang et al. (2002) topic-based classification using the two “topics” of positive

and negative sentiment is carried out. To perform this task, a range of differ-

ent machine learning techniques (including Support Vector Machines (Cortes

and Vapnik, 1995), Maximum Entropy and Näıve Bayes (Lewis, 1998)) are

investigated. Negation tagging is also performed using a technique from (Das

and Chen, 2001) whereby the tag NOT_ is prepended to each of the words

between a negation word (“not”, “isn’t”, “didn’t”, etc.) and the first punctua-

tion mark occurring after the negation word. In terms of relative performance,

the support vector machines (SVMs) achieved the best results, with average

three-fold cross-validation accuracies over 0.82 for positive/negative sentiment

classification, on a corpus of 700 randomly selected positive-sentiment and

700 randomly selected negative-sentiment movie reviews extracted from the

Internet Movie Database (IMDb) archive1.

Shorter spans of text are also considered in Grosse et al. (2012), which looks

at microblogging platforms such as Twitter with the aim of mining opinions

from individual posts to build an “opinion tree” which can be built recursively

by considering arguments associated with incrementally extended queries. Sen-

timent analysis tools are used to determine the overall sentiment for an initial

one word query, which is then extended and the change in overall sentiment

recalculated. By following this procedure, it is possible to see where extending

the query results in a change of overall sentiment and, as such, to determine

those terms which introduce conflict with the previous query. Conflicting ele-

ments in an opinion tree are then used to generate a “conflict tree”, similar to

the dialectical trees (Prakken, 2005) used traditionally in defeasible argumen-

tation (Pollock, 1987).

Opinion mining, however, is not limited to just determining positive and

negative views. In Kim and Hovy (2006b) sentences from online news media

1http://reviews.imdb.com/Reviews
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texts are examined to determine the topic and proponent of opinions being

expressed. The approach uses semantic role labelling to attach an opinion

holder and topic to an opinion-bearing word in each sentence using FrameNet2

(a lexical database of English, based on manual annotation of how words are

used in actual texts). To supplement the FrameNet data, a clustering technique

is used to predict the most probable frame for words which FrameNet does not

include. This method is split into three subtasks:

1. collection of opinion words and opinion-related frames - 1,860 adjectives

and 2,011 verbs classified into positive, negative and neutral. Clustering

By Committee (Pantel, 2003) is used to find the closest frame. CBC

uses the hypothesis that words that occur in the same context tend to

be similar.

2. semantic role labelling for those frames. A Maximum Entropy model is

used to classify frame element types (e.g. Stimulus, Degree, Experiencer

etc.)

3. mapping of semantic roles to the opinion holder and topic. A manually

built mapping table maps Frame Elements to a holder or topic.

Results show an increase from the baseline of 0.30 to 0.67 for verb target

words and of 0.38 to 0.70 for adjectives, with the identification of opinion

holders giving a higher F -score3 than topic identification.

Although understanding the sentiment of a document as a whole could be

a useful step in extracting the argument structure, the work carried out on

sentiment analysis at a finer-grained level perhaps offers greater benefit still.

In Wilson et al. (2005), an approach to phrase-level sentiment analysis is pre-

sented, using a two-step process: first, applying a machine learning algorithm

2https://framenet.icsi.berkeley.edu/
3F -score refers to the equally weighted harmonic mean of the precision and recall mea-

sured for a system. When the system is applied to several sets of data, the micro-average

F -score is obtained by first summing up the individual true positives, false positives, and

false negatives and then calculating precision and recall using these figures, whereas the

macro-average F -score is calculated by averaging the precision and recall of the system on

the individual sets (van Rijsbergen, 1979)



18

to classify a phrase as either neutral or polar (for which an accuracy of 0.76 is

reported); and then looking at a variety of features in order to determine the

contextual polarity (positive, negative, both or neutral) of each polar phrase

(with an accuracy of 0.62–0.66 depending on the features used).

In Sobhani et al. (2015), we see an example of extending simple pro and

con sentiment analysis, to determine the stance which online comments take

towards an article. Each comment is identified as “Strongly For”, “For”,

“Other”, “Against”, and “Strongly Against” the original article. These stances

are then linked more clearly to the argumentative structure by using a topic

model to determine what is being discussed in each comment, and classify it

to a hierarchical structure of argument topics. This combination of stance and

topic hints at possible argumentative relations – for example, comments about

the same topic that have opposing stance classifications are likely to be con-

nected by conflict relations, whereas those with similar stance classifications

are more likely to connect through support relations.

In Kim and Hovy (2006a), the link between argument mining and opinion

mining is clearer still. Instead of looking solely at whether online reviews are

positive or negative, a system is developed for extracting the reasons why the

review is positive or negative. Using reviews from epinions.com, which allows

a user to give their review as well as specific positive and negative points,

these specific positive and negative phrases were first collected and then the

main review searched for sentences which covered most of the words in the

phrase. Using this information, sentences were classified as “pro” or “con” with

unmatched sentences classified as “neither”. Sentences from further reviews

were then classified as, first, “pro” and “con” against “neither” followed by

classification into “pro” or “con”. The best feature selection results in an

F -score of 0.71 for reason identification and 0.61 for reason classification.

2.1.2 Controversy Detection

One extension to the field of opinion mining that has particular relevance to

argument mining is controversy detection, where the aim is to identify con-

troversial topics and text where conflicting points of view are being presented.
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The most clear link between controversy and argument detection can be seen

in Boltužić and Šnajder (2015), where argumentative statements are clustered

based on their textual similarity, in order to identify prominent arguments

in online debates. Controversy detection to date has largely targeted specific

domains: (Kittur et al., 2007) for example, looks at the cost of conflict in

producing Wikipedia articles, where conflict cost is defined as “excess work

in the system that does not directly lead to new article content”. Conflict

Revision Count (CRC), a measure counting the number of revisions in which

the “controversial” tag was applied to the article, is developed and used to

train a machine learning model for predicting conflict. Computing the CRC

for each revision of every article on Wikipedia resulted in 1,343 articles for

which the CRC score was greater than zero (meaning they had at least one

“controversial” revision). 272 of these articles were additionally marked as be-

ing controversial in their most recent revision. A selection of these 272 articles

is then used as training data for an SVM classifier. Features are calculated

from the specific page such as the length of the page, how many revisions were

carried out, links from other articles, and the number of unique editors. Of

these features, the number of revisions carried out is determined to be the

most important indicator of conflict and by predicting the CRC scores using a

combination of page metrics, the classifier is able to account for approximately

90% of the variation in scores. It is reasonable to assume that the topics cov-

ered on those pages with a high CRC are controversial and, therefore, topics

for which more complex argument may occur.

The scope of controversy detection is broadened slightly in Choi et al.

(2010) and (Awadallah et al., 2012) which both look at identifying controversy

in news articles. In Choi et al. (2010), a controversial issue is defined as

“a concept that invokes conflicting sentiments or views” and a subtopic as

“a reason or factor that gives a particular sentiment or view to the issue”.

A method is proposed for the detection of controversial issues, based on the

magnitude of sentiment information and the difference between the magnitudes

for two different polarities. Firstly, noun and verb phrases are identified as

candidate issues using a mixture of sentiment models and topical information.
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The degree of controversy for these issues is calculated by measuring the volume

of both positive and negative sentiment and the difference between them. For

subtopic extraction, noun phrases are identified as candidates and, for these

phrases, three statistical features (contextual similarity between the issue and

a subtopic candidate, relatedness of a subtopic to sentiment, and the textual

proximity of the issue and the candidate phrases) as well as two positional

features, are calculated. The results for subtopic identification are poor, with

an F -score of 0.50, however identifying controversial issues is considerably more

successful, with a precision of 0.834.

Awadallah et al. (2012) present the OpinioNetIt system, which aims to

automatically derive a map of the opinions-people network from news and other

Web documents. The network is constructed in four stages. Firstly, generic

terms are used to identify sample controversial topics. Next, opinion holders

are identified for each topic, and their opinions extracted. The acquired topics

and opinion holders are then used to construct a lexicon of phrases indicating

support or opposition. Finally, this process is performed iteratively using the

richer lexicon to identify more opinion holders, opinions and topics. Using this

approach a precision of 0.72 is achieved in classifying controversial opinions.

Despite the specific domain limitations of this controversy detection work,

(Dori-Hacohen and Allan, 2013) extends its scope to detecting controversy on

the web as a whole, enabling users to be informed of controversial issues and

alerted when alternative viewpoints are available. This is achieved by first

mapping a given webpage to a set of neighbouring Wikipedia articles labelled

on a controversiality metric, then combining the labels to give an estimate

of the page’s controversiality which is finally converted into a binary value

using a threshold. This approach gives a 22% increase in accuracy over a

sentiment-based approach, indicating that, although closely related, detecting

controversy is more complex than simply detecting opinions and looking at

where they differ.

Such widespread use of controversy detection offers the ability to address

4The precision is calculated based upon a user study where the participants are asked to

confirm if an issue is controversial, as such, recall is not reported.
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potential hotspot issues as they arise and the possibility of dealing with con-

flict in a debate at an early stage, before the quality of discussion can be be

negatively impacted. Rumshisky et al. (2017), for example, take advantage

of both content- and graph-based features to analyze the dynamics of social

or political conflict as it develops over time, using a combination of measures

of conflict intensity derived from social media data. Such methods for de-

termining controversial issues can play a significant role in determining the

argumentative structure inherent in a piece of text. Those points which are

controversial are likely to attract not only more attention, but also a more even

mix of supporting and attacking views, than those on which there is broad con-

sensus. Lawrence et al. (2017b) make this connection explicit, showing how

the divisiveness, or controversiality, of a proposition might be based upon the

relative number of its supports and conflicts. A proposition with many of both

might be taken to be divisive, whereas few of either might suggest only limited

divisiveness. Alternatively, given a pair of propositions which are in conflict,

the divisiveness of this conflict is shown to be a measure of the amount of

support on both sides. It is easy to see how this process could be reversed,

meaning that if we are able to identify controversial points in a piece of text,

we already know something about the argumentative structure.

2.1.3 Citation Mining

Citation mining involves the labelling of citation instances in scientific writing

with their rhetorical roles in the discourse. The techniques used to automat-

ically determine the motivating factors behind each citation map closely to

applications in argument mining, where text spans are labelled based on their

argumentative role. For example, if a citation is being used to highlight a gap

or deficiency in the referenced work, then the language used will be suggestive

of conflict relations between the two; if a citation is being used to back up the

current work, then there are likely argumentative support relations between

the two.

There are a broad range of manual schemes for classifying citation motiva-

tion and citation function (the reason why an author chooses to cite a paper),
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and (Teufel et al., 2006) looks at how this classification can be automated.

A classification scheme is first developed using guidelines for twelve different

categories (explicit statement of weakness, four types of contrast/comparison,

six types of agreement/usage and neutral). Human annotators testing this

scheme achieve a κ5 of 0.72 and when implemented as an automatic procedure

with the features listed below:

• Cue phrases

• Cues identified by annotators - 892 cue phrases identified by annotators

(around 75 per category)

• Verb tense and voice used for recognising statements of previous/fu-

ture/current work

• Location in paper/sentence/paragraph

• Self citations identified by author name

An accuracy of 0.77 and κ, determined based on level of agreement be-

tween the automated results and human annotated data, of 0.57 is achieved

for classification to the 12 specified categories (or accuracy 0.83, κ 0.58 for

3-way classification positive/negative/neutral) based on an evaluation corpus

of 116 articles, containing 2829 citations. Kappa is even higher for the top

level distinction, collapsing the similar categories into just four (statement of

weakness, contrast/comparison, agreement/usage and neutral) gives a κ value

of 0.59. By comparison, the human agreement for this configuration is κ =

0.76. Whilst this leaves a significant gap between automated and human per-

formance, it nevertheless suggests ‘moderate agreement’ using the automated

approach, an encouraging result for a complex task.

An attempt to classify the opinion an author holds towards a work which

they cite (for example, positive/negative attitudes or approval/disapproval) is

5κ is a statistical measure of inter-rater agreement, measuring pairwise agreement among

a set of coders and correcting for expected chance agreement (Carletta, 1996). An interpre-

tation of kappa values is offered by (Landis and Koch, 1977) which describes values between

0.01–0.20 as showing slight agreement, 0.21–0.40 fair agreement, 0.41–0.60 moderate agree-

ment, 0.61–0.80 substantial agreement and 0.81–1.00 almost perfect agreement.
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presented in Piao et al. (2007), where semantic lexical resources and NLP tools

are used to create a network of opinion polarity relations. Sentences contain-

ing citations are extracted first, before determining the opinion orientation of

the subjective words in the context of the citation. From these opinion orien-

tations, the attitude of the author towards the work which they are citing is

labelled.

Athar (2011) takes a similar approach, whereby analysis is performed on a

corpus of scientific texts taken from the ACL Anthology, and consisting of 8,736

citations from 310 research papers manually annotated for their sentiment.

Sentences are labelled as positive, negative or objective, with 1,472 used for

development and training. Each citation is represented as a feature set in a

Support Vector Machine (SVM) and processed using WEKA (Holmes et al.,

1994) and the WEKA LibSVM library with the following features:

• Word Level Features Unigrams and bigrams as well as 3-grams to

capture longer technical terms. POS tags are also included using two

approaches: attaching the tag to the word by a delimiter, and appending

all tags at the end of the sentence. A science-specific sentiment lexicon

is also added consisting of 83 polar phrases such as efficient, popular,

successful, state-of-the-art and effective.

• Contextual Polarity Features Sentence-based features e.g., presence

of subjectivity clues which have been compiled from several sources along

with the number of adjectives, adverbs, pronouns, modals and cardinals.

• Dependency Structures Typed dependency structures (De Marneffe

and Manning, 2008) describing the grammatical relationships between

words. For instance, in the sentence “CITE showed that the results for

French-English were competitive to state-of-the-art alignment systems.”,

the relationship between results and competitive will be missed by tri-

grams but the dependency representation captures it in a single feature

nsubj_competitive_results.

• Sentence Splitting each sentence is split by trimming its parse tree.

Walking from the citation node towards the root, the subtree rooted at
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the first sentence node is selected and the rest ignored

• Negation All words inside a k -word window of any negation term are

suffixed with a token _neg to distinguish them from their non-polar ver-

sions.

The results show that 3-grams and dependencies perform best in this task

with macro F -score 0.76 and micro F -score 0.89.

2.1.4 Argumentative Zoning

Argumentative Zoning (AZ) is the classification of sentences by their rhetor-

ical and argumentative role within a scientific paper. For example, criticism

or support for previous work, comparison of methods and results or goals.

Although this approach of labelling a sentence by its role is slightly removed

from the goal of identifying the argumentation structure contained within the

document, it is clear that the information obtained by AZ provides a useful

step towards determining the structure.

In Teufel et al. (2009), an annotation scheme covering fourteen possible

roles is used to classify sentences into mutually exclusive categories. These

categories extend the original seven categories presented in Teufel et al. (1999)

and are designed to be applied to material from the life sciences domain as

well as to the Computational Linguistics (CL) material considered in the earlier

work. This categorisation highlights the link between Argumentative Zoning

and Argument Mining. The ‘AIM’ (statement of specific research goal, or

hypothesis of current paper) and ‘OWN CONC’ (findings, conclusions (non-

measurable) of own work) categories, for example, are suggestive of conclu-

sions. ‘NOV ADV’ (novelty or advantage of own approach) and ‘SUPPORT’

(other work supports current work or is supported by current work) sugges-

tive of support relations, and ‘GAP WEAK’ (lack of solution in field, problem

with other solutions) and ‘ANTISUPP’ (clash with somebody else’s results or

theory) suggestive of conflict relations.

Teufel et al. use a domain expert to encode basic knowledge about the

subject, such as terminology and domain specific rules for individual cate-
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gories, as part of the annotation guidelines. The produced guidelines include

a decision tree, descriptions of the semantic nature of each category, rules for

pairwise distinction of the categories and a large range of examples taken from

both chemistry and computational linguistics. Human coders with background

knowledge in computational linguistics, and varied experience in chemistry ap-

plied these guidelines, achieving inter-annotator agreement for chemistry with

κ = 0.71 (N=3745, n=15, k=3). For CL, the inter-annotator agreement was

κ = 0.65 (N=1629, n=15, k=3). As a comparison, the inter-annotator agree-

ment for Teufel’s original, CL-specific AZ with seven categories (Teufel et al.,

1999) was κ = 0.71 (N=3420, n=7, k=3). This level of agreement between the

three annotators is acceptable overall and supports the hypothesis that the

task definition is domain-knowledge free. However, agreements involving the

semi-expert are higher than the agreement between expert and non-expert,

indicating that a general understanding of basic chemistry was not sufficiently

adequate to ensure that the non-expert understood enough of the material to

achieve the highest-possible agreement.

Merity et al. (2009) presents a maximum entropy classifier with each sen-

tence of an article classified into one of the seven basic rhetorical structures

from (Teufel et al., 1999). A maximum entropy model combined with the ad-

dition of new features to those used by Teufel gives an increase from 0.76 to

0.97 F -score on Teufel’s Computational Linguistics conference paper corpus

(48 computational linguistics papers, taken from the proceedings of the COL-

ING, ANLP and ACL conferences between April 1994 and April 1995). The

features used are described below:

• Unigrams, bigrams and n-grams Unigram and bigram features were

included and reported individually and together (as n-grams). These

features include all of the unigrams and bigrams above the feature cutoff.

• First The first four words of a sentence, added individually.

• Section A section counter which increments on each heading to measure

the distance into the document.
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• Location The position of a sentence between two headings (representing

a section).

• Paragraph The position of the sentence within a paragraph.

• Length Length of sentence grouped into multiples of 3.

• Teufel’s (1999) features To compare with previous work, most of the

features that gave Teufel the best performance are also implemented.

• Feature Cutoff Instead of including every possible feature, a cutoff was

used to remove features that occur less than four times.

• History features History features were used and Argumentative Zoning

treated as a sequence labelling task with history lengths ranging from

previous label to the previous four labels.

The results show that n-grams have by far the largest impact with a 21.39%

reduction in accuracy when they are removed (the next largest impact being

1.24% for the first four words of the sentence). The history features also have

an impact of just over 1%. It is shown that none of Teufel’s individual features

alone make a substantial contribution to the results when using the maximum

entropy model. To evaluate the wider applicability of Argumentative Zoning, a

corpus of Astronomy journal articles was also annotated with a modified zone

and content scheme, and a similar level of performance (around 0.96 accuracy)

was achieved.

2.2 Manual Argument Analysis

In this section we look at the task of manual argument analysis, considering

the steps involved and tools available, as well as the limitations of manually

analysing large volumes of text. Understanding manual analysis can offer

unique insight into how this task can be automated and provides a valuable

insight into how an analyst unpicks the complex argumentative relationships

represented in natural language texts.
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Although the argumentative structure contained within a piece of text (van

Eemeren et al., 2014) can be diagrammed manually using pen and paper or

simple graphics software, a wide range of specific argument diagramming tools

(Scheuer et al., 2010) has been developed to allow an analyst to identify the

argumentative sections of the text and diagram the structure which they rep-

resent (Kirschner et al., 2003; Okada et al., 2008). The advantages of this

approach, as opposed to the use of non-specialised software, are discussed in

Harrell (2005), though there is varied (and conflicting evidence of) impact on

the the day-to-day activity within domains in which these tools are applied

such as law, pedagogy, scientific writing (Lauscher et al., 2018a,b) and design

(Scheuer et al., 2010). The majority of these tools, such as Araucaria (Reed

and Rowe, 2004), Rationale (van Gelder, 2007), OVA (Bex et al., 2013) and

Carneades (Gordon et al., 2007), require the analyst to manually identify the

propositions involved in the argument being made and then connect them iden-

tifying the premises and conclusion. In many cases, this simple structure can

then be extended with more specialised information depending on the nature

of the analysis task being performed, for example, giving details of the Argu-

mentation Schemes (Walton et al., 2008) used or details of the participants and

their dialogical moves (for example, questioning or asserting) when analysing

dialogue.

Generally, manual argument analysis, as carried out using the tools previ-

ously mentioned, can be split into four distinct stages as shown in Figure 2.1.

Text segmentation

Argument / Non-Argument

Simple Structure

Refined Structure

Figure 2.1: Steps in argument analysis

Though both manual and automated analysis techniques may develop a
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more complex, hybrid approach in practice, the pipeline model presented here

offers a good starting point from which to introduce the range of techniques

currently available. Then in Section 2.3 we further dissect these steps, pre-

senting a more detailed view of the individual argument mining steps and how

they relate to the manual annotation process, explaining how increasingly the

pipeline view oversimplifies complex interdependencies.

2.2.1 Text segmentation

Text segmentation involves the extraction of the fragments of text from the

original piece that will form the constituent parts of the resulting argument

structure. Text segmentation can be considered as the identification of a form

of Elementary Discourse Units (EDUs). Though there are competing hypothe-

ses about what constitutes an EDU (for example, (Grimes, 1975; Givón, 1983)

view them as clauses; while (Hirschberg and Litman, 1993) views them as

prosodic units; (Sacks et al., 1974) as turns of talk; (Polanyi, 1988) as sen-

tences; and (Grosz and Sidner, 1986) as intentionally defined discourse seg-

ments), all agree that EDUs are non-overlapping spans of text corresponding

to the atomic units of discourse. (Peldszus and Stede, 2013a) refers to these

argument segments as ‘Argumentative Discourse Units’ (ADUs), and defines

an ADU as a ‘minimal unit of analysis’, pointing out that an ADU may not al-

ways be as small as an EDU, for example, “when two EDUs are joined by some

coherence relation that is irrelevant for argumentation, the resulting complex

might be the better ADU” (p20).

Generally speaking, in argument analysis, the sections that the analyst ex-

tracts correspond to the propositions expressed explicitly by the text; however,

some knowledge of the argument being made is often required in order to de-

termine the exact boundaries of these propositions and how fine-grained the

segmentation needs to be. In some cases, for example, propositional content

can occur nested in reported speech, such as the sentence “Simon said this is

a blue pen”. The rest of the argument structure may refer to either the whole

sentence (“Simon didn’t say that”), to the statement “this is a blue pen” (“it’s

clearly a black pen”) or to both parts separately (“Yes, I heard Simon say that,
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but he’s wrong, it’s a black pen”). Another challenging example is dislocation

which, similar to cleft constructions in syntax (Lasnik and Uriagereka, 1988),

occurs when one segment is embedded into another, such as the example given

in Saint-Dizier (2012): “Products X and Y because of their toxicity are not

allowed in this building”. In this case the conclusion, “Products X and Y are

not allowed in this building”, is split around the premise “because of their toxi-

city”. As these examples show, robustly identifying the text segments required

for an analysis can be challenging even for a human analyst.

An additional complication can occur in cases where some reconstruction

of the argument is required in order to identify the points being made. There

is a tendency for arguers to leave implicit an assumption required in order for

their conclusion to follow from their premises. This can often occur when the

omitted proposition is believed to be obvious; however it can also happen for

a range of other reasons, for example, to increase the rhetorical force of the

argument, or to conceal its unsoundness. Such missing premises are referred to

as enthymemes (Hitchcock, 1985), and can cause difficulties for both automatic

and manual segmentation due to the requirement of knowledge that may be

outside the scope of that expressed in the text.

2.2.2 Argument / Non-Argument Classification

This step involves determining which of the segments previously identified are

part of the argument being presented and which are not. For most manual

analysis tools this step is performed as an integral part of segmentation: the

analyst simply avoids segmenting any parts of the text that are not relevant

to the argument. However, in some cases, for example where segmentation

has been performed automatically or by a different analyst, this step must

be carried out independently. In these cases the judgement as to whether

a particular segment is argumentative can be made as a preliminary step in

determining the structure, or left until the end of the analysis, when any

segments left unconnected to the rest of the structure can simply be discarded.

Looking at the text shown in Example 1 below, we can see that the majority

of Michael Buerk’s introduction of Nick Dearden is non-argumentative, with
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only the single claim identified that Mr Dearden would like people not to have

to pay their debts. Meanwhile, almost the entirety of the response (excluding

brief connectives) forms part of the argument structure.

Michael Buerk: John Lamiday, thank you very much indeed for

joining us this evening. Our third witness is Nick Dearden, who

is director of the Jubilee Debt Campaign. Mr Dearden, you’d like

people not to have to pay their debts. Where’s the morality in that?

Nick Dearden: I wouldn’t like people not to have to pay their

debts across the board. But I think what we say is that this isn’t

simply a matter of individual morality. Debt is used time and again

as a set of economic decisions, and political decisions, to achieve

certain things in society. And very often what high levels of debt

can mean, and especially when the debt is on very unjust terms,

is a massive redistribution of wealth in society, from the poorest to

the richest.

Example 1: Excerpt from the BBC Moral Maze ‘Money’ corpus (http://

corpora.aifdb.org/Money). Argumentative segments are highlighted.

In some cases however, this task can be remarkably demanding. ‘Letters

to the Editor’ contributions, for example, can sometimes offer rich pickings for

the argument analyst, but such letters can often be little more than frivolity or

wit masquerading as argument and inference. Distinguishing argument from

non-argument in this domain is extremely demanding, even for a highly trained

human analyst.

2.2.3 Simple Structure

Once the elements of the argument have been determined, the next step is to

examine the links between them. This can be as simple as noting segments

that are thematically related, but usually involves the identification of support

and attack relations between segments. Whilst these relations can be simply
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labelled pairs, it is common to consider the varying ways in which components

can work together (Groarke et al., 1997):

Convergent Arguments In a convergent argument, multi-

ple premises are used to to independently support a single conclu-

sion. In this case the premises act on their own and the removal

of one premise from the argument does not weaken the others.

From Example 1 we can see that “what we say is that this isn’t

simply a matter of individual morality” and “I wouldn’t like people not to

have to pay their debts across the board” independently support “Mr Dearden

would like people not to have to pay their debts”.

Linked Arguments In a linked argument, multiple premises

work together to support a conclusion. The important point here

is that each premise requires the others in order to work fully. In

Example 1, the statements “Debt is used time and again as a set

of economic decisions, and political decisions, to achieve certain

things in society” and “very often what high levels of debt can mean, and

especially when the debt is on very unjust terms, is a massive redistribution of

wealth in society, from the poorest to the richest” work together to support the

point “what we say is that this isn’t simply a matter of individual morality”.

Divergent Arguments In some cases the same premise may

support multiple conclusions. Divergent arguments are some-

what less common and, as such, are not supported by those anal-

ysis tools which, for example, are limited to analysing arguments

in a tree structure.

Though Example 1 does not include a divergent argument, Dearden might

have said, ‘And if it’s not individual morality, then the state should take some

of the responsibility,’ which would have offered a second conclusion based on

the premise of individual morality.
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Sequential (or Serial) Arguments The final way in which

multiple premises can support a conclusion is in a sequential

argument. In this case, one premise leads to another and this,

in turn, leads to the conclusion. In Example 1, the statements

“very often what high levels of debt can mean, and especially

when the debt is on very unjust terms, is a massive redistribution of wealth in

society, from the poorest to the richest”, “what we say is that this isn’t simply

a matter of individual morality” and “Mr Dearden would like people not to

have to pay their debts” follow a sequential structure.

Hybrid Argument Structure More complicated arguments, such as that

in Example 1, usually involve several instances and combinations of the above

elements into a larger, hybrid, argument structure. The complete analysed

structure of Example 1 can be seen in Figure 2.2.

Figure 2.2: Simple argument structure of the text in Example 1

We must also consider conflict, or attack, relations between propositions.

These include both standard conflict relations where one proposition directly

conflicts with another, as well as more complex forms of defeating an argument

(Pollock, 1986):

Rebutting Attacks Rebutting arguments express a position that is di-

rectly incompatible with a conclusion (Pollock, 1986, p.38). Later in the debate

from which Example 1 is drawn, an opponent, Michael Portillo, says, ‘People

who lend money, that is to say, people who save money, say through building

societies, are very ordinary people.’ This offers a direct, rebutting attack to
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Dearden’s conclusion, expressed in Example 1, that debt is a massive redistri-

bution of wealth from the poorest to the richest.

Undercutting Attacks Undercutting arguments attack or conflict with

the inference between a premise and a conclusion, and, as such, offer a reason

for no longer believing the conclusion, rather than for believing the negation

of the conclusion (Pollock, 1986, p.39). Though the fragment of debate from

which Example 1 is drawn does not offer clear examples of undercutting, Por-

tillo might have retorted with, ‘If there were politicial decisions being taken,

they are being taken by elected officers – so state actions don’t require more

than individual morality’. Such an attack does not directly counter the con-

clusion, but instead focuses on the robustness of the passage from premise to

conclusion.

Although this approach to identifying argument structure is by far the most

common, other methodologies, such as (Toulmin, 1958) are also widely used;

perhaps the clearest synthesis for computational purposes is presented by the

philosopher J.B. Freeman (Freeman, 1991, 2011). For argument mining, suc-

cessful extraction of argument structure in one form can often be translated

into others, modulo expressivity constraints (we discuss different argument

representations and formats as well as the translation between them in Chap-

ter 3.

2.2.4 Refined Structure

Having determined the basic argumentative structure, some analysis tools al-

low this to be refined further. For example, Araucaria, Carneades, Rationale

and OVA allow the analyst to identify the argumentation scheme related to

a particular structure. Argumentation schemes are patterns of inference, con-

necting a set of premises to a conclusion, that represent stereotypical patterns

of human reasoning. Such schemes were originally viewed as rhetorical meth-

ods by which a speaker could influence their audience; later they have also

been adopted as a way to distinguish good arguments from bad. Argumen-

tation schemes can thus be seen as a historical descendant of the topics of
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Aristotle (1958), and, much like Aristotle’s topics, play a valuable role in both

the construction and evaluation of arguments. Arguments are evaluated based

on a set of critical questions corresponding to the scheme which, if not an-

swered adequately, result in the argument to which the scheme corresponds

defaulting.

The ‘Argument from Expert Opinion’ scheme (Walton, 1996) is commonly

used to illustrate the concept:

Major Premise: Source E is an expert in subject domain S containing propo-

sition A.

Minor Premise: E asserts that proposition A is true (false).

Conclusion: A is true (false).

with the associated critical questions:

1. Expertise Question: How credible is E as an expert source?

2. Field Question: Is E an expert in the field F that A is in?

3. Opinion Question: What did E assert that implies A?

4. Trustworthiness Question: Is E personally reliable as a source?

5. Consistency Question: Is A consistent with what other experts assert?

6. Backup Evidence Question: Is E’s assertion based on evidence?

Recent study has resulted in the identification and analysis of the most

important and commonly used schematic structures (Hastings, 1963; Perelman

and Olbrechts-Tyteca, 1969; Kienpointner, 1992; Pollock, 1995; Walton, 1996;

Grennan, 1997; Katzav and Reed, 2004; Walton et al., 2008). Whilst there

is much overlap in these classifications, they often differ in their granularity:

Pollock identifies fewer than ten schemes; Walton, nearly thirty; Grennan,

more than fifty; and Katvaz & Reed, more than one hundred. Due to these

differences, it is common for analysis tools to retain the grouping of schemes

into sets. Araucaria, for example, supports the Walton, Grennan, Perelman &

Olbrechts-Tyteca, Katzav & Reed and Pollock scheme sets.



35

Experiments on the annotation of Walton schemes by annotators with a

strong background in linguistics but who were provided with only the descrip-

tion of the schemes given in Walton et al. (2008) have shown that this is an

exceptionally difficult task, with results differing in both numbers of arguments

annotated and the distributions of units (Lindahl et al., 2019). However, re-

cent developments in annotation guidelines for these schemes, including the

decision tree based method described in Lawrence et al. (2019a), suggest that

this situation can be improved and offer hope for the construction of scheme

annotated corpora.

2.2.5 Limitations of manual analysis

Although these tools can be used for the analysis of small sections of text,

analysing large volumes of text quickly and, certainly in anything approaching

real time, is beyond their scope. Compendium6 IBIS map facilitators are

the closest, but the analysis involved is at a much higher level. The major

limitation is the amount of information that can be handled by a single analyst.

Efforts have been made to overcome this obstacle by both crowdsourcing of

annotation (Ghosh et al., 2014) and using hardware designed to allow multiple

trained annotators to collaborate on the same analysis (Bex et al., 2013). In

the first case, by applying a clustering technique to identify which pieces of

text were easier or harder for trained experts to annotate, it was determined

that the crowdsourced results were only accurate for those segments that were

identified as being easier for expert annotators. In the second case, whilst

the AnalysisWall, a touchscreen measuring 11 feet by 7 feet running bespoke

analysis software (Bex et al., 2013), has been used to analyse several hour-long

radio programmes in real time, it still does not come close to allowing for the

analysis of the vast volumes of data produced every day.

6http://compendium.open.ac.uk/
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2.3 Argument Mining: Automating Argument

Analysis

In the preceding sections, we have looked first at a range of different techniques

which are precursors to the task of argument mining, and at the manual anal-

ysis of the argumentative structure of a text, gaining an understanding of both

the nature of argumentative structure as well as the process by which a human

analyst understands and extracts this structure. In this section we now break

down the argument mining task into a range of individual challenges (see Fig-

ure 2.3). In Sections 2.4, 2.5 and 2.6, we will then look at each of these tasks

in more detail, drawing together work targeted at varying domains, and using

different approaches, to understand the challenges and progress made in each

of these areas.

Figure 2.3: The tasks and levels of complexity in argument mining techniques

For the purposes of this review, we use these tasks as a framework to

present and organise the work carried out in the field. In Section 2.4 we look

at automatic approaches for identifying argument components and determin-

ing their boundaries. In Section 2.5 we move on to look at the automatic
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identification of properties which these clauses have and in Section 2.6 we look

at the identification of relations from simple premise/conclusion relations to

argumentation scheme instances and dialogical properties. Where a piece of

work offers a large contribution to several areas, we include these in multiple

sections, grouping each part of their contribution with other works addressing

the same tasks individually. For each task, we consider work carried out using

a broad range of techniques, including statistical and linguistic methods.

We have seen in Section 2.2 how the steps in manual analysis increase in

complexity from segmenting argumentative components to identifying argu-

mentation schemes and dialogical relations. These levels are also reflected in

the automation of argument analysis. In some cases it is sufficient to know

merely the range of argumentative types used in order to grade student essays

(Ong et al., 2014), to know what stance an essay takes towards a proposition in

order to check it provides appropriate evidence to back-up its stance (Persing

and Ng, 2015), or whether a claim is verifiable in order to flag these in online

discussions (Park and Cardie, 2014). However, if the goal is to reconstruct en-

thymemes (Razuvayevskaya and Teufel, 2017) (see also the discussion of (Feng

and Hirst, 2011) in Section 2.6.2) or ask critical questions about support rela-

tions, we also need to extract the nature of the argumentation schemes being

used.

In Figure 2.3, we show how these automatic tasks are inter-related. Starting

from the identification of argument components by segmenting and classifying

these as part of the argument being made or not (these tasks are sometimes

performed simultaneously, sometimes separated and sometimes the latter is

omitted completely), we move down through levels of increasing complexity:

first considering the role of individual clauses (both intrinsic, such as whether

the clause is reported speech, and contextual such as whether the clause is

the conclusion to an argument); secondly considering argumentative relations

from simple premise/conclusion relationships,; and thirdly whether a set of

clauses forms a complex argumentative relation, such as an instance of an ar-

gumentation scheme. A similar classification of argument mining tasks is given

in Cabrio and Villata (2018), with ‘Component Detection’ being split into
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the subtasks of ‘Boundary Detection’ and ‘Sentence Classification’. Whilst

this represents a robust starting point, it is also important to distinguish

the types of classification (argument/non-argument and intrinsic/contextual).

Cabrio and Villata also include the broad categorisation of ‘Relation Predic-

tion’, which again can be further broken down, looking at both general and

argumentative relations.

The arrows shown between tasks in the figure indicate ways in which the

results from one task have been used to inform the execution of another. For

example, the arrow from the “Argument/Non-Argument” task to the “Contex-

tual Clausal Properties” task, reflects much early argument mining work (e.g.

(Moens et al., 2007)) which performed these tasks in sequence; deciding which

parts of the text were argumentative and then assigning a role to them. This

approach has been challenged however, with Carstens and Toni (2015) being

the first to point out that whether a sentence is argumentative or not often

depends on the context in which it is used, and instead advocating classifying

relations first and then considering sentences to be argumentative if they have

a relation connecting them (reflected in the arrow from “General Relations”

to “Argument/Non-Argument”).

Similarly, some tasks can inform each other, for example, where Feng and

Hirst (2011) showed that argument scheme instances could be classified given

general relations between ADUs, Lawrence and Reed (2015) showed that such

general relations can be determined by classifying argument scheme compo-

nents directly from segmented text. This inter-dependency between tasks has

given rise to a growth in the application of multi-objective learning approaches

(e.g. (Eger et al., 2017; Hou and Jochim, 2017; Galassi et al., 2018; Morio

and Fujita, 2018)), where all tasks are learnt and performed at the same

time. These examples highlight how the simple pipeline view of argument

mining, which characterises a lot of older research work, is increasingly being

superceded by more sophisticated and interconnected techniques.

Developments in argument mining are both being informed by, and inform-

ing, the related areas discussed in Section 2.1. For example, the work of Ong

et al. (2014) closely parallels both argumentative zoning and citation mining,



39

offering the opportunity to link related elements automatically identified in

scientific writing, such as how a claim may be supported by a nearby citation.

Rumshisky et al. (2017), look at the dynamics of social or political conflict

as it develops over time, automatically identifying controversial issues where

such conflict is occurring. While, Accuosto and Saggion (2019) show how ar-

gumentation in certain sections of a publication (in this case abstracts), can

be a good indicators of the quality of the work as a whole.

2.4 Identifying Argument Components

The automatic identification of the argumentative sections of a text corre-

sponds to the process of argument/non-argument classification discussed in

Section 2.2.2. Whilst carrying out this task in isolation does not give us a

detailed picture of the argument structure, it has found use in, for example,

predicting the usefulness of online reviews based solely on the amount of ar-

gumentative text which they contain Passon et al. (2018).

One of the first approaches to argument mining, and perhaps still the most

pioneering, is the work carried out by Moens et al. (Moens et al., 2007; Palau

and Moens, 2009; Mochales and Moens, 2011), which first attempts to detect

the argumentative parts of a text by first splitting the text into sentences and

then using features of these sentences to classify each as either “Argument” or

“Non-Argument”. By training a range of classifiers on manually annotated ex-

amples from the Araucaria corpus (Reed, 2006), an accuracy of 0.74 is obtained

using a multinomial näıve Bayes classifier trained on word couples, verbs and

text statistics.

Similarly, (Goudas et al., 2014) looks at extracting arguments from social

media proposing a two-step approach for argument extraction similar to that

used by Moens et al., first employing a statistical approach through the use of

machine learning and more specifically, the logistic regression classifier, to clas-

sify sentences as being part of the argument being made or not. This approach

is applied to a corpus obtained from social media, concerning renewable en-

ergy sources in the Greek language, and for identifying sentences that contain
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arguments, an increase in performance from an F -score of 0.21, for the base

case, to 0.77 is achieved. This approach is further developed in Sardianos et al.

(2015), where Conditional Random Fields are used to identify those segments

from similar Greek social web texts which contain argumentative elements.

Although these results are encouraging, it is worth noting that the classifi-

cation of sentences carried out refers only to features intrinsic to the sentence

and as such the classification is not robust for sentences which may be part of

an argument in one context, but not in a different context. Several examples

of sentences that can be viewed as argumentative in some contexts, but not

in others, can be seen in Carstens and Toni (2015), which instead advocates

classifying pairs of sentences according to their argumentative relation and, if

the relation is classified as support or attack, considering both sentences to be

argumentative. In Section 2.6 we look at such techniques for identifying rela-

tions, and show that Carstens and Toni’s approach is in many cases preferable

to the pre-identification of argumentative components.

Saint-Dizier (2018) offers an example of a situation where domain knowl-

edge is required in order to determine whether or not a proposition is argu-

mentative. Given the issue “Vaccine against Ebola is necessary” it is argued

that the proposition “7 people died during Ebola vaccine tests” is irrelevant or

neutral with respect to the issue under a knowledge-based analysis, whereas a

näıve reading would rather interpret it as an attack. The importance of con-

textual domain knowledge highlighted by this example was first explored by

Saint-Dizier in Saint-Dizier (2017) where, via the analysis of various corpora,

the types of knowledge that are required to develop an efficient argument min-

ing system, are explored. This exploration shows that, in about 75% of cases,

some contextual knowledge is required to accurately identify arguments with

respect to a controversial issue.

The idea that the context in which a text span appears can determine

whether it is part of an argument or not (Opitz and Frank (2019) have shown

that context can be more important than content), can be problematic for the

general application of the supervised machine learning approaches discussed

so far. In cases where context is not adequately captured, a model trained
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on one set of data can struggle to classify spans in another set of data where

the context is different. As a result, rule-based and unsupervised learning

approaches have also been applied to this task. The application of an unsu-

pervised extractive summarisation algorithm, TextRank, for the identification

of argumentative components is explored in Petasis and Karkaletsis (2016).

The motivation is to examine whether there is any potential overlap between

extractive summarisation and argument mining, and whether approaches used

in summarisation (which typically model a document as a whole) can have a

positive effect on tasks of argument mining. Evaluation is performed on two

corpora containing user posts from an on-line debating forum and persuasive

essays, with results suggesting that graph-based approaches and approaches

targeting extractive summarisation can have a positive effect on tasks related

to argument mining.

Similarly, Wachsmuth et al. (2017b) propose a model for determining the

relevance of arguments using PageRank (Brin and Page, 1998). In this ap-

proach, the relevance of an argument’s conclusion is decided by what other

arguments reuse it as a premise. These results are compared to an argument

relevance benchmark dataset, manually annotated by seven experts. On this

dataset, the PageRank scores are found to beat several intuitive baselines and

correlate with human judgments of relevance.

One of the first supervised learning approaches to segmentation was intro-

duced by (Soricut and Marcu, 2003) as a part of the SPADE system, which also

operates on lexicalised syntactic trees. The authors compute the probability of

inserting a discourse boundary between a child and parent node and attained

an F -score of 0.83.

The current state-of-the-art results for EDU identification are obtained by

the two-pass system of Feng and Hirst (2014), which uses a sequence labelling

approach. Similar to Soricut and Marcu (2003), the method makes predictions

over pairs of tokens that are enriched with syntactic features. Feng and Hirst

showed that predicting over token pairs and making these predictions in two

passes improves the results, achieving a 0.93 F -score on the recognition of

in-sentence boundaries.
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ADU identification however, is considerably more challenging than identi-

fying EDUs, requiring an understanding of the argumentative function of each

span. Madnani et al. (2012), aims to separate argumentative discourse into

two categories; firstly, argumentative text, used to express claims and evidence,

and secondly language used to present and organise the claims and evidence

(“shell”). In the example sentence “So I think the lesson to be drawn is that

we should never hesitate to use military force...to keep the American people

safe”, the underlined text is identified as shell. Separating shell from argumen-

tative text is attempted using three methods: a rule-based system, a supervised

probabilistic sequence model, and a principled hybrid version of the two. The

rule-based system gives an F -score of 0.44, with the hybrid version giving 0.61

compared to 0.74 for a human annotator and 0.21 for a baseline which labels

words as shell if they appear frequently in persuasive writing. The rule-based

system uses a set of 25 hand-written regular expression patterns for example,

“I [MODAL] [ADVERB] AGREEVERB with the AUTHORNOUN”. The Su-

pervised Sequence Model is based on conditional random fields (CRFs) using a

small number of general features based on lexical frequencies with the intuition

behind these features being that shell language generally consists of chunks of

words that occur frequently in persuasive language. It is important to note

that, although the material identified as shell is not a part of the argument

being made, this material contains valuable information about the argument

structure, often indicating the occurrence of certain speech acts, or containing

discourse markers (Hutchinson, 2004).

Lawrence et al. (2014) present an alternative supervised learning approach

to ADU segmentation, focusing specifically on identification of ADU bound-

aries. Two näıve Bayes classifiers are used to perform Proposition Boundary

Learning, one to determine the first word of a proposition and one to determine

the last. The classifiers are trained using a set of manually extracted proposi-

tions as training data. The text to be segmented is first split into words and a

list of features is then determined for each of these words. The features used

cover both intrinsic (the word itself, its length, and Part Of Speech) and con-

textual (the word/punctuation before and the word/punctuation after). By
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looking at more general features (length and POS) and contextual features,

this approach aims to overcome the variability in specific words that may start

(or end) a proposition.

Having trained the classifiers, this same list of features is then determined

for each word in the test data, enabling the classifiers to label each word as

being ‘start’ or ‘end’. Once the classification has taken place, the individual

starts and ends are matched to determine propositions, using their calculated

probabilities to resolve situations where a start is not followed by an end (i.e.

where the length of the proposition text to be segmented is ambiguous). Using

this method, a 32% increase in accuracy is achieved over simply segmenting

the text into sentences when compared to argumentative spans identified by a

manual analysis process.

Ajjour et al. (2017) also find that considering the broader context of sur-

rounding words, or even the document as a whole aids in locating proposition

boundaries. The approach in this case is framed as a sequence labelling task,

with a neural network model utilising structural, syntactic, lexical and prag-

matic features, as well as capturing long- distance dependencies. Capturing

the entire text with this model provides the best results across all domains,

with F -scores of up to 0.89.

Even reliably identifying ADU segment boundaries, however, is being recog-

nised as insufficient for identifying ADUs simply because ADUs typically ex-

press propositions with a variety of linguistic surface phenomena obfuscating

that propositional content. Mood, anaphora, ellipsis, deixis, reported speech

and more all introduce new challenges for ADU identification. (Jo et al., 2019)

have used a combination of techniques, some statistical, some rule-based and

some hybrid, organised in a cascade structure, in order to attempt to recover

the propositional structure underlying ADUs, in order to improve the perfor-

mance of other argument mining tasks.
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2.5 Automatic Identification of Clausal Prop-

erties

In the previous section we explored a range of techniques for identifying the

sections of a text which are argumentative, however, this does not yet tell us

anything about the nature of these argumentative text spans, or how they work

together. We now move on to look at techniques for automatically identifying

properties of argumentative components. In this section, we look at identifying

the function of each text span, firstly considering intrinsic properties (e.g.

whether a text span is evidential in nature) and then look at contextual clausal

properties, describing how a text span is used in the argument as a whole

(e.g. as a premise or conclusion). In Section 2.6, we move on to look at the

identification of inter-clausal relations, for example, given a pair of text spans,

identifying any support or conflict relationship between them.

2.5.1 Intrinsic Clausal Properties

The first type of properties we look at are those which are intrinsic to the text

span itself. Whilst these properties are limited in what they tell us about the

overall argumentative structure, they provide valuable information about the

role that a particular text span is playing in the argument as a whole. For

example, knowing that a text span constitutes a verifiable claim suggests a

link to a piece of evidence in the text supporting this claim (Park and Cardie,

2014), knowing that a text span is increasing the author’s ethos suggests that

it is supporting a specific argument which they are making (Duthie et al.,

2016a), knowing the type of evidence provided can be used to assign different

weights to statements in clinical trials (Mayer et al., 2018), or help understand

rulings in disability benefits claims (Walker et al., 2018).

Verifying the acceptability of text spans used as premises in an argument

is a central issue in the linguistic and philosophical study of argumentation

(Freeman, 2000). In the study of persuasive communication and rhetoric, this

has led to a variety of typologies of evidence. For example, Reynolds and

Reynolds (2002) distinguish between statistical, testimonial, anecdotal and
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analogical evidence; while Hoeken and Hustinx (2003) use a revised distinction

between individual examples, statistical information, causal explanations, and

expert opinions; and Fahnestock and Secor (1988) employ the classical stasis

issues of fact, definition, cause, value, and action.

This diversity is also evident in the computational classification of proposi-

tions and evidence. In Park and Cardie (2014), online user comments are exam-

ined for propositions that are Unverifiable, Verifiable Non-Experiential,

or Verifiable Experiential with associated supports of type reason, evi-

dence, and optional evidence, respectively. A proposition is considered verifi-

able if it contains an objective assertion with a truth value that can be proved

or disproved with objective evidence. Verifiable propositions are further split

into experiential or non-experiential depending on whether or not the propo-

sition is about the writer’s personal state. For example, “My son has hypo-

glycemia” is tagged as Verifiable Experiential, whereas “food allergies are seen

in less than 20% of the population” is marked as Verifiable Non-Experiential.

Following an annotation scheme developed on 100 randomly selected com-

ments, manual annotation inter-coder reliability is moderate, yielding an Un-

weighted Cohen’s κ of 0.73 whilst Support Vector Machine classifiers trained

with a range of features including n-grams and features specific to each class,

exhibit statistically significant improvement over the unigram baseline, achiev-

ing a macro F -score of 0.69. These results show that identifying propositions of

these types can be achieved with reasonable accuracy, however this would still

need to be developed in order to identify the relations between these proposi-

tions and determine the argument structure. By having an indication of the

required support for each proposition, this structure could then be used to

identify areas where a proposition is not adequately supported.

These classifications are revised in Park and Cardie (2018) to: propositions

of non-experiential fact (fact); propositions of experiential fact (testimony);

propositions of value (value); propositions of policy (policy); and reference to

a resource (reference). With these revised proposition categories and their

associated supports of type reason and evidence, a further annotation study

was carried out, resulting in the Consumer Debt Collection Practices (CDCP)
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corpus. This corpus consists of 731 user comments on the Consumer Debt

Collection Practices ruling, with 4931 elementary units (of which the majority

were propositions of value - 45%), and 1221 support relations (1,174 reason,

and only 46 evidence). On this dataset, Niculae (2018) achieved a maximum

F1-Score of 0.74 for proposition classification using linear structured SVMs.

Egawa et al. (2019) adjust the annotation scheme of Park and Cardie

slightly, replacing reference with rhetorical statement (which implicitly states

the subjective value judgement by expressing figurative phrases, emotions, or

rhetorical questions) and replacing the relations with the more standard at-

tack and support. This scheme was then used to annotate 345 posts from

the ChangeMyView sub-reddit7 resulting in 4,612 proposition classifications

and 2,713 relations which were then used in analysing the semantic role of

persuasive arguments.

The value of being able to identify verifiable propositions is highlighted by

the classification of evidence types presented in Addawood and Bashir (2016),

where Twitter posts are automatically identified as either a News media ac-

count (NEWS), Blog post (BLOG) or No Evidence (NO EVIDENCE). The

data for this study is taken from tweets on the FBI and Apple encryption

debate, with 3000 tweets annotated. Support Vector Machines (SVM) clas-

sifiers trained with n-grams and other features capture the different types of

evidence used in social media and demonstrate significant improvement over

the unigram baseline, achieving a macro-averaged F -score of 0.83. Similarly,

Dusmanu et al. (2017) look at argumentative tweets classifying them as either

fact or opinion with an F -score of 0.80 and the source of their information

(e.g., CNN) with an F -score of 0.67.

The classification of factual statements for critical evaluation has gained

prominence as part of fact-checking. Hassan et al. (2015) classify sentences as

non-factual, unimportant factual, and check-worthy factual. Similarly, Patwari

et al. (2017) and Jaradat et al. (2018) automatically determine the fact-check-

worthiness of factual claims in political debates. Naderi and Hirst (2018a)

automatically distinguish between true, false, stretch, and dodge statements

7https://www.reddit.com/r/changemyview/
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in parliamentary proceedings.

Anand et al. (2011) consider a different level of intrinsic clausal properties

than those discussed so far, looking not at properties related to their verifiabil-

ity, but at their persuasive function. This work describes the development of a

corpus of blog posts where attempts to persuade and the corresponding tactics

employed in this persuasion are annotated. Persuasion involves the change in

mental state of the other party classed as either ‘Belief Revision’, ‘Attitude

Change’ or ‘Compliance Gaining’. The methods that can be used to achieve

these changes in mental state are considered in Marwell and Schmitt (1967),

which offers twelve strategy types for securing behavioural compliance. A fur-

ther six non-logical “principles of influence” are covered in Cialdini (2001).

By combining these with argumentative patterns inspired by (Walton et al.,

2008), and removing overlapping tactics, Anand et al. produce a list of 16

types of rhetorical tactic for persuasive acts. By using a näıve Bayes Classifier

for seven possible combinations of three feature sets to perform this classifi-

cation, Anand et al. report a best result with an F -score of 0.58. However,

rhetorical relations are often implicit and not clearly indicated in the text, and

as such, their discovery requires a richer set of features.

Duthie et al. (2016a) consider another facet of persuasion, using a pipeline

of techniques to extract positive and negative ethotic statements (Aristotle,

1991) (those relating to the character of a person) from parliamentary records.

Whilst this work differs from many other argument mining approaches (which

despite often looking at persuasion, nonetheless typically focus exclusively on

logos rather than ethos or pathos) there is a clear link, with ethotic relations

often following the same logotic structures, but with the character of a person

as their target. In this work, those statements in which the speaker refers to

the character of another person (referred to as Ethotic Sentiment Expressions,

ESE s) and those in which they do not (non-ESE s) are first extracted using

a combination of Named Entity Recognition, Part-Of-Speech tagging and a

set of domain specific rules to locate statements referring to another person,

organisation or agentive entity. These are then passed to the anaphora layer

where both source-person and target-person of the statement are retrieved
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from the original text. Finally, a sentiment layer consisting of a sentiment

classifier combined with sentiment and ethotic word lexicons classifies ESEs as

positive and negative. The resulting pipeline achieves an F -score of 0.70 for

ESE/non-ESE classification compared to 0.45 for a baseline classifier which

predicts only the target class (ESE), and 0.78 for +/-ESE classification, com-

pared to a baseline of 0.67. A similar corpus of statements aimed at defending

against ethotic attacks, or defending the speaker’s reputation, is presented

in Naderi and Hirst (2018b), and extracted from various issues in Canadian

parliamentary proceedings.

In Villalba and Saint-Dizier (2012), an approach to the identification and

analysis of arguments as they appear in opinion texts is developed. Examples

are given that show that arguments are either: incorporated into evaluative

expressions with a heavy semantic load (for example, evaluative adjectives

such as ‘repas familial’ means a meal that has properties such as casual, home-

made, good and abundant), or, composed of an evaluation and one or more

discourse structures such as justification, elaboration or illustration whose aim

is to persuade the reader of the evaluation.

For example:

• Justification: The hotel is 2 stars [JUSTIFICATION due to the lack

of bar and restaurant facilities ].

• Reformulation: Could be improved [REFORMULATION in other words,

not so good ].

• Elaboration by Illustration or Enumeration: The bathrooms were

in a bad condition: [ILLUSTRATION the showers leaked, and the plug

mechanism in the bath jammed...] Breakfast selection is very good [ENU-

MERATION with a range of cereals, tea and coffee, cold meats and

cheese, fresh and canned fruit, bread, rolls and croissants, and a selection

of cooked items.]

• Elaboration via Precision: Friendly and helpful staff, [PRECISION

especially the service executives at the counter.]
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• Elaboration via Comparison: These head phones are excellent, [COM-

PARISON as if you are in a concert room.]

• Elaboration via Consequence: a high soundproofing

[ELAB–CONSEQUENCE that allows you to have a rest after a long

working day ]

• Contrast: The price is very reasonable [CONTRAST but comfort is

rather poor.]

• Concession: Very quiet [CONCESSION in spite of its downtown loca-

tion in a nightlife area.]

These relations are processed using TextCoop (Saint-Dizier, 2012), a plat-

form designed for discourse analysis, with a logic and linguistic perspective.

The results compared to a manual annotation on a corpus of 50 texts range

between precision = 0.85-0.92, recall = 0.76-0.86, over the eight relations listed

above.

The Automatic Argumentative Analysis (A3) algorithm described in Pal-

lotta and Delmonte (2011) provides an alternative approach to classifying

statements according to rhetorical roles. A3 is a module developed based on

the GETARUNS system (Delmonte, 2007) for Interaction Mining (the discov-

ery and extraction of insightful information from digital conversations, namely

those human-human information exchanges mediated by digital network tech-

nology). The module takes as input the complete semantic representation

produced by GETARUNS and produces argumentative annotation using the

following 20 discourse relation labels: circumstance, narration, adverse, obliga-

tion, evaluation, statement, result, hypothesis, elaboration, permission, cause,

motivation, explanation, agreement, contrast, question, inception, setting, ev-

idence and prohibition. These labels come partly from Rhetorical Structure

Theory (RST) (Mann and Thompson, 1987) and partly from other theories,

including those reported by Hobbs (Hobbs, 1993) and Dahlgren (Dahlgren,

1988).

Discourse relations are automatically extracted by GETARUNS and these

are then mapped onto five Meeting Description Schema (MDS), (Pallotta et al.,
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2004) argumentative labels: ACCEPT, REJECT/DISAGREE, PROPOSE/-

SUGGEST, EXPLAIN/JUSTIFY and REQUEST. In the training stage, the

system was used to process the first ten dialogues of the International Com-

puter Science Institute (ICSI) meetings corpus (Janin et al., 2003) containing

a total number of 98,523 words and 13,803 turns. In the test stage, two dif-

ferent dialogues were randomly chosen to assess the performance of the A3

algorithm and on a total of 2,304 turns, 2,247 received an automatic argu-

mentative classification, yielding a recall value of 0.98 (precision 0.81, F-Score

0.89).

Having labelled text segments in this way, it is easy to visualise them using,

for example, conversation graphs (Ailomaa and Rajman, 2009). Conversation

graphs are diagrams that summarise what topics were discussed, how long they

were discussed, which participants were involved in the discussion and what

type of arguments they contributed (an example conversation graph can be

seen in Figure 2.4). Conversation graphs can be built directly by looking at

the MDS labels assigned to a conversation’s turns.

Figure 2.4: Conversation graph from (Ailomaa and Rajman, 2009)

The benefits of using even a simple linguistic analysis to study the argu-

mentative structure of a document are illustrated in Ong et al. (2014) where a

series of simple rules are used to tag sentences with their role (either Current

Study, Hypothesis, Claim, or Citation), for example, if the sentence contains

a four-digit number, then it is tagged as ‘Citation’, if the sentence contains

string prefixes from {suggest, evidence, shows, essentially, indicate}, then it

is tagged as ‘Claim’. This approach again highlights the similarities between

Argumentative Zoning (Section 2.1.4) and the determination of argumentative

role. The ability to determine these roles offers the opportunity to link related
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elements, for example a Claim may be backed by a nearby Citation.

Wyner et al. (2012) also use simple linguistic cues, in this case to support

manual analysis by providing a rule-based tool for supporting textual analysis

by semi-automatic identification of argumentative sections in the text. The

tool is aimed specifically at online product reviews, and highlights potential

argumentative text in the review according to discourse indicators (explicitly

stated linguistic expressions of the relationship between statements (Webber

et al., 2011)) and terminology specific to the domain (for example, product

names and their properties). The tool uses a set of discourse indicators, sen-

timent terminology, a user model, and a domain model. Discourse indicators

are used to locate premises (after, as, because, for, since, when, assuming,...),

conclusions (therefore, in conclusion, consequently,...) and contrast (but, ex-

cept, not, never, no,...), whilst sentiment terminology signals lexical semantic

contrast. A comprehensive list of terms is classified according to a scale of

sentiment ranging from highly negative to highly positive. The user model

covers properties of the user performing the review, and, finally, the domain

model specifies the objects and properties that are relevant to the users, for

example, properties with binary values (such as has a flash), properties with

ranges (such as the number of megapixels, scope of the zoom, or lens size),

and multi-slotted properties (such as the warranty).

Wyner further develops the concept of using argument mining as a way to

assist manual analysis in Wyner et al. (2015), which describes the development

of “Argument Workbench”, a tool designed to help the analyst reconstruct

arguments from textual sources by highlighting a range of discourse indicators,

topics used in the text, domain terminology and speech act terminology. The

tool integrates with the DebateGraph software8, to allow the user to produce

detailed argument graphs.

2.5.2 Contextual Clausal Properties

Having considered the argumentative properties intrinsic to a text span, we

now move on to look at identifying how a text span is used in the argument

8debategraph.org
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as a whole.

The work of (Moens et al., 2007) on classifying sentences as ‘argument’ or

‘non-argument’ is further developed in Palau and Moens (2009), where an addi-

tional machine learning technique was implemented to classify each argument

sentence as either premise or conclusion, a method referred to as “Argument

proposition classification”. In this case, the examples considered are extended

using material from the European Court of Human Rights (ECHR) and ac-

curacy of classifying sentences as argument increases to 0.80 using the ECHR

corpus. Argument proposition classification is carried out using a maximum

entropy model and support vector machine, with F -scores of 0.68 for classi-

fication as premise and 0.74 for classification as conclusion. Again this work

inherits the shortcomings of the earlier research, as the same sentence can be

a premise in one context and a conclusion in another.

Such contextual restrictions can however also be an advantage, allowing

for example, comments on an article to be connected to the original article

based on their relation to it (Aker et al., 2015; Barker and Gaizauskas, 2016).

For example, the work of the IBM Debater project in context dependent ev-

idence detection, which automatically detects evidence in Wikipedia articles

supporting a given claim (Rinott et al., 2015).

In Boltužić and Šnajder (2014) argument-based opinion mining is used

to determine the arguments on which the users base their opinions. This

builds upon previous work in Opinion Mining (as discussed in Section 2.1.1),

to include not just the general opinion or stance towards a given topic, but also

the arguments on which that stance is based. This is carried out on a specially

created corpus of user comments, manually annotated with arguments, using

a classifier to predict the correct label from the set of five possible labels (as

shown in Table 2.1). The model uses textual entailment and semantic textual

similarity features with the best models outperforming the baselines and giving

a 0.71 to 0.82 micro-averaged F -score. Although these results give a promising

indication of the ability to determine how a comment relates to the argument

being made, the topics studied are limited and the training data taken from

procon.org and idebate.org may not be available for, or transfer to, other
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topics.

Label Description: Comment...

A ...explicitly attacks the argument

a ...vaguely/implicitly attacks the argument

N ...makes no use of the argument

s ...vaguely/implicitly supports the argument

S ...explicitly supports the argument

Table 2.1: Labels for comment-argument pairs (Boltužić and Šnajder, 2014)

The ability to identify even such basic contextual properties offers the op-

portunity to inform the user and aid in both writing and understanding text.

This is again illustrated in Stab and Gurevych (2014b), which aims to iden-

tify argument in essays and works towards the long term goal of integrating

argumentation classifiers into writing environments. Two classifiers are de-

scribed. Firstly, for identifying argument components, a multiclass classifica-

tion is carried out with each clause classified as major claim, claim, premise

or non-argumentative. This classifier is trained on a range of feature types,

structural features (for example the location and punctuation of the argument

component), lexical features (n-grams, verbs, adverbs and modals), syntac-

tic features, discourse indicators and contextual features. Once the argument

components have been identified, a second classifier is used to identify argu-

mentative relations (support or non-support). The features used are similar

to those for classifying the components, but look at the pairings of clauses.

The presented approach achieves 88.1% of human performance for identifying

argument components and 90.5% for identifying argumentative relations.

This work is further developed in Nguyen and Litman (2015), where the

same methodology and dataset is used, but a Latent Dirichlet Allocation

(LDA) (Blei et al., 2003) topic model is first generated to separate argu-

ment and domain keywords. The output from the LDA algorithm is then

post-processed using a minimal seeding of predefined argumentative words

to determine argument and domain topics. The same features as (Stab and
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Gurevych, 2014b) are then used, replacing n-grams with unigrams of argument

words, and numbers of argument and domain words. Using this updated fea-

ture set, the accuracy is improved for all of the argument component types:

MajorClaim (from 0.48 to 0.59), Claim (from 0.49 to 0.56), and Premise (from

0.86 to 0.88). Whilst these results are promising the relatively low numbers

still highlight the difficulties in distinguishing between Claim and MajorClaim,

due to the largely context dependent distinction between the two.

The categories from another theory of argumentation structure due to Toul-

min (1958), of Data, Claim and Warrant, are similarly difficult to distinguish.

Indeed the theoretical impossibility of completely acontextual identification

was explored from first principles by Freeman (1991), who showed that un-

der the appropriate circumstances, the difference between Data and Warrant

dissolves. With appropriate context, however, the distinction becomes oper-

ationally important and was the driver for the first shard task in argument

mining, conducted at SEMEVAL2018 by Habernal et al. (2018). The Argu-

ment Reasoning Comprehension Task required systems to use a given premise

and conclusion to distinguish between two given alternative potential warrants

(there is further contextual information available too, with explicitly identified

topic and background). E.g.:

Topic: There She Is, Miss America

Additional info: In 1968, feminists gathered in Atlantic City to

protest the Miss America pageant, calling it racist and sexist. Is

this beauty contest bad for women?)

Argument: Miss America gives honors and education scholar-

ships. And since ..., Miss America is good for women.

a) scholarships would give women a chance to study

b) scholarships would take women from the home

The system should in this example choose option (a). Human performance
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(following brief training) on this task is at 0.91; system performance in the

task varied, with a variety of techniques performing at between 0.50 and 0.70

F -score. Whilst these results seem extremely encouraging, Niven and Kao

(2019) suggest that this result is entirely accounted for by exploitation of

spurious statistical cues in the dataset, and that by eliminating the major

source of these cues, the maximum performance fell from just three points

below the average untrained human baseline to essentially random. Niven and

Kao counter these effects by the addition of adversarial examples, obtained by

negating the claim and inverting the label for each datapoint.

Although the goal of argument mining is the extraction of argumentative

structure from natural text, the availability of large quantities of appropriately

annotated training data makes this challenging to carry out. An alternative

starting point is presented in Peldszus (2014), where a corpus of “microtexts”,

short texts with explicit argumentation, and little argumentatively irrelevant

material is created. The representation of the argument structure within these

microtexts is based on Freeman’s theory of argumentation structure (Freeman,

1991, 2011), and is viewed as a hypothetical dialectical exchange between a

proponent, who presents and defends his claims, and an opponent, who crit-

ically questions them. These moves can then be represented as an argument

graph, with the nodes representing the propositions expressed in text segments

and the edges between them representing different supporting and attacking

moves. An agreement between untrained annotators is presented in Peldszus

and Stede (2013b). The annotators achieved moderate agreement for certain

aspects of the argument graph (e.g. κ=0.52 in distinguishing proponent and

opponent segments, or κ=0.58 in distinguishing supporting and attacking seg-

ments) yet only a marginal agreement of κ=0.38 on the full labelset describing

all aspects of the argument graph. A further study using expert annotators

produced significantly higher agreement (κ=0.83) on the full labelset.

The annotation process assigns a list of labels to each segment based on

different levels. The ‘role’-level specifies the dialectical role (proponent or

opponent). The ‘typegen’-level specifies the general type, i.e. whether the

segment presents the central claim (thesis) of the text, supports or attacks
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another segment. The ‘type’-level additionally specifies the kind of support

(normal or example) and the kind of attack (rebutter or undercutter). Peld-

szus tests a range of classifiers to automatically classify ‘role’, ‘typegen’ and

‘type’. The results show that an SVM classifier generally performs best on the

most complex labels, suggesting that it deals well with the lower frequencies

with which these occur. Meanwhile, the Maximum Entropy and Näıve Bayes

classifiers perform best on the simpler and more common labels.

Whilst the results on the microtext corpus are encouraging, the artificial

nature of its construction means that such results may not generalise well to

unrestricted text. However, this corpus does provide a valuable resource for

controlled ‘laboratory’ testing of argument mining techniques.

2.6 Automatic Identification of Relational Prop-

erties

In this section we move on from looking at the identification of clausal proper-

ties, to the identification of inter-clausal relations. We look first at general ar-

gumentative relations, for example premise/conclusion relationships, and then

move on to look at the more complex relationships involved in argumentation

schemes and dialogical relations.

2.6.1 Identifying General Argumentative Relations

Identifying relations between pairs of propositions is a more complex and nu-

anced task than identifying the roles that an individual proposition may take.

It is one thing to know, for example, that a given proposition is a premise;

much more challenging to determine also for which conclusion (or conclusions)

it serves as premise. Approaches to identifying these relations either build

upon the prior classification of individual clauses, or aim to extract relations

directly.

Palau and Moens (2009), build upon their classification of each argument

sentence as either premise or conclusion using a Context-Free Grammar (CFG),

produced by grouping manually derived rules. This CFG is used to determine
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the internal structure of each individual argument. Whilst the accuracy of

classifying sentences as argument or non-argument is 0.80 and F -scores of 0.68

and 0.74 for classification as premise and conclusion respectively, for the harder

task of determining argument structure, the accuracy achieved is 0.60.

Peldszus (2014) also builds on the initial task of identifying roles of seg-

ments in the Microtext corpus by adding a ‘combined’-level, showing, for all

types, whether a segment’s function holds only in combination with that of

another segment (combined) or not (simple). The target is specified by a posi-

tion relative identifier with a numerical offset identifying the targeted segment

relative from the position of the current segment. The prefix ‘n’ states that

the proposition of the node itself is the target, while the prefix ‘r’ states that

the relation coming from the node is the target. Again the results for iden-

tifying the target of a relation (maximum F -score of 0.45) are lower than for

identifying the roles (maximum F -score of 0.85).

This same microtext corpus is used in Peldszus and Stede (2015), which

looks at identifying conflict relations by examining the texts for occurrences

of counter-considerations (e.g. “Even though...”, or “It has been claimed

that...however...”), which the author uses to introduce a potential criticism

of their argument, before going on to address the issue and so strengthen their

point. This identification is carried out by labelling the textual segments as

either ‘proponent’ or ‘opponent’ using a linear log-loss model, resulting in an

F -score of 0.64 for identifying opposition relations between segments.

Whilst the work discussed thus far in this section builds upon previous iden-

tification of component roles before identifying relations, Cabrio and Villata

(2012) propose an approach to detect arguments and discover their relation-

ships directly by building on existing work in Textual Entailment (Dagan et al.,

2006). Textual Entailment (TE) refers to a “directional relation between two

textual fragments, termed text (T) and hypothesis (H), respectively”. The

relation holds whenever the truth of one text fragment follows from another.

In this case, the T-H pair is a pair of arguments expressed by two different

users in a dialogue on a certain topic and the TE system returns a judgement

(entailment or contradiction) on the argument pair.
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A dataset of 300 T-H pairs is created using manually selected topics from

Debatepedia9 which provides pre-annotated arguments (pro or con), and fol-

lowing the criteria defined and by the organisers of the Recognizing Textual

Entailment (RTE) challenge10. Of these 300 T-H pairs, 200 are used to train

(100 entailment and 100 contradiction) and 100 to test (50 entailment and 50

contradiction). The pairs collected for the test set concern completely new

topics, never seen by the system, and which are provided in their unlabelled

form as input.

TE recognition is carried out using EDITS (Edit Distance Textual Entail-

ment Suite)11. EDITS implements a distance-based framework which assumes

that the probability of an entailment relation between a given T-H pair is

inversely proportional to the distance between T and H. The system uses

different approaches to distance computation, providing both edit distance al-

gorithms (cost of the edit operations (insert, delete, etc.) to transform T into

H) and similarity algorithms. Each algorithm returns a normalised distance

score between 0 and 1. During training, distance scores are used to calcu-

late a threshold that separates entailment from contradiction. Of the EDITS

configurations which Cabrio and Villata tested, the highest accuracy is ob-

tained using either Word Overlap or Cosine Similarity (0.66 in both cases),

with Token Edit Distance performing significantly less well (accuracy=0.53),

suggesting that semantic similarity plays a more important role than syntac-

tic similarity (a result backed up by the comparative analysis of (Aker et al.,

2017), which also found syntactic features to be the least informative in all

of the experimental settings considered). Whilst these numbers are quite low,

this is an interesting result, suggesting that the relationship between topics in

an argument gives more of a clue as to how the components relate, than does

the way in which those components are expressed. This is carried through

in several later works which look at relations between topics and semantic

similarity between propositions.

Nguyen and Litman (2016) argue that looking at the content of such pair-

9http://www.debatepedia.org
10http://www.nist.gov/tac/2010/RTE/
11http://edits.fbk.eu/
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ings to determine relationships does not make full use of the information avail-

able. They propose an approach that makes use of contextual features ex-

tracted from surrounding sentences of source and target components as well

as from general topic information. Experimental results show that using both

general topic information and features of surrounding sentences is effective,

but that predicting an argumentative relation will benefit most from combin-

ing these two sets of features.

The machine learning approaches to argument mining discussed so far in

this section have all used supervised learning to perform classification, how-

ever unsupervised learning has also been applied to the task. In Lawrence

et al. (2014), a Latent Dirichlet Allocation (LDA) topic model is used to de-

termine the topical similarity of consecutive propositions in a piece of text.

The intuition is that if a proposition is similar to its predecessor then there

exists some argumentative link between them, whereas if there is low simi-

larity between a proposition and its predecessor, the author is going back to

address a previously made point and, in this case, the proposition is compared

to all those preceding it to determine whether they should be connected. This

assumes that the argument is built up as a tree structure in a depth-first man-

ner, where an individual point is pursued fully before returning to address

the previous issues. Although the assumption of a tree structure does not

hold for all arguments, it is the case for around 95% of the argument analyses

contained in AIFdb (Lawrence et al., 2012b), and 80% of arguments in the

Consumer Debt Collection Practices (CDCP) corpus as reported by Niculae

et al. (2017). Whilst no evidence is given by Niculae et al. supporting the

hypothesis of topical relations with manual analysis of the data, the auto-

mated results do support the hypothesis, with a precision of 0.72, and recall

of 0.77 recorded when comparing the resulting structure to a manual analysis.

It should also be noted that what is being identified here is merely that an

inference relationship exists between two propositions, with no indication of

the directionality of this inference.

This same approach is implemented in Lawrence and Reed (2015), where
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the use of LDA topic models is replaced by using WordNet12 to determine the

semantic similarity between propositions. This change is required to overcome

the difficulties in generating a topic model when the text being considered is

only a short span, such as an online comment or blog post. The results are

comparable to those achieved using LDA, with precision of 0.82 and recall

of 0.56. In this case the thresholds are adjusted to increase precision at the

expense of recall, as the output from this method is combined with a range of

other approaches to determine the final structure, and as such the failure of

this approach to identify all of the connections can be compensated for by the

other techniques.

A similar approach of assuming a relationship between argument com-

ponents, if they refer to the same concepts or entities, is used by AFAlpha

(Carstens et al., 2014), which represents customer reviews as trees of argu-

ments, where a child-parent relationship between two sentences is determined

if they refer to the same concepts, with the child being the sentence that has

been posted later. A sentence is represented as a set of features, including

its semantic characteristics such as metadata about the review in which the

sentence appears, as well as features based on the sentences syntactic and lex-

ical nature such as occurrences of certain words and phrase types. A feature

vector thus represents each pair of sentences and is classified using a model

trained on a data set comprised of data taken from the Q&A debating plat-

form, Quaestio-it13, and IMDB14.

Carstens and Toni (2015) continue this line of work focusing on the de-

termination of argumentative relations, and foregoing the decision on whether

an isolated piece of text is an argument or not. This focus is based on the

observation that the relation to other text is exactly what describes the argu-

mentative function of a particular text span. The paper mentions a number of

use cases, describing a method of evaluating claims, by giving a gauge of what

proportion of a text argues for or against them. Additionally a preliminary

12http://wordnet.princeton.edu/
13http://www.quaestio-it.com
14http://www.imdb.com
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corpus of 854 annotated sentence pairs15 is provided, with each sentence pair

labelled with L ∈ {A, S,N}, where A = Attack, S = Support, or N = Neither

(including both cases where the two sentences are unrelated and those where

they are related, but not in an argumentative manner.)

The important role played by similarity is also exploited by Gemechu and

Reed (2019) who borrow notions of aspect, target concept and opinion from

opinion mining, and use these to decompose ADUs down into finer-grained

components, and then use similarity measures between these components to

identify argument relations. Such decompositional argument mining not only

performs well on diverse single-author arguments (outperforming the tech-

niques of Peldszus and Stede on their Microtext corpus, and of Stab and

Gurevych on their AAEC corpus) but also on arguments situated in dialogue

(albeit at lower levels of performance: F1 ranging from 0.74 to 0.77 on both

Microtext and AAEC, and 0.63 on US2016).

Finally, (Wachsmuth et al., 2018) highlights an interesting link between

similarity and argumentative relations. The work presented aims to determine

the best counterargument to any argument without prior knowledge of the

argument’s topic. The best performing model tested rewards a high overall

similarity between a potential counterargument and the given argument’s con-

clusion and premises whilst punishing those counterarguments that are too

similar to either of them. To some extent, this result captures the intuition

that argumentative relations occur where something different is being said

about the same topic.

2.6.2 Identifying Complex Argumentative Relations

The ability to successfully extract premises and conclusions is built upon in

Feng and Hirst (2011), which presents the first step in the long term goal of a

method to reconstruct enthymemes, by first, classifying to an argumentation

scheme (Walton et al., 2008) then fitting the propositions to the template

and finally, inferring the enthymemes. For the first step of fitting one of the

top five most commonly occurring argumentation schemes to a pre-determined

15Available at www.doc.ic.ac.uk/~lc1310/
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argument structure, accuracies of 0.63–0.91 are recorded in one-against-others

classification and 0.80–0.94 in pairwise classification. As in Moens et al. (2007),

the Araucaria corpus is used with complex Argument Units (AUs) first broken

into simple AUs (with no embedded AUs). The AUs using the top five most

common argumentation schemes are then selected and a classifier trained on

both features specific to each individual scheme and a range of general linguistic

features, in order to obtain the scheme. Although these results are promising,

and suggest that identifying scheme instances is an achievable task, they do

rely on the prior identification of premises and conclusions, as well as the basic

structure which they represent. Whilst this approach does not identify the

roles of individual propositions in the scheme, knowing what type of scheme

links a set of propositions is both a useful task in its own right and offers

potential for subsequent processing to determine proposition types for each

scheme component. This is a substantially easier task once the scheme type is

known.

Another approach to identifying the occurrence of schemes is given in

Lawrence and Reed (2015), where, rather than considering features of the

schemes as a whole, the individual scheme components are identified and

then grouped together into a scheme instance. In this case, only two schemes

(‘Expert Opinion’ and ‘Positive Consequences’) are considered and classifiers

trained to identify their individual component premises and conclusion. By

considering the features of the individual types of these components, F -scores

between 0.75 and 0.93 are given for identifying at least one component part of

a scheme.

The approach followed by (Feng and Hirst, 2011) is similar in nature to

the first steps suggested by (Walton, 2011), where a six-stage approach to

identifying arguments and their schemes is proposed. The first of these stages

is the identification of the arguments occurring in a piece of text; this is followed

by identification of specific known argumentation schemes. Walton, however,

points out that beyond this initial identification there are likely to be issues

differentiating between similar schemes and suggests the development of a

corpus of borderline cases to address the issue.
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As Walton points out, the automatic identification of argumentation schemes

remains a major challenge. As discussed in Section 2.2.4, a large number of

scheme classifications exist, with additional domain specific schemes utilised in

specific areas. For example, as part of the rule-based tool for semi-automatic

identification of argumentative sections in text presented in Wyner et al.

(2012), a consumer argumentation scheme (listing 2.1) is described and the

structure of this scheme used to guide the argument identification process.

Listing 2.1: Consumer Argumentation Scheme

Premise : Camera X has property P

Premise : Property P promotes va lue V f o r agent A

Conclus ion : Agent A should Action1 camera X.

Similarly, (Green, 2015) lists ten custom argumentation schemes targeted

at genetics research articles. For example, one of the schemes presented, ‘Failed

to Observe Effect of Hypothesized Cause’, looks for situations where specific

properties were not observed, and where it is assumed that a specific condition

that would result in those properties is present, leading to the conclusion that

the condition may not be present. Green (2018a) further argues for schemes

expressed in terms of domain concepts rather than by generic definitions as in

those of (Walton et al., 2008) carrying out a pilot annotation study of schemes

for 15 arguments in the Results/Discussion section of biological/biomedical

journal articles. Green (2018b) then explores how argumentation schemes in

this domain can be implemented as logic programs in Prolog and used to ex-

tract individual arguments. In this case, the schemes are formulated in terms

of semantic predicates obtained from a text by use of BioNLP (biomedical/bi-

ological natural language processing) tools.

Regardless of the theoretical backdrop, schemes generally introduce as

much complexity as they do opportunity from annotation through to auto-

mated analysis. To pick an example from a substantially different theoretical

apprach, Musi et al. (2016) present a novel set of guidelines for the annotation

of argument schemes based on the Argumentum Model of Topics (Rigotti and

Morasso, 2010). This framework offers a hierarchical taxonomy of argument

schemes based on linguistic criteria which are distinctive and applicable to a
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broad range of contexts, aiming to overcome the challenges in annotating a

broad range of schemes.

With the data currently available, the ontologically rich information avail-

able in argumentation schemes has been demonstrated to be a powerful com-

ponent of a robust approach to argument mining. Collaboration amongst

analysts as well as the further development of tools supporting argumenta-

tion schemes is essential to growing the datasets required to improve on these

techniques. Clear annotation guidelines and the development of custom argu-

mentation schemes for specific domains, will hopefully result in a rapid growth

in the material available and further increase the effectiveness of schematic

classification.

Dialogical Relations

Whilst some of the previously mentioned argument mining techniques have

worked with data that is dialogical in nature, such as user comments and online

discussion forums, none of these have focused on using the unique features

of dialogue to aid in the automatic analysis process, producing an analysis

that captures both the argumentative and dialogical structure. For example

although (Pallotta et al., 2004; Rienks et al., 2005) consider dialogical data,

in both cases they do not consider the specific dialogical relations between

utterances.

Similarly there is a large body of work studying the nature of dialogue

both in terms of dialogue modeling, which captures the nature and rules of a

dialogue, and dialogue management, which takes a more participant oriented

viewpoint in determining what dialogical moves to make (Traum, 2017). How-

ever, there is currently little work that puts these models to work in enhancing

argument mining techniques. It seems clear that by modeling a dialogue and

understanding that the next move a participant is likely to make will be ‘dis-

agreeing,’ for example, we would be able to obtain the argumentative structure

easily. In this section we discuss formalisations of dialogue protocols and then

move on to cover the work that has been done to apply this knowledge to

argument mining.
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In the case of more formally structured dialogues, a protocol for the dia-

logue can be described, and specified in a language such as the FIPA Agent

Coordination Language (McBurney and Parsons, 2009), the Dialogue Game

Description Language (DGDL) (Bex et al., 2014a) or the Lightweight Coordi-

nation Calculus (Robertson, 2004). Such dialogue games have been developed

to capture a range of more structured conversations, for example, to facili-

tate the generation of mathematical proofs (Pease et al., 2017) or help reach

agreement on which course of action to take in specific circumstances (Atkin-

son et al., 2005). In these cases, software such as Arvina (Lawrence et al.,

2012a) or D-BAS (Krauthoff et al., 2018) can be used to both run the dialogue

according to the specified rules and automatically capture the argumentative

structure generated as the dialogue progresses. These structures can then be

used to allow for mixed initiative argumentation (Snaith et al., 2010), where a

combination of human users and software agents representing the arguments

made by other people can take part in the same conversation, using retrieval-

based methods to select the most relevant response (Le et al., 2018). In such

scenarios, the contributions of human participants can be interpreted by virtue

of their dialogical connections to the discourse, allowing a small step towards

mining argument structure from natural language.

Although formally structured dialogues can be captured and exploited in

this way, many real world dialogues follow only very limited rules and the

challenge of identifying the argumentative structure in free form discussion is

complex. However, even very informal dialogues nevertheless provide addi-

tional data beyond that available in monologue, which can be used to help

constrain the task.

Amongst other such features, Budzynska et al. (2014) identify illocutionary

forces and dialogue transitions. Illocutionary forces are the speech act type

(Austin, 1962) of utterances. Their automatic recognition in Illocutionary

Structure Parsing (Budzynska et al., 2016) is similar to Dialogue Act An-

notation (Bunt et al., 2010) though often rather more specific. Automatic

distinction between rhetorical, pure, and ‘assertive’ questioning, for example

is nuanced and challenging. The preliminary results reported in Budzynska
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et al. (2016) point to accuracy of 78% on this task, but the datasets used are

very small (n = 153).

Al Khatib et al. (2018) identify six distinct ‘discourse acts’ (‘Socializing’,

‘Providing evidence’, ‘Enhancing the understanding’, ‘Recommending an act’,

‘Asking a question’, and ‘Finalizing the discussion’) in deliberative discussions.

As a first step towards determining the best possible move for a participant

in a deliberative discussion, Al Khatib et al. train an SVM model to classify

examples of these discourse acts from Wikipedia data. Whilst the classifier

achieves low F-scores for ‘socializing’, ‘recommending an act’, and ‘asking a

question’, these are the categories with the smallest number of examples in the

dataset to draw from – 83, 137 and 106 turns respectively. Performance on

those acts with more examples is much better: ‘Providing evidence’ (781 turns,

F-score = 0.69), ‘Enhancing the understanding’ (671 turns, F-score = 0.58),

and ‘Finalizing the discussion’ (622 turns, F-score = 0.71). These results are

encouraging and suggest that with more data, further improvements could be

expected.

Dialogue transitions, on the other hand, connect together dialogical moves.

In Inference Anchoring Theory (IAT) (Budzynska et al., 2014), illocutionary

connections are anchored in these transitions. This explicit connectivity can

be used to handle complex phenomena such as indexicality (where the propo-

sitional content of one locution can only be reconstructed by reference to an-

other locution, for example: “Isn’t that a source of injustice?” – “Definitely

not.”). Budzynska et al. suggest that the patterns provided by transitions

can constrain the mining process by defining expectations (for example, if an

assertive question is followed by a negative polarity indexical assertion then

such a transition anchors the illocutionary connection of disagreeing). There

are no results yet reported testing this hypothesis.

2.7 Conclusion

Argument mining techniques have been successfully developed to extract de-

tails of the argumentative structure expressed within a piece of text, focusing
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on different levels of argumentative complexity as the domain and task re-

quire. For each task, we have considered work carried out using a broad range

of techniques, including statistical and linguistic methods. We have presented

a hierarchy of task types based on increasing argumentative complexity. First

looking at the identification of argument components and the determination

of their boundaries, we have then moved on to consider the role of individual

clauses (both intrinsic, such as whether the clause is reported speech, and con-

textual such as whether the clause is the conclusion to an argument). Finally,

we have considered the identification of a range of argumentative relations

from simple premise/conclusion relationships, to whether a set of clauses form

and instance of an argumentation scheme.

There fact remains that argument mining is a difficult task; as Moens (2018)

points out, “a lot of content is not expressed explicitly but resides in the mind

of communicator and audience”. It seems that to overcome this challenge we

need to look at the broader picture in which argument occurs. In this regard,

works which either takes a more holistic ‘end-to-end’ view Stab and Gurevych

(2017); Persing and Ng (2016); Potash et al. (2017), or which aim to harness

external data sources Rinott et al. (2015); Lawrence and Reed (2017a), seem

to point the way.

The success of these techniques and the development of techniques for

analysing dialogical argument, offers hope that techniques can be developed

for automatically identifying complex illocutionary structures and the argu-

mentative structures they build. We have also seen how these techniques can

be combined, tying together statistical identification of basic structure, lin-

guistic markers and identifying scheme components. In so doing, the resulting

argument structures offer a more complete analysis of the text than any of

these methods provide on their own.

Argument mining remains profoundly challenging, and traditional methods

on their own seem to need to be complemented by stronger, knowledge-driven

analysis and processing. However, the pieces required to successfully automate

the process of turning unstructured data into structured argument are starting

to take shape. As the volume of analysed argument continues to increase, and



68

existing techniques are further developed and brought together, rapid progress

can be expected.



Chapter 3

Argument Data

This chapter explores argument data, looking first at the most widely used ar-

gument corpora and considering their specific strengths and weaknesses, before

then moving on to describe the specific datasets used throughout the remainder

of this thesis.

3.1 Argument Corpora

One of the challenges faced by current approaches to argument mining is the

lack of large quantities of appropriately annotated arguments to serve as train-

ing and test data. Several recent efforts have been made to improve this situ-

ation by the creation of corpora and argumentative datasets across a range of

different domains. These efforts can be broken down into two main categories:

manually annotated corpora of argumentative components and structure found

in natural language text; and corpora of pre-structured text where the argu-

mentative structure is captured as part of its creation, or the argumentative

structure can be inferred from other existing structural features.

3.1.1 Manually Annotated Corpora

The Internet Argument Corpus (IAC) (Walker et al., 2012) is a corpus for re-

search in political debate on internet forums. It consists of∼11,000 discussions,

∼390,000 posts, and some ∼73,000,000 words. Subsets of the data have been

annotated for topic, stance, agreement, sarcasm, and nastiness among others.

69
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The IAC is further developed in the Internet Argument Corpus (IAC) version

2 (Abbott et al., 2016), a collection of corpora for research in political debate

on internet forums. It consists of three datasets: 4forums (414K posts), Con-

vinceMe (65K posts), and a sample from CreateDebate (3K posts). It includes

topic annotations, response characterizations (4forums), and stance, though

argument annotation in both IAC datasets is rather limited by comparison to

that available in other datasets.

Whilst providing the largest corpus of annotated argumentation, the IAC

is limited by the sparsity of annotations it contains, with large sections of

the corpus only being labelled as “argumentative”. There have been many

attempts to provide a more detailed and comprehensive coverage of all the

arguments which a text contains, in most cases starting with a more limited

selection of text from a single specific domain. For example, Green (2014) aim

to create a freely available corpus of open-access, full-text scientific articles

from the biomedical genetics research literature, annotated to support argu-

ment mining research. However, there are challenges to creating such corpora,

such as the extensive use of biological, chemical, and clinical terminology in

the BioNLP domain requiring annotators trained in the field. These challenges

are highlighted in Green (2015), where preliminary work on guidelines for the

manual identification of ten custom argumentation schemes targeted at genet-

ics research articles, is presented. For example, one of the schemes presented,

‘Failed to Observe Effect of Hypothesized Cause’, looks for situations where

specific properties were not observed, and where it is assumed that a specific

condition that would result in those properties is present, leading to the con-

clusion that the condition may not be present. Twenty-three students were

assessed on their ability to identify instances of these schemes after having

read the guidelines, and the results show a mean accuracy of only 49%. It can

be seen from these results that the classification of such nuanced argument

schemes is not a straightforward task. This suggests the need for both more

rigorous scheme definitions, with particular attention given to error analysis

of those schemes which are commonly confused, as well as the development of

annotation guidelines taking these issues into account.
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The Argument Annotated Essays Corpus (AAEC) (Stab and Gurevych,

2014a) consists of argument annotated persuasive essays, and features topic

and stance identification, annotation of argument components, and argumen-

tative relations. Drawn from 90 English language essays posted in the writing

feedback section of the website essayforum1. The final corpus contains 90 ma-

jor claims, 429 claims, and 1,033 premises, connected by 1,312 support and

161 attack relations. The AAEC version 2 (Stab and Gurevych, 2017) extends

this to 402 essays, with 751 major claims, 1,506 claims, and 3,832 premises,

connected by 3,613 support and 219 attack relations.

A random sample of 102 essays taken from the AAEC have been further

annotated, as described in Carlile et al. (2018), to also include a persuasiveness

score for each argument as well as scores for attributes that potentially impact

persuasiveness (Eloquence, Specificity, Relevance, and Evidence), the means of

persuasion (Ethos, Pathos or Logos) and the types of both claims and premises.

This addition to AAEC has already shown potential in developing automated

persuasiveness scoring for essays (Ke et al., 2018).

Kirschner et al. (2015) present a corpus of twenty-four German language

articles were selected from the education research domain, and annotated us-

ing a custom designed tool (DiGAT). The annotation scheme used identifies

binary relations between argument components, which in this work correspond

to sentences from the original texts. Four types of relation are identified: ‘sup-

port’, ‘attack’, ‘detail’ and ‘sequence’. The first two of these relations are

argumentative, whereas the latter two are discourse relations similar to the

‘sequence’ and ‘background’ relations of Rhetorical Structure Theory (RST)

(Mann and Thompson, 1987). The results of annotation using this scheme are

represented as graph structures, and a range of methods to determine inter

annotator agreement for these structures are considered. Despite the com-

plexity of the articles being analysed, the results show multi-κ2 values up to

0.63. Whilst this result is fair for such a complex annotation task, several

specific areas are identified which reduce agreement. Similar categories were

particularly problematic, for example, in many cases disagreement was due to

1http://www.essayforum.com
2An extension of Cohen’s Kappa allowing for multiple annotators (Hubert, 1977).
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confusion between ‘support’ and ‘detail’ or ‘support’ and ‘sequence relation’.

Although these differences could potentially be improved by more detailed

annotation guidelines, the authors argue that in many cases several correct

solutions exist, with both labellings being correct.

Legal texts are the focus of Walker et al. (2014), where a type system is

developed for marking up successful and unsuccessful patterns of argument in

U.S. judicial decisions. Building on a corpus of vaccine-injury compensation

cases that report factfinding about causation, based on both scientific and

non-scientific evidence and reasoning, patterns of reasoning are identified and

used to illustrate the difficulty of developing a type or annotation system for

characterising these patterns. A further example of legal material is the ECHR

corpus (Mochales and Ieven, 2009), a set of documents extracted from legal

texts of the European Court of Human Rights (ECHR). The ECHR material,

whilst not annotated specifically for argumentative content, contains a stan-

dard type of reasoning and structure of argumentation which means that the

corpus can be easily adapted to serve as data for argument mining.

A different domain is considered in Kiesel et al. (2015), which presents a

corpus of 200 newspaper editorials annotated for their argumentative structure.

The annotation is based on a model consisting of explicit argumentative units,

and the implicit argumentative relations (i.e. support or attack) between them.

In this case, an argumentative unit is understood to be a segment of the

original text containing at least one proposition. Argumentative relations are

considered as the links from one unit to the unit that it most directly supports

or attacks.

Such efforts add to the volume of currently available data for which at least

some elements of the argumentative structure have been identified. The most

comprehensive and completely annotated existing collection of such data is

the openly accessible database, AIFdb3 (Lawrence et al., 2012b), containing

over 18,000 Argument Interchange Format (AIF) (Chesñevar et al., 2006) ar-

gument maps, with over 2.1m words and 200,000 claims in fourteen different

languages4. These numbers are growing rapidly, thanks to both the increase

3http://www.aifdb.org
4Amharic, Chinese, Dutch, English, French, German, Hindi, Italian, Japanese, Polish,
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in analysis tools interacting directly with AIFdb and the ability to import

analyses produced with the Rationale and Carneades tools (Bex et al., 2012).

Indeed, AIFdb aims to provide researchers with a facility to store large quan-

tities of argument data in a uniform way. AIFdb web services allow data to be

imported and exported in a range of formats to encourage collaboration be-

tween researchers independent of the specific tools and data format that they

require.

Additionally, several online tools such as DebateGraph5, TruthMapping6,

Debatepedia7, Agora8, Argunet9 and Rationale Online10 allow users to create

and share argument analyses. Although these tools are helping to increase the

volume of analysed argumentation, they generally do not offer the ability to

access this data and each use their own formats for its annotation and storage.

In order to help overcome this challenge, AIFdb offers the facility to import and

convert Rationale and Carneades analyses into AIF. At the moment, though,

many research projects continue to introduce ad hoc, idiosyncratic data repre-

sentation languages for argumentation and debate, which can limit reusability,

integration and longevity of the datasets.

3.1.2 Pre-structured Argument Corpora

Whilst the previously discussed datasets can be viewed as “fully” structured

argument data, there is an increasing usage of larger “semi-structured” argu-

mentative data sources, from which argumentative data can be extracted. The

most striking example of such are recent datasets gathered from the “Change-

MyView” (CMV) Reddit subcommunity11 (Tan et al., 2016; Hidey and McK-

eown, 2018). This data takes the form of discussion threads where the original

poster of a thread provides a viewpoint on a specific topic, and other users re-

Portuguese, Russian, Spanish and Ukrainian
5http://debategraph.org
6https://www.truthmapping.com
7http://www.debatepedia.org
8http://agora.gatech.edu/
9http://www.argunet.org/

10https://www.rationaleonline.com/
11https://www.reddit.com/r/changemyview/
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ply with comments aiming to change this view. If the original poster finds that

a comment succeeds in changing their viewpoint, they can reply with a ‘delta’

symbol indicating this. Whilst this data is not strictly argumentative, there

are strong indicators of argumentative structure: direct responses, for example,

often include counterarguments to the original post. Indeed, Hua and Wang

(2017) uses CMV data to both train and evaluate a model for automatically

generating arguments of the opposing stance for a given statement.

In addition to these corpora of structured argument data, there are large

corpora of unstructured data available that are rich in argumentative structure,

from, for example, Wikipedia, Twitter, Google Books, and product reviews

from websites such as Amazon and epinions.com. Whilst these corpora may

be useful for certain argument mining techniques, such as those using unsuper-

vised learning methods, there are limits on their utility imposed, inevitably,

by their lack of annotation.

Despite the lack of marked argument structure, Wikipedia, in particular,

represents a considerable amount of data rich in argumentative content. In

Aharoni et al. (2014), work towards annotating articles from Wikipedia using

a meticulously monitored manual annotation process is discussed. The result is

a corpus of 2,683 argument elements, collected in the context of 33 pre-defined

controversial topics, and organised under a simple structure detailing a claim

and its associated supporting evidence.

In their far-ranging work on Project Debater12, IBM have made extensive

use of Wikipedia and other data to create the first AI system that can debate

humans on complex topics. Debater can respond to a given topic by auto-

matically constructing a set of relevant pro/con arguments phrased in natural

language. For example, when asked for responses to the topic “The sale of vi-

olent video games to minors should be banned”, an early prototype of Debater

scanned approximately 4 million Wikipedia articles and determined the ten

most relevant articles, scanned all 3,000 sentences in those articles, detected

sentences which contain candidate claims, assessed their pro and con polarity

and then presented three relevant pro and con arguments13, with more recent

12https://www.research.ibm.com/artificial-intelligence/project-debater/
13http://www.kurzweilai.net/introducing-a-new-feature-of-ibms-watson-the-debater
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developments also working towards choosing the most convincing of these ar-

guments (Gleize et al., 2019), expanding the topic of the debate (Bar-Haim

et al., 2019), and providing “first principle” debate points, commonplace argu-

ments which are relevant to many topics, where specific data is lacking (Bilu

et al., 2019). These abilities are the result of ongoing work to extract mean-

ingful argument data from large corpora. In Levy et al. (2014), the challenge

of detecting Context Dependent Claims (CDCs) in Wikipedia articles was first

addressed, showing how, given a topic and a selection of relevant articles, a

selection of “general, concise statements that directly support or contest the

given topic” can be found. This work was followed in Rinott et al. (2015)

where extracting supporting evidence from Wikipedia data for a given CDC

was addressed. Bar-Haim et al. (2017) introduced the task of claim stance

classification, that is, detecting the target of a given CDC, and determining

the stance towards that target. Levy et al. (2017) further developed CDC

identification, removing the need for pre-selected relevant articles, by first de-

riving a claim sentence query to retrieve CDCs from a large unlabelled corpus.

(Indeed, this retrieval task is increasingly becoming a distinct and challenging

task in its own right, with applications such as args.me (Wachsmuth et al.,

2017a) and new shared tasks such as Touche14 driving the area forward). Such

large volumes of CDCs can be used both as potential points to be made by

the debater system as well as to aid in the interpretation of spoken material

containing breaks, repetitions, or other irregularities (Lavee et al., 2019). The

method introduced by Levy et al. is used in Shnarch et al. (2018) to gener-

ate weakly labelled data (data of low quality compared to manual annotation,

but which can be automatically obtained in large quantities) and then com-

bined with a smaller quantity of high quality, manually labelled data (strongly

labelled data). Using the combined strongly and weakly labelled dataset as

training data resulted in improved performance for topic-dependent evidence

detection, suggesting that this kind of data gathering can be a valuable asset,

particularly in data-hungry neural network systems. The annotated datasets

used in this and other Project Debater work are all available online15.

14http://touche.webis.de
15http://www.research.ibm.com/haifa/dept/vst/debating_data.shtml
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Bosc et al. (2016) address another rich online data source, taking data from

Twitter and defining guidelines to detect ‘tweet-arguments’ among a stream

of tweets about a certain topic, before then pairing the identified arguments,

and finally, providing a methodology to identify which kind of relation holds

between the arguments composing a pair, i.e., support or attack. Bosc, Cabrio,

and Villata report agreement of α16 of 0.81 for detecting argumentative tweets,

and α of 0.67 for argument linking, with the resulting DART (Dataset of Ar-

guments and their Relations on Twitter) dataset containing 4,000 tweets an-

notated as argument/not-argument with 446 support and 122 attack relations.

In Houngbo and Mercer (2014), a straightforward feature of co-referring

text – presence of the lexeme, “this” – is used to build a self-annotating cor-

pus extracted from a large biomedical research paper dataset. This is achieved

by collecting pairs of sequential sentences where the second sentence begins

with “This method...”, “This result...”, or “This conclusion...”, and then cat-

egorising the first sentence in each pair respectively as Method, Result or

Conclusion sentences. In order to remove outliers in the dataset, a multino-

mial Näıve Bayes classifier was trained on the collected Method, Result or

Conclusion sentences, and sentences from this set that were then classified to

the same category with less than 98% confidence were removed. This reduced

corpus was then used as training data to identify Method, Result and Conclu-

sion sentences using both SVM and Näıve Bayes classifiers. These classifiers

show an average F -score of 0.97 with Näıve Bayes and 0.99 with SVM, and are

further tested on the corpus used by Agarwal and Yu (2009) where sentences

are classified in the same way. By using this approach Houngbo and Mercer

are able to improve on the results from Agarwal and Yu whose results show

an F -score of 0.92 using 10-fold cross-validation. Despite the limited nature of

this task, only identifying specific types of sentence and not giving any idea of

the relations between them, these results show that by extending the training

data available, substantial improvements in classifying sentences can be made.

Lawrence and Reed (2017a) take a similar approach to Houngbo and Mer-

16Krippendorff’s alpha (α) is a reliability coefficient developed to measure the agreement

among coders (Krippendorff, 1980)



Name Description Size IAA URL Reference

AIFdb Corpora

Argumentation

Schemes

Examples of occurrences of Walton’s argumentation schemes found

in episodes of the BBC Moral Maze Radio 4 programme.

6,704

words

Single annota-

tor

http://corpora.aifdb.org/schemes (Lawrence and Reed,

2016)

Digging By Debating Collection of analyses of 19th century philosophical texts from the

Hathi Trust collection.

35,789

words

Single annota-

tor

http://corpora.aifdb.org/dbyd (Murdock et al., 2017)

Dispute Mediation Argument maps of mediation session transcripts. 26,923

words

κ = 0.68 http://corpora.aifdb.org/mediation (Janier and Reed, 2016)

MM2012 Analyses of all episodes from the 2012 summer season of the BBC

Moral Maze Radio 4 programme.

29,068

words

κ = 0.55

(types), 0.61

(relations)

http://corpora.aifdb.org/mm2012 (Budzynska et al., 2014)

US2016 2016 US presidential elections: annotations of selected excerpts of

primary and general election debates, combined with annotations of

selected excerpts of corresponding Reddit comments.

87,064

words

κ = 0.75 http://corpora.aifdb.org/US2016 (Visser et al., 2018b)

Imported into AIFdb

AraucariaDB An import of 661 argument analyses produced using Araucaria and

stored in the Araucaria database.

62,881

words

Single annota-

tor

http://corpora.aifdb.org/araucaria (Reed, 2006)

AraucariaDBpl A selection of over 50 Polish language analyses created using the

Polish version of Araucaria.

2,654

words

Single annota-

tor

http://corpora.aifdb.org/araucariapl (Budzynska, 2011)

eRulemaking Argument maps of 67 comment threads from regulationroom.org. 26,083

words

κ = 0.73 http://corpora.aifdb.org/RRD (Park and Cardie, 2014)

Internet Argument

Corpus (IAC)

Consisting of 11,000 discussions and developed for research in po-

litical debate on internet forums. Subsets of the data have been an-

notated for topic, stance, agreement, sarcasm, and nastiness among

others.

1,031,398

words

κ = 0.22-0.60,

κ̄ ≈ 0.47

http://corpora.aifdb.org/IAC (Walker et al., 2012)

Language Of Opposi-

tion

Used in Rutgers for the SALTS project (http://salts.rutgers.edu/). 48,666

words

Not reported http://corpora.aifdb.org/looc1 (Ghosh et al., 2014)

Microtext 112 manually created, short texts with explicit argumentation, and

little argumentatively irrelevant material.

7,828

words

κ = 0.83 http://corpora.aifdb.org/Microtext (Peldszus, 2014)

Available elsewhere

Argument Annotated

Essays

The corpus consists of argument annotated persuasive essays includ-

ing annotations of argument components and argumentative rela-

tions.

147,271

words

κ = 0.64-

0.88 (types),

0.71-0.74

(relations)

https://bit.ly/2OlRZnt (Stab and Gurevych, 2017)

Argument Annotated

User-Generated Web

Discourse

User comments, forum posts, blogs and newspaper articles anno-

tated with an argument scheme based on an extended Toulmin

model

84,673

words

αU = 0.51-

0.80

https://bit.ly/2vdkHOD (Habernal and Gurevych,

2017)

Consumer Debt Col-

lection Practices

(CDCP)

User comments about rule proposals by the Consumer Financial

Protection Bureau collected from an eRulemaking website

∼88,000

words

α = 0.65

(types), 0.44

(relations)

http://joonsuk.org (Niculae et al., 2017)

Internet Argument

Corpus (IAC) 2

Corpus for research in political debate on internet forums. It in-

cludes topic annotations, response characterizations, and stance.

∼500,000

forum

posts

Not reported https://nlds.soe.ucsc.edu/iac2 (Abbott et al., 2016)

IBM Project Debater

Datasets

Collection of annotated data sets developed as part of Project De-

bater to facilitate this research. Organized by research sub-fields.

Various Various https://ibm.co/2OlqieA (Rinott et al., 2015), (Levy

et al., 2017) etc

Table 3.1: Significant argumentation datasets available online
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cer, using ‘discourse indicators’ (connectives such as “because”, “however”

etc.) in place of “this”. In this work, the topic of a given text is first identified

and a web search carried out to retrieve related documents. Sentences contain-

ing discourse indicators showing support relations are then found within the

retrieved documents and these sentences are split either side of the indicator

to give possible premise conclusion pairs. Despite this being a noisy dataset,

with potential off-topic sentences and cases where the indicator has been used

for a different reason, it is shown that a topic model can be built from large

numbers of these pairs resulting in stereotypical patterns of support on the

given topic.

Similarly, Habernal and Gurevych (2015), use large volumes of unlabeled

data from online debate portals. By identifying clusters of both sentences

and posts from these debate portals which contain similar phrases, and then

finding the centroids of these clusters, ‘prototypical arguments’ are identified.

Al-Khatib et al. (2016) likewise leverage online debate portals, generating an-

notations by automatically mapping source data, in this case the labelled text

components from the idebate.org (e.g. ‘Introduction’, ‘point’, ‘counterpoint’),

to a set of predefined class labels to create a large corpus with argumentative

and non-argumentative text segments from several domains.

An alternative approach to generating argument corpora is presented in

Peldszus (2014), where a corpus of “microtexts”, originally produced in Ger-

man and then also professionally translated into English, is created. These

texts, were generated by asking participants to write a text, approximately

five segments long in which: all segments are argumentatively relevant; there

is a segment acting as the main claim of the text; all other segments are sup-

porting/attacking the main claim or another segment; at least one possible

objection to the claim is considered in the text. Whilst the this method of

generating argument data produces very clear examples of argumentative re-

lations, the artificial nature of its construction means that results obtained on

the dataset may not generalise well to unrestricted text. However, this corpus

does provide a valuable resource for controlled ‘laboratory’ testing of argument

mining techniques. Further details of the microtext corpus, as well as the other



79

corpora discussed in this section can be seen in Table 3.1.

3.2 Experimental Dataset

Whilst there is a broad, and growing, range of argumentative datasets available

for use in argument mining, many of these suffer from either a lack of compre-

hensive coverage of the data, coarse-grained analysis of the argument structure,

or limited applicability to real-world arguments. The experiments described in

the remainder of this thesis use the ‘US2016G1tv’ corpus (Visser et al., 2020a):

a challenging real-world argumentative analysis of the first 2016 United States

of America presidential election general debate between Hillary Clinton and

Donald Trump (26 September 2016, Hempstead, NY). The US2016D1tv (first

televised Democratic Primary debate) and US2016R1tv (Republican) corpora

are also used to provide additional training data in some cases17.

Transcripts of these debates were annotated using the OVA analysis tool

(Lawrence et al., 2017b), stored in AIFdb (Lawrence et al., 2012b), and col-

lected in AIFdb Copora (Lawrence and Reed, 2014). The US2016G1tv corpus

is freely available online at http://corpora.aifdb.org/US2016G1tv.

Annotation was performed on the basis of Inference Anchoring Theory

(IAT) (Budzynska and Reed, 2011). IAT builds on insights from discourse

and conversation analysis, speech act theory, and argumentation studies, as

a way of explaining how the propositional reasoning that is appealed to in

argumentation is anchored in discourse (whether written or spoken). IAT an-

notation results in an Argument Interchange Format (AIF) (Chesñevar et al.,

2006) compliant graph representation of both the reconstructed argumentation

structure and its discursive anchoring in the analysed text segments.

IAT underpins the annotation guidelines used by the four expert annota-

tors involved in the annotation of the US2016G1tv corpus. Based on a 11.3%

sample annotated by two annotators, the agreement between the annotators

was substantial (according to the Landis and Koch (1977) interpretation),

with a Cohen’s κ (Cohen, 1960) of 0.61. Duthie et al. (2016b) have, how-

17These corpora combine to give the US2016tv corpus, which along with corresponding

social media reactions (US2016reddit) comprise the US2016 corpus
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ever, argued that Cohen’s κ misrepresents the interdependency between some

of the sub-tasks involved in the annotation process. For example, a differ-

ence in initial segmentation of the text can then have cascading effects on the

results for structuring the segments. To do justice to such interdependency,

Duthie et al. propose to calculate a Combined Argument Similarity Score (or

CASS-κ) by combining independent agreement scores for the sub-tasks of text

segmentation, discourse annotation, and propositional annotation. When tak-

ing into account the interplay between these constitutive tasks, the average

inter-annotator agreement in terms of CASS-κ is 0.752.

While the full annotation guidelines18 deal with complex issues such as

anaphoric references, epistemic modalities, repetition, punctuation, discourse

indicators, interposed text, and reported speech, we summarise below those

aspects of the annotation that are essential for a proper understanding of the

corpus study.

Locutions: The original text is first segmented into locutions. A locution

consists of a speaker designation and an ‘argumentative discourse unit’ (ADU)

(Peldszus and Stede, 2013a), a text span with discrete argumentative function

(often directly resulting in the introduction of an inference, conflict or rephrase

in the argumentation structure – see below). In accordance with the AIF

ontology, locutions are modelled as L-nodes, a sub-type of I-node. It should

be noted that the techniques presented in the remainder of this thesis do not

address the segmentation task, instead starting with manually segmented text

and viewing segmentation as a separate challenge19.

Transitions: Functional discourse relationships are represented as transi-

tions connecting the segmented locutions. The transitions reflect the dialogue

protocol underpinning the discourse. Transitions, or TA-nodes, are a type of

S-node that connects L-nodes.

Illocutionary connections: The communicative intention encapsulated in

a locution is annotated by means of illocutionary connections that relate the

locutionary to the propositional dimension of the analysis. In AIF terms,

18http://arg.tech/US2016-guidelines
19This is in line with almost all other argument mining work which begins with either

manually pre-segmented text, or simply segments by sentence boundary
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illocutionary connections are YA-nodes, a sub-type of S-node.

Propositions: Most illocutionary connections lead to the reconstruction of

the propositional content of the associated locution. Propositions are modelled

as I-nodes.

Inference, conflict and rephrase: Generally connecting one proposition

to another, the argumentative relations of inference, conflict and rephrase re-

spectively indicate justificatory defence, refutatory incompatibility, and revi-

sionary reformulation. The propositional relations are modelled as sub-types

of S-nodes: as RA-, CA-, and MA-nodes. Walton’s argumentation schemes

(Walton, 1996) have been developed in full for the AIF as types for RA-nodes

(Rahwan et al., 2007) and, using these, the US2016G1tv corpus has been ex-

tended with full argumentation scheme annotation (see Chapter 8) making

this corpus the largest collection of annotated scheme instances (replacing the

Araucaria corpus used by (Feng and Hirst, 2011)).

Table 3.2: Proposition and propositional relation counts for the US2016tv

corpora

Corpus Propositions Inference Conflict Rephrase

US2016G1tv 1473 505 79 140

US2016R1tv 1368 482 61 88

US2016D1tv 1439 564 54 105

Figure 3.1: An example of a rephrase (MA) relation in US2016G1tv.
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Figure 3.2: An example of a rephrase (MA) relation mapped to two separate

inference relations.

Table 3.2, shows the most relevant properties of the 17,190-word (tokens)

US2016G1tv corpus, as well as those for US2016D1tv and US2016R1tv20.

Two aspects of this annotation require further consideration when used

for the purposes of argument mining: rephrase relations and reported speech.

Figure 3.1 shows an MA-node between the top two I-nodes, and a support

relation connecting the bottom two I-nodes. For the purposes of identifying

inference relations, we can consider either of the top two nodes acting as a

premise for the conclusion at the bottom. In this case, we conflate the top two

(rephrased) I-nodes, and connections to/from either are considered as being

to/from both. More specifically a structure in the original annotation is con-

sidered here as being equivalent to that shown in Figure 3.2. This means that

if an inference relation is (automatically) identified between These countries,

especially China are the best ever at it and USA don’t know what they’re doing

when it comes to[...], then this is viewed as being correct.

Figure 3.3: An example of reported speech in US2016G1tv.

Reported speech requires a similar simplification of the analysed structure.

For example, if in the transcript we have TRUMP: I said, “It’s inappropriate.”

20The properties were retrieved automatically using the Argument Analytics mod-

ule (Lawrence et al., 2016) of the Argument Web (Lawrence et al., 2017b) at http:

//analytics.arg.tech
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then the propositional content of this is itself a locution, which has a further

nested propositional content of “It’s inappropriate.” This can be seen in Fig-

ure 3.3. In this case, support/conflict relations can be connected to either the

middle locution (if someone is, for example, questioning whether Trump said

it is inappropriate) or, the leftmost I-node (if someone is questioning whether

it is inappropriate). Here we consider the text span in the original transcript

to be linked to either of these propositional contents.

While the US2016G1tv corpus will be used to test the techniques developed

throughout Chapters 4-8, in Chapter 9 these techniques are combined, and

the resulting combined approach evaluated against two additional widely used

argumentation corpora: the Argument Annotated Essays corpus (Stab and

Gurevych, 2017) described in Section 9.6.2; and, the Argumentative Microtext

corpus (Peldszus and Stede, 2016)) described in Section 9.6.3.

3.3 Conclusion

One of the first challenges faced by argument mining is the lack of consistently

annotated argument data. Much recent work has focused on producing an-

notation guidelines targeted at specific domains (e.g. Kirschner et al. (2015);

Walker et al. (2014); Kiesel et al. (2015)), and whilst this has shown that data

from these fields can be consistently annotated, the use of specific annotation

schemes aimed at individual areas means that any techniques developed us-

ing this data are limited to that domain. The volume of data, particularly

data annotated at the most fine grained level, is still far below what would

be required to apply many of the techniques previously discussed in a domain

independent manner. Attempts are being made to overcome this lack of data,

including the use of crowdsourced annotation (Ghosh et al., 2014; Skeppstedt

et al., 2018) and automatic methods to extend the data currently annotated

(Bilu et al., 2015). As these efforts combine with increasing attention to man-

ual analysis, the volume of data available should increase rapidly. Schulz et al.

(2018) also offer some solace in this regard, showing how multi task learning

(training models across datasets from different domains), can improve results
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in domains where limited domain specific annotated data is available.

Even in cases where there is a greater volume of data, conflicting notions

of argument are often problematic. In a qualitative analysis of six different,

widely used, argument datasets, Daxenberger et al. (2017) show that each

dataset appears to conceptualize claims quite differently. These results clearly

highlight the need for greater effort in building a framework in which argument

mining tasks are carried out, covering all aspects from agreement on the argu-

ment theoretical concepts being identified, through to uniform presentation of

results and data.

The US2016tv corpus used in this thesis is the largest corpus of anal-

ysed dialogical argumentation currently available (Visser et al., 2020a), and

US2016G1tv the largest corpus of dialogical argumentation completely anno-

tated with argumentation scheme instances (Visser et al., 2021). US2016tv

is annotated using Inference Anchoring Theory (IAT) (Budzynska and Reed,

2011), distinguished by being a theory of argumentation geared towards com-

putational linguistic methods and software implementation. To facilitate machine-

readability, IAT adheres to the Argument Interchange Format (AIF) standard

(Chesñevar et al., 2006), a graph-based ontology that facilitates the represen-

tation argumentative structures and offers integration with a broad range of

existing AIF compliant tools (Bex et al., 2013).



Chapter 4

Discourse Indicators

4.1 Introduction

The first explainable argument mining approach which we will consider in this

thesis is that of using discourse indicators to determine the argumentative

connections between adjacent propositions in a piece of text. Discourse indi-

cators are explicitly stated linguistic expressions of the relationship between

statements (Webber et al., 2011), and, when present, can provide a clear indi-

cation of its argumentative structure (van Eemeren et al., 2007). For example,

if we take the sentence “Britain should disarm because it would set a good

example for other countries”, then this can be split into two separate propo-

sitions “Britain should disarm” and “it [disarming] would set a good example

for other countries”. The presence of the word “because” between these two

propositions clearly tells us that the second is being employed as a reason for

the first.

Discourse indicators have been previously used as a component of argument

mining techniques. For example, in Stab and Gurevych (2014b), indicators

are used as a feature in multiclass classification of argument components, with

each clause classified as a major claim, claim, premise or non-argumentative.

Similar indicators are used in Wyner et al. (2012), along with domain terminol-

ogy (e.g. camera names and properties) to highlight potential argumentative

sections of online product reviews. In Eckle-Kohler et al. (2015) a German

language corpus is annotated with arguments according to the common claim-

85
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premise model of argumentation and the connection between these annotated

connections and the presence of discourse indicators (or discourse markers as

they are referred to here) is investigated. The results show that discourse mark-

ers are again important features for the discrimination of claims and premises

in German as well as English language texts. However, there has been little

study of how well indicators perform on their own, how frequently they occur

in real-world text, and how well different individual indicators map to specific

argumentative relations. In this chapter we will investigate these properties of

indicators, looking at indicators from existing literature, as well as those which

can be identified from annotated argument data. In doing so, we will deter-

mine how reliable indicators are and what role they can play in an argument

mining system.

4.2 Indicators and Argumentative Relations

There are many different ways in which indicators can appear, and a wide

range of relations which they can suggest (Knott, 1996). We limit our search

here to specific terms indicating support or attack relations between a pair of

propositions. Specifically, we consider those indicators which show an argu-

mentative relation between sequential propositions of the form A [indicator ]

B (e.g. “Britain should disarm because it would set a good example for other

countries”) or [indicator ] A B (e.g. “Because we want to set a good example

for other countries, we should reduce our nuclear capability”). Furthermore,

we consider the relationship between indicators and the directionality of the

argumentative connections (e.g. A because B suggests a support relation

from the premise B (single underlined) to the conclusion A (double under-

lined), whereas A therefore B suggests a support relation from A to B). For

this work we do not consider the more variable form of [indicator ] A B as

there is no clear limit on how long before A the indicator must occur.

In this work, two sources of candidate discourse indicators are used: an

aggregation of those found in existing literature (Groarke et al., 1997; Knott,

1996)(DI-Lit), and a domain specific list extracted from relations in a set of



87

Relation Type Indicators

A
support−−−−−→ B so, therefore, accordingly, then, thus, con-

sequently, hence, ergo

A
support←−−−−− B because, since, as

A
conflict−−−−−→ B but, however, nonetheless, nevertheless,

still, yet, though, whereas

A
conflict←−−−−− B although, except, despite, albeit

Table 4.1: Argumentative discourse indicators from existing literature.

corpora1 (DI-Dom). In each case, we also extend these lists by including syn-

onyms of each word identified using Synsets (groupings of synonymous words

that express the same concept) from WordNet (Miller, 1995). For example,

five synonyms were found for the word “therefore” (“thence”, “thus”, “so”,

“hence”, and “consequently”). The original words and all synonyms were

compiled into a list with duplicates removed. The indicators from DI-Lit are

shown in Table 4.1.

For DI-Dom, we consider the corpora US2016D1tv and US2016R1tv, and

extract those unigrams which occur between adjacent spans of text that are

connected by a support or attack relation in the argumentative analysis. Com-

mon unigrams (such as “and” and “I”) which appeared in more than one type

of relation were removed from the final lists. Those unigrams appearing more

than once for each relation type are shown in Table 4.2.

4.3 Implementation

To determine the efficacy of discourse indicators in identifying argument struc-

ture, all pairs of sequentially adjacent ADUs in the same turn were extracted

from US2016G1tv (based on the manual segmentation of ADUs from the cor-

pus). For each pair, the text between the two ADUs was tokenized into uni-

grams, and these tokens were then searched for each of the indicators in DI-Lit

1US2016D1tv and US2016R1tv, described in Section 3.2.
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A
support←−−−−− B A

support−−−−−→ B A
conflict←−−−−− B A

conflict−−−−−→ B

Count Unigram Count Unigram Count Unigram Count Unigram

50 because 13 so 9 well

5 think 9 think 2 think

3 you 7 why 2 that

3 said 3 to 2 of

3 know 2 which 2 all

3 as 2 fact

2 yes 2 which

2 was 2 in

2 reason

2 now

2 injustice

2 first

2 believe

Table 4.2: The most commonly occurring unigrams between pairs of adjacent

spans linked by a support or attack relation, in US2016D1tv and US2016R1tv.

and DI-Dom.

For each occurrence of each indicator, a comparison was made to the anal-

ysed argumentative structure from the original corpus, and if the corresponding

support or conflict relationship was marked, then this was considered a correct

identification (true positive) for that indicator, if there was no corresponding

relation in the original corpus, this was a false positive. In cases where there

was a relation marked in the corpus, but the indicator was not present, this

was viewed as a false negative.

4.4 Results

Table 4.3 lists the top ten performing discourse indicators, sorted by the F-

Score calculated using the interpretation described above. It can be seen from

this table that only a relatively small number of the indicators we are searching

for are actually found in the data. It is particularly surprising that indicators

which are commonly mentioned in the literature as being useful for identifying
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argumentative structure rarely occur: for example, “therefore” only has one

occurrence within the entire debate transcript (this does indeed occur between

two inferentially linked text spans).

Of those indicators which do appear more frequently in US2016G1tv, most

are providing little information. For example, whilst there were 30 instances

of the indicator “so” occurring between adjacent spans, only 37.5% of these

instances were between spans where a support relation exists.

The one exception here is the indicator “because”. This indicator appears

between spans 71 times and, of these, 87.3% are connected by a support rela-

tionship. Whilst this is a promising result, and suggests that, in those cases

where “because” occurs, it can tell us with high accuracy the type of connec-

tion, we can also see that using this method on its own would leave approxi-

mately 80% of support relations (as well as all conflict relations) unidentified.

Indicator Number Precision Recall F-Score

because 71 0.873 0.212 0.342

so 32 0.375 0.041 0.074

think 44 0.205 0.031 0.054

that 28 0.179 0.017 0.031

as 8 0.375 0.010 0.020

therefore 1 1 0.003 0.007

since 0 0 0 0

consequently 0 0 0 0

thus 0 0 0 0

Table 4.3: Top ten performing discourse indicators, sorted by F-Score.

These results are supported by those of earlier work (Lawrence and Reed,

2015) carried out on the Araucaria corpus (Reed et al., 2008). Focusing on

the thirteen most reliable support indicators and eleven most reliable conflict

indicators, Lawrence and Reed achieved an overall precision of 0.89, but a

recall of only 0.04, concluding that: “discourse indicators may provide a useful

component in an argument mining approach, but, unless supplemented by

other methods, are inadequate for identifying even a small percentage of the
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argumentative structure”.

In Chapter 5, it is shown how, despite low recall, the high precision of

the indicator “because” can be used to harvest additional training data, and

give us another technique for identifying inferences in those cases where the

connection isn’t so explicitly expressed.



Chapter 5

Premise-Conclusion Topic

Models

5.1 Introduction

The intuition underlying the work presented in this chapter is that there are

rich and predictable thematic and lexical regularities present in the expression

of human reasoning, and that these regularities can be identified in helping to

extract the structure of reasoning. For example, in debates concerning abor-

tion, arguments are carefully marshalled on both sides, with religious themes

more typically appearing on one side, and feminist philosophy themes more

typically on the other. For a debate on the construction of a new road, we

may expect to find environmental issues on one side and economic concerns on

the other. If such generalisations are possible at a coarse scale, perhaps they

are similarly possible at a more fine-grained scale.

These themes are represented in terms of both the topics discussed and the

language used to express them: an anti-abortion stance is likely to not just

cover feminist philosophy themes in general, but to also use specific terminol-

ogy more frequently, perhaps mentioning ‘choice’ or ‘freedom’ more than views

expressed on the other side of the debate. When humans hear such a debate,

they understand the structure of the argument being made, not only based on

the content of the argument itself, but on a broad general knowledge of the

topic and the way in which such arguments are commonly presented.

91
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The argument mining technique presented here takes the commonly occur-

ring terms in an original text and uses these terms to gather data from the

web on the same topic. This large volume of additional data can be consid-

ered contextual knowledge, and is processed to find pairs of text spans which

have an inferential relationship. We then use these pairs to create premise-

conclusion topic models, reflecting the ways in which one topic or phraseology

is commonly used to support another.

The work in Chapter 4 has shown that the discourse indicator because is

a very reliable predictor of argument structure. Unfortunately occurrences of

this indicator are also rather rare, occurring in less than 25% of argumentative

inference steps. With a high-precision/low-recall technique such as is provided

by this indicator, it becomes possible to process large amounts of text to

extract a dataset in which we can have high confidence. This dataset can be

used to capture topical regularities in the argument structure which can then

be exploited in analysing text which does not benefit from the presence of

indicators.

The relationship between the topics being expressed in a piece of text and

the argumentative structure which it contains have been previously explored

in Lawrence et al. (2014), where a Latent Dirichlet Allocation (LDA) topic

model is used to determine the topical similarity of consecutive propositions in

a piece of text. The intuition is that if a proposition is similar to its predecessor

then there exists some argumentative link between them, whereas if there is low

similarity between a proposition and its predecessor, the author is going back to

address a previously made point and, in this case, the proposition is compared

to all those preceding it to determine whether they should be connected. Using

this method a precision of 0.72, and recall of 0.77 are recorded when comparing

the resulting structure to a manual analysis, however it should be noted that

what is being identified here is merely that an inference relationship exists

between two propositions, and no indication is given as to the direction of this

inference. This further challenging issue is addressed in Chapter 7.
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5.2 Implementation

An overview of the methodology used can be seen in Figure 5.1. Starting with

the manually segmented ADUs from the US2016G1tv corpus, text from these

ADUs is examined in order to find the unigrams and bigrams which occur

most frequently throughout the text, giving an indication of the overall theme

of the text with which we are working.

Raw
Text

ADUs
Unigrams
& Bigrams

Manual 
Segmentation

ADU
Frequency

Corpus of 
Related

Documents

Web
Search

Extract Inferential
Statements

x1 because y1

x2 because y2

...

Create Topic Model
Using x's and y's

LDA 
Topic
Model

Topical
Inference

Matrix

ADU Topic
Probabilities

Classified
Support

Relations

Figure 5.1: Overview of the implementation methodology for creating extended

corpus, creating a topical inference matrix and classifying support relations

The next step is then to build a corpus of related documents by searching

the web for those unigram and bigram terms identified as being indicative

of the theme. From this extended corpus, we then extract sentences which

contain an inferential relationship by searching for those discourse indicators

which we have found to have the highest precision. This search results in a

large collection of pairs of text fragments where one element of the pair is a

premise supporting the other, that is a conclusion.

Using these fragments as documents, we then generate a Latent Dirichlet

Allocation (LDA) topic model (Blei et al., 2003), and from this create a matrix

capturing the probability of support between each of the identified topics. By

matching pairs of ADUs from the original text against the probabilities in
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this matrix, we are then able to determine the probability that there is an

inferential relationship between them, and by thresholding these values, we

can then categorise ADU pairs as being ‘inferential’ or ‘non-inferential’.

An alternative approach would be to use the premise/conclusion dataset

as training data for a supervised machine learning approach. This is limited

by the fact that we only obtain positive examples, and, whilst techniques such

as PU-learning (Learning from Positive and Unlabelled examples) (Liu et al.,

2003) provide a way of dealing with only positively labelled data, we do not

have sufficient quantities of unlabelled examples for these techniques to be

applied. In future work, the ability to identify arbitrary ADUs in text could

be used to extract large volumes of unlabelled examples, and such approaches

may then become more suitable.

5.2.1 Obtaining Premise/Conclusion Pairs

The first step in the pipeline described above is to determine the overall theme

of the text being analysed. This is achieved using an unsupervised keyword

extraction approach. Firoozeh et al. (2020) provide a comprehensive overview

of keyword extraction techniques comparing a range of both supervised and

unsupervised methods. For this work, we require an unsupervised method

as there is no annotated keyword data available. In particular we utilise a

statistical approach leveraging the existing segmentation of the US2016G1tv

corpus into ADUs, and calculate the number of unique ADUs in which each

unigram or bigram appeared. This list is then sorted and filtered to remove

common stop words. The top ten from each resulting list of terms can be seen

in Table 5.1 and Table 5.2.

Having identified keywords describing the topic, a corpus of related docu-

ments was created by searching the web for combinations of these terms. The

top twenty terms of each kind were combined into search queries by taking all

possible combinations of two and three unigrams as well as each bigram both

on its own and paired with each unigram. Using these queries, the first 100

Google search results for each were compiled. After filtering the list of related

documents to remove duplicates, a total of 8,684 pages remained.
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Unigram Count

Trump 372

Clinton 302

people 83

USA 77

country 64

tax 53

jobs 48

ISIS 44

Obama 42

nuclear 36

Table 5.1: Top ten unigrams by number of ADUs in which they appear

Bigram Count

trade deals 15

New York 14

Trans Pacific 11

tax returns 11

united states 11

african american 10

new jobs 10

nuclear weapons 10

cyber attacks 10

middle east 9

Table 5.2: Top ten bigrams by number of ADUs in which they appear
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Source Documents Inferential Sentences

Web search 8,684 5,897

News Articles 1,012 803

Speeches 118 1,517

Twitter 6,000 103

Total 15,814 8,410

Table 5.3: Number of documents and inferential sentences for each data source

Although the pages identified in the previous step are high ranking search

results for the terms identified, such pages commonly contain material unre-

lated to the topic, for example, advertisements and summaries of other articles.

In order to extract those sections of the documents most likely to contain the

body of an article, the Python Beautiful Soup library1 was used to parse the

HTML and extract those sections comprising consecutive paragraphs of text.

These web search results were further supplemented by three additional

sources: 1,012 news articles covering the political candidates during the year

leading up to US Presidential Election extracted from the PolNeAR corpus

(Newell et al., 2018); 36 speeches made by Hillary Clinton and 82 speeches

made by Donald Trump, taken from the Clinton-Trump corpus (Brown, 2017);

and, 3,000 Twitter posts made by the official accounts of each candidate (“re-

alDonaldTrump” and “HillaryClinton”) in the run up to the election.

The texts from all sources were split into sentences, using the NLTK2 to-

keniser, and each of the resulting sentences searched for the presence of a

discourse indicator. Previous work, including (Lawrence and Reed, 2015) and

that described in Chapter 4, has shown “because” to be by far the most reli-

able indicator of inference relations, and, as such, we limit the search here to

sentences containing this word. Completing this search gives a total of 8,410

inferential sentences of the form conclusion because premise. The number of

such sentences extracted from each source is shown in Table 5.3.

Though the indicator “because” does not offer 100% precision, including

1http://www.crummy.com/software/BeautifulSoup/
2http://www.nltk.org/
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some non-argumentative examples, the noise is mitigated by the way in which

the resulting pairs are subsequently used. The use of the topic models described

in the next section means that we neither need all of the inferential relations

contained within our search results, nor for every premise-conclusion pair to

be correctly labelled as such. The models which we produce may have a small

amount of noise generated by false-positives, but these either comprise topics

which are not then matched to elements from the original text, or add a small

number of lower importance terms to a valid topic.

5.2.2 Creating the Topical Inference Matrix

To extract the topical nature of the premise-conclusion pairs previously iden-

tified, a Latent Dirichlet allocation (LDA) topic model was created using the

Python gensim library3. To produce this topic model, the sentences were first

split where the indicator occurred, giving two documents from each sentence

(one representing a premise, and the other, the conclusion). To determine the

optimal number of topics, we experimented with values in the range 2–45, cal-

culating the topical coherence (Newman et al., 2010) for each (see Figure 5.2).

Based on these results, using twenty topics appears to provide high coherence

whilst avoiding the risk of repetition by selecting a higher number. As such,

we generated our final model with twenty topics and using fifty passes over the

supplied corpus.

From the probability distributions for each pair of conclusion (C) and

premise (P ), a topical inference matrix (T ) was created, where the i,j th entry

in the matrix corresponds to the product of probabilities that the premise has

topic i and the conclusion topic j. For example, in the simplest case, if there

is a probability of 1.0 that the premise has topic m and the conclusion topic n,

then the matrix will contain 1.0 at m,n and zero for all other possible pairings.

So, given topic distributions θC for the conclusion, and θP for the premise, T

is defined thus:

ti,j = θPi θ
C
j (5.1)

3https://radimrehurek.com/gensim/
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Figure 5.2: Topical coherence for a range of different numbers of topics

The individual matrices for each premise/conclusion pair can then be summed

together, and the resulting values normalised by dividing by the maximum

value in the matrix to give values between 0 and 1. The result is an overall

topical inference matrix (U) where each value represents the likelihood that a

premise matching topic i supports a conclusion matching topic j. A heatmap

representation of this matrix can be seen in Figure 5.3. This representation

highlights some interesting points about the relationship between premise/con-

clusion topics and argument structure. Firstly, there is a clear pattern along

the diagonal top left to bottom right (i.e. premise/conclusion pairs where

both have the same topic). This tendency for premises and conclusions to

be topically similar is explored further in Chapter 6. Secondly, the matrix is

not symmetrical between premises and conclusions. For example, there are a

substantial number of conclusions that correspond to topics 16 and 17, whilst

these are much less common for premises. This lack of symmetry in topical

distribution between premises and conclusions suggests that, given a pair of

ADUs, the matrix may be able to help us determine not only whether they are

inferentially connected, but also which is premise and which conclusion. Both

of these tasks are investigated in the following section.
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Figure 5.3: Heatmap of the topical inference matrix for the 2016 US Presiden-

tial Election

5.3 Experiments

In order to test our original hypotheses that the thematic regularities present in

the expression of human reasoning can be identified and used to help determine

the structure of that reasoning, a number of experiments were carried out to

explore the effectiveness of using this data to determine both the direction of

inference between two ADUs that are known to have an inferential relationship,

and the connectedness of pairs of arbitrary ADUs.

5.3.1 Using the Topical Inference Matrix to determine

directionality

Our test data is comprised of the 505 premise-conclusion pairs from the US2016G1tv

corpus. As an initial experiment, we investigated how well the produced top-

ical inference matrix could determine the direction of the inference between
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these pairs. This was achieved by creating a test set containing each pair (a,b)

and its reverse (b,a).

Two alternative methods were tested to classify these pairs as being ‘infer-

ential’ or ‘non-inferential’. In each case, the topic probabilities for the ADUs

were first inferred from the LDA model and a score determined as to whether

there was an inferential relationship. For the first method, MaxTopic, the

score was calculated by taking the highest probability topic for each ADU and

using these to look up the corresponding value in the overall topical inference

matrix (U):

SMaxTopic(P,C) = uarg max
i

(θPi ),arg max
j

(θCj ) (5.2)

For the second method, TopicDist, the values in the overall topical inference

matrix (U) were multiplied by the corresponding probabilities for each item in

the pair and then summed to give an overall score.

STopicDist(P,C) =
n∑
i=1

n∑
j=1

ui,jθ
P
i θ

C
j (5.3)

For each of these two methods, the resulting scores were then compared

against the mean of all values in the matrix (mean = 0.46), over which a pair

would be classified as being ‘inferential’, and below which, ‘non-inferential’. It

is not possible to choose a fixed threshold value empirically based on results

from a development data set as the variation in probabilities in different ma-

trices is unknown. Experiments were carried out using the US2016D1tv and

US2016R1tv corpora to compare different calculated threshold values (median,

mean, and the kth largest value in the matrix for all possible values of k), and

the mean was found to give the maximum f-score of all values tried across both

corpora.

The results for directionality can be seen in Table 5.4. The results show

an improvement over the random baseline for both methods, however the im-

provement in precision is low when just looking at the highest scoring topic.

One reason for this is that a reasonable percentage of pairs (107 out of 505)

have the same highest scoring topic for both items (i.e. a conclusion is be-

ing supported by a premise that is closely related). When these same topic
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Method Precision Recall F1-score

Random Baseline 0.5 0.5 0.5

MaxTopic 0.53 0.86 0.66

TopicDist 0.63 0.86 0.73

Table 5.4: Results for the MaxTopic and TopicDist methods to determine

directionality of inferential connections compared to the random baseline

pairs are removed, the precision increases to 0.60, comparable to the results

for the weighted topic distribution. The results for using the weighted topic

distribution are better, and suggest that even in cases where the main topic

is similar, there is enough of a difference in the secondary topics to determine

the directionality of the pair.

5.3.2 Using the Topical Inference Matrix to determine

connectedness

The second experiment performed looked at whether the produced topical in-

ference matrix could determine inferential connections between arbitrary pairs

of ADUs. For this task, a dataset was created containing the known 505

premise-conclusion pairs from US2016G1tv and an equal number of uncon-

nected ADU pairs randomly selected from US2016G1tv. The same two meth-

ods of classifying these pairs as being ‘inferential’ or ‘non-inferential’ were used

as in the first experiment, and the results can be seen in Table 5.5.

The results show that the precision is increased for classifying pairs as being

connected over the previous results for directionality.

Method Precision Recall F1-score

Random Baseline 0.5 0.5 0.5

MaxTopic 0.68 0.91 0.77

TopicDist 0.69 0.90 0.78

Table 5.5: Results for the MaxTopic and TopicDist methods to determine

connectedness of ADU pairs
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5.4 Discussion

The results we have presented show in all cases that there is some correlation

identified between the topics that a pair of ADUs have, and the nature of their

potential inferential relationship. By looking at the topics of each item in the

pair, we have been able to determine both connectivity and directionality of

inference. Overall, the results are better for identifying connectedness than di-

rectionality, predominantly resulting from higher similarity in topics for which

the ADUs are connected (in a significant percentage of cases the maximum

probability topic was the same).

Currently, the identification of relationships is limited to inferential rela-

tionships, and one area of development would be to extend this by examining

those discourse indicators which show a conflict relationship. Additionally, no

account is taken of the polarity or sentiment of the ADUs. Where we have a

conclusion, ‘C’, and a premise, ‘P’, then there would be a high topical simi-

larity between P and ‘not P’, and as such, an inference relationship would be

assigned between them. This problem could be overcome by applying nega-

tion detection techniques (Jia et al., 2009) to the ADUs as a preliminary step,

and where there is negation of one item in the pair, replacing an inference

relationship with conflict.

Although we focus on identifying patterns of inference within a single de-

bate, there is nothing intrinsic to the approach that makes it a better fit for

this domain than any other. The use of the indicator “because” has been

shown to give high precision across multiple domains and corpora (Lawrence

and Reed, 2015, 2017a). The automatic determination of the domain being

discussed requires only the original text, and from this we are able to build

a dataset specific to that domain which, due to the reliability of discourse in-

dicators, contains domain specific pairs that we can say with high confidence

have an inferential relationship.
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5.5 Conclusion

The work in this chapter has demonstrated how by automatically creating

large, high-confidence datasets of inferential pairs related to a specific topic,

we can closely mirror one of the ways in which humans understand the complex

interactions between the individual propositions expressed in a debate.

The approach presented is effective in tackling the challenging high-level

pragmatic task of identifying both connectedness and directionality between

argumentative discourse units. This outcome represents strong performance

for this level of task (cf., for example, (Feng and Hirst, 2011; Peldszus, 2014)),

giving results comparable to those of (Palau and Moens, 2009), where each

argument sentence was classified as either premise or conclusion with F1-scores

of 0.68 for classification as premise and 0.74 for conclusion. Furthermore,

where existing approaches are often constrained in their generality by a lack

of appropriately annotated, domain-specific, data, the same requirement does

not apply in this case.

The results show a clear link between the words used to express an ar-

gument and its underlying structure, and strongly support the intuition that

understanding the structure of an argument requires not only consideration

of the text itself, but contextual knowledge and understanding of the broader

issues.



Chapter 6

Similarity and Topical Changes

6.1 Introduction

In this chapter, we consider how various measures of the similarity between

propositions map to their argumentative relationship. It seems intuitive that a

premise and its associated conclusion may often share a large number of words

in common, as in the following example from US2016G1tv:

Premise: they lost plenty of money on investing in a solar com-

pany

Conclusion: that was a disaster to invest in a solar company

or, be semantically similar without sharing very many common words, for

example:

Premise: We also have to make the economy fairer

Conclusion: CLINTON also wants to see more companies do

profit-sharing

Indeed, previous work (Lawrence et al., 2014; Boltužić and Šnajder, 2014;

Wachsmuth et al., 2018) has shown that various similarity measures can be

used to successfully determine not just individual argumentative relationships,

but the entire argumentative structure contained within a text. We will look

at this approach in more detail in Section 6.5, but first, we consider a range of

similarity measures in isolation, measuring their efficacy in determining both

long and short distance inferential relationships.

104
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6.2 Similarity Measures

6.2.1 Lexical Similarity Measures

ROUGE-1, ROUGE-2 and ROUGE-L: ROUGE, or Recall-Oriented Un-

derstudy for Gisting Evaluation (Lin, 2004), is a set of metrics designed for

evaluating automatic summarisation by comparing an automatically produced

summary against a reference summary. The ROUGE-N metric compares an

automatic summary with a reference summary using the n-gram overlap be-

tween the two documents. If 1-grams (individual word tokens) are used to

compare the documents, then the metric is called ROUGE-1, for 2-grams (pairs

of consecutive word tokens) it is called ROUGE-2 and so on. More formally,

ROUGE-N is the n-gram recall between a candidate summary and a set of one

or more reference summaries, and is calculated as follows:

ROUGE-N =

∑
S∈SH

∑
gn∈S Countmatch(gn)∑

S∈SH

∑
gn∈S Count(gn)

(6.1)

where: SH is the set of manual summaries; gn is an n-gram; Countmatch(gn)

the maximum number of n-grams co-occurring in the candidate summary and

set of reference summaries; and, Count(gn) the number of n-grams occurring

in the candidate summary.

ROUGE-L measures the longest matching sequence of words using Longest

Common Subsequence (LCS) (Lin and Och, 2004). An advantage of using

LCS is that it does not require consecutive matches but in-sequence matches

that reflect sentence level word order. Since it automatically includes longest

in-sequence common n-grams, a predefined n-gram length is not required.

ROUGE-L uses the F-measure to estimate the similarity between a reference

summary, X, of length m and a candidate summary, Y , of length n, calculated

as follows:

Rlcs =
LCS(X, Y )

m
(6.2)

Plcs =
LCS(X, Y )

n
(6.3)
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ROUGE-L = Flcs =
(1 + β2)RlcsPlcs
Rlcs + β2Plcs

(6.4)

where: LCS(X, Y ) is the length of the longest common subsequence of X and

Y; and β = Plcs/Rlcs.

Levenshtein Edit Distance: The Levenshtein edit distance (Leven-

shtein, 1966) is a metric for measuring the difference between two sequences

in terms of the minimum number of single-element edits (insertions, deletions

or substitutions) required to change one sequence into the other.

The Levenshtein distance between two strings a and b (of length |a| and |b|

respectively) is given by leva,b(|a|, |b|) where:

leva,b(i, j) =



max(i, j) if min(i, j) = 0

min


leva,b(i− 1, j) + 1

leva,b(i, j − 1) + 1

leva,b(i− 1, j − 1) + k

otherwise.
(6.5)

and, where k = 0 if (ai = bj), or 1 otherwise. Here the first element in the

minimum corresponds to deletion (from a), the second to insertion and the

third to match or mismatch, depending on whether the respective symbols are

the same.

As described in the equation above the Levenshtein edit distance is looking

at the distance between strings in terms of character operations, in this form

it is most commonly used for spelling correction (find the closest word from a

given vocabulary), however, by changing the type of sequence and constituent

elements, this metric has found applications ranging from DNA sequencing

(Buschmann and Bystrykh, 2013) to plagiarism detection (Gipp and Beel,

2010).

In this case, however, the distance is calculated by considering a and b

as the two given propositions and the elements under consideration being the

stemmed words that they contain, rather than letters. To obtain a value in

the range 0-1, the Levenshtein distance is divided by the maximum possible
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distance between the strings, that is, divided by max(length(a), length(b)).

Using the Levenshtein edit distance in this way allows for situations where

word ordering is substantially altered, but the meaning is still similar.

6.2.2 Semantic Similarity Measures

WordNet: To calculate semantic similarity using WordNet (Miller, 1995),

an algorithm based on the general template method for semantic similarity

given in Mihalcea et al. (2006) was used. Mihalcea et al. propose combining

metrics of word-to-word similarity and word specificity into a formula that

is a potentially good indicator of the semantic similarity of two input texts.

In this case, this is achieved using WordNet path similarity1 as the word-to-

word similarity metric, and Inverse Document Frequency (IDF) (Sparck-Jones,

1972) as the word specificity metric. With these metrics similarity can then

be calculated using the equation below:

sim(T1, T2) =
1

2
(

∑
w∈T1

(maxSim(w, T2) ∗ idf(w))∑
w∈T1

idf(w)
+∑

w∈T2
(maxSim(w, T1) ∗ idf(w))∑

w∈T2
idf(w)

)

(6.6)

That is, for each word w in segment T1 we identify the word in segment

T2 that has the highest path similarity score (maxSim(w, T2)), this is then

weighted with the corresponding word specificity, summed up, and normalised

with the length of each text segment. This process is repeated with each

word in T2, and the resulting similarity scores are combined using a simple

average. This similarity score has a value between 0 and 1, with a score of

1 indicating identical text segments, and a score of 0 indicating no semantic

overlap between the two segments.

Word Vectors: The final two semantic similarity approaches tested were

1Path similarity is available as part of the NLTK WordNet interface (http://www.nltk.

org/howto/wordnet.html), and is inversely proportional to the number of nodes along the

shortest path between the synsets, with the maximum value being 1 when the two synsets

are the same, and the minimum being 0.
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implemented using pre-trained models. Word vectors were explored using

word2vec (Mikolov et al., 2013), an efficient neural approach to learning high-

quality embeddings for words. Specifically, the pre-trained skip-gram vec-

tors trained on a Google News dataset2 were used. This model contains 300-

dimensional vectors for 3 million words and phrases.

To determine similarity between propositions, the centroid of the word em-

beddings was located by averaging the word2vec vectors for the individual

words in the proposition. The cosine similarity between centroids was calcu-

lated to represent the proposition similarity.

Document Vectors: Document vectors were implemented using a doc2vec

(Le and Mikolov, 2014) distributed bag of words(dbow) model to represent ev-

ery proposition as a vector with 300 dimensions. Again, the cosine similarity

between vectors was then calculated to represent the proposition similarity.

6.2.3 Topical Similarity Measures

Latent Dirichlet Allocation: As in Lawrence et al. (2014), a Latent Dirich-

let Allocation (LDA) model (Blei et al., 2003) is also used here to determine

similarity. Later work (Lawrence and Reed, 2015) has suggested that LDA

performs less successfully on shorter text spans, though we include this model

here both for completeness, and to investigate whether this is indeed the case

for the US2016G1tv corpus.

LDA is a generative model which conforms to a Bayesian inference about

the distributions of words in the documents being modelled. Each topic in the

model is a probability distribution across a set of words from the documents.

Once the model is generated, a specific individual document can be compared

to it, in order to obtain scores for how well the document matches each iden-

tified topic. In order to obtain a similarity score for two documents, we can

compute the topic scores for each, and then calculate the Euclidean distance

between these scores.

2https://code.google.com/archive/p/word2vec/
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6.3 Similarity Experiments

6.3.1 Similarity and Argumentative Relations

The first experiment performed using the similarity measures described in the

previous section investigates the link between similarity and argumentative

relations. In order to do this, the similarity scores for all pairs of connected

propositions in the US2016G1tv corpus were calculated, and the average of

these compared to the average similarity score for all non-connected adjacent

propositions. In this case, we consider any two propositions connected by

either a support (RA) or conflict (CA) relation as being related. There is no

way, from similarity alone, to tell which of these two relations holds in each

case. The results of this comparison can be seen in Table 6.1.

Technique Un-Related Related Significance

Lexical Similarity Measures

ROUGE-1 0.0662 0.1486 p < 0.001

ROUGE-2 0.0028 0.0377 p < 0.001

ROUGE-L 0.0515 0.1190 p < 0.001

Levenshtein 0.1214 0.2238 p < 0.001

Semantic Similarity Measures

WordNet 0.1625 0.1711 p > 0.05

Word Vectors 0.2111 0.3297 p < 0.001

Document Vectors 0.1114 0.1362 p < 0.05

Topical Similarity Measures

LDA 0.4469 0.4638 p > 0.05

Table 6.1: Average similarity scores for related and un-related propositions

with significance of difference calculated using Student’s t-test.

The first thing that can be observed from these results is that there is

a highly significant (p < 0.001) difference between the similarities of related

and un-related propositions, as calculated by the majority of measures. The

exceptions to this are the results obtained using Document Vectors (which
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were, nonetheless, still significant, p < 0.05), and those for WordNet and

LDA, which showed no significant difference between the average values. In

the case of WordNet, this seems most likely to be caused by the IDF weighting

- it is possible that there are words which occur in a relatively high number of

propositions, but where these are all related, equally that less common words

may not be a useful indicator. For LDA, this result seems most likely due to

the length of documents, as discussed in the previous section. As WordNet and

LDA performed significantly more poorly, they were excluded from subsequent

experiments.

The ROUGE metrics generally have lower scores than the rest, with ROUGE-

2 being notably lower than the other two. The lower average scores for

ROUGE-2 are perhaps to be expected, repeated bigrams are indeed likely

to be less common than repeated unigrams (though despite these lower scores,

ROUGE-2 shows the “most significant” difference of the three). And word

repetition is perhaps less likely than similar semantic meaning, though still a

useful indicator when it does occur. Word Vectors also outperform Document

Vectors, suggesting that these are better capturing the meaning of the propo-

sitions. However, as data from which they are produced is different in each

case, it is unclear whether this is a result of the technique or of the data.

6.3.2 Similarity and Adjacency

It could be suggested that one cause for the higher similarity between related

propositions is that they often occur close together in a dialogue, and, as such,

are more likely to be similar due to their proximity rather than because of any

connection to argument structure. It is indeed the case that ∼20% of related

propositions are sequentially adjacent.

In order to investigate this further, the same similarity measures were used

to calculate average scores again, but looking this time at related and un-

related propositions that are sequentially adjacent. The results of these calcu-

lations are shown in Table 6.2.

Whilst the averages are higher in all cases for adjacent propositions, it

can be seen from the results table that there is still a significant difference
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Technique Un-Related Related Significance

Lexical Similarity Measures

ROUGE-1 0.1911 0.3336 p < 0.05

ROUGE-2 0.0142 0.0393 p < 0.001

ROUGE-L 0.1708 0.2771 p < 0.001

Levenshtein 0.2214 0.3823 p < 0.001

Semantic Similarity Measures

Word Vectors 0.3059 0.5999 p < 0.001

Document Vectors 0.2341 0.3062 p < 0.05

Table 6.2: Average similarity scores for adjacent related and un-related propo-

sitions.

(though slightly reduced in the case of ROUGE-1) between related and un-

related propositions for all of the techniques. From this we can conclude that

even for sequential propositions, those that have an argumentative relation

connecting them are generally more similar than those that don’t.

6.4 Long distance

So far the results have shown that there is a significant difference in similarity

between related and un-related propositions, and the scale of difference re-

mains similar when looking at just those propositions that are adjacent. But,

what about long range relations? In this final experiment before moving on to

apply these results as an argument mining technique, we look at whether the

similarity is significantly different between propositions that have a relation to

each other and are situated further apart in the dialogue (with > 5 proposi-

tions between them3), and those similarly situated, but with no argumentative

relation. The results of these calculations are shown in Table 6.3.

The most notable results from the table are those for the semantic mea-

sures, which, now looking at distant relations, are showing a great increase

3The distance of 5 was selected as this value ensures that, at a minimum, all pairs are in

different dialogue turns.
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Technique Un-Related Related Significance

Lexical Similarity Measures

ROUGE-1 0.0655 0.0961 p < 0.05

ROUGE-2 0.0028 0.0057 p < 0.001

ROUGE-L 0.0499 0.0810 p < 0.05

Levenshtein 0.1212 0.1921 p < 0.05

Semantic Similarity Measures

Word Vectors 0.2276 0.5291 p < 0.001

Document Vectors 0.1114 0.4332 p < 0.001

Table 6.3: Average similarity scores for distant (> 5 propositions apart)

related and un-related propositions.

in significance for the difference between related and un-related propositions.

Whilst this result may seem surprising at first glance, it reflects the likelihood

that when a speaker is referring back to a previous point in the dialogue they

may paraphrase the original point retaining its meaning (resulting in higher

semantic similarity), but using different words to when it was originally ut-

tered (resulting in possibly lower lexical similarity). Misra et al. (2016) look

at this aspect of using various similarity measures to identify argument facets,

or groups of paraphrased arguments, with the aim of clustering and grouping

similar arguments and producing argument facet summaries as a final output.

6.5 Argument mining with similarity

Having investigated the relationship between various measures of semantic and

lexical similarity, we now move on to apply these to determining argument

relations in text. To do this, we adapt the “Topical Similarity” argument

mining technique presented in Lawrence et al. (2014). This technique relies

on two assumptions: firstly that the argument structure to be determined

can be represented as a tree, and secondly, that this tree is generated depth

first. That is, the conclusion is given first and then a line of reasoning is

followed supporting this conclusion. Once that line of reasoning is exhausted,
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the argument moves back up the tree to connect to one of the previously made

points. If the current point is not similar to any of those made previously, then

it is assumed to be un-connected, and possibly the start of a new topic.

Although the assumption of a tree structure does not hold for all arguments,

it is the case for around 95% of the argument analyses contained in AIFdb,

and 80% of arguments in the Consumer Debt Collection Practices (CDCP)

corpus as reported by Niculae et al. (2017). Similarly, not all arguments are

presented in a depth first manner, though this is indeed the most common

ordering. For example, Stab and Gurevych (2017) use a heuristic baseline

classifying the first argument component in each body paragraph as a claim,

and all subsequent components in the paragraph as premises for this claim.

This baseline is shown to give an F1-score of 0.74 on the Argument Annotated

Essays Corpus (AAEC) (Stab and Gurevych, 2014a).

Based on these assumptions the argumentative structure is determined by

looking at how similar each proposition is to its predecessor. If they are suf-

ficiently similar, it is assumed that they are connected and that the line of

reasoning is being followed. If they are not sufficiently similar, then it is first

considered whether we are moving back up the tree, and the current proposi-

tion is compared to all of those statements made previously and connected to

the most similar previous point. Finally, if the current point is not sufficiently

similar to any of those made previously, then it is assumed to be disconnected

from the existing structure. This process is illustrated in Figure 6.1.

The question that arises from this description is, what is meant by “suffi-

ciently similar” when considering these possible connections. To get a feel for

the answer to this, it is necessary to look at the tables of average similarities

given in the previous section. For example, with the ROUGE-1 technique,

related adjacent propositions have an average score of 0.3336, and un-related

adjacent propositions a score of 0.1911. It seems that to decide if a proposi-

tion is related to its predecessor, setting a threshold somewhere between these

values is a good place to start. Clearly the exact value of the thresholds can

be changed to prioritise precision or recall as required by the task at hand,

something which will become useful in Chapter 9 when different argument
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Step 1: The similarity of a new 
proposition to its immediate 
predecessor is calculated. If the 
new proposition is sufficiently 
similar, this is viewed as a 
continuation of the previous line of 
reasoning and the two are 
connected.

Step 2: If the new proposition is 
not sufficiently similar to its 
immediate predecessor, the 
similarity to all previous 
propositions is calculated. The 
most similar previous proposition is 
then selected and, if it is 
sufficiently similar to the new 
proposition, a connection is made.

Step 3: If the new proposition is 
not sufficiently similar to any of the 
previous propositions, it is viewed 
as the start of a new line of 
reasoning, disconnected to the 
existing argument structure.

Figure 6.1: The steps involved in determining how the argument structure is

connected using the “Topical Similarity” argument mining technique presented

in Lawrence et al. (2014). The dashed lines represent potential connections for

each step.

mining techniques are used in combination. For the purposes of comparing

the different techniques here, however, the threshold was selected to give the

best balance between precision and recall and was calculated as follows:

Threshold = Avg¬rel + (Avgrel − Avg¬rel)
stdevrel

stdevrel + stdev¬rel
(6.7)

where Avgrel and Avg¬rel are the averages for related and non-related propo-

sitions respectively, and stdevrel and stdev¬rel are the standard deviations for

each. In effect this gives a point between the two averages weighted according

to the standard deviation.

This same threshold is applied for both adjacent connections and long

distance connections using the figures in Tables 6.2 and 6.3. For example,

using ROUGE-1 the threshold is 0.204 for adjacent propositions, and 0.071 for

long distance.

The results obtained from applying this approach with these threshold

values calculated for each similarity technique are shown in Table 6.4. The last

row of this table, ‘Any’, gives the results obtained when any of the similarity

techniques listed above are over their respective threshold. This ‘Any’ measure
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Technique Precision Recall F1-Score

Lexical Similarity Measures

ROUGE-1 0.67 0.59 0.63

ROUGE-2 0.75 0.67 0.71

ROUGE-L 0.6 0.64 0.62

Levenshtein 0.62 0.68 0.65

Semantic Similarity Measures

Word Vectors 0.73 0.63 0.68

Document Vectors 0.71 0.6 0.65

Combined

Any 0.81 0.74 0.77

Table 6.4: Precision, recall and F1-Score for identifying argumentative rela-

tions using a range of similarity techniques.

captures the different ways in which argumentatively related propositions can

be similar to each other. For example, connected propositions may have similar

meaning but use different words, or may have different meaning, but be related

to the same topic. The table shows that the results in this last row are the

best of all approaches, this is a situation perhaps hinted at, and supporting

the intuition stated in, the introduction to this chapter where it is suggested

that argumentatively related propositions may share a large number of words

in common, or be semantically similar without sharing very many common

words.

6.6 Conclusion

In this chapter a range of similarity measures have been considered, these

include: lexical measures capturing the scenario where a premise and its asso-

ciated conclusion share a large number of words in common; semantic measures

capturing the scenario where the words used are different, but the meaning be-

ing conveyed is similar; and, topical measures where the exact words and their

meaning is not shared between premise and conclusion, but they are still both
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talking about the same topic.

The results show that there is a highly significant (p < 0.001) difference

between the similarities of related and un-related propositions, as calculated

by the majority of measures. We have also seen that this similarity is not just

due to the proximity of premise and conclusion meaning that they are more

likely to be similar.

Finally we have seen that similarity measures can be used to to determine

argument relations in text. Whilst the F1-score of 0.77 is promising for this

task, these predicted relations are un-typed and un-directed. It will require

further combination with other argument mining techniques for these results

to achieve their full potential, as will be seen in Chapter 9.



Chapter 7

Graph Properties

7.1 Introduction

In this chapter, we consider the insights that can be gained by considering

large scale argument networks as a whole. We present two metrics, Centrality,

which can be viewed as how important an issue is to the argument as a whole

(how many other issues are connected to it), and Divisiveness, how much an

issue splits opinion (how many other issues are in conflict with it and the

amount of support which the two sides have).

We first show how these metrics can be calculated from an annotated ar-

gument structure and then show how they can be automatically approximated

from the original text. We can then use this automatic approximation to deter-

mine the argumentative structure of un-annotated text, by using the centrality

and divisiveness scores for each text span to help decide how they should be

connected. In Section 7.4, we combine this approach with existing argument

mining techniques and show how the identification of properties of argumen-

tative relations can be improved by considering the larger context in which

these relations occur.

Despite the rich heritage of philosophical research in argumentation theory

(van Eemeren et al., 2014; Chesñevar et al., 2006), the majority of argument

mining techniques explored to date have focused on identifying specific facets

of the argumentative structure rather than considering the complex network of

interactions which occur in real-life debate. For example, existing approaches

117
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have considered: classifying sentences as argumentative or non-argumentative

(Moens et al., 2007); classifying text spans as premises or conclusions (Palau

and Moens, 2009); classifying the relations between specific sets of premises

and their conclusion (Feng and Hirst, 2011); or classifying the different types

of premise that can support a given conclusion (Park and Cardie, 2014).

The approach presented in this chapter considers large scale argument net-

works as a whole, looking at properties of argumentative text spans that are

related to their role in the entire argumentative structure. In our automatic

determination of Centrality and Divisiveness, we first construct a graph of

similarity between text spans and then use eigenvector centrality to determine

those which are most central. For Divisiveness, we then look at the sentiment

polarity of each text span compared to the rest of the corpus to measure how

many others are in conflict with it and the amount of support which the two

sides have.

7.2 Large-Scale Argument Graph Properties

The argument graphs described in Chapter 3 allow us to look at the structure

of the debate as a whole rather than focusing on the properties of individ-

ual relations between propositions. Where many argument corpora consist

of multiple smaller texts that have no connections between them, the argu-

ment structure of US2016G1tv covers the entire debate, with links between all

related parts no matter how far apart in the debate they occur.

In this section we look at two measures, Centrality and Divisiveness, that

individual propositions (I-nodes) exhibit which can only be interpreted when

considering the broader context in which they occur. Whilst there are certainly

other measures that could be applied to an argument graph highlighting in-

teresting features of the arguments being made, we have selected these two

metrics as they can both be calculated as properties of the argument graph

and approximations can be determined directly from the original text. In Sec-

tion 7.3, we describe methods to determine these approximations directly from

the original text. By first calculating them directly we can then reverse the
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process of determining them from the argumentative structure, cutting the

manual analysis out of the loop and allowing us to determine the argumenta-

tive structure directly. In Section 7.4, we look at how this approach can be

used to improve the accuracy of extracting the full argumentative structure

directly from un-annotated text.

7.2.1 Centrality

Central issues are those that play a particularly important role in the argu-

mentative structure. For example, in Figure 7.1, we can see that the node

“CLINTON knows how to really work to get new jobs...” is intuitively more

central to the dialogue, being the point which all of the others are responding

to, than the node “CLINTON’s husband signed NAFTA...”.

Figure 7.1: Fragment of Manually Analysed Argumentative Structure from the

US2016G1tv Corpus.

In order to calculate centrality scores for each I-node, we adapt eigenvector

centrality (used in the Google Pagerank algorithm (Brin and Page, 1998)).
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Firstly, we create a directed graph, G = (V,E), in which: the vertices (V ) are

propositions (I-nodes) extracted from the corpus; and, an edge exists between

two vertices if there is an RA- or CA-node connecting them in the original

analysis. We then construct the matrix A = (av,t), where av,t is the weight of

the edge between vertex v and vertex t if v and t are connected, and av,t = 0

otherwise. The relative centrality score of vertex v can then be defined as

shown in Equation 7.1, where λ represents the greatest eigenvalue for which a

non-zero eigenvector exists.

Central(v) =
1

λ

∑
t∈G

av,tCentral(t) (7.1)

This results in a centrality score for each proposition, from which we can

rank the propositions by how central they are to the debate. The top four

ranked central propositions from US2016G1tv are listed below:

• CLINTON could encourage them by giving them tax incentives, for ex-

ample

• there is/is not any way that the president can force profit sharing

• CLINTON also wants to see more companies do profit-sharing

• CLINTON is hinting at tax incentives

It is encouraging that these issues all concern the economy, which Pew

Research identified as the single most important issue to voters (with 84% of

voters ranking it as “very important”) in the 2016 US presidential elections1.

7.2.2 Divisiveness

Divisive issues are those that split opinion and which have points both sup-

porting and attacking them (Konat et al., 2016). Looking again at Figure 7.1,

we can see that the node “CLINTON knows how to really work to get new

jobs...” is not only central, but also divisive, with both incoming support and

conflict. At the opposite end of the scale, the node “CLINTON has been a

1http://www.people-press.org/2016/07/07/4-top-voting-issues-in-2016-election/
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secretary of state”, is not divisive; such factual statements are unlikely to be

disputed by anyone on either side of the debate.

The Divisiveness of an issue measures how many others are in conflict with

it and the amount of support which the two sides have. In order to calculate

this, we now create two directed sub-graphs, one for support and one for

conflict: Gs = (V,Es), in which an edge exists between two vertices if there

is an RA-node connecting them in the original analysis; and, Gc = (V,Ec),

in which an edge exists between two vertices if there is a CA-node connecting

them in the original analysis. The divisiveness of a vertex v can then be defined

as shown in Equation 7.2, where deg−s (v) is the in-degree of vertex v in Gs.

Divisive(v) =
∑

∀t s.t. (t,v)∈Ec∨(v,t)∈Ec

deg−s (v) ∗ deg−s (t) (7.2)

Again we list the top four ranked divisive issues from US2016G1tv below,

and it is certainly easy to see how such statements on the character of the

candidates, the validity of their claims and controversial issues such as gun

control could easily divide those commenting on the debate:

• TRUMP settled that lawsuit with no admission of guilt

• I still support hand guns though

• people have looked at both of our plans, have concluded that CLINTON’s

would create 10 million jobs and TRUMP’s would lose us 3.5 million jobs

• CLINTON didn’t realize coming off as a snarky teenager isn’t a good

look either

7.3 Automating the Identification of Large Scale

Argument Graph Properties

In this section we investigate techniques to automatically rank text fragments

by their centrality and divisiveness with no prior knowledge of the argumen-

tative structure contained within the text. In each case, we take the manually
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segmented propositions from our corpus and apply techniques to rank these,

we then compare the resulting rankings to the ranking determined from the

manually analysed argument structures as described in Section 7.2.

7.3.1 Automatic Identification of Centrality

In order to calculate centrality automatically, we take advantage of the results

from Chapter 6 which show that propositions (I-nodes) that are connected

by relations of either support or attack in an AIF graph will generally have

a higher (lexical or semantic) similarity than those which have no argumen-

tative connection. We can again see an example of this in Figure 7.1, where

the node “CLINTON knows how to really work to get new jobs and to get

exports that...” is connected via support and attack relations to nodes whose

propositional contents are all related to jobs or exports. The remaining nodes

in this example fragment all discuss more distant concepts, such as Clinton’s

experience.

As such, centrality of propositions can be automatically calculated by deter-

mining the similarity scores between all proposition pairs and then computing

eigenvector centrality on a graph with edge weights corresponding to these sim-

ilarity scores. The resulting automatically calculated centrality scores should

then mirror those that would be determined by calculating centrality on the

argument graph.

We consider those methods for determining similarity shown to perform

best in Chapter 6: ROUGE-1, ROUGE-2, ROUGE-L, Levenshtein Edit Dis-

tance, Word Vectors, and Document Vectors). And, for each of these measures,

produce an automatically generated similarity graph, using the similarity score

as the edge weights. For each of these graphs, the eigenvector centrality scores

were then calculated, and the vertices sorted by centrality score to give an

ordered list of propositions.

The ranking obtained using each centrality measure was then compared to

the centrality ranking calculated for the manually annotated argument struc-

ture (as described in Section 7.2.1), by calculating the Kendall rank correlation

coefficient (Kendall, 1938). The results for each method are shown in Table 7.1.
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In each case the results show a correlation between the rankings (p < 0.05)

suggesting that all of these methods are able to approximate the centrality of

propositions in the argumentative structure. In Section 7.4 we explore these

results further and show that these approximations are in all cases sufficient

to improve the automatic extraction of the argumentative structure directly

from the original text.

Similarity Method Kendall τ

ROUGE-1 0.585

ROUGE-2 0.601

ROUGE-L 0.533

Levenshtein Edit Distance 0.524

Word vectors 0.618

Document vectors 0.620

Table 7.1: The Kendall rank correlation coefficient (τ) for the rankings de-

termined using TextRank for each method of determining semantic similarity

compared to the Centrality ranking obtained from the manually annotated

argument structure.

7.3.2 Automatic Identification of Divisiveness

Whilst divisiveness is a related concept to centrality, it is more challenging to

determine directly from the text, as we need to not only locate those nodes

that are most discussed, but also to limit this to those which are involved in

conflict relations.

Here we implement a method of determining conflict relations using Sen-

tiWordNet2, a lexical resource for opinion mining3. SentiWordNet assigns a

triple of polarity scores to each synset of WordNet, a positivity, negativity and

2http://sentiwordnet.isti.cnr.it/
3It should be noted that the state-of-the-art in sentiment analysis continues to move

rapidly, and improved results than those presented here may be achieved with more recent

techniques, such as XLnet (Yang et al., 2019)
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Polarity(Pi, Pj) =
|positivity(Pi)− positivity(Pj)|+ |negativity(Pi)− negativity(Pj)|

2
(7.3)

objectivity score. The sum of these scores is always 1. For example, the triple

(1, 0, 0) (positivity, negativity, objectivity) is assigned to the synset of the

word “good”.

Each proposition (I-node), is split into words and each word is stemmed

and tagged, and stop words are removed. If a stemmed word belongs to one of

the word classes “adjective”, “verb” or “noun”, its polarity scores are looked

up in SentiWordNet. Where a word has multiple synsets, each of the polarity

scores for that word are averaged across all of its synsets. The scores of all

words within a sentence are then summed and divided by the number of words

with scores to give a resulting triple of {positivity, negativity, objectivity}

values for each proposition.

Having calculated the polarity triples for each proposition, we are then able

to calculate the difference in polarity between two propositions, Pi and Pj as

in Equation 7.3.

We compute these differences in polarity for each pair of propositions in the

corpus and then, for each of the methods of determining similarity discussed

in the previous subsection, multiply the similarity scores by the polarity differ-

ence to obtain a value representing the likelihood of conflict between the two.

Finally for each proposition, we mirror the method of computing divisiveness

from the argument graph. To do this, we look at each proposition, and take

the sum of the centrality scores multiplied by the conflict value for each other

proposition.

Following this approach for each method of determining similarity again

gives us a ranking which we can then compare to the divisiveness ranking

calculated for the manually annotated argument structure, as described in

Section 7.2. For each approach, we again calculate the Kendall rank correlation

coefficient. These results are shown in Table 7.2. We can see from these results

that whilst there is still a positive correlation between the rankings, these are
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substantially less significant than those obtained for the centrality rankings.

In the next Section we investigate whether these values are sufficient to have

a positive impact on the argument mining task.

Similarity Method Kendall τ

ROUGE-1 0.113

ROUGE-2 0.237

ROUGE-L 0.147

Levenshtein Edit Distance 0.224

Word vectors 0.167

Document vectors 0.284

Table 7.2: The Kendall rank correlation coefficient (τ) for the Divisiveness

rankings for each method of determining semantic similarity compared to the

Divisiveness ranking obtained from the manually annotated argument struc-

ture.

7.4 Validation: Applying Automatically Iden-

tified Centrality and Divisiveness Scores

to Argument Mining

Our final step is to validate both our concepts of centrality and divisiveness as

calculated from annotated argument structures and our methods of calculating

these same metrics directly from unannotated text. To do this, we use the

“Topical Similarity” argument mining technique presented in Chapter 6 and

in Lawrence et al. (2014).

Starting with the results for each similarity measure as given in Section 6.2,

we here adapt Step 2 of this process by considering all of the previous propo-

sitions in the corpus as potential candidate structures and, having produced

these candidate structures calculated the Centrality and Divisiveness rankings

for each structure as described in Section 7.2. Finally we computed the Kendall
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rank correlation coefficient comparing the centrality ranking of each candidate

structure to the ranking computed only using similarity (as described in Sec-

tion 7.3) and selected the structure which maximised the rank correlation.

Table 7.3 shows the precision, recall and F1-scores for automatically de-

termining connections, based on attachment only, in the US2016G1tv corpus

using each semantic similarity measure combined with maximising the rank

correlations for centrality and divisiveness. We can see from these results that

maximising divisiveness results in small increases in accuracy, and in all cases

maximising centrality results in increased accuracy in determining connections,

with increases of 0.03–0.10 in F1-score demonstrated for all the methods con-

sidered.

7.5 Conclusion

This chapter has presented two metrics, Centrality and Divisiveness, for de-

scribing the nature of propositions and their context within a large scale argu-

mentative structure. We have shown how these metrics can be calculated from

annotated argument structures and produced reliable estimations of these met-

rics that can be extracted directly from un-annotated text, with strong positive

correlations between both rankings.

Finally, we have shown how these metrics can be used to improve the ac-

curacy of existing argument mining techniques. By broadening the focus of

argument mining from specific facets, such as classifying as premise or conclu-

sion, to look at features of the argumentative structure as a whole, we have

presented an approach which can improve argument mining results either as a

feature of existing techniques or as a part of a more robust combined technique

such as that presented in Chapter 9.
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Similarity Method p r F1

ROUGE-1 0.67 0.59 0.63

+ Max Centrality 0.68 0.67 0.67

+ Max Divisiveness 0.66 0.61 0.63

ROUGE-2 0.75 0.67 0.71

+ Max Centrality 0.79 0.70 0.74

+ Max Divisiveness 0.76 0.67 0.71

ROUGE-L 0.60 0.64 0.62

+ Max Centrality 0.66 0.67 0.66

+ Max Divisiveness 0.60 0.64 0.62

Levenshtein Edit Distance 0.62 0.68 0.65

+ Max Centrality 0.67 0.71 0.69

+ Max Divisiveness 0.63 0.70 0.66

Word vectors 0.73 0.63 0.68

+ Max Centrality 0.77 0.67 0.72

+ Max Divisiveness 0.75 0.65 0.70

Document vectors 0.71 0.60 0.65

+ Max Centrality 0.75 0.66 0.70

+ Max Divisiveness 0.70 0.63 0.66

Table 7.3: Precision, recall and F1-scores for automatically determining con-

nections in the US2016G1tv corpus using each similarity measure combined

with Centrality and Divisiveness.



Chapter 8

Argumentation Schemes

8.1 Introduction

Argumentation schemes (Walton, 1996) capture structures of (typically pre-

sumptive) inference from a set of premises to a conclusion and represent stereo-

typical patterns of human reasoning. As such, argumentation schemes repre-

sent a historical descendant of the topics of Aristotle (1958) and, much like

Aristotle’s topics, play a valuable role in both the construction and evaluation

of arguments.

Several attempts have been made to identify and classify the most com-

monly used schematic structures (Hastings, 1963; Perelman and Olbrechts-

Tyteca, 1969; Kienpointner, 1992; Pollock, 1995; Walton, 1996; Grennan, 1997;

Katzav and Reed, 2004; Walton et al., 2008). Although these sets of schemes

overlap in many places, the number of schemes identified and their granular-

ity can be quite different. As such, most argument analyses tend to contain

examples from only one scheme set, with the Walton set being the most com-

monly used. Several examples of Walton’s argumentation schemes can be seen

in Table 8.2.

Understanding the argumentative structure being expressed in a piece of

natural language text can help us gain a deeper understanding of what is be-

ing said compared to many existing techniques for extracting meaning. If we

consider the product review shown in Example (1), then sentiment analysis

techniques allow us to understand at a high level what views are being pre-
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sented, for example, that this review is positive, but are unable to provide

details on exactly why the reviewer likes the product.

(1) The PowerShot SX510 is a fantastic camera. It is made by Canon and

all Canon cameras have great image stabilisation.

Looking at the argumentative structure contained within this review, we can

see that the propositions “It is made by Canon” and “all Canon cameras

have great image stabilisation” are working together as a linked argument (see

Section 2.2.3) to support the conclusion “The PowerShot SX510 is a fantastic

camera”. Furthermore, we can see that the link between the premises and

conclusion is a form of Verbal Classification1. A graphical representation of

the argument structure can be seen in Figure 8.1.

As shown in the examples in Table 8.2, Walton’s classification assigns a

particular label to each component part of a scheme instance. For the Verbal

Classification in Example (1), the scheme components are shown below:

Premise (ContainsProperty): It is made by Canon

Premise (ClassificationProperty): all Canon cameras have great image

stabilisation

Conclusion: The PowerShot SX510 is a fantastic camera

The features of these common patterns of argument provide us with a way

in which to both identify that an argument is being made and determine its

structure. By using the specific nature of each component proposition in a

scheme, we can identify where a particular scheme is being used and classify

the propositions accordingly, thereby gaining a deeper understanding of the

argumentative structure which a piece of text contains.

The concept of automatically identifying argumentation schemes was first

discussed by Walton (2011) and Feng and Hirst (2011). Walton proposes a

six-stage approach to identifying arguments and their schemes. The approach

1In fact, the example here does not exactly conform to the Verbal Classification scheme.

In a more thorough analysis, an enthymeme would be added showing that the premises

actually support the fact that the camera has great image stabilisation and that this in turn

is a feature of a fantastic camera.
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Figure 8.1: Argument analysis of a product review, showing an example of the

Verbal Classification scheme

suggests first identifying the arguments within the text and then fitting these

to a list of specific known schemes. A similar methodology was implemented

by Feng & Hirst, who produced classifiers to assign pre-determined argument

structures as one in a list of the most common argumentation schemes. An-

other possible approach is suggested in Cabrio et al. (2013), where the con-

nection between argumentation schemes and discourse relations is highlighted,

however, this requires these discourse relations to be accurately identified be-

fore scheme instances can be determined.

The main challenge faced by these approaches is the need for some prior

analysis of the text to have taken place. By instead looking at the features of

each component part of a scheme, we are able to overcome this requirement and

identify parts of schemes in completely unanalysed text. Once these scheme

components have been identified, we are able to group them together into

specific scheme instances and thus obtain a complete understanding of the

arguments being made.

8.2 Walton’s Classification of Argumentation

Schemes

As the starting point for our annotation of argument schemes based on Wal-

ton’s typology, we use the collection in the book “Argumentation Schemes”

by Walton et al. (2008). Depending on what is counted as a type of argument
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scheme (i.e. whether sub-types are counted or not), the book contains up-

wards of 60 schemes. The schemes are presented with their distinctive pattern

of premises and conclusion, and with an associated list of critical questions,

mostly drawn from Walton’s previous work.

8.2.1 Annotation Guidelines

Two expert annotators trained in argumentation analysis and with prior knowl-

edge of Walton’s typology of argument schemes each classified 55% of the

RA-nodes in the US2016G1tv corpus in accordance with Walton’s typology.

Specifically, the top level schemes from (Walton et al., 2008) were considered,

resulting in a choice from 60 possible labels to be applied to each of the more

than 500 previously analysed inference relations in the corpus.

To facilitate the process, the annotators were provided with a classifica-

tion decision tree: a heuristic for the annotators, to intuitively support their

coding task (Lawrence et al., 2019b). The fragment of the heuristic in Fig-

ure 8.2 shows the indication of the grounds for making a decision between

various action-oriented argument schemes. The decision tree ties into the ac-

tual guidelines consisting of Chapter 9 of (Walton et al., 2008, pp. 308–346):

A User’s Compendium of Schemes. Since the annotation relies on the existing

annotated argumentation structure, in some cases, the schemes are applied in

a simplified, condensed or partial manner, to fit the original annotation. In

addition, one auxiliary catch-all class is introduced for arguments not fitting

any of the 60 main schemes: Default inference.

8.2.2 Results of the Annotation

A sample of 10.2% of the corpus was annotated by both annotators, result-

ing in a Cohen’s κ (Cohen, 1960) of 0.723; well within substantial agreement

(Landis and Koch, 1977). A confusion matrix showing the results of the double

annotation can be seen in Figure 8.32.

2Schemes which were not used by either annotator in the double annotation are omitted

from the matrix
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Figure 8.2: Distinguishing between action-oriented argument schemes with the

decision tree heuristic.

Some classes of argument scheme turned out to be particularly difficult

to distinguish: e.g., Example (2) was classified by one annotator as Practical

reasoning, related to promoting goals, and by the other as Argument from

values, related to promoting values.

(2) Hilary Clinton: What I have proposed would be paid for by raising taxes

on the wealthy [...] I think it’s time that the wealthy and corporations

paid their fair share to support this country.

The results of the annotation in accordance with Walton’s classification of

argument schemes are collected in the US2016G1tvWALTON corpus (available

online at http://corpora.aifdb.org/US2016G1tvWALTON). Figure 8.4 shows

an example of the Practical reasoning from analogy scheme as applied in the

corpus. Of the 505 RA-nodes in the original US2016G1tv corpus, a total of

491 are annotated with one of the 60 argument scheme types in Walton’s

classification, leaving only 14 as Default inference. The most common scheme,

by some margin, is Argument from example. The Argument from expert opinion

scheme, a scholarly favourite, is remarkably rare with only three occurrences.

Table 8.1 shows the number of occurrences of each scheme within the corpus.
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Figure 8.3: Confusion matrix for annotation of schemes in

US2016G1tvWALTON

8.3 Automatic Identification of Argumentation

Schemes

Being able to determine the argumentation scheme structure contained within

a piece of text gives us a much deeper understanding of both what views are

being expressed and why those views are held, as well as providing a route to

the automatic reconstruction of certain types of enthymeme (Hitchcock, 1985).

However, existing approaches to automatically identifying scheme instances

have relied on the basic argumentative structure being previously identified.

By training a range of classifiers to identify the individual components of

a scheme, we are able to identify not just the presence of a particular scheme,

but also the roles which each of the premises play within a particular scheme
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Figure 8.4: OVA visualisation of Practical reasoning from analogy in

US2016G1tvWALTON.

Table 8.1: Counts of argument schemes in the US2016G1tvWALTON corpus.

Argument scheme Count Argument scheme Count

Argument from example 81 Ethotic argument 5

Argument from cause to effect 48 Practical reasoning from analogy 4

Practical reasoning 45 Argument from commitment 3

Argument from consequences 40 Argument from expert opinion 3

Argument from sign 38 Argument from waste 3

Argument from verbal classification 32 Argument from gradualism 2

Generic ad hominem 28 Argument from need for help 2

Circumstantial ad hominem 24 Argument from oppositions 2

Pragmatic argument from alternatives 23 Argument from perception 2

Argument from values 15 Argument from correlation to cause 1

Default inference 14 Argument from definition to verbal classification 1

Argument from position to know 13 Argument from division 1

Argument from fear appeal 11 Argument from ignorance 1

Argument from alternatives 9 Argument from rules 1

Argument from bias 9 Argument from vagueness of verbal classification 1

Argument from analogy 8 Argument from witness testimony 1

Argument from popular opinion 8 Argumentation from interaction of act and person 1

Argument from danger appeal 7 Pragmatic inconsistency 1

Argument from popular practice 7 Two-person practical reasoning 1

Argument from composition 6

instance. Furthermore, we are able to perform this based only on a list of the

propositions contained within the text, requiring no previous analysis to have

been performed.

Limiting the data to those schemes with at least thirty instances that are

fully defined leaves us with six schemes to consider (comparable in number to

the top five most commonly occurring schemes used by Feng and Hirst (2011)):

Argument from example, Argument from cause to effect, Practical reasoning,

Argument from consequences, Argument from sign, and Argument from verbal

classification. The structure of these schemes, and their associated component

types, is shown in Table 8.2.

In Section 8.3.1 we look at using one-against-others classification to iden-

tify propositions of each scheme component type from the set of propositions

in US2016G1tv. Being able to successfully perform this task for even one of

the proposition types allows us to discover areas of the text where the corre-
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Argument from example (EX)

Premise (Pr): In this particular case, the individual a has a property F and also

property G.

Conclusion (Cn): Therefore, generally, if x has property F, then it also has

property G.

Argument from cause to effect (CE)

Major Premise (Mj): Generally, if A occurs, then B will (might) occur

Minor Premise (Mn): In this case, A occurs (might occur)

Conclusion (Cn): Therefore, in this case, B will (might) occur

Practical reasoning (PR)

Major Premise (Mj): I have a goal G

Minor Premise (Mn): Carrying out this action A is a means to realise G.

Conclusion (Cn): Therefore, I ought (practically speaking) to carry out this

action A.

Argument from consequences (CS)

Premise (Pr): If A is brought about, then good/bad consequences will plausibly

occur.

Conclusion (Cn): Therefore, A should/should not be brought about.

Argument from sign (SN)

Specific Premise (Sp): A (a finding) is true in this situation.

General Premise (Ge): B is generally indicated as true when its sign, A, is true.

Conclusion (Cn): B is true in this situation.

Argument from verbal classification (VC)

Individual Premise (In): a has property F.

Classification Premise (Cl): For all x, if x has property F, then x can be classified

as having property G.

Conclusion (Cn): a has property G.

Table 8.2: Examples of Walton argumentation schemes
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sponding scheme is likely to be being used.

In order to accomplish these tasks, a range of classifiers for each scheme

component type (all premise types, and the conclusion for each of the six

schemes) was implemented using the scikit-learn3 Python module for machine

learning, with the features described in Table 8.3. Part Of Speech (POS) tag-

ging was performed using the Python NLTK4 POS-tagger and the frequencies

of each tag added as individual features. The similarity feature was added to

extend the information given by unigrams to include an indication of whether

a proposition contains words similar to a pre-defined set of keywords. The

keywords used for each type are shown in Table 8.4. Similarity scores were

calculated using WordNet5 to determine the maximum similarity between the

synsets of the keywords and each word in the proposition. The maximum score

for the words in the proposition was then added as a feature value, indicating

the semantic relatedness of the proposition to the keyword.

8.3.1 One-against-others scheme component classifica-

tion

For each of the schemes in Table 8.2, the conclusions and each type of premise

were classified using three different types of classifier (Multinomial Näıve Bayes,

Support Vector Machines (SVMs) and Decision Trees) against a random,

equally sized, selection of other argument propositions from the US2016G1tv

corpus.

Table 8.5 shows the precision, recall and F-score obtained using 10-fold

cross validation for each proposition type with each classifier. For each propo-

sition type, the F-Score of the best performing classifier is highlighted in bold.

As can be seen from the table, the Multinomial Näıve Bayes classifiers

perform best in most cases, and even for those proposition types where one of

the other methods perform better, the results are comparable. In particular,

the results for SVMs are lower than those for the other types of classifier. This

3http://scikit-learn.org/stable/
4http://www.nltk.org/
5http://wordnet.princeton.edu/



137

Feature Description

Unigrams Each word in the proposition

Bigrams Each pair of successive words

Length The number of words in the propo-

sition

AvgWLength The average length of words in the

proposition

POS The parts of speech contained in the

proposition

Punctuation The presence of certain punctuation

characters, for example “ ” indicat-

ing a quote

Similarity The maximum semantic similarity of

a word in the proposition to pre-

defined words corresponding to each

proposition type calculated based on

the distance between their WordNet

synsets

Table 8.3: Features used for classification

can be explained by the fact that our feature set is considerably larger than

the sample, a situation in which SVMs generally perform less well.

Notably, the results for Argument from Example (Premise) and Argument

from Verbal Classification (Conclusion) are quite weak in comparison to the

other proposition types. In the case of Argument from Example, although the

premise component description (“In this particular case, the individual a has a

property F and also property G”) seems quite specific, actual instances of this

scheme component in the annotated corpus are less clear. E.g. “one needs more

police” is given as an example supporting “one needs a better community”, and

“Ford is leaving” given as an example supporting “Thousands of jobs leaving

Michigan , leaving Ohio”. In both of these cases, the premise takes the form of
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Proposition Keywords

EX Pr example

EX Cn generally

CE Mj generally, occurs

CE Mn occurs

CE Cn occurs

PR Mj goal

PR Mn action, doing

PR Cn should, perform

CS Pr result, outcome, good, bad

CS Cn should, ought

SN Sp situation, this, here

SN Ge generally, true, case

SN Cn situation, this, here

VC In property, is

VC Cl property, also, similarly

VC Cn property, is

Table 8.4: Keywords used for each scheme component type

very simple statement (policy based in the first case and factual in the second

case), making them hard to distinguish – it is almost impossible to highlight

a difference between “Ford is leaving” which is used as an example, and other

segments such as “Rahami is still alive” which is not used as an example.

With Argument from Verbal Classification, the issue is perhaps clear even

from the conclusion component description (“a has property G”). This means

that simple fact based statements such as “it’s a big problem” and “CLINTON

is wrong” fall into this category, and are almost impossible to separate from

similar statements which do not.

The results for the remaining proposition types are more promising and,

even for those schemes where the classification of one proposition type is less

successful, the results for the other types are better. If we consider being able
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Type Näıve Bayes SVM Decision Tree

p r f1 p r f1 p r f1

EX Premise 0.53 0.53 0.53 0.48 0.46 0.47 0.49 0.52 0.50

EX Conclusion 0.69 0.65 0.67 0.60 0.67 0.63 0.63 0.64 0.63

CE Major Premise 0.80 0.70 0.75 0.60 0.62 0.61 0.76 0.70 0.73

CE Minor Premise 0.61 0.79 0.69 0.58 0.51 0.54 0.58 0.79 0.67

CE Conclusion 0.68 0.65 0.66 0.56 0.60 0.58 0.63 0.73 0.68

PR Major Premise 0.77 0.73 0.75 0.68 0.80 0.74 0.64 0.93 0.76

PR Minor Premise 0.68 0.80 0.74 0.64 0.71 0.67 0.75 0.64 0.69

PR Conclusion 0.80 0.96 0.87 0.76 0.85 0.80 0.89 0.83 0.86

CS Premise 0.65 0.75 0.70 0.71 0.64 0.67 0.65 0.68 0.66

CS Conclusion 0.78 0.73 0.75 0.71 0.74 0.72 0.76 0.82 0.79

SN Specific Premise 0.67 0.79 0.73 0.61 0.61 0.61 0.76 0.75 0.75

SN General Premise 0.84 0.76 0.80 0.69 0.65 0.67 0.74 0.75 0.74

SN Conclusion 0.58 0.6 0.59 0.46 0.5 0.48 0.48 0.59 0.53

VC Indiv. Premise 0.71 0.74 0.72 0.45 0.88 0.60 0.57 0.92 0.70

VC Class. Premise 0.69 0.80 0.74 0.72 0.66 0.69 0.66 0.61 0.63

VC Conclusion 0.58 0.49 0.53 0.40 0.47 0.43 0.50 0.58 0.54

Table 8.5: Results of one vs others proposition classification using 10-fold

cross validation (The highest f-score for each scheme component is highlighted

in bold)

to correctly identify at least one proposition type, then our results give F-

scores between 0.67 and 0.87 for locating an occurrence of the different scheme

types. The results also show that in many cases it would be possible to not

only determine that a scheme is being used, but to accurately classify all of its

component propositions.

8.3.2 Identification of Scheme Instances

The one-against-others results suggest that it is feasible to classify propositions

by type. Performing this classification on a piece of text would enable us to

identify places where a particular scheme is being used. We now move on
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Figure 8.5: Process used for identifying scheme instances from segmented text

Natural language text pre-segmented into propositions

One-vs-others Classification of each segment

Identify where two or more components of the same

scheme occur within a window of five sequential segments

Reduce threshold to identify missing components

Complete scheme instances and scheme instances containing enthymemes.

If the same nodes are identified as being the components of differ-

ent schemes, the scheme with the highest matching scores is used.

to look at how well these classifiers are able to identify not just individual

occurrences of a proposition type but complete scheme instances. The ability

to successfully perform this task would enable us to take a sample of natural

language and understand a large amount of the argument structure it contains.

The aim of this experiment is not to identify the complete argumentative

structure represented by the text, but to illustrate that it is possible to use

the classifiers that we have produced to extract complete scheme instances.

In order to accomplish this, we first perform one-vs-others classification of

each segment using the Multinomial Näıve Bayes classifiers discussed in Sec-

tion 8.3.1. We then look at each group of five sequential segments, and identify

places where two or more components of the same scheme type occur together.

In cases where there is still a missing component, we reduce the threshold for

the classifier corresponding to the missing piece. If reducing the threshold

still does not offer a candidate for the missing scheme component, we assume

that this is unstated enthymematic content in the argument. By performing

these steps, we are able to take segmented text and identify either complete

scheme instances, or partial scheme instances which have some enthymematic

component. The process followed is illustrated in Figure 8.5.
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This classification process identified 46 possible occurrences of Argument

from example, 17 of Argument from cause to effect, 22 of Practical reason-

ing, 35 of Argument from consequences, 18 of Argument from sign, and 9 of

Argument from verbal classification.

Figure 8.6: Automatically identified Argument from Consequences instance

Figure 8.7: Partially correct automatically identified Argument from Conse-

quences instance

An example of a correctly identified instance of Argument from Conse-

quences can be seen in Figure 8.6. However, the instance of Argument from

Consequences shown in Figure 8.7 is only partially correct. In this case, the

premise, “It brought the crime rate way down” matches with the gold stan-

dard annotation, and fits the criteria for good consequences, but, the identified

conclusion “you take the gun away from criminals that shouldn’t be having

it” is unconnected in the annotation, and should actually be “whether or not
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in a place like Chicago you do stop and frisk, which worked very well, Mayor

Giuliani is here, worked very well in New York”.

A final example, this time showing a partially correct identified instance

of Practical reasoning, is shown in Figure 8.8. In this case, the conclusion

(“CLINTON should go down and take a look at financial disclosure”) and the

minor premise (“CLINTON learns a lot from financial disclosure”) are correct,

with the former matching an action and the latter this action realising a goal.

However, in this case, the major premise is actually left implicit according to

the annotation, and has been incorrectly identified as “$650 is really not a lot

of money”.

Figure 8.8: Partially correct automatically identified Practical reasoning in-

stance

Although these examples are not perfect identifications of scheme instances,

it is clear that even with the limitations involved, we have come close to being

able to identify at least where a scheme is occurring, and to correctly assign

at least some of the propositions.

8.4 Conclusion

Whilst argumentation schemes have been detailed extensively in philosophy

and psychology, perhaps due to the relative complexity of these structures,

they have received little attention in argument mining. In Feng and Hirst

(2011), instances of particular schemes are classified from text which has pre-

viously been annotated for its argumentative structure, a process which could
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be considered as the second step in the six-stage approach to identifying argu-

ments and their schemes suggested by (Walton, 2011).

Here, we have shown that by considering the features of the individual types

of premise and conclusion that comprise a scheme, it is possible to classify these

scheme components with reasonable accuracy. Despite the differing goals, our

results are comparable results to those of Feng & Hirst, where the occurrence

of a particular argumentation scheme was identified with accuracies of between

62.9% and 90.8%. Our results show that, on the same dataset, it is possible

to identify individual scheme components with similar performance (F-scores

between 0.67 and 0.87) can be achieved in identifying argumentation schemes

in unanalysed text.

Furthermore, by searching for groupings of these proposition types, we have

shown it is possible to determine not just that a particular scheme is being

used, but to correctly assign propositions to their schematic roles. In future

work accuracy of these techniques could be further improved by an in-depth

review of the features used for classification using an ablation study, and by

considering domain specific schemes, such as the Consumer Argumentation

Scheme (CAS) (Wyner et al., 2012) aimed specifically at product reviews.



Chapter 9

A Combined Explainable

Approach

9.1 Introduction

In the previous chapters (Chapter 4 to Chapter 8), five techniques for automat-

ically determining information about the argumentative structure of a piece

of text have been introduced. These techniques each draw inspiration from a

different facet of the complex way in which humans understand the structure

of an argument, and in doing so, provide explainable reasoning for the argu-

mentative connections made. The individual techniques presented have been

shown to produce capable results on their own, but, much as the theoretical

works on which they are based each illuminate different and complementary

aspects of human understanding, it is in their combination that a more full

and accurate picture emerges. This chapter explores the way in which the

previously presented techniques can be brought together, testing the resulting

combined approach on the same US2016G1tv corpus as has been previously

used for each individually.

In order to maintain explainability, a rule-based approach to combining is

employed here. It would also be possible to use a machine learning approach

for combination, with the different techniques being used as features, however

this would then remove the ability to say which of the techniques was respon-

sible for the classification. As the machine learning results would be based

144
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on more complex interactions of the different techniques, it would be difficult

to say exactly which were responsible for the classification. Machine learn-

ing combinations are however implemented for the purposes of evaluation (see

Section 9.6), and, in order to provide a full comparison to broader work in the

field, the combined approach is further tested on two additional widely used

corpora (the Argument Annotated Essays corpus (Stab and Gurevych, 2017),

and the Argumentative Microtext corpus (Peldszus and Stede, 2016)).

9.2 Combining the XAM Techniques

Each of the previously introduced techniques have displayed strengths and

weaknesses when used in isolation, illuminating individual parts of the argu-

mentative structure, yet falling short of providing a full and detailed picture.

Discourse Indicators pick up simple linguistic cues, and have been shown to be

very reliable in determining argumentative relations when they occur, though

are not present in ∼80% of cases (see Chapter 4 and (Lawrence and Reed,

2015)). Premise-Conclusion Topic Models (Chapter 5), represent a listener’s

background knowledge concerning common themes of inference and can give a

good indication of support relations, however on their own they are not specific

enough to identify when these relations occur and when similar topics are being

discussed without any inferential intent. Similarity measures (Chapter 6) have

been shown to correlate significantly with argumentative relations, however

they do not give an indication of the direction or type of relationship. Graph

Properties (Chapter 7), as with similarity measures, give valuable clues about

the argumentative structure (for example, a highly central node is likely to be

a conclusion or main claim), however are not enough to provide structural de-

tail on their own. Finally, Argument Scheme component detection (Chapter 8)

allows common patterns of reasoning to be captured and labelled, but does not

provide these labels in cases where such patterns are only loosely followed, or

where there is insufficient training data for a particular scheme.

In order to maintain explainability, a rule-based approach to combination

is adopted. Machine learning approaches could also be used to perform the
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combination with the results from each technique being employed as features,

however these would lose the ability to say clearly which of the individual tech-

niques is being used to assign the labelling (for example to say that the system

believes there is an inference relation between x and y because they form an

instance of a particular argument scheme, or between y and z because of the

presence of a discourse indicator). Section 9.6 contains a brief exploration of

such machine learning approaches and shows that not only is explainability

lost, but the overall results are also weaker.

The rule-based approach applies the techniques in order, building the full

argumentative structure based on the parts of it that can be best identified

by each technique. This rule-based combination method aims to leverage the

strengths of each individual technique, whilst minimising their weaknesses.

The rules followed are listed in order below:

1. Discourse Indicators: For every consecutive pair of ADUs, a and b, if

the discourse indicator “because” exists between a and b, then, an RA

with edges from b and to a is added. Discourse indicators are applied

first as, despite their relatively rare use in real-world text, they have the

highest precision of all the techniques.

2. Argument Schemes: If all components of a scheme are found (with

a probability >80% for each) within a sliding window of five ADUs,

then an RA is added linking the premise components to the conclusion

components, and the RA is labelled with the identified scheme. This

technique is used early on in the process as, when all scheme components

are found together, we can say with confidence that an instance of that

scheme is being used.

3. Similarity: For every consecutive pair of ADUs (including pairs that are

split by a turn boundary), a and b, if the adjacency similarity threshold

of any similarity measure is exceeded, then, an untyped and undirected

edge connecting a and b is added.

4. Similarity: For every pair of ADUs, a and b, if the long distance simi-

larity threshold of any similarity measure is exceeded, then, an untyped
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and undirected edge connecting a and b is added. The two similarity

steps aim to fill in the remaining edges in the argument structure before

typing and direction is added by consideration of Premise-Conclusion

Topic Models and Graph Properties.

5. Premise-Conclusion Topic Models: For each untyped edge added so

far, if the TopicDist score (see Chapter 5) in either direction is greater

than the mean topical inference matrix value, then an RA-node is added

to the edge and the relevant direction assigned.

6. Graph Properties: For each remaining untyped and undirected edge,

the direction is determined as being from the least central ADU to the

most central, and an RA is added between them.

The rules start by searching for discourse indicators between ADUs. This

method has been shown to be extremely reliable for certain indicators when

they are present in the text, with the specific indicator used here, “because”,

shown in Chapter 4 to achieve a precision of 0.873. These connections are

added first and viewed as being correct from then on.

The next step looks at argument schemes, and specifically those cases where

all scheme components are identified within close proximity. Looking only at

those cases where all components are found gives high confidence that this is

indeed an instance of that particular scheme, and as such, the RA-node and

scheme label are added connecting the components.

Similarity measures are used in steps 3 and 4 to fill in remaining connec-

tions, though this technique does not provide directionality or type for these

edges. To fill in these details, premise-conclusion topic models and graph prop-

erties are used in steps 5 and 6. In step 5, the topics for each ADU at the end

of an undirected edge are calculated and if the topical inference matrix shows

that there is a high likelihood of inference in either direction, an RA-node is

added in the appropriate direction. For any remaining undirected edges, the

centrality scores for the ADUs at each end are calculated and there is assumed

to be an inference relation going from the least central to the most central.
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Details of which rule has been triggered to create each of the resulting

relations are stored using the methodology described in Section 9.4.

9.3 Results

The result of this step-by-step rule application for an excerpt from US2016G1tv

(Figure 9.1) is shown in Figures 9.2, 9.3, and 9.4. The bottom right graph

shows the gold standard annotation for this text.

TRUMP: You need a better community, you know, relation. You don’t have good

community relations in Chicago. But when you look—and Chicago’s not the only—you go

to Ferguson, you go to so many different places. You need better relationships. I agree with

Secretary Clinton on this. You need better relationships between the communities and the

police, because in some cases, it’s not good.

Figure 9.1: An excerpt from the US2016G1tv corpus (map 10850

(http://www.aifdb.org/argview/10850))

In step 1, the discourse indicator “because” is found between “You need

better relationships between the communities and the police” and “in some

cases, it’s not good”, and an RA-node is added from the latter to the for-

mer. Step 2 identifies the inferential connection between “Chicago’s not the

only” and “in so many different places it is similar as in Chicago”, however,

the scheme components identified are those of argument from example, with

“Chicago’s not the only” being identified as the example (premise), and, as

such, the inference is added in the wrong direction.

Steps 3&4 add a number of undirected edges based on the similarity scores

of both adjacent and long range pairings. At this stage, the majority of the

connections are added and although there are some changes to the structure,

many of these are still valid. For example, although “TRUMP agrees with

CLINTON that one needs better relationships” is now connected to “one needs

better relationships” a rephrased version of the ADU it is connected to in the

gold standard (“one needs relation”).

In step 5, inference from “one needs better relationships between the com-

munities and the police” to “TRUMP agrees with CLINTON that one needs

better relationships”, is added based on a tendency for the topics in the former

to support those in the latter. Finally, step 6 adds types and directions to the
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Figure 9.2: The result after steps 1 and 2 of rule based combination working

on an excerpt from US2016G1tv
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Figure 9.3: The result after steps 3, 4 and 5 of rule based combination working

on an excerpt from US2016G1tv
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Figure 9.4: The result after step 6 of rule based combination working on an

excerpt from US2016G1tv compared to the gold standard annotation
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remaining edges. For example, “one needs relation” is determined as being

more central than those nodes surrounding it, and edges are added coming

into this.

The interpretation of classifications for each of the nine relations added in

this example (as numbered in the top half of Figure 9.4) are given below:

1. Connection: correct; Direction: correct

2. The wrong scheme is assigned, and the direction is incorrect, however

these two nodes are connected.

Connection: correct; Direction: incorrect

3. Connection: correct; Direction: correct

4. The ADU “one needs better relationships between the communities and

the police” is a rephrasing of “one needs relation” which supports “TRUMP

agrees with CLINTON that one needs better relationships”, hence this

is viewed as correct (see Chapter 3 for a description of how rephrase

relations are handled).

Connection: correct; Direction: correct

5. Connection: incorrect; Direction: incorrect

6. Again, “one needs better relationships” is a rephrasing of “one needs

relation” though the direction is, in this case, incorrect.

Connection: correct; Direction: incorrect

7. The rephrase relation here has been mislabelled as inference,

Connection: incorrect; Direction: incorrect

8. Connection: correct; Direction: correct

9. Connection: correct; Direction: incorrect

As can be seen from the above, there are several cases where an inference

relation is correctly identified between two ADUs, but the direction of the

inference is reversed. For this reason, the results shown in Table 9.1, show

precision, recall and F-score for both directed and undirected connections.
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These results are very encouraging. In particular those for undirected edges

show a high F1-score (0.82), comparable or higher than other techniques have

achieved on such complex data. There is not a clear candidate for a baseline

here, though the results of this combined approach are compared to a machine

learning approach and evaluated against leading techniques for other popular

datasets in Section 9.6. Future work in this area will look at the development

of other baselines, and explore other techniques for reporting results including

the use of graph edit distance (Gao et al., 2010) and Combined Argument

Similarity Score (CASS) Duthie et al. (2016b).

Directed Undirected

p r F1 p r F1

Rule based combination 0.69 0.79 0.74 0.86 0.79 0.82

Table 9.1: Rule-based combination results for identifying directed and un-

directed connections in the US2016G1tv corpus.

9.4 Representation

With several techniques working in combination, it is important to consider

how the results will be represented in order to ensure that explainability is

maintained. That is, we need to ensure that the kind of combined output

shown in the top half of Figure 9.4 also includes details of where each of the

added S-Nodes and edges come from.

The Argument Interchange Format representation allows us to include a

locution (L-Node) for each relation (S-Node), showing that an algorithm has

asserted that this relation exists. An example of this can be seen in Figure 9.5.

In this diagram, the identified structure is shown on the left, with an S-Node

showing support between the two proposition. An L-Node representing the

assertion of the algorithm that this support relation exists is shown on the far

right of the diagram, and connected to the S-Node via an Illocutionary node

(YA-Node).
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Figure 9.5: Representing the algorithm’s assertion of an inference relation

In order to maintain explainability, we need to represent not just that

the algorithm has asserted that this support relationship exists, but why the

algorithm has made this assertion. One option for doing this would be to add

the reason as support for the L-Node (Figure 9.6). However, this approach

does not fit with the usual conception of support, that is, the presence of a

discourse indicator in this case does not support the fact that the algorithm

said that there is an inference relationship between the two propositions on

the left.

Figure 9.6: A rejected account of justifying the algorithm’s assertion of an

inference relation by support of the locution

In order to capture this reasoning more accurately, we turn to Searle’s

(Searle, 1969) account of the five rules for the use of illocutionary forces. In

the case of assertion, they are as follows (here S is the speaker and H the

hearer):

• The propositional content rule: what is to be expressed is any proposition

p.
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• First preparatory rule: S has evidence (reasons etc.) for the truth of p.

• Second preparatory rule: It is not obvious to both S and H that H knows

(does not need to be reminded of, etc.) p.

• Sincerity rule: S believes p.

• Constitutive rule: Counts as an undertaking to the effect that p repre-

sents an actual state of affairs.

In this case, it is the second of these rules that we are concerned with, “S

has evidence (reasons etc.) for the truth of p”. The presence of a discourse

indicator (or, likewise, being components of the same argumentation scheme

instance, being semantically similar, etc) forms evidence for the support re-

lationship. This representation is shown in Figure 9.7. Although the first

preparatory rule is technically a component of the assertion, for the sake of

simplicity, we show the reason (“There is a discourse indicator...”) as support-

ing the YA-Node directly.

Figure 9.7: Justifying the algorithm’s assertion of an inference relation by

support of the assertion’s first preparatory rule.

Similarly, in cases where two rules are required in order to identify a support

relationship, these can be shown using the standard AIF way of representing

a linked argument. An example of this can be seen in Figure 9.8, where the

inference is a result of the similarity between the two propositions providing a

link, and the greater centrality of “one needs relation” than “there are no good
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community relations in Chicago” giving the direction of the inference between

them.

Figure 9.8: Linked support justifying the algorithm’s assertion of an inference

relation.

9.5 Explainability

Explainability in Artificial Intelligence is a growing concern, with, for exam-

ple, 67% of business leaders surveyed in the PwC global CEO survey1 stating

that they believe “AI and automation will impact negatively on stakeholder

trust levels”. As the use of automated approaches for understanding human

reasoning grows, it becomes increasingly important to be able to justify the

information being extracted.

The term Explainable AI (XAI) was first used by Van Lent et al. (2004) to

describe the ability of AI agents in a simulation game to justify their actions.

However, as demand for transparency and justification in AI has grown, this

term has gained a broader meaning. Adadi and Berrada (2018) define XAI as

“a research field that aims to make AI systems results more understandable

to humans”, similarly Gunning et al. (2019) describe the purpose of an XAI

system as being “to make its behavior more intelligible to humans by providing

explanations”.

In the field of Argument Mining, the results are the argument structure

extracted from a piece of natural language text, and the behaviour of an Ar-

1https://pwc.to/2pZTNuJ



157

gument Mining system is to make decisions about the nature of this structure.

It is exactly these decisions made about how the argument structure is ex-

tracted from the text that Explainable Argument Mining (XAM) makes more

intelligible to a human user.

If a human analyst were to annotate the argument structure in the ex-

cerpt from US2016G1tv given in Figure 9.1, it would be possible to ask them

questions such as “why have you added an inference relation between ‘in some

cases, it’s not good’ and ‘one needs better relationships between the communi-

ties and the police’?” These are the kind of questions that XAM system must

be able to answer.

Section 9.4 has shown how the reasoning behind such decisions made by

the combined XAM system presented here can be captured in the Argument

Interchange Format (AIF). This reasoning can also be conveyed in natural lan-

guage generated from the AIF structure using simple templates. For example,

a natural language version of the reasoning captured in Figure 9.8 could read

as shown in Example (1), answering the question of why the system has added

this inference relation. Similar explanations for the relations labelled ‘1’ and

‘2’ in the top half of Figure 9.4, are given in Examples (2) and (3) respectively2.

(1) An RA-node with the scheme “Default Inference” has been added

between “there are no good community relations in Chicago” and “one

needs relation” because the word vector similarity score for the two

segments is over the threshold of 0.310 AND “there are no good com-

munity...” is less central than “one needs relation”.

(2) An RA-node with the scheme “Default Inference” has been added

between “in some cases, it’s not good” and “one needs better rela-

tionships between the communities and the police” because there is a

discourse indicator (“because”) between the two.

(3) An RA-node with the scheme “Example” has been added be-

tween “Chicago’s not the only” and “in so many different places it is

2In these examples text in bold is part of the template, and text in italics is filled in from

the AIF representation
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similar as in Chicago” because “Chicago’s not the only” matches the

argument scheme component ‘EX Premise’ AND “in so many different

places...” matches the argument scheme component ‘EX Conclusion’.

Such explanations offer a broad range of potential use cases, for example: high-

lighting unintended conclusions and suggesting how these can be fixed; helping

an audience to determine whether or not they agree that the inferential rela-

tionship was intended by the speaker; and, making it easier for researchers to

see where things have gone wrong when performing error analysis in compari-

son to gold standard annotation.

9.6 Evaluation

In this section the rule based combination approach detailed in Section 9.2 is

evaluated, firstly by comparison to machine learning combination approaches,

and then by testing on other widely used argument corpora and comparing to

state of the art results for these.

9.6.1 Comparison to machine learning combination

The experiments in machine learning combination use a range of classifiers

implemented in Scikit-learn(Pedregosa et al., 2011): Random Forest, Linear

Support Vector Classification, Multinomial Naive Bayes, and Logistic Regres-

sion. In each case, the input consists of all unique pairs, a and b, of ADUs

within moving window of size 10 (i.e. all pairs of ADUs that are at most 9

apart in sequential ordering). Each pair is labelled as to whether there is an

inferential connection from a to b. Limiting potential connections to within

this moving window is done to reduce the vast number of possible connections

between distantly separated ADUs, whilst still allowing for the identification of

the majority of connections (∼85% of those in the gold standard data). Whilst

connections are classified within the moving window described, the results pre-

sented in the next section are calculated as compared to all valid connections

so as not to unfairly bias them in favour of this approach.
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The features implemented for each classifier are as follows:

• Discourse Indicators: Binary features representing whether any of

the indicators identified in Chapter 4 are present between a and b for

sequential a and b.

• Premise-Conclusion Topic Models: The probabilities for each topic

in the topical inference matrix, for both a and b, are added as individual

features.

• Similarity: The similarity scores for a and b using each similarity

method.

• Graph Properties: The centrality and divisiveness scores for both a

and b.

• Argument Schemes: The resulting probabilities for each scheme com-

ponent for both a and b.

The results from the machine learning implementations are shown in Ta-

ble 9.2. Several observations can be made from these results. Firstly, the

results for the rule-based combination approach are significantly better than

those for any of the different machine learning classifiers. The machine learning

classifiers all perform relatively similarly, suggesting that their weaker perfor-

mance is not a result of any particular classifier. For the machine learning

approaches, the recall is generally lower. This is due to the limitation of only

identifying connections within a fixed size window, and, as such, not labelling

any connections that occur beyond this distance. Whilst this reduces the re-

call, removing this restriction would produce a large number of false positives

throughout the vast number of possible long distance connections. The preci-

sion for the machine learning methods is also lower in many cases than that

for the rule-based method, suggesting that there is not enough data for an

unsupervised approach to learn similar rules to the manually created ones.

This situation would be expected to be even worse on many datasets which

are generally smaller than US2016G1tv.
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Combination Method Directed Undirected

p r F1 p r F1

Rule-based combination

Rule based combination 0.69 0.79 0.74 0.86 0.79 0.82

Machine learning combination

RandomForest 0.63 0.44 0.52 0.72 0.44 0.55

LinearSVC 0.58 0.55 0.56 0.66 0.55 0.60

MultinomialNB 0.54 0.47 0.50 0.6 0.47 0.53

LogisticRegression 0.61 0.45 0.52 0.69 0.45 0.54

Table 9.2: Rule-based and machine learning combination results for identifying

directed and un-directed connections in the US2016G1tv corpus.

9.6.2 Testing on the Argument Annotated Essays Cor-

pus

In order to test performance further, the rule-based method was applied to

two widely used argumentation corpora and the results compared to existing

work on these datasets. In this case the same argumentation scheme classifi-

cation model was used based on training data from US2016tv (see Chapter 8).

New Premise-Conclusion topic models were automatically generated using the

method outlined in Chapter 5 (determining keywords from the pre-segmented

corpus data, performing a web search for matching documents, etc.) The first

corpus considered here is the Argument Annotated Essays Corpus (version 2)

(Stab and Gurevych, 2017). The corpus contains 402 persuasive essays anno-

tated with fine-grained argumentation structure (an example essay can be seen

in Figure 9.9). On average each essay includes 18 sentences and 366 tokens,

with a total across the whole corpus of 147,271 tokens and 7,116 sentences.

The annotation labels three different proposition types:

MajorClaim: the thesis statement expressing the stance of the author

about the topic. In cases where this statement is present in several reformu-

lated forms, these are all annotated as major claims

Claim: the central component of an argument either supporting or attack-
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Arts and public services are both important to the community and should

be invested properly

There has been wide opinion that Government should invest more money on public

services rather than arts such as music and theatre. However, in my perspective, both

public services and arts worth investment.

It is obvious axiomatic that indispensable public services like hospital and school worth

every penny investing. Investing in hospitals helps improve people’s health, also, in schools

assists with raising our children’s education level. Apparently if these facilities were not

spent adequately, our standard of living would deteriorate.

But our standard of living also depend on another factor - spiritual life which is related

closely with arts. Arts include many forms and music as well as cinema are the most typical.

These two art forms not only provide the public with entertainment but also contribute

significantly to the economy. The income of film and music industries produce millions of

dollars each year for the Goverment, for instance K-pop and Hollywood, and these industries

can not survive without goverment’s financial assistance.

The long and the short of it, both arts and public services are important to the com-

munity and should be invested properly.

Figure 9.9: Essay 396 from the Argument Annotated Essays Corpus

ing the major claim

Premises: the reasons given by the author for supporting or attacking the

claims.

Each claim is assigned a stance either for, or against, the MajorClaim. The

connections between claims and premises are annotated as either “supports”

or “attacks”. The annotation for the previously mentioned example essay can

be seen in Figure 9.10.

In order to run the methods presented here on this data, it was first con-

verted to AIF format using the algorithm shown in Algorithm 1. The re-

sulting argument structure for essay 396 imported into AIFdb is shown in

Figure 9.11. The complete AIF translation of the AAEC corpus is available

online at http://corpora.aifdb.org/AAECv2.

Argument Component Classification

Stab and Gurevych (2017) consider the classification of argument component

types as multiclass classification and label each argument component as “Ma-

jorClaim”, “Claim”, or “Premise”. The methods presented in this thesis do

not classify components in this way, viewing such classifications as a result

of the argument structure, rather than intrinsic properties of the text. How-

ever, once the argument structure is obtained, we can replicate these results by

viewing a Premise as a node with no incoming edges, a Claim as a node that
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Data: essayXXX.ann file from Argument Annotated Essays Corpus

Result: AIF translation of the supplied .ann file

begin

foreach MajorClaim in essayXXX.ann do

if first MajorClaim then

Add an I-node corresponding to MajorClaim text [MC1]

else

Add an I-node corresponding to MajorClaim text [MCn]

Add an MA-node [MCn → MC1]

end

end

foreach Claim in essayXXX.ann do

Add an I-node corresponding to MajorClaim text [Cn]

end

foreach Premise in essayXXX.ann do

Add an I-node corresponding to Premise text [Pn]

end

foreach Stance in essayXXX.ann do

if type = For then

Add an RA-node [Cn → MC1]

else if type = Against then

Add a CA-node [Cn → MC1]

end

end

foreach supports in essayXXX.ann do

Add an RA-node [Arg1 → Arg2]

end

foreach attacks in essayXXX.ann do

Add an CA-node [Arg1 → Arg2]

end

end

Algorithm 1: Conversion of AAEC annotations to AIF
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T1 MajorClaim 254 300 both public services and arts worth investment

T2 MajorClaim 1181 1273 both arts and public services are important to the com-

munity and should be invested properly

T3 Claim 331 413 indispensable public services like hospital and school worth every

penny investing

A1 Stance T3 For

T4 Premise 415 537 Investing in hospitals helps improve people’s health, also, in

schools assists with raising our children’s education level

T5 Premise 550 637 if these facilities were not spent adequately, our standard of living

would deteriorate

R1 supports Arg1:T4 Arg2:T3

R2 supports Arg1:T5 Arg2:T3

T6 Premise 749 821 Arts include many forms and music as well as cinema are the

most typical

T7 Premise 823 938 These two art forms not only provide the public with entertain-

ment but also contribute significantly to the economy

T8 Premise 940 1148 The income of film and music industries produce millions of

dollars each year for the Goverment, for instance K-pop and Hollywood, and these industries

can not survive without goverment’s financial assistance

T9 Claim 643 747 our standard of living also depend on another factor - spiritual life

which is related closely with arts

A2 Stance T9 For

R3 supports Arg1:T6 Arg2:T9

R4 supports Arg1:T7 Arg2:T9

R5 supports Arg1:T8 Arg2:T9

Figure 9.10: Annotation of essay 396 from the Argument Annotated Essays

Corpus

has both incoming and outgoing edges, and a MajorClaim as a node which has

no outgoing edges.

In order to test these methods on the AAEC corpus, the combined approach

detailed in Section 9.2 was applied, and from the results the labels “Major-

claim”, “Claim”, and “Premise” were calculated. We then compare accuracy

of these to the gold standard data, with results as shown in Table 9.3. In this

table the first three columns show the combined F1, precision, and recall for

classification of all argument components (MajorClaim, Claim and Premise)

in AAEC. The remaining three columns then show the individual F1 results

for each of MajorClaim, Claim and Premise.

Stab and Gurevych (2017) provide a majority baseline for these results

based on the classification of all components as Premise (the full corpus con-

tains 751 major claims, 1,506 claims, and 3,832 premises) along with a heuristic

baseline motivated by the common structure of persuasive essays. The heuris-

tic baseline for the argument component classification task labels the first

argument component in each body paragraph as a claim, and all remaining

components in body paragraphs as premise. The last argument component
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Figure 9.11: Essay 396 from the Argument Annotated Essays Corpus imported

into AIFdb

Method F1 p r F1 MC F1 Cl F1 Pr

Stab and Gurevych (2017)

Baseline majority 0.26 0.21 0.33 0 0 0.77

Baseline heuristic 0.72 0.72 0.72 0.74 0.56 0.87

SVM all features (best classifier) 0.77 0.77 0.77 0.87 0.59 0.86

ILP-balanced (best joint model) 0.82 - - 0.87 0.70 0.90

Rule based combination

Rule based 0.75 0.71 0.79 0.81 0.67 0.76

Table 9.3: Overall F1, precision, and recall for argument component classifica-

tion on AAEC, and individual F1 scores for MajorClaim, Claim and Premise

in the introduction and the first argument component in the conclusion are

classified as major claims and all remaining argument components in the in-

troduction and conclusion are labelled as claims. Whilst the majority baseline

achieves weak results, with an overall F1-score of 0.26, the heuristic baseline

is much more challenging, with an overall F1-score of 0.72. In both cases, the

combined rule-based approach presented here beats these baselines (with an

overall F1-score of 0.75), however the heuristic baseline slightly outperforms

the combined approach in terms of precision. This result seems likely to be

due to a slight tendency for the combined approach to prefer the Claim label

(finding components with both edges in and out is made slightly more likely)
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and indeed Claims have the lowest individual F1-score with 0.67, compared to

0.81 for MajorClaim and 0.76 for Premise. Considering the challenging nature

of the baseline and the differences between this data and the original target of

US2016G1tv, these are still extremely encouraging results.

Stab and Gurevych (2017) train two base SVM classifiers, one to recognise

the type of argument component, and another to identify argumentative rela-

tions between argument components. SVMs were selected in this case as they

have been shown to outperform several other learners in both tasks (Stab and

Gurevych, 2014b). The outcomes of both classifiers were globally optimised in

order to find the optimal argumentation structure using Integer Linear Pro-

gramming (ILP). Table 9.3 shows the results for both the best performing

SVM argument component classifier, and the best performing ILP model for

this part of the task (precision and recall were not individually reported for

the ILP models). Although the SVM classifiers are trained using a range of

feature types (lexical, structural, contextual, syntactic, probability, indicators,

discourse, and embedding), the structural features are the only ones that,

when used on their own, significantly outperform the F1-score of the heuristic

baseline. These structural features include whether the component is first or

last in paragraph and whether the component is present in the introduction or

conclusion. As with the heuristic baseline, such features are strongly tied to

the argument component classification for this data, and help both the SVM

and ILP results considerably. Despite not utilising this information, the com-

bined approach presented in this chapter achieves an overall F1-score close to

that for the best performing SVM (0.75 compared to 0.77 for the SVM) and

remains reasonably competitive with the ILP model results (F1-score of 0.82).

Argumentative Relation Identification

The relation identification model (Stab and Gurevych, 2017) classifies ordered

pairs of argument components as “linked” or “not-linked”. In this analysis

step, we consider both argumentative support and attack relations as “linked”.

Results are shown in Table 9.4.

As with the argument component classification task, Stab and Gurevych
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Method F1 p r F1 NO Link F1 Linked

Stab and Gurevych (2017)

Baseline majority 0.46 0.42 0.50 0.91 0

Baseline heuristic 0.66 0.66 0.66 0.89 0.44

SVM all features (best classifier) 0.73 0.76 0.71 0.92 0.54

ILP-balanced (best joint model) 0.76 - - 0.92 0.60

Rule based combination

Rule based 0.73 0.78 0.69 0.78 0.71

Table 9.4: AAEC Argumentative Relation identification results.

provide a majority baseline (NO Link) and a more challenging heuristic base-

line. The heuristic baseline for the relation identification task classifies an

argument component pair as linked if the target is the first component of

a body paragraph, this baseline is based on the fact that 62% of all body

paragraphs in the corpus start with a claim. Again, the combined approach

presented here beats both of these baselines, with a combined F1-score of 0.73

compared to 0.46 for the majority baseline and 0.66 for the heuristic baseline.

Table 9.4 also shows the results for Stab and Gurevych’s best performing

SVM classifier and ILP model applied to the argumentative relation identifica-

tion task. As with argument component classification, these results are likely

helped by the inclusion of structural features (with, as previously discussed,

62% of all body paragraphs starting with a claim) which the combined ap-

proach does not utilise. However, in this case the combined results go as far

as to match the SVM classifier (with both achieving an F1-score of 0.73) and

fall only 0.03 behind the ILP model (F1-score = 0.76).

These results are extremely encouraging and show that, for tasks such as

argumentative relation identification, the combined approach presented here

can be competitive with other state of the art techniques, whilst maintaining

its ability to explain the structural classifications that have been made, and

work across genres without modification.
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9.6.3 Testing on the Argumentative Microtext Corpus

The Argumentative Microtext Corpus (Peldszus, 2014) contains 112 short texts

generated in a controlled text generation experiment. In the text generation

experiment, participants were instructed to write a text on a topic chosen from

a given set of trigger questions, with the instructions that each text should:

be about five segments long; contain only segments that are argumentatively

relevant (either the main claim of the text, supporting the main claim or

another segment, or attacking the main claim or another segment); contain

at least one possible objection to the claim; be written in such a way that

it would be understandable without having its trigger question as a headline.

The corpus contains the original texts with accompanying annotation based

on Freeman’s theory of argumentation structure (Freeman, 1991, 2011), that

is, viewed as a hypothetical dialectical exchange between a proponent, who

presents and defends his claims, and an opponent, who critically questions

them. These moves can then be represented as an argument graph, with

the nodes representing the propositions expressed in text segments and the

edges between them representing different supporting and attacking moves.

An example MicroText can be seen in Figure 9.12, with the corresponding

AIF structure3 shown in Figure 9.13.

Yes, it’s annoying and cumbersome to separate your rubbish properly all the time.

Three different bin bags stink away in the kitchen and have to be sorted into different

wheelie bins. But still Germany produces way too much rubbish and too many resources

are lost when what actually should be separated and recycled is burnt. We Berliners should

take the chance and become pioneers in waste separation!

Figure 9.12: MicroText 001 from the Argumentative Microtext Corpus

For the purposes of comparison, the results presented in (Peldszus, 2018)

are used here. These results were obtained using an evidence graph model,

where base classifiers were first trained to classify for the role (is the segment

of the proponent or opponent role), function (does the segment present the

central claim of the text, or does it support or attack another segment) and

central claim level (the probability of the segment being a central claim). From

3The import of the MicroText corpus to AIFdb was completed as part of a student project

and is not a contribution of this thesis.
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Figure 9.13: MicroText 001 from the Argumentative Microtext Corpus im-

ported into AIFdb

these results, the evidence graph was constructed by building a fully connected

multigraph over all segments with as many edges per segment-pair as there are

edge types, then translating the segment-wise predictions into level-specific

edge scores. Table 9.5 shows a comparison between the results of (Peldszus,

2018) and the rule based combination method presented in this chapter. As

with the AAEC, the same argumentation scheme classification model was used

from Chapter 8 and new Premise-Conclusion topic models were automatically

generated using the method outlined in Chapter 5.

p r F1

Detecting central claims

Peldszus (2018) 0.80 0.80 0.80

Rule based combination 0.76 0.81 0.78

Identifying support relations

Peldszus (2018) 0.76 0.82 0.79

Rule based combination 0.77 0.80 0.78

Table 9.5: Comparison of results from Peldszus (2018) against the combined

rule based approach for the Argumentative Microtext Corpus

For the combined method, central claims are identified as being those with
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only incoming edges and no outgoing edges. Comparing the central claim

detection results of the combined approach with those of (Peldszus, 2018),

we can see that the F1-score is comparable (0.80 for Peldszus and 0.78 for

the combined approach). We also see that whilst the recall is slightly better

(0.80 and 0.81 respectively for the two approaches) the precision is 4 points

lower (0.76 versus 0.80). These results suggest that the combined approach is

leaning slightly in the direction of classifying segments as central claims when

they are not. Further analysis suggests that this is occurring in cases where

a segment which should be labelled as a premise with one outgoing edge is

instead being labelled as having an incoming edge. This issue is most likely

due to the small number of nodes in each Microtext example making it harder

to determine centrality, and therefore edge direction. Comparing these results

to those in Section 9.6.2 we can also see that detection of MajorClaims in the

AAEC slightly outperforms the detection of Central Claims in the Microtext

corpus, again suggesting that longer texts with more data are easier for the

methods presented here to classify.

A similar situation is also seen for the results of the support relation iden-

tification task (Table 9.5). Again precision is lower than recall, though for this

task, these results reflect those of (Peldszus, 2018). The overall F1-Score for

the combined approach is extremely competitive (0.78 compared to Peldszus’

0.79). Despite the challenges posed for the combined approach in dealing with

small scale examples, these results again show that this approach can produce

results comparable to those obtained by techniques specifically developed for

these datasets, whilst also having the advantage of providing explainable rea-

sons behind the structure identified.

9.7 Conclusion

In this chapter, we have looked at the combination of the individual explainable

argument mining techniques that have been presented thus far in this thesis.

After all, as each of these techniques draws inspiration from the ways in which

humans understand the structure of an argument, we can also consider that
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in human understanding, such clues to the processing of a complex argument

work in unison.

A rule-based method of combination has been presented, which has the

advantage of maintaining the explainability inherent in each individual ap-

proach. For example, the combined results allow us to say that the system

believes there is an inferential relationship between x and y because they form

part of an argument scheme instance, and between y and z because there

is a discourse indicator (e.g. “because”) between them in the original text.

A representation of these results, compliant with the Argument Interchange

Format (Chesñevar et al., 2006) and Inference Anchoring Theory (Budzynska

et al., 2014) has been proposed. This representation shows how the reasons

for the decisions made can be viewed as supporting Searle’s (Searle, 1969) first

preparatory rule for assertion (the speaker has evidence (reasons etc.) for the

truth of the proposition being asserted).

The rule based combination method has been compared to four different

machine learning based methods of combination, and shown to outperform

these in every case. This has shown that not only does such a rule-based ap-

proach maintain explainability, but does not lose out in performance compared

to alternative combination approaches. Finally, the rule based combination

method has been evaluated against two widely used argumentation corpora

(the Argument Annotated Essays Corpus, and the Argumentative Microtext

corpus) and the results compared to existing work on these datasets. This

comparison has shown that the combined approach can produce comparable

results to state of the art techniques developed specifically for use on this data.



Chapter 10

Applications of Argument

Mining

In this chapter, a number of potential downstream applications of argument

mining are presented. These range from applications which rely directly on

argument mining algorithms to provide their functionality (such as the Evi-

dence Toolkit covered in Section 10.1) to software for visualising and analysing

arguments once the argumentative structure has been successfully mined (Sec-

tion 10.4). It should be noted that this chapter does not aim to provide a

comprehensive overview of such applications and software, but to cover those

that have been developed by the author and that are closely related to the

work presented in the rest of this thesis.

10.1 The Evidence Toolkit

The goal of The Evidence Toolkit1 (Visser et al., 2020b) is to encourage and

develop critical thinking skills, in particular as related to print and online

media. The software was developed as part of “BBC School Report 2018”2

to provide 16 to 18-year-old secondary school pupils with tools to help them

understand and critique the argumentative structure present in news articles.

To achieve this, the user is first walked through a selection of five pre-annotated

1https://www.bbc.co.uk/taster/pilots/evidence-toolkit-moral-maze
2https://www.bbc.co.uk/academy/en/articles/art20180313125234328
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articles, where they are asked to:

1. Identify the main claim presented by the author

2. Identify reasons given by the author for this claim

3. Select the type of reason, Fact or Opinion, with sub-types of Statisti-

cal, Example, or Other for factual arguments, and Expert, Popular or

Personal for opinion based arguments (see Figure 10.1)

4. Judge how well the provided reason stands up to critical questions asso-

ciated with the selected evidence type

5. Identify any stated objections to the main claim, which show the author

thinking about the issue from other perspectives

Figure 10.1: Selecting the type of an identified supporting reason in The Evi-

dence Toolkit

Having progressed through the pre-annotated material, the user is then

invited to use the Pick Your Own feature to carry out the same analysis on

any article of their choosing from the BBC News website. For these unseen

articles, there is no human annotation available, and, as such, argument mining

techniques are employed to provide the user with suggestions about the main

claim and associated reasons. The Pick Your Own feature combines several
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argument mining techniques that have been shown to produce accurate results

in previous work. Firstly, the main claim is identified by determining the

centrality of each sentence in the article, that is, how semantically similar each

sentence is to all of the other sentences. This method has been shown to provide

a reliable indication of which claim is most central within the argumentative

structure of a piece of text (see: Chapter 7; Lawrence and Reed (2017b)).

Once the main claim has been confirmed by the user, or they have selected an

alternative claim which they think is more central to the article, the supporting

reasons for this claim, and any potential objections, are identified. To do

this, all of the other sentences are ranked by their semantic similarity to the

main claim, and then checked for indicators of support (e.g., “because”) or

conflict (e.g., “however”) to determine their possible argumentative relations

(see: Chapter 4; Chapter 6; Lawrence et al. (2017a)).

The Evidence Toolkit was distributed to over 3,000 educational institutions

in the United Kingdom, making it the largest-scale deployment of argument

mining technology available to the general public to date. Most encouragingly,

88% of users surveyed said it “changed their perception of the BBC to the

positive”.

10.2 BBC Moral Maze: Test Your Argument

A direct predecessor of The Evidence Toolit, BBC Moral Maze: Test Your

Argument (Lawrence et al., 2018) is also aimed at developing critical think-

ing skills, though following a different approach. Rather than guiding users

through the critical appraisal of news articles, Test Your Argument challenges

users with a number of argumentation puzzles. The challenges help develop an

understanding of the core principles of strengthening and critiquing arguments.

Test Your Argument comprises: a backend, which stores argument data,

processes user selections and provides feedback and scoring on their choices;

and a frontend, developed using standard web technologies (HTML5, CSS and

Javascript) to ensure a consistent and visually appealing experience across a

range of platforms (Figure 10.2).
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Figure 10.2: Moral Maze: Test Your Argument section 3, Impartiality

The first section presented to the user, Strengthen, focuses on the ways

in which an argument can be strengthened and defended against attacks. The

user is presented with a central statement from the debate and asked to choose,

from a list three further propositions, which one best supports the statement,

which one is pre-empting a counterargument, and which one attacks the op-

posing view.

In the second section, Critique, a central statement from the opposing side

of the debate is given and the user is asked to consider the different types of

evidence that could support this and to consider which of these might be most

easily criticised. The user is asked to identify which supporting proposition

is a factual statement, which is an opinion, and which is based on personal

experience.

The third section, Impartiality, encourages considering the reasoning on

both sides of an issue. The user is asked to create a chain of reasoning sup-

porting first one side of the debate and then the other. In each case they are

given three supporting statements that they have to put in the correct order

to support the conclusion (see Figure 10.2).

Within each section, the user is provided with direct links to where the text

appears in the Moral Maze audio on the BBC iPlayer platform. Feedback is

also given for each decision that they make, with correct decisions highlighted
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in green and mistakes in red, as well as a running score showing how they are

progressing. At the end of the three sections, the user is able to give their own

view on the issue and is provided with an aggregate score and the opportunity

to share this on social media.

Since its launch in December 2017, Test Your Argument has had over 10,000

visitors, and, of those visitors that provided feedback, 80% said “Yes, the BBC

should do more like this”. Whilst the data used in the pilot deployment of Test

Your Argument comes from a manually annotated special edition of the BBC

Radio 4 programme, the Moral Maze3 on the morality of abortion, future work

would look to expand this scope, using automatically mined argumentative

structures and allowing the user a free selection of topics over which to use the

software.

10.3 Arvina & Polemicist

The web-based discussion software Arvina (Lawrence et al., 2012a) allows par-

ticipants to debate a range of topics in real-time in a way that is structured but

at the same time unobtrusive. Arvina uses dialogue protocols written using the

Dialogue Game Description Language (DGDL) (Bex et al., 2014a) to structure

the discussion between participants. Such protocols determine which types of

moves can be made (e.g. questioning, claiming, etc.), when these moves can

be made (e.g. a dialogue starts with a claim; question moves can only made in

the turn directly following a claim; etc.), and describe how each move updates

the argument structure of the discussion taking place.

Arvina can support multiple human users interacting in the same dialogue,

as well as incorporating software agents representing (the arguments of) spe-

cific authors who have their opinions stored in AIFdb (Lawrence et al., 2012b).

So, for example, say that Wilma has constructed a complex, multi-layered ar-

gument using the OVA argument analysis tool (Janier et al., 2014), concerning

the use of nuclear weapons. An agent representing Wilma can then be added

to an Arvina discussion and questioned about these opinions, with the agent

3http://www.bbc.co.uk/programmes/b006qk11
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answering by giving Wilma’s pre-annotated opinions.

Figure 10.3: The Arvina user interface

Figure 10.3 shows the Arvina debate interface. The top left corner offers a

list of participants with red or green highlighting to show their stance on the

current point (either calculated from an agent’s argument graph knowledge

base, or provided directly in the case of a human user). Below this, there is a

live discussion map showing the structure of the debate so far. This structure

is also saved to AIFdb, allowing future users to interact with any points made

in the current debate. On the right hand side, there is a transcription of

the debate, and below this, a selection panel where the user can choose from

their list of available moves at each point, and input their own opinions as the

selected moves allow.

The DGDL dialogue games available in Arvina have been developed to

capture a range of structured conversations, for example, to facilitate the gen-

eration of mathematical proofs (Pease et al., 2014) or allow for debate of moral

issues. The Polemicist4 application (see Figure 10.4), in particular, offers a

custom version of Arvina, giving users the opportunity to interact with agents

representing the panellists and witnesses from the BBC Moral Maze radio pro-

gramme. Polemicist uses a fixed DGDL protocol, allowing the user take on the

role of the moderator of the debate: selecting topics, controlling the flow of the

4http://polemici.st
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dialogue, and thus exploring all the angles of the rich argumentative content.

Playing the role of moderator lets the user rearrange the arguments and create

wholly novel virtual discussions between the contributions of participants that

did not directly engage in the original debate, while still reflecting their stated

opinions.

Figure 10.4: The Polemicist user interface

Whilst Arvina and Polemicist currently rely on pre-annotated material

from AIFdb to provide the responses for agents in a dialogue, they represent

a valuable use case for automatically mined arguments. If the argumenta-

tive structure in a radio transcription can be extracted by argument mining,

conversations in Polemicist could take place as the radio programme is being

transmitted. Similarly, discussions aimed at creating new mathematical proofs

in Arvina could feature counter-examples extracted from online mathematical

publications. Combining these dialogue interfaces with a robust argument

mining platform would enable users to discuss any issue of their choosing with

any person whose opinions on that topic have been previously recorded.
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10.4 Argument Analytics

Argument Analytics (Lawrence et al., 2016) provides a suite of techniques

for analysing and visualising features of Argument Interchange Format data,

be that pre-annotated data from AIFdb, or the output of argument mining

software. Argument Analytics components range from the detailed statis-

tics required for discourse analysis or argument mining, to infographic-style

representations, offering insights in a way that is accessible to a general au-

dience. The extensible set of modules currently comprises: simple statistical

data, which provides both an overview of the argument structure and frequen-

cies of patterns such as argumentation schemes; dialogical data highlighting

the behaviour of participants of the dialogue; and real-time data allowing for

the graphical representation of an argument structure developing over time.

Together these analytics open an avenue to giving feedback on live debates,

producing summaries of deliberative democracy, mapping citizen science, and

more.

10.4.1 Simple Statistics

The simple statistics modules allows an analyst to quickly make sense of a

large amount of annotated argument data. Although these calculations are

straightforward and relatively easy to automate, they nevertheless provide in-

teresting insights into the data. The overview page (Figure 10.5 shows a range

of statistics, offering a rapidly digested summary of the overall argumenta-

tive structure. The number of Information nodes provides an indication of

the overall size of the analysis. The average number of words per Information

Node illustrates the complexity of the ideas presented, and how succinctly they

are expressed. The numbers of inference (RA) and conflict (CA) nodes give a

suggestion as to the nature of the dialogue, which can be further explored by

expanding the list of scheme instances present for each node type.
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Figure 10.5: Simple statistics on the Argument Analytics Overview page

10.4.2 Dialogically Oriented Statistics

For those argument analyses where there is a dialogue taking place between

multiple participants, a range of dialogically oriented analytics modules are

able to provide insights into the dynamics of the discourse, and make these

complex interactions accessible to a general audience. Dialogically oriented

statistics currently available in the Argument Analytics suite include:

Participation: For each participant, the number of locutions they have

made is counted and represented in a bar chart. This provides an easy way

of identifying which participants were most, and least, dominant within a

dialogue. Figure 10.6 (left) shows the participation of participants in a BBC

Moral Maze radio programme.

Stimulating: A point of debate is stimulating if it receives responses,

either to agree or disagree. From the analysed argument structure, we count

the number of locutions which each participant has made that have at least

one response, and those which have been ignored by the other participants.

Figure 10.6 (right) shows the stimulating scores for each participant in a BBC

Moral Maze radio programme.

Interactions: Shown as a chord diagram representing the interaction be-

tween participants (see Figure 10.7). A chord diagram is a graphical method

of displaying the inter-relationships between data in a matrix. The data is ar-
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Figure 10.6: Graphical representations of the relative involvement of each par-

ticipant in a dialogue, and how stimulating the points made by each participant

are.

ranged radially around a circle with the relationships between the points drawn

as arcs connecting the data together. In this case, the arcs represent interac-

tion between participants, with the width of the arc at each end representing

the number of locutions made by that participant to which the connected

participant has responded.

Figure 10.7: Interactions in a BBC Moral Maze episode represented as a chord

diagram.

Turn Structure: Using the timestamping of locutions provided by AIFdb,

a graphical representation of the turn structure in a dialogue is created. This

visualisation provides a quick overview of when each participant has been most

active, suggesting details of any pre-defined turn-taking rules. The example

shown in Figure 10.8 reflects the turn structure in a Moral Maze episode. As

the episode begins, each of the four regular panellists speak briefly about the

topic being discussed. A guest witness is then introduced, and, after providing
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their own views on the topic, are then questioned by first one of the panellists

and then by a second.

Figure 10.8: Graphical representation of the turn structure in a dialogue

10.4.3 Real-time Statistics

Many of the modules used in Argument Analytics have the ability to not only

display data on a fixed, pre-analysed argument structure, but to update in real-

time as the structure evolves. This functionality has been used, for example,

in a tool developed for the Built Environment for Social inclusion through

the Digital Economy (BESiDE) project5, to facilitate round table discussions

between architects working on the design of care environments, and the various

stakeholders involved in the design process.

As the discussion is taking place, the audio is recorded and an analyst uses

a custom-designed interface to segment the dialogue when either the topic or

the speaker changes. A simple dialogue protocol is used, allowing participants

to make moves of various types (e.g. asking questions, agreeing with another

participant, and offering their own opinion), and relating to a set of pre-defined

topics relevant to the design project.

Throughout the discussion, the dialogue overview shown in Figure 10.9 is

displayed for all participants to see. This overview includes a transcript of the

dialogue on the right hand side, and analytics modules displaying how much

each participant has spoken, and which topics have been discussed on the left.

Observing these tools in use, it is interesting to see that they serve not only an

informative function, but actually impact the dynamics of the dialogue. When

a participant can see that they are talking more than everyone else, they

tend to let others speak more. When someone hasn’t spoken yet, the other

5http://beside.ac.uk/
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Figure 10.9: Real-time Argument Analytics highlighting the involvement of

individual participants and the topics discussed.

participants notice this, and make an effort to direct questions at them. And,

when one topic has been less explored than the others, there is a noticeable

shift towards that area in both the questions asked and the points raised.

This ability for the argumentative and dialogical structure to not only

represent the outcome of a discussion, but to inform the participants and help

ensure that all areas are fully explored has wide ranging potential applications.

The current limitation to providing this kind of interface more widely is the

ability to perform real-time analysis, but as argument mining techniques im-

prove, these could hopefully be combined with current state-of the-art speech

to text algorithms to provide analytics such as those shown here, as a dialogue

is taking place.



Chapter 11

Conclusion

This final chapter presents a summary of the contributions detailed in the

preceding chapters. This is then followed by an exploration of potential avenues

for future development, and, finally, by some brief concluding remarks on the

work presented here as a whole.

11.1 Contributions

The work presented in this thesis has contributed the following advances in

argument mining and related fields: the introduction of Explainable Argument

Mining (XAM); the development of a range of XAM techniques, which either

extend and enrich existing approaches (e.g. discourse indicators, and argumen-

tation schemes), or open up completely new directions (e.g. premise-conclusion

topic models, and graph properties); the development of a software framework

for analysing, storing and working with argument data; and, the development

of applications which can make use of automatically mined argument struc-

tures.

11.1.1 Explainable Argument Mining (XAM)

This thesis introduces the concept of Explainable Argument Mining (XAM).

Where the majority of argument mining approaches to date have started from

a computational linguistic perspective, applying CL techniques to identify spe-

cific facets of the argumentative structure, XAM starts by looking at the rich
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heritage of philosophical research in the analysis and understanding of argu-

mentation, and by drawing inspiration from the ways in which humans under-

stand the structure of an argument.

Taking cues ranging from the most straightforward (such as there being a

discourse indicator between two propositions), through to more complex in-

teractions (such as: two propositions having high semantic similarity, with

one being more central to the discussion than the other; or, two propositions

being part of the same argumentation scheme), XAM has been shown to pro-

duce comparable results to existing approaches whilst also explaining where

these results come. With future work to combine the resulting explanation

structure from Chapter 9 with templated text generation, these results could

be presented in a way that would be intuitively understandable to a general

audience, hiding the specific details of thresholds etc. and instead saying “A

is identified as a reason for B because they are similar and B is a more central

point in the dialogue”.

In Chapter 9, a rule based method for combining multiple XAM tech-

niques was developed and evaluated against the US2016G1tv corpus, and two

widely used third-party argumentation corpora (the Argument Annotated Es-

says Corpus, and the Argumentative Microtext corpus). These three datasets

represent a broad spectrum of different domains and data types, with vari-

ance in: length, with each of the 112 Microtexts being 50-100 words, the 402

essays in AAEC averaging 366 words per essay, and US2016G1tv being one

17,190 word debate transcript; participants, with AAEC being monological,

Microtexts being constructed dialogues, and US2016G1tv being fully dialog-

ical; and, genre, AAEC being persuasive essays, Microtexts being short and

clearly structured, and US2016G1tv being an hour long debate transcript.

Despite this, the combined XAM approach presented here works well across

all three datasets, producing comparable results to state of the art techniques

developed specifically for use on these AAEC and the Microtext corpus. These

results are particularly encouraging as the combined XAM approach is not

tuned for features of any of these datasets, while, for example, the classifiers

of Stab and Gurevych (2017) are able to take advantage of structural features
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of the specific dataset they are working with. For example, whether the com-

ponent is first or last in a paragraph and whether the component is present

in the introduction or conclusion, both features strongly tied to the argument

component classification for this data.

As the use of automated approaches for understanding human reasoning

grows, it becomes increasingly important to be able to justify the information

being extracted. For example, an algorithm extracting information from a

debate such as that in the US2016G1tv corpus, needs to not only be able to say

“Clinton said we should do X because Y”, but explain exactly which features

of the text make this inference clear. Doing so allows a general audience to

determine whether they agree that the inferential relationship was intended

by the speaker, and researchers to perform better error analysis and adjust

algorithms accordingly.

XAM has already been adopted as a key component of the BBC Evidence

Toolkit project1, and offers potential for further tools that help people to both

understand the arguments that they hear, and construct better arguments

themselves (see Chapter 10). For example the approaches presented here could

be used to highlight possibly unintended conclusions (offering an explanation

of how to clarify this), or to highlight conclusions where the support is not

clearly stated.

11.1.2 Analysis of Discourse Indicators as an argument

mining technique

Discourse indicators have been previously used as a component of argument

mining techniques, however, there has been little previous study of how well

indicators perform on their own, how frequently they occur in real-world text,

and how well different individual indicators map to specific argumentative

relations. In Chapter 4, such properties of discourse indicators were inves-

tigated more closely, covering indicators from existing literature, as well as

those identified from annotated argument data. The results from this study

showed that in the US2016G1tv corpus over 85% of inference relations were

1https://www.bbc.co.uk/taster/pilots/evidence-toolkit-moral-maze
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not marked by any discourse indicator. Furthermore, several indicators which

are commonly mentioned in the literature as being useful for identifying argu-

mentative structure rarely occur in this dataset: for example, “therefore” only

had one occurrence within the entire debate transcript.

Of those indicators which appeared more frequently, most provided little

information. For example, whilst there were 30 instances of the indicator “so”

occurring between adjacent spans, only 37.5% of these instances were between

spans where a support relation existed.

The one exception to this was found to be the indicator “because”. This

indicator appeared between adjacent spans 71 times and, of these, 87.3% were

connected by a support relationship. Whilst this is a promising result, and

suggests that, in those cases where “because” occurs, it can tell us with high

accuracy the type of connection, using this method on its own would still

leave approximately 80% of support relations (as well as all conflict relations)

unidentified.

11.1.3 Mining Argumentation Scheme structures

Although previous attempts have been made to automatically identify in-

stances of argumentation schemes, most notably Feng and Hirst (2011), these

have relied on some prior analysis of the text having taken place. In the case

of Feng & Hirst for example, the starting point is text which has previously

been annotated for its argumentative structure. Another possible approach

is suggested in Cabrio et al. (2013), where the connection between argumen-

tation schemes and discourse relations is highlighted, however, this requires

these discourse relations to be accurately identified before scheme instances

can be determined.

The approach presented in Chapter 8 overcomes this requirement by look-

ing at the features of each component part of a scheme, enabling the identifi-

cation of these scheme components in completely unanalysed text. Once these

scheme components have been identified, we are able to group them together

into specific scheme instances and thus obtain a full annotation of scheme

instances. This work has shown that by considering the features of the indi-
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vidual types of premise and conclusion that comprise a scheme, it is possible

to reliably classify these scheme components. The results for this approach

(F-scores between 0.78 and 0.91) were comparable results to those of Feng &

Hirst (accuracies of between 0.63 and 0.91) on the same dataset, whilst re-

moving the requirement for pre-annotated text, and allowing us to determine

not just that a particular scheme was being used, but to correctly assign each

proposition to its schematic role.

11.1.4 Premise-Conclusion Topic Models

Premise-Conclusion Topic Models (Chapter 5) offer a new cross-domain, unsu-

pervised approach to argument mining. The intuition underlying these models

is that there are rich and predictable thematic and lexical regularities present

in the expression of human reasoning, and that these regularities can be iden-

tified and help to extract the structure of such reasoning.

By first performing an online search for material on the target topic, and

then using a discourse indicator with proven high precision (e.g. “because”)

to identify inferential pairs contained within this data, we automatically build

a dataset of common arguments within the target domain.

Generating topic models from these inferential pairs, allows us to extract

patterns of specific topics being regularly used to support other topics. For

example, in debates concerning abortion, arguments are carefully marshalled

on both sides, with religious themes more typically appearing on one side, and

feminist philosophy themes more typically on the other. For a debate on the

construction of a new road, we may expect to find environmental issues on one

side and economic concerns on the other.

The Premise-Conclusion Topic Model approach was shown to be effective

in tackling the challenging high-level pragmatic task of identifying both con-

nectedness and directionality between argumentative discourse units. This

outcome represents strong performance for this level of task, giving results

comparable to those of (Palau and Moens, 2009). Furthermore, where existing

approaches are often constrained in their generality by a lack of appropriately

annotated, domain-specific, data, the same requirement does not apply in this
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case.

These results show a clear link between the words used to express an ar-

gument and its underlying structure, and strongly support the intuition that

understanding the structure of an argument can require not only consideration

of the text itself, but contextual knowledge and understanding of the broader

issues.

11.1.5 Graph Properties

As with Premise-Conclusion Topic Models, the work presented in Chapter 7

on Graph Properties also offers an entirely new approach for argument mining.

In this case, considering the insights that can be gained by looking at large

scale argument networks as a whole. In particular the properties of Centrality,

which can be viewed as how important an issue is to the argument as a whole,

and Divisiveness, how much an issue splits opinion.

Centrality of propositions was calculated by determining the lexical and

semantic similarities between all proposition pairs and then computing eigen-

vector centrality on a graph with edge weights corresponding to these similarity

scores.

Divisiveness was calculated for each proposition pair by first determining

the difference in positive/negative polarity between the elements in the pair

and then multiplying this by their similarity score to determine a conflict

score: propositions which are talking about the same thing, but have different

polarity are likely to be in conflict; propositions which have the same polarity

or are talking about different topics are not likely to be in conflict. From here,

these values were then multiplied by the centrality score for the pair to give

a divisiveness score: a divisive issue being one where there is conflict between

two central issues.

Chapter 7 also showed how these measures can be combined with existing

argument mining approaches to give improved results, choosing the mined

structure where the centrality and divisiveness as calculated from the argument

graph most closely matches with that calculated directly from the text.
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11.1.6 Study of similarity techniques for Argument Min-

ing

Chapter 6 considered how various measures of the similarity between propo-

sitions map to their argumentative relationship. This study covered a broad

range of lexical (ROUGE-1, ROUGE-2, ROUGE-L, and Levenshtein Edit Dis-

tance), semantic (WordNet, word vectors, and document vectors) and topical

(Latent Dirichlet Allocation) similarity measures.

Experiments were performed to determine the connection between each of

these similarity measures and argumentative relations. Firstly, the similar-

ity scores for all pairs of connected propositions in the US2016G1tv corpus

were calculated, and the average of these compared to the average similarity

score for all non-connected propositions. The results show a highly signifi-

cant (p < 0.001) difference between the similarities of related and un-related

propositions, as calculated by the majority of measures. The exceptions to this

were the results obtained using Document Vectors (which were, nonetheless,

still significant, p < 0.05), and those for WordNet and LDA, which showed no

significant difference between the average values.

This parallel between similarity and argumentative relation was shown to

be even stronger for adjacent propositions, with a significant difference (though

slightly reduced in the case of ROUGE-1) between related and un-related

propositions for all of the techniques. Whilst semantic similarity was shown

to correlate strongly with long distance argumentative relations, reflecting the

likelihood that, when a speaker is referring back to a previous point in the dia-

logue, they may paraphrase the original point retaining its semantic meaning,

but using different words to when it was originally uttered.

Finally, applying these similarity measures directly to mining arguments

was shown to work best when any of the measures was above a given thresh-

old. This result shows that similarity is not just a case of one type or another

mapping best to argumentative relations, but that the type of similarity can

vary from one situation to another, with some argumentatively related propo-

sitions sharing a large number of words in common, others being semantically

similar without sharing very many common words, and others being topically
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similar but not fulfilling either of the other criteria.

11.1.7 Minor Contributions

As part of the framework in which the work in this thesis was carried out,

a set of tools were developed by the author for the annotation, storage and

collection of argument data. These include:

• Online Visualisation of Argument (OVA) (Janier et al., 2014) The

most widely used tool for argument analysis, with over 2,000 users in 38

countries having produced ∼75,000 analyses since 2015.

• AIFdb (Lawrence et al., 2012b) An openly accessible database of ar-

gument, containing over 18,000 Argument Interchange Format (AIF)

(Chesñevar et al., 2006) argument maps, with over 2.1m words and

200,000 claims in fourteen different languages2

• AIFdb Corpora (Lawrence and Reed, 2014) Collecting over 8,000 of

the 14,000 analyses contained in AIFdb into a range of corpora which

are publicly available in perpetuity at fixed permalinks.

Similarly, many of the applications developed by the author, and detailed

in Chapter 10 have found widespread usage. In particular:

• Argument Analytics (Lawrence et al., 2016) Piloted in association

with BBC Radio 4 Moral Maze3

• BBC Moral Maze: Test Your Argument (Lawrence et al., 2018) A

tool offering users the opportunity to hone their critical thinking skills

using arguments from topical discussions. Test Your Argument has over

5,000 unique users, with 80% of users surveyed saying “Yes, the BBC

should do more like this”.

2Amharic, Chinese, Dutch, English, French, German, Hindi, Italian, Japanese, Polish,

Portuguese, Russian, Spanish and Ukrainian
3https://www.bbc.co.uk/programmes/p05jp46h/p05jp46x
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• The Evidence Toolkit Deployed to over 3,000 educational institutions

in the United Kingdom, making it the largest-scale deployment of ar-

gument mining technology available to the general public to date. 88%

of users surveyed said it “changed their perception of the BBC to the

positive”.

Finally, the Literature Review in Chapter 2 forms part of a comprehensive

survey of argument mining, published as (Lawrence and Reed, 2020).

11.2 Future Work

The research undertaken in this thesis highlights several potential avenues for

future work. These include additional XAM techniques, and further develop-

ment of the techniques presented here.

11.2.1 Rhetorical Figures

Classical approaches to argumentation theory split the topic into several areas,

including Logic and Rhetoric. Whilst most approaches to argument mining

have focused on issues that would, by this classification, fall under the topic

of Logic, almost no work has tackled Rhetoric.

Depending on how they are classified, there are somewhere in the range

of 700 rhetorical figures, or figures of speech4, ranging from those that are

familiar and in some cases well-studied in computational linguistics (such as

metaphor and metonymy) to those that are obscure, complex or peculiarly

specific (such as anemographia, the creation of an illusion of reality through

description of the wind; and antiprosopopoeia, the representation of persons

as inanimate objects).

Preliminary work has been carried out exploring the usage of rhetorical

figures as a tool in (explainable) argument mining (Lawrence et al., 2017c).

The goal of this work has been to highlight the value and importance of the

area of rhetoric in argument mining. This work has shown that a diverse set

4http://rhetoric.byu.edu/
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of rhetorical figures can be identified – indeed, the very definition of many fig-

ures serves as the algorithm for their identification. The second step is to show

that the consideration of rhetorical figures allows the formulation of new and

intriguing hypotheses: Does polyptoton (repeating a word, but in a different

form) co-occur with argumentative support and thereby act as a strong indi-

cator of inference? Might antithesis act as a weak contra-indicator of conflict?

The final step is to substantiate or repudiate these hypotheses: (Lawrence

et al., 2017c) presents an initial investigation in this direction, though any one

of the types of rhetorical figure could be interestingly challenging to identify

and highly correlated with some aspect of argumentative structure.

11.2.2 Speaker Profiling5

The increasing availability of argumentatively annotated text corpora of ap-

propriate size and quality opens up new possibilities for applying quantitative

empirical methods in the study of argumentation. In particular, the use of

corpus-based metrics to model the rhetorical profile of a speaker; characteris-

ing their style of arguing in terms of their selection of argument schemes, the

type of standpoints advanced, and the speech acts used. Such a profile could

then be used to help inform argument mining: knowing that a speaker fre-

quently uses a particular argumentation scheme increases the likelihood that

it will be found in their utterances; a preference for factual premises may

equally make supporting arguments easier to identify.

As a preliminary study, the US2016G1tv corpus was analysed, comparing

the styles on the speakers. During the debate, Donald Trump introduced 455

argumentative relations (of inference, conflict and rephrase), while Hilary Clin-

ton accumulated a much lower total of 235. As expected in political debates,

both Clinton and Trump regularly made use of Arguments from Example,

Cause to Effect, Sign, and Consequences. Striking is Trump’s propensity for

personal attacks: 15% of his arguments consist of Circumstantial/Generic Ad

5The material in this section was presented at the 2019 European Conference on Argu-

mentation (http://ecargument.org) as part of the presentation: “Quantitative rhetorical

profiling”.
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Hominem or Argument from Bias, compared to 7% of Clinton’s. Trump also

uses a considerably higher number of Fear Appeals to justify his standpoints:

10 for Trump (making up 3,4% of his total number of arguments), against 1

for Clinton (0,5%). Clinton, on the other hand, relies more heavily on Popular

Opinion/Practice argument schemes than Trump does: 10 counts for Clin-

ton (constituting 5% of her arguments) against 4 counts for Trump (1%).

Furthermore, she employs the Argument from Values 10 times (5,2% of her

arguments), while Trump only relies on values 5 times (1,7%).

Another stark difference in rhetorical choices made by Clinton and Trump

is the type of claims defended. In 28% of the cases, Clinton argues for some

policy proposal. In comparison, only 9% of Trump’s arguments defend policy

proposals. This distinctive difference in rhetorical style is further confirmed

by the candidates’ use of the Practical Reasoning argument scheme, in which

a plan of action is defended on the basis of a particular goal: 17% of Clinton’s

arguments constitute Practical Reasoning, against 4% of Trump’s.

Finally, in terms of speech acts, Trump restates or paraphrases notably

more than Clinton does. Trump introduces 112 rephrase relations, while Clin-

ton only uses rephrase 19 times (8%).

Highlighting such differences between speakers offers great potential for

analysing their arguments in future material. Further investigation will be

required in order to determine how transferable these attributes are, with

some likely to depend on the context and other participants, whilst some may

reflect more general style.

11.2.3 Argumentation Schemes

Recent work in the field of argumentation schemes is opening up new possibili-

ties for the automatic identification of scheme instances, and the improvement

of related argument mining techniques.

(Lawrence et al., 2019a) presents an online annotation assistant combining

a novel annotation method for Walton’s typology of schemes (Walton et al.,

2008), with the widely used OVA software for argument analysis. This an-

notation method is referred to as the Argument Scheme Key (ASK) (Visser
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et al., 2021; Lawrence et al., 2019b). The ASK is a dichotomous identification

key that leads the analyst through a series of binary choices based on the dis-

tinctive features of subsets of argument schemes until they reach a particular

scheme label. The choices are informed by grouping together scheme types

in Walton’s taxonomy that share particular characteristics. For example, the

ASK starts by distinguishing between source-based and other arguments. Each

subsequent choice in the key leads to either a particular argument scheme, or to

a further choice. For example, an analyst goes through the following sequence

of characteristics in identifying an argument as an instance of argument from

popular opinion: source-based; about the source’s opinion; based on existing

opinion; source is a group of people.

These advances in scheme annotation offer the promise of faster and more

accurate annotation of scheme data (Visser et al., 2018c). More interestingly

still, they also constitute an intermediate step in the development of automated

classifiers, utilising the uniquely identifying characteristics of the ASK, with

the answer to simpler questions, such as “is the source a group of people or an

individual”, likely being easier to determine automatically, compared to full

scheme instance identification.

11.2.4 Intertextual Argument Mining

The majority of existing argument mining techniques are confined to the par-

ticular source text in which an opinion is expressed. The task of Intertextual

Argument Mining, is that of identifying argumentative relations between top-

ically related texts from different areas. Preliminary work has looked at de-

termining such connections between the US presidential election debates, and

corresponding reactions from online discussion (Visser et al., 2018b).

Intertextual Argument Mining shares much in common with the comment-

to-article linking task (Aker et al., 2015) which aims to connect readers’ com-

ments to the news article segments which they refer to. Indeed, more recent

work in comment-to-article linking (Aker et al., 2016) has extended this to

include consideration of sentiment and argument structure, assigning a label

of agree, disagree or neutral to each article segment-comment pair.
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As with comment-to-article linking, preliminary work on Intertextual Ar-

gument Mining has mainly employed similarity features, though several addi-

tional aspects are available in the case of linking televised debates to their live

online reaction, including: explicit references made to a speaker in the debate;

temporal ordering of comments (a comment cannot refer to something that

hadn’t been said at the time it was posted); and, the context of a comment

(clusters of comments may all be referencing the same, or similar, points in the

debate). Current results show that combining these features gives an accuracy

of 0.36 compared to an accuracy of 0.57 for testing with human annotators.

This is a challenging task with characteristics that preclude the use of

many techniques that have proven successful in previous argument mining

work. However, it is hoped that, by linking argumentative structures together

in this way, large interconnected datasets can be created, and the vision of

the integrated (World Wide) Argument Web (Rahwan et al., 2007) brought to

fruition.

11.3 Concluding remarks

Significant progress has been made in the field of argument mining since the

publication of the first paper dedicated to the subject in 2007 (Moens et al.,

2007), and high-profile success stories such as IBM’s Project Debater6 continue

to push innovation and spark interest in the area. This progress has, in large

part, been driven by parallel advances in computational linguistics, artificial

intelligence, and machine learning; with the more basic statistical classifiers

of a decade ago, slowly giving way to the ever improving results offered by

end-to-end and neural network based approaches (Eger et al., 2017; Persing

and Ng, 2016; Shnarch et al., 2018; Niven and Kao, 2019).

However argument mining remains an enormously challenging task; as

Moens (2018) points out, “a lot of content is not expressed explicitly but

resides in the mind of communicator and audience”. It is perhaps in this as-

pect, of understanding the implicit intentions of the communicator and the

6https://www.research.ibm.com/artificial-intelligence/project-debater/
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corresponding interpretation made by the audience, that the greatest future

progress in the field can be realised. Many arguments may be signalled, not

by explicit linguistic cues, but by the more subtle usage of an argumentation

scheme, or the juxtaposition of two topics where one is a frequent source of

supporting arguments for the other.

Such subtleties of communication have long been at the core of philosophi-

cal research in the analysis, modelling and understanding of argumentation. It

is from the blending of these theoretical aspects of argumentation along with

the application of computational linguistic techniques, that the techniques pre-

sented in this thesis are derived. By virtue of this approach, the work presented

here offers two principal contributions: the development of a range of argument

mining techniques grounded in argumentation theory; and, the introduction

of Explainable Argument Mining (XAM).

The individual techniques presented have been shown to produce robust re-

sults on their own, but, much as the theoretical works on which they are based

each illuminate different and complementary aspects of human understanding,

it is in their combination that a more full and accurate picture emerges.

In combination the techniques presented here have been shown to produce

comparable results to state of the art techniques developed specifically for use

on the datasets tested, whilst maintaining explainability, and working across

genres without modification. However, this is still a starting point for XAM,

and, as the new techniques and improvements discussed in Section 11.2 are

developed, these results are expected to improve further still.
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