17,188 research outputs found

    Exploiting Traffic Balancing and Multicast Efficiency in Distributed Video-on-Demand Architectures

    Get PDF
    Distributed Video-on-Demand (DVoD) systems are proposed as a solution to the limited streaming capacity and null scalability of centralized systems. In a previous work, we proposed a fully distributed large-scale VoD architecture, called Double P-Tree, which has shown itself to be a good approach to the design of flexible and scalable DVoD systems. In this paper, we present relevant design aspects related to video mapping and traffic balancing in order to improve Double P-Tree architecture performance. Our simulation results demonstrate that these techniques yield a more efficient system and considerably increase its streaming capacity. The results also show the crucial importance of topology connectivity in improving multicasting performance in DVoD systems. Finally, a comparison among several DVoD architectures was performed using simulation, and the results show that the Double P-Tree architecture incorporating mapping and load balancing policies outperforms similar DVoD architectures.This work was supported by the MCyT-Spain under contract TIC 2001-2592 and partially supported by the Generalitat de Catalunya- Grup de Recerca Consolidat 2001SGR-00218

    Endpoint-transparent Multipath Transport with Software-defined Networks

    Full text link
    Multipath forwarding consists of using multiple paths simultaneously to transport data over the network. While most such techniques require endpoint modifications, we investigate how multipath forwarding can be done inside the network, transparently to endpoint hosts. With such a network-centric approach, packet reordering becomes a critical issue as it may cause critical performance degradation. We present a Software Defined Network architecture which automatically sets up multipath forwarding, including solutions for reordering and performance improvement, both at the sending side through multipath scheduling algorithms, and the receiver side, by resequencing out-of-order packets in a dedicated in-network buffer. We implemented a prototype with commonly available technology and evaluated it in both emulated and real networks. Our results show consistent throughput improvements, thanks to the use of aggregated path capacity. We give comparisons to Multipath TCP, where we show our approach can achieve a similar performance while offering the advantage of endpoint transparency

    Evaluating the benefits of key-value databases for scientific applications

    Get PDF
    The convergence of Big Data applications with High-Performance Computing requires new methodologies to store, manage and process large amounts of information. Traditional storage solutions are unable to scale and that results in complex coding strategies. For example, the brain atlas of the Human Brain Project has the challenge to process large amounts of high-resolution brain images. Given the computing needs, we study the effects of replacing a traditional storage system with a distributed Key-Value database on a cell segmentation application. The original code uses HDF5 files on GPFS through an intricate interface, imposing synchronizations. On the other hand, by using Apache Cassandra or ScyllaDB through Hecuba, the application code is greatly simplified. Thanks to the Key-Value data model, the number of synchronizations is reduced and the time dedicated to I/O scales when increasing the number of nodes.This project/research has received funding from the European Unions Horizon 2020 Framework Programme for Research and Innovation under the Speci c Grant Agreement No. 720270 (Human Brain Project SGA1) and the Speci c Grant Agreement No. 785907 (Human Brain Project SGA2). This work has also been supported by the Spanish Government (SEV2015-0493), by the Spanish Ministry of Science and Innovation (contract TIN2015-65316-P), and by Generalitat de Catalunya (contract 2017-SGR-1414).Postprint (author's final draft

    Improved parallelization techniques for the density matrix renormalization group

    Full text link
    A distributed-memory parallelization strategy for the density matrix renormalization group is proposed for cases where correlation functions are required. This new strategy has substantial improvements with respect to previous works. A scalability analysis shows an overall serial fraction of 9.4% and an efficiency of around 60% considering up to eight nodes. Sources of possible parallel slowdown are pointed out and solutions to circumvent these issues are brought forward in order to achieve a better performance.Comment: 8 pages, 4 figures; version published in Computer Physics Communication
    corecore