21 research outputs found

    Peak to average power ratio reduction and error control in MIMO-OFDM HARQ System

    Get PDF
    Currently, multiple-input multiple-output orthogonal frequency division multiplexing (MIMOOFDM) systems underlie crucial wireless communication systems such as commercial 4G and 5G networks, tactical communication, and interoperable Public Safety communications. However, one drawback arising from OFDM modulation is its resulting high peak-to-average power ratio (PAPR). This problem increases with an increase in the number of transmit antennas. In this work, a new hybrid PAPR reduction technique is proposed for space-time block coding (STBC) MIMO-OFDM systems that combine the coding capabilities to PAPR reduction methods, while leveraging the new degree of freedom provided by the presence of multiple transmit chairs (MIMO). In the first part, we presented an extensive literature review of PAPR reduction techniques for OFDM and MIMO-OFDM systems. The work developed a PAPR reduction technique taxonomy, and analyzed the motivations for reducing the PAPR in current communication systems, emphasizing two important motivations such as power savings and coverage gain. In the tax onomy presented here, we include a new category, namely, hybrid techniques. Additionally, we drew a conclusion regarding the importance of hybrid PAPR reduction techniques. In the second part, we studied the effect of forward error correction (FEC) codes on the PAPR for the coded OFDM (COFDM) system. We simulated and compared the CCDF of the PAPR and its relationship with the autocorrelation of the COFDM signal before the inverse fast Fourier transform (IFFT) block. This allows to conclude on the main characteristics of the codes that generate high peaks in the COFDM signal, and therefore, the optimal parameters in order to reduce PAPR. We emphasize our study in FEC codes as linear block codes, and convolutional codes. Finally, we proposed a new hybrid PAPR reduction technique for an STBC MIMO-OFDM system, in which the convolutional code is optimized to avoid PAPR degradation, which also combines successive suboptimal cross-antenna rotation and inversion (SS-CARI) and iterative modified companding and filtering schemes. The new method permits to obtain a significant net gain for the system, i.e., considerable PAPR reduction, bit error rate (BER) gain as compared to the basic MIMO-OFDM system, low complexity, and reduced spectral splatter. The new hybrid technique was extensively evaluated by simulation, and the complementary cumulative distribution function (CCDF), the BER, and the power spectral density (PSD) were compared to the original STBC MIMO-OFDM signal

    Multicarrier-signal design with low peaks and low out-of-band power

    Get PDF
    Projecte fet en col.laboració amb el Department of Electrical and Information Technology. Lund UniversityThe high peak-to-average power ratio (PAPR) and the high out-of-band power (OBP) are two major drawbacks of multicarrier communication systems. Many PAPR reduction and OBP supression techniques have been proposed in the literature whereas not much has been proposed regarding the jointly reduction performance. This thesis focuses on joint reducing time-domain peaks and out-of-band leakage of OFDM signals. The resulting algorithm combines the bene ts of both methods and yields better results than each method does separately

    Multicarrier-signal design with low peaks and low out-of-band power

    Get PDF
    Projecte fet en col.laboració amb el Department of Electrical and Information Technology. Lund UniversityThe high peak-to-average power ratio (PAPR) and the high out-of-band power (OBP) are two major drawbacks of multicarrier communication systems. Many PAPR reduction and OBP supression techniques have been proposed in the literature whereas not much has been proposed regarding the jointly reduction performance. This thesis focuses on joint reducing time-domain peaks and out-of-band leakage of OFDM signals. The resulting algorithm combines the bene ts of both methods and yields better results than each method does separately

    New methods of partial transmit sequence for reducing the high peak-to-average-power ratio with low complexity in the ofdm and f-ofdm systems

    Get PDF
    The orthogonal frequency division multiplexing system (OFDM) is one of the most important components for the multicarrier waveform design in the wireless communication standards. Consequently, the OFDM system has been adopted by many high-speed wireless standards. However, the high peak-to-average- power ratio (PAPR) is the main obstacle of the OFDM system in the real applications because of the non-linearity nature in the transmitter. Partial transmit sequence (PTS) is one of the effective PAPR reduction techniques that has been employed for reducing the PAPR value 3 dB; however, the high computational complexity is the main drawback of this technique. This thesis proposes novel methods and algorithms for reducing the high PAPR value with low computational complexity depending on the PTS technique. First, three novel subblocks partitioning schemes, Sine Shape partitioning scheme (SS-PTS), Subsets partitioning scheme (Sb-PTS), and Hybrid partitioning scheme (H-PTS) have been introduced for improving the PAPR reduction performance with low computational complexity in the frequency-domain of the PTS structure. Secondly, two novel algorithms, Grouping Complex iterations algorithm (G-C-PTS), and Gray Code Phase Factor algorithm (Gray-PF-PTS) have been developed to reduce the computational complexity for finding the optimum phase rotation factors in the time domain part of the PTS structure. Third, a new hybrid method that combines the Selective mapping and Cyclically Shifts Sequences (SLM-CSS-PTS) techniques in parallel has been proposed for improving the PAPR reduction performance and the computational complexity level. Based on the proposed methods, an improved PTS method that merges the best subblock partitioning scheme in the frequency domain and the best low-complexity algorithm in the time domain has been introduced to enhance the PAPR reduction performance better than the conventional PTS method with extremely low computational complexity level. The efficiency of the proposed methods is verified by comparing the predicted results with the existing modified PTS methods in the literature using Matlab software simulation and numerical calculation. The results that obtained using the proposed methods achieve a superior gain in the PAPR reduction performance compared with the conventional PTS technique. In addition, the number of complex addition and multiplication operations has been reduced compared with the conventional PTS method by about 54%, and 32% for the frequency domain schemes, 51% and 65% for the time domain algorithms, 18% and 42% for the combining method. Moreover, the improved PTS method which combines the best scheme in the frequency domain and the best algorithm in the time domain outperforms the conventional PTS method in terms of the PAPR reduction performance and the computational complexity level, where the number of complex addition and multiplication operation has been reduced by about 51% and 63%, respectively. Finally, the proposed methods and algorithms have been applied to the OFDM and Filtered-OFDM (F-OFDM) systems through Matlab software simulation, where F-OFDM refers to the waveform design candidate in the next generation technology (5G)

    Study of Optical OFDM System for Wireless LAN Applications

    Get PDF
    The advantages of optical fiber make it possible to extend the data rate transmission and propagation distance. Orthogonal frequency division multiplexing (OFDM) as a multicarrier technique (MC) is used in hybrid optical-wireless system designs because it has the best spectral efficiency to radio frequency (RF) interference and lower multipath distortion. In this dissertation, a study and evaluation of optical OFDM based wireless local area network (W-LAN) systems are presented. The baseband of the OFDM signal is fully transmitted and up-converted to a radio frequency signal. Also, to reduce system costs, simple base stations (BSs) are interconnected to a central office (CO) via an optical fiber. All the required operations are achieved in the CO. The directly modulated laser (DML) and continuous wave (CW) laser are used in the system simulations as optical laser sources. Identical rectangular microstrip patch antennas have been used at the transmitter and the receiver as well. The simulations were carried out for different SMF and MMF lengths, and the variable wireless distance between the transmitting and receiving antennas was in a range of 40 dB to 80 dB. The purpose of this work is to provide a framework for integrating wireless and optical technologies in one system with the presence of OFDM technology. The required microstrip patch antenna parameters for the system are analyzed and designed. The microstrip patch antenna (S-parameters) is loaded into the Optisystem communication software tool in Touchstone format. As a result, this achievement gives a greater impetus to design an integrated optical-wireless system, and simulation results validate the proposed technique. Then, the integration of the microstrip patch antenna and optical OFDM system is achieved, and the performance is intensely studied. The entire system has been presented by developing analytical models and simulations. The system performance results are obtained regarding EIRP, SNR, signal constellations and BER. The results show that this integrated optical wireless link is very robust for carrying OFDM based wireless LAN signals over an optical fiber. Moreover, using an active patch antenna in the system helps to increase the coverage service to more than 30 meters when an SMF of 80 km length is utilized

    OFDM based air interfaces for future mobile satellite systems

    Get PDF
    This thesis considers the performance of OFDM in a non-linear satellite channel and mechanisms for overcoming the degradations resulting from the high PAPR in the OFDM signal in the specific satellite architecture. It was motivated by new S-DMB applications but its results are applicable to any OFDM system via satellites. Despite many advantages of OFDM, higher PAPR is a major drawback. OFDM signals are therefore very sensitive to non-linear distortion introduced by the power amplifiers and thus, significantly reduce the power efficiency of the system, which is already crucial to satellite system economics. Simple power amplifier back-off to cope with high OFDM PAPR is not possible. Two transmitter based techniques have been considered: PAPR reduction and amplifier linearization.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Mobile and Wireless Communications

    Get PDF
    Mobile and Wireless Communications have been one of the major revolutions of the late twentieth century. We are witnessing a very fast growth in these technologies where mobile and wireless communications have become so ubiquitous in our society and indispensable for our daily lives. The relentless demand for higher data rates with better quality of services to comply with state-of-the art applications has revolutionized the wireless communication field and led to the emergence of new technologies such as Bluetooth, WiFi, Wimax, Ultra wideband, OFDMA. Moreover, the market tendency confirms that this revolution is not ready to stop in the foreseen future. Mobile and wireless communications applications cover diverse areas including entertainment, industrialist, biomedical, medicine, safety and security, and others, which definitely are improving our daily life. Wireless communication network is a multidisciplinary field addressing different aspects raging from theoretical analysis, system architecture design, and hardware and software implementations. While different new applications are requiring higher data rates and better quality of service and prolonging the mobile battery life, new development and advanced research studies and systems and circuits designs are necessary to keep pace with the market requirements. This book covers the most advanced research and development topics in mobile and wireless communication networks. It is divided into two parts with a total of thirty-four stand-alone chapters covering various areas of wireless communications of special topics including: physical layer and network layer, access methods and scheduling, techniques and technologies, antenna and amplifier design, integrated circuit design, applications and systems. These chapters present advanced novel and cutting-edge results and development related to wireless communication offering the readers the opportunity to enrich their knowledge in specific topics as well as to explore the whole field of rapidly emerging mobile and wireless networks. We hope that this book will be useful for students, researchers and practitioners in their research studies

    D13.1 Fundamental issues on energy- and bandwidth-efficient communications and networking

    Get PDF
    Deliverable D13.1 del projecte europeu NEWCOM#The report presents the current status in the research area of energy- and bandwidth-efficient communications and networking and highlights the fundamental issues still open for further investigation. Furthermore, the report presents the Joint Research Activities (JRAs) which will be performed within WP1.3. For each activity there is the description, the identification of the adherence with the identified fundamental open issues, a presentation of the initial results, and a roadmap for the planned joint research work in each topic.Preprin
    corecore