8,760 research outputs found

    Smart workplaces: a system proposal for stress management

    Get PDF
    Over the past last decades of contemporary society, workplaces have become the primary source of many health issues, leading to mental problems such as stress, depression, and anxiety. Among the others, environmental aspects have shown to be the causes of stress, illness, and lack of productivity. With the arrival of new technologies, especially in the smart workplaces field, most studies have focused on investigating the building energy efficiency models and human thermal comfort. However, little has been applied to occupants’ stress recognition and well-being overall. Due to this fact, this present study aims to propose a stress management solution for an interactive design system that allows the adapting of comfortable environmental conditions according to the user preferences by measuring in real-time the environmental and biological characteristics, thereby helping to prevent stress, as well as to enable users to cope stress when being stressed. The secondary objective will focus on evaluating one part of the system: the mobile application. The proposed system uses several usability methods to identify users’ needs, behavior, and expectations from the user-centered design approach. Applied methods, such as User Research, Card Sorting, and Expert Review, allowed us to evaluate the design system according to Heuristics Analysis, resulting in improved usability of interfaces and experience. The study presents the research results, the design interface, and usability tests. According to the User Research results, temperature and noise are the most common environmental stressors among the users causing stress and uncomfortable conditions to work in, and the preference for physical activities over the digital solutions for coping with stress. Additionally, the System Usability Scale (SUS) results identified that the system’s usability was measured as “excellent” and “acceptable” with a final score of 88 points out of the 100. It is expected that these conclusions can contribute to future investigations in the smart workplaces study field and their interaction with the people placed there.Nas Ășltimas dĂ©cadas da sociedade contemporĂąnea, o local de trabalho tem se tornado principal fonte de muitos problemas de saĂșde mental, como o stress, depressĂŁo e ansiedade. Os aspetos ambientais tĂȘm se revelado como as causas de stress, doenças, falta de produtividade, entre outros. Atualmente, com a chegada de novas tecnologias, principalmente na ĂĄrea de locais de trabalho inteligentes, a maioria dos estudos tem se concentrado na investigação de modelos de eficiĂȘncia energĂ©tica de edifĂ­cios e conforto tĂ©rmico humano. No entanto, pouco foi aplicado ao reconhecimento do stress dos ocupantes e ao bem-estar geral das pessoas. Diante disso, o objetivo principal Ă© propor um sistema de design de gestĂŁo do stress para um sistema de design interativo que permita adaptar as condiçÔes ambientais de acordo com as preferĂȘncias de utilizador, medindo em tempo real as caracterĂ­sticas ambientais e biolĂłgicas, auxiliando assim na prevenção de stress, bem como ajuda os utilizadores a lidar com o stress quando estĂŁo sob o mesmo. O segundo objetivo Ă© desenhar e avaliar uma parte do projeto — o protĂłtipo da aplicação mĂłvel atravĂ©s da realização de testes de usabilidade. O sistema proposto resulta da abordagem de design centrado no utilizador, utilizando diversos mĂ©todos de usabilidade para identificar as necessidades, comportamentos e as expectativas dos utilizadores. MĂ©todos aplicados, como Pesquisa de UsuĂĄrio, Card Sorting e RevisĂŁo de Especialistas, permitiram avaliar o sistema de design de acordo com a anĂĄlise heurĂ­stica, resultando numa melhoria na usabilidade das interfaces e experiĂȘncia. O estudo apresenta os resultados da pesquisa, a interface do design e os testes de usabilidade. De acordo com os resultados de User Research, a temperatura e o ruĂ­do sĂŁo os stressores ambientais mais comuns entre os utilizadores, causando stresse e condiçÔes menos favorĂĄveis para trabalhar, igualmente existe uma preferĂȘncia por atividades fĂ­sicas sobre as soluçÔes digitais na gestĂŁo do stresse. Adicionalmente, os resultados de System Usability Scale (SUS) identificaram a usabilidade do sistema de design como “excelente” e “aceitĂĄvel” com pontuação final de 88 pontos em 100. É esperado que essas conclusĂ”es possam contribuir para futuras investigaçÔes no campo de estudo dos smart workplaces e sua interação com os utilizadores

    Experimental study of the stress level at the workplace using an smart testbed of wireless sensor networks and ambient intelligence techniques

    Get PDF
    "Natural and artificial computation in engineering and medical applications : 5th International Work-Conference on the Interplay Between Natural and Artificial Computation, IWINAC 2013, Mallorca, Spain, June 10-14, 2013. Proceedings, Part II", ISBN 978-364238621-3This paper combines techniques of ambient intelligence and wireless sensor networks with the objective of obtain important conclusions to increase the quality of life of people. In particular, we oriented our study to the stress at the workplace, because stress is a leading cause of illness and disease. This article presents a wireless sensor network obtaining information of the environment, a pulse sensor obtaining hear rate values and a complete data analysis applying techniques of ambient intelligence to predict stress from these environment variables and people attributes. Results show promise on the identification of stressful situations as well as stress inference through the use of predictive algorithms(undefined

    The 1995 NASA guide to graduate support

    Get PDF
    The future of the United States is in the classrooms of America and tomorrow's scientific and technological capabilities are derived from today's investments in research. In 1980, NASA initiated the Graduate Student Researchers Program (GSRP) to cultivate additional research ties to the academic community and to support promising students pursuing advanced degrees in science and engineering. Since then, approximately 1300 students have completed the program's requirements. In 1987, the program was expanded to include the Underrepresented Minority and Disabled Focus (UMDF) Component. This program was designed to increase participation of underrepresented groups in graduate study and research and, ultimately, in space science and aerospace technology careers. Approximately 270 minority students have completed the program's requirements while making significant contributions to the nation's aerospace efforts. Continuing to expand fellowship opportunities, NASA announced the Graduate Student Fellowships in Global Change Research in 1990. Designed to support the rapid growth in the study of earth as a system, more than 250 fellowships have been awarded. And, in 1992, NASA announced opportunities in the multiagency High Performance Computing and Communications (HPCC) Program designed to accelerate the development and application of massively parallel processing. Approximately five new fellowships will be awarded yearly. This booklet will guide you in your efforts to participate in programs for graduate student support

    MensSana: Design of a mental well-being self-report interface for shop floor workers

    Get PDF
    A ascensĂŁo da IndĂșstria 4.0 trouxe consigo novas tecnologias e oportunidades que estĂŁo a mudar a natureza do trabalho, especialmente em ambientes de chĂŁo de fĂĄbrica. No entanto, essas mudanças tambĂ©m trouxeram novos desafios para os trabalhadores, incluindo desafios na sua saĂșde mental. Estes trabalhadores, em particular, enfrentam no seu trabalho estressores fĂ­sicos e mentais que podem afetar seu bem-estar geral, apesar dos esforços da IndĂșstria 4.0. O conceito de Operador 4.0 na IndĂșstria 4.0 introduz muitos operadores, como o Operador SaudĂĄvel, que enfatiza a centralidade no ser humano e visa melhorar a eficiĂȘncia e o bem-estar do trabalhador por meio de tecnologias avançadas e anĂĄlise de dados. Esta tese propĂ”e o desenvolvimento de uma ferramenta protĂłtipo, co-criada e validada no contexto da IndĂșstria 4.0 para medir mĂ©tricas do trabalhador e do local de trabalho, criando uma imagem holĂ­stica do trabalhador, sua competĂȘncia e bem-estar, alinhado ao conceito de um trabalhador "mais saudĂĄvel" de Romero et al. Essas informaçÔes sĂŁo devolvidas ao trabalhador e apresentadas de maneira legĂ­vel e compreensĂ­vel para identificar tendĂȘncias e informar decisĂ”es futuras relacionadas ao trabalho e bem-estar.The rise of Industry 4.0 has brought about new technologies and opportunities that are changing the nature of work, particularly in factory floor settings. However, these changes have also brought about new challenges for workers, including mental health issues. Shop floor workers, in particular, face physical and mental stressors in their work that can impact their overall well-being, despite Industry 4.0 efforts. The Operator 4.0 concept in Industry 4.0 introduces a lot of operators like the Healthy Operator that emphasises human-centricity and aims to improve worker efficiency and well-being through advanced technologies and data analytics. This thesis proposes the development of a prototype tool co-created and validated in the context of Industry 4.0 to measure metrics from the worker and the workplace, creating a holistic picture of the worker, their competence and well-being in line with Romero's et al. concept of a "healthier" worker. This information is returned to the worker and presented in a readable and understandable manner to identify trends and inform future decisions concerning their work and well-being

    1997 Graduate Student Researchers Program

    Get PDF
    In 1980, NASA initiated the Graduate Student Research Program (GSRP) to cultivate additional research ties to the academic community and to support a culturally diverse group of students pursuing advanced degrees in science and engineering. Eligibility requirements for this program are described, and program administrators are listed. Research areas are detailed for NASA Headquarters and all Research and Flight Centers

    Analysis and design of individual information systems to support health behavior change

    Get PDF
    As a wide-ranging socio-technical transformation, the digitalization has significantly influenced the world, bringing opportunities and challenges to our lives. Despite numerous benefits like the possibility to stay connected with people around the world, the increasing dispersion and use of digital technologies and media (DTM) pose risks to individuals’ well-being and health. Rising demands emerging from the digital world have been linked to digital stress, that is, stress directly or indirectly resulting from DTM (Ayyagari et al. 2011; Ragu-Nathan et al. 2008; Tarafdar et al. 2019; Weil and Rosen 1997), potentially intensifying individuals’ overall exposure to stress. Individuals experiencing this adverse consequence of digitalization are at elevated risk of developing severe mental health impairments (Alhassan et al. 2018; Haidt and Allen 2020; Scott et al. 2017), which is why various scholars emphasize that research should place a stronger focus on analyzing and shaping the role of the individual in a digital world, pursuing instrumental as well as humanistic objectives (Ameen et al. 2021; Baskerville 2011b). Information Systems (IS) research has long placed emphasis on the use of information and communication technology (ICT) in organizations, viewing an information system as the socio-technical system that emerges from individuals’ interaction with DTM in organizations. However, socio-technical information systems, as the essence of the IS discipline (Lee 2004; Sarker et al. 2019), are also present in different social contexts from private life. Acknowledging the increasing private use of DTM, such as smartphones and social networks, IS scholars have recently intensified their efforts to understand the human factor of IS (Avison and Fitzgerald 1991; Turel et al. 2021). A framework recently proposed by Matt et al. (2019) suggests three research angles: analyzing individuals’ behavior associated with their DTM use, analyzing what consequences arise from their DTM use behavior, and designing new technologies that promote positive or mitigate negative effects of individuals’ DTM use. Various recent studies suggest that individuals’ behavior seems to be an important lever influencing the outcomes of their DTM use (Salo et al. 2017; Salo et al. 2020; Weinstein et al. 2016). Therefore, this dissertation aims to contribute to IS research targeting the facilitation of a healthy DTM use behavior. It explores the use behavior, consequences, and design of DTM for individuals' use with the objective to deliver humanistic value by increasing individuals' health through supporting a behavior change related to their DTM use. The dissertation combines behavioral science and design science perspectives and applies pluralistic methodological approaches from qualitative (e.g., interviews, prototyping) and quantitative research (e.g., survey research, field studies), including mixed-methods approaches mixing both. Following the framework from Matt et al. (2019), the dissertation takes three perspectives therein: analyzing individuals’ behavior, analyzing individuals’ responses to consequences of DTM use, and designing information systems assisting DTM users. First, the dissertation presents new descriptive knowledge on individuals’ behavior related to their use of DTM. Specifically, it investigates how individuals behave when interacting with DTM, why they behave the way they do, and how their behavior can be influenced. Today, a variety of digital workplace technologies offer employees different ways of pursuing their goals or performing their tasks (Köffer 2015). As a result, individuals exhibit different behaviors when interacting with these technologies. The dissertation analyzes what interactional roles DTM users can take at the digital workplace and what may influence their behavior. It uses a mixed-methods approach and combines a quantitative study building on trace data from a popular digital workplace suite and qualitative interviews with users of this digital workplace suite. The empirical analysis yields eight user roles that advance the understanding of users’ behavior at the digital workplace and first insights into what factors may influence this behavior. A second study adds another perspective and investigates how habitual behavior can be changed by means of DTM design elements. Real-time feedback has been discussed as a promising way to do so (Schibuola et al. 2016; Weinmann et al. 2016). In a field experiment, employees working at the digital workplace are provided with an external display that presents real-time feedback on their office’s indoor environmental quality. The experiment examines if and to what extent the feedback influences their ventilation behavior to understand the effect of feedback as a means of influencing individuals’ behavior. The results suggest that real-time feedback can effectively alter individuals’ behavior, yet the feedback’s effectiveness reduces over time, possibly as a result of habituation to the feedback. Second, the dissertation presents new descriptive and prescriptive knowledge on individuals’ ways to mitigate adverse consequences arising from the digitalization of individuals. A frequently discussed consequence that digitalization has on individuals is digital stress. Although research efforts strive to determine what measures individuals can take to effectively cope with digital stress (Salo et al. 2017; Salo et al. 2020; Weinert 2018), further understanding of individuals’ coping behavior is needed (Weinert 2018). A group at high risk of suffering from the adverse effects of digital stress is adolescents because they grow up using DTM daily and are still developing their identity, acquiring mental strength, and adopting essential social skills. To facilitate a healthy DTM use, the dissertation explores what strategies adolescents use to cope with the demands of their DTM use. Combining a qualitative and a quantitative study, it presents 30 coping responses used by adolescents, develops five factors underlying adolescents’ activation of coping responses, and identifies gender- and age-related differences in their coping behavior. Third, the dissertation presents new prescriptive knowledge on the design of individual information systems supporting individuals in understanding and mitigating their perceived stress. Facilitated by the sensing capabilities of modern mobile devices, it explores the design and development of mobile systems that assess stress and support individuals in coping with stress by initiating a change of stress-related behavior. Since there is currently limited understanding of how to develop such systems, this dissertation explores various facets of their design and development. As a first step, it presents the development of a prototype aiming for life-integrated stress assessment, that is, the mobile sensor-based assessment of an individual’s stress without interfering with their daily routines. Data collected with the prototype yields a stress model relating sensor data to individuals’ perception of stress. To deliver a more generalized perspective on mobile stress assessment, the dissertation further presents a literature- and experience-based design theory comprising a design blueprint, design requirements, design principles, design features, and a discussion of potentially required trade-offs. Mobile stress assessment may be used for the development of mobile coping assistants. Aiming to assist individuals in effectively coping with stress and preventing future stress, a mobile coping assistant should recommend adequate coping strategies to the stressed individual in real-time or execute targeted actions within a defined scope of action automatically. While the implementation of a mobile coping assistant is yet up to future research, the dissertation presents an abstract design and algorithm for selecting appropriate coping strategies. To sum up, this dissertation contributes new knowledge on the digitalization of individuals to the IS knowledge bases, expanding both descriptive and prescriptive knowledge. Through the combination of diverse methodological approaches, it delivers knowledge on individuals’ behavior when using DTM, on the mitigation of consequences that may arise from individuals’ use of DTM, and on the design of individual information systems with the goal of facilitating a behavior change, specifically, regarding individuals’ coping with stress. Overall, the research contained in this dissertation may promote the development of digital assistants that support individuals’ in adopting a healthy DTM use behavior and thereby contribute to shaping a socio-technical environment that creates more benefit than harm for all individuals

    The ethics of forgetting in an age of pervasive computing

    Get PDF
    In this paper, we examine the potential of pervasive computing to create widespread sousveillance, that will complement surveillance, through the development of lifelogs; socio-spatial archives that document every action, every event, every conversation, and every material expression of an individual’s life. Examining lifelog projects and artistic critiques of sousveillance we detail the projected mechanics of life-logging and explore their potential implications. We suggest, given that lifelogs have the potential to convert exterior generated oligopticons to an interior panopticon, that an ethics of forgetting needs to be developed and built into the development of life-logging technologies. Rather than seeing forgetting as a weakness or a fallibility we argue that it is an emancipatory process that will free pervasive computing from burdensome and pernicious disciplinary effects

    A Distributed Model for Stressors Monitoring Based on Environmental Smart Sensors

    Get PDF
    Nowadays, in many countries, stress is becoming a problem that increasingly affects the health of people. Suffering stress continuously can lead to serious behavioral disorders such as anxiety or depression. Every person, in his daily routine, can face many factors which can contribute to increase his stress level. This paper describes a flexible and distributed model to monitor environmental variables associated with stress, which provides adaptability to any environment in an agile way. This model was designed to transform stress environmental variables in value added information (key stress indicator) and to provide it to external systems, in both proactive and reactive mode. Thus, this value-added information will assist organizations and users in a personalized way helping in the detection and prevention of acute stress cases. Our proposed model is supported by an architecture that achieves the features above mentioned, in addition to interoperability, robustness, scalability, autonomy, efficient, low cost and consumption, and information availability in real time. Finally, a prototype of the system was implemented, allowing the validation of the proposal in different environments at the University of Alicante.This work has been granted by the Ministerio de EconomĂ­a y Competitividad of the Spanish Government (Ref. TIN2014-53067-C3-1-R) and cofinanced by FEDER

    The 1993/1994 NASA Graduate Student Researchers Program

    Get PDF
    The NASA Graduate Student Researchers Program (GSRP) attempts to reach a culturally diverse group of promising U.S. graduate students whose research interests are compatible with NASA's programs in space science and aerospace technology. Each year we select approximately 100 new awardees based on competitive evaluation of their academic qualifications, their proposed research plan and/or plan of study, and their planned utilization of NASA research facilities. Fellowships of up to $22,000 are awarded for one year and are renewable, based on satisfactory progress, for a total of three years. Approximately 300 graduate students are, thus, supported by this program at any one time. Students may apply any time during their graduate career or prior to receiving their baccalaureate degree. An applicant must be sponsored by his/her graduate department chair or faculty advisor; this book discusses the GSRP in great detail

    Comments on Melis et al. The Effects of the Urban Built Environment on Mental Health: A Cohort Study in a Large Northern Italian City. Int. J. Environ. Res. Public Health, 2015, 12, 14898-14915.

    Get PDF
    In a recent paper by Melis and colleagues [1], exposure to certain built environment characteristics-urban density and accessibility to public transit-is found to be related to mental health, even more so among women, the elderly, and the residentially stable (interactions between built environment and individual characteristics in relation to mental health have unfortunately not been tested statistically, which could have strengthened their demonstration).[...]
    • 

    corecore