79 research outputs found

    The Physics of Communicability in Complex Networks

    Full text link
    A fundamental problem in the study of complex networks is to provide quantitative measures of correlation and information flow between different parts of a system. To this end, several notions of communicability have been introduced and applied to a wide variety of real-world networks in recent years. Several such communicability functions are reviewed in this paper. It is emphasized that communication and correlation in networks can take place through many more routes than the shortest paths, a fact that may not have been sufficiently appreciated in previously proposed correlation measures. In contrast to these, the communicability measures reviewed in this paper are defined by taking into account all possible routes between two nodes, assigning smaller weights to longer ones. This point of view naturally leads to the definition of communicability in terms of matrix functions, such as the exponential, resolvent, and hyperbolic functions, in which the matrix argument is either the adjacency matrix or the graph Laplacian associated with the network. Considerable insight on communicability can be gained by modeling a network as a system of oscillators and deriving physical interpretations, both classical and quantum-mechanical, of various communicability functions. Applications of communicability measures to the analysis of complex systems are illustrated on a variety of biological, physical and social networks. The last part of the paper is devoted to a review of the notion of locality in complex networks and to computational aspects that by exploiting sparsity can greatly reduce the computational efforts for the calculation of communicability functions for large networks.Comment: Review Article. 90 pages, 14 figures. Contents: Introduction; Communicability in Networks; Physical Analogies; Comparing Communicability Functions; Communicability and the Analysis of Networks; Communicability and Localization in Complex Networks; Computability of Communicability Functions; Conclusions and Prespective

    Comparing network-based taxation schemes to reduce systemic risk in banking systems

    Get PDF
    Difficulty in predicting financial crises may lead to attempts of getting ready to them instead. Authorities construct rules for financial institutions in order to secure the economies from catastrophic consequences of systemically important financial institutions defaults. In order to create proper stimuli for the economic agents to avoid deals exposing the entire financial system, the tax on the systemic risk was proposed. While systemic importance of financial institutions might be measured in different ways, different metrics (namely: degree centrality, SinkRank, acyclic DebtRank, cyclic DebtRank and 2-step DebtRank) are compared as candidates for the systemic risk tax basis. Economics, being in focus of complex systems disciplines, is very difficult to investigate due to the impossibility to set an experiment. In order to test a certain policy, one may use computer simulations. In this thesis, an agent-based model is used to investigate the simulated economy evolution under different credit taxation policies. For this special purpose, one more systemic risk metric was proposed (it is called 2-step DebtRank). In addition, an equity layer for the interbank obligations network was introduced in order to investigate interlayer interaction. As a result of the taxation schemes comparison, acyclic and cyclic DebtRanks demonstrated the best performance as systemic risk taxes; 2-step DebtRank appeared to perform closely to other two DebtRanks; SinkRank appeared to be inappropriate for this purpose. The introduction of the equity layer does not create many essentially new results, however, the interlayer antiphase oscillation of the systemic risk was observed

    From Dynamics to Structure of Complex Networks: Exploiting Heterogeneity in the Sakaguchi-Kuramoto Model

    Get PDF
    [eng] Most of the real-world complex systems are best described as complex networks and can be mathematically described as oscillatory systems, coupled with the neighbours through the connections of the network. The flashing of fireflies, the neuronal brain signals or the energy flow through the power grid are some examples. Yoshiki Kuramoto came up with a tractable mathematical model that could capture the phenomenology of collective synchronization by suggesting that oscillators were coupled by a sinusoidal function of their phase differences. Later, Yoshiki Kuramoto together with Hidetsugu Sakaguchi presented a generalization of the previous limit-cycle set of oscillators Kuramoto’s model which incorporated a constant phase lag between oscillators. Subsequent studies of the model included the network structure within the model together with the global shift. For a wide range of the phase lag values, the system becomes synchronized to a resulting frequency, i.e., the dynamics reaches a stationary state. In the original work of Kuramoto and Sakaguchi and in most of the consequent later studies, a uniform distribution of phase lag parameters is customarily assumed. However, the intrinsic properties of nodes – that assuredly represent the constituents of real systems – do not need be identical but distributed non-homogeneously among the population. This thesis contributes to the understanding of the Kuramoto-Sakaguchi model with a generalization for nonhomogeneous phase lag parameter distribution. Considering different scenarios concerning the distribution of the frustration parameter among the oscillators represents a major step towards the extension of the original model and provides significant novel insights into the structure and function of the considered network. The first setting that the present thesis considers consists in perturbing the stationary state of the system by introducing a non-zero phase lag shift into the dynamics of a single node. The aim of this work is to sort the nodes by their potential effect on the whole network when a change on their individual dynamics spreads over the entire oscillatory system by disrupting the otherwise synchronized state. In particular, we define functionability, a novel centrality measure that addresses the question of which are the nodes that, when individually perturbed, are best able to move the system away from the fully synchronized state. This issue may be relevant for the identification of critical nodes that are either beneficial – by enabling access to a broader spectrum of states – or harmful – by destroying the overall synchronization. The second scenario that the present thesis addresses considers a more general configuration in which the phase lag parameter is an intrinsic property of each node, not necessarily zero, and hence exploring the potential heterogeneity of the frustration among oscillators. We obtain the analytical solution of frustration parameters so as to achieve any phase configuration, by linearizing the most general model. We also address the fact that the question ’among all the possible solutions, which is the one that makes the system achieve a particular phase configuration with the minimum required cost?’ is of particular relevance when we consider the plausible real nature of the system. Finally, the homogenous distribution of phase lag parameters is revisited in the last scenario. As studied in the literature, a certain degree of symmetry is an attribute of real-world networks. Nevertheless, beyond structural or topological symmetry, one should consider the fact that real- world networks are exposed to fluctuations or errors, as well as mistaken insertions or removals. In the present thesis, we provide an alternative notion to approximate symmetries, which we call ‘Quasi-Symmetries’ and are defined such that they remain free to impose any invariance of a particular network property and are obtained from the stationary state of the Kuramoto-Sakaguchi model with a homogeneous phase lag distribution. A first contribution is exploring the distributions of structural similarity among all pairs of nodes. Secondly, we define the ‘dual network’, a weighted network –and its corresponding binarized counterpart– that effectively encloses all the information of quasi-symmetries in the original one.[cat] La major part dels sistemes complexos presents en la natura i la societat es poden descriure com a xarxes complexes. Molts d’aquests sistemes es poden modelitzar matemàticament com un sistema oscil·latori, on les unitats queden acoblades amb els components veïns a través de les connexions de la xarxa. Yoshiki Kuramoto i Hidetsugu Sakaguchi van presentar la generalització del ben conegut model d’oscil·ladors de Kuramoto, on s’incorporava un terme de desfasament entre parelles d’oscil·ladors. Aquesta tesi contribueix en la comprensió d’aquest model, tot considerant una distribució no homogènia d’aquest paràmetre de desfasament o frustració. S’han considerat tres escenaris diferents, tots ells donant lloc a resultats que permeten una millor descripció de l’estructura i funció de la xarxa que s’està considerant. Una primera configuració consisteix en pertorbar l’estat estacionari tot introduint un desfasament en la dinàmica d’un node de manera aïllada. Seguidament, definim la funcionabilitat, una mesura de centralitat única que respon a la pregunta de, quins nodes, quan són pertorbats individualment, són més capaços d’allunyar el sistema de l’estat sincronitzat. Aquest fet podria suposar un comportament beneficiós o perjudicial per sistemes reals. El segon escenari considera la configuració més flexible, explorant la potencial heterogeneïtat dels paràmetres de frustració dels diferents nodes. Obtenim la solució analítica d’aquesta distribució per tal d’assolir qualsevol configuració de les fases dels oscil·ladors, a través de la linearització del model. També contestem a la pregunta: “de totes les possibles solucions, quina és la que implica un menor cost per tal d’assolir una configuració en particular?”. Finalment, en l’últim escenari, proporcionem una definició alternativa al concepte de simetria aproximada d’una xarxa, i que anomenem “Quasi simetries”. Aquestes són definides sense imposar invariàncies en les propietats del sistema, sinó que s’obtenen de l’estat estacionari del model de Kuramoto-Sakaguchi model, tot considerant una distribució homogènia dels paràmetres de frustració
    corecore