1,416 research outputs found

    A Priority-based Fair Queuing (PFQ) Model for Wireless Healthcare System

    Get PDF
    Healthcare is a very active research area, primarily due to the increase in the elderly population that leads to increasing number of emergency situations that require urgent actions. In recent years some of wireless networked medical devices were equipped with different sensors to measure and report on vital signs of patient remotely. The most important sensors are Heart Beat Rate (ECG), Pressure and Glucose sensors. However, the strict requirements and real-time nature of medical applications dictate the extreme importance and need for appropriate Quality of Service (QoS), fast and accurate delivery of a patient’s measurements in reliable e-Health ecosystem. As the elderly age and older adult population is increasing (65 years and above) due to the advancement in medicine and medical care in the last two decades; high QoS and reliable e-health ecosystem has become a major challenge in Healthcare especially for patients who require continuous monitoring and attention. Nevertheless, predictions have indicated that elderly population will be approximately 2 billion in developing countries by 2050 where availability of medical staff shall be unable to cope with this growth and emergency cases that need immediate intervention. On the other side, limitations in communication networks capacity, congestions and the humongous increase of devices, applications and IOT using the available communication networks add extra layer of challenges on E-health ecosystem such as time constraints, quality of measurements and signals reaching healthcare centres. Hence this research has tackled the delay and jitter parameters in E-health M2M wireless communication and succeeded in reducing them in comparison to current available models. The novelty of this research has succeeded in developing a new Priority Queuing model ‘’Priority Based-Fair Queuing’’ (PFQ) where a new priority level and concept of ‘’Patient’s Health Record’’ (PHR) has been developed and integrated with the Priority Parameters (PP) values of each sensor to add a second level of priority. The results and data analysis performed on the PFQ model under different scenarios simulating real M2M E-health environment have revealed that the PFQ has outperformed the results obtained from simulating the widely used current models such as First in First Out (FIFO) and Weight Fair Queuing (WFQ). PFQ model has improved transmission of ECG sensor data by decreasing delay and jitter in emergency cases by 83.32% and 75.88% respectively in comparison to FIFO and 46.65% and 60.13% with respect to WFQ model. Similarly, in pressure sensor the improvements were 82.41% and 71.5% and 68.43% and 73.36% in comparison to FIFO and WFQ respectively. Data transmission were also improved in the Glucose sensor by 80.85% and 64.7% and 92.1% and 83.17% in comparison to FIFO and WFQ respectively. However, non-emergency cases data transmission using PFQ model was negatively impacted and scored higher rates than FIFO and WFQ since PFQ tends to give higher priority to emergency cases. Thus, a derivative from the PFQ model has been developed to create a new version namely “Priority Based-Fair Queuing-Tolerated Delay” (PFQ-TD) to balance the data transmission between emergency and non-emergency cases where tolerated delay in emergency cases has been considered. PFQ-TD has succeeded in balancing fairly this issue and reducing the total average delay and jitter of emergency and non-emergency cases in all sensors and keep them within the acceptable allowable standards. PFQ-TD has improved the overall average delay and jitter in emergency and non-emergency cases among all sensors by 41% and 84% respectively in comparison to PFQ model

    A Dynamic Multimedia User-Weight Classification Scheme for IEEE_802.11 WLANs

    Full text link
    In this paper we expose a dynamic traffic-classification scheme to support multimedia applications such as voice and broadband video transmissions over IEEE 802.11 Wireless Local Area Networks (WLANs). Obviously, over a Wi-Fi link and to better serve these applications - which normally have strict bounded transmission delay or minimum link rate requirement - a service differentiation technique can be applied to the media traffic transmitted by the same mobile node using the well-known 802.11e Enhanced Distributed Channel Access (EDCA) protocol. However, the given EDCA mode does not offer user differentiation, which can be viewed as a deficiency in multi-access wireless networks. Accordingly, we propose a new inter-node priority access scheme for IEEE 802.11e networks which is compatible with the EDCA scheme. The proposed scheme joins a dynamic user-weight to each mobile station depending on its outgoing data, and therefore deploys inter-node priority for the channel access to complement the existing EDCA inter-frame priority. This provides efficient quality of service control across multiple users within the same coverage area of an access point. We provide performance evaluations to compare the proposed access model with the basic EDCA 802.11 MAC protocol mode to elucidate the quality improvement achieved for multimedia communication over 802.11 WLANs.Comment: 15 pages, 8 figures, 3 tables, International Journal of Computer Networks & Communications (IJCNC

    Scheduling for Proportional Differentiated Services on the Internet

    Get PDF
    Proportional Differentiated Services can be provisioned in terms of bandwidth, delay, or packet loss. Several studies contributed schedulers and packet droppers that achieved proportional bandwidth, delay, or loss differentiation. However, all these schemes differentiated in terms of only one of the three metrics. A simple, unified, scalable, and robust scheme to simultaneously control all three metrics was felt important. By controlling just delay and packet loss, proportional differentiation can be achieved in terms of all three metrics. A robust adaptive scheduler for proportional delay differentiation services is presented. Proportional services are further policed by a class based packet dropper. The combination of the adaptive scheduler and the packet dropper treats different traffic classes proportionally in terms of all three metrics. Simulation experiments show that regardless of the network traffic characteristics, our scheme can effectively differentiate services in terms of bandwidth, delay, and loss simultaneously

    Just Queuing: Policy-Based Scheduling Mechanism for Packet Switching Networks

    Get PDF
    The pervasiveness of the Internet and its applications lead to the potential increment of the users’ demands for more services with economical prices. The diversity of Internet traffic requires some classification and prioritisation since some traffic deserve much attention with less delay and loss compared to others. Current scheduling mechanisms are exposed to the trade-off between three major properties namely fairness, complexity and protection. Therefore, the question remains about how to improve the fairness and protection with less complex implementation. This research is designed to enhance scheduling mechanism by providing sustainability to the fairness and protection properties with simplicity in implementation; and hence higher service quality particularly for real-time applications. Extra elements are applied to the main fairness equation to improve the fairness property. This research adopts the restricted charge policy which imposes the protection of normal user. In terms of the complexity property, genetic algorithm has an advantage in holding the fitness score of the queue in separate storage space which potentially minimises the complexity of the algorithm. The integrity between conceptual, analytical and experimental approach verifies the efficiency of the proposed mechanism. The proposed mechanism is validated by using the emulation and the validation experiments involve real router flow data. The results of the evaluation showed fair bandwidth distribution similar to the popular Weighted Fair Queuing (WFQ) mechanism. Furthermore, better protection was exhibited in the results compared with the WFQ and two other scheduling mechanisms. The complexity of the proposed mechanism reached O(log(n)) which is considered as potentially low. Furthermore, this mechanism is limited to the wired networks and hence future works could improve the mechanism to be adopted in mobile ad-hoc networks or any other wireless networks. Moreover, more improvements could be applied to the proposed mechanism to enhance its deployment in the virtual circuits switching network such as the asynchronous transfer mode networks

    Adaptive admission control in real-time systems

    Get PDF
    In real-time service provisioning platforms the existence of an efficient and flexible admission control mechanism is essential for providing quality of service in a reliable and stable way, avoiding congestion scenarios caused by indiscriminate and uncontrolled service request admission. The capability of modeling and regulating the rate of call acceptance, and provide service differentiation allow indirect control of the load submitted to the platform. This paper presents a service differentiated admission control solution that allows to limit and modulate the rate by which service requests are submitted into a service provisioning platform. The solution is focused on providing a fair level of bandwidth sharing among service classes, in a configurable and dynamic way so that it can adapt the distribution by which service requests are served. To sustain the design decisions of our solution, major scheduling disciplines and rate control mechanisms, some of them proposed recently, are studied and compared. The solution was submitted to unit and charge tests, whose results show its effectiveness and robustness

    Network level performance of differentiated services (diffserv) networks

    Get PDF
    The Differentiated Services (DiffServ) architecture is a promising means of providing Quality of Service (QoS) in Internet. In DiffServ networks, three service classes, or Per-hop Behaviors (PHBs), have been defined: Expedited Forwarding (EF), Assured Forwarding (AF) and Best Effort (BE). In this dissertation, the performance of DiffServ networks at the network level, such as end-to-end QoS, network stability, and fairness of bandwidth allocation over the entire network have been extensively investigated. It has been shown in literature that the end-to-end delay of EF traffic can go to infinity even in an over-provisioned network. In this dissertation, a simple scalable aggregate scheduling scheme, called Youngest Serve First (YSF) algorithm is proposed. YSF is not only able to guarantee finite end-to-end delay, but also to keep a low scheduling complexity. With respect to the Best Effort traffic, Random Exponential Marking (REM), an existing AQM scheme is studied under a new continuous time model, and its local stable condition is presented. Next, a novel virtual queue and rate based AQM scheme (VQR) is proposed, and its local stability condition has been presented. Then, a new AQM framework, Edge-based AQM (EAQM) is proposed. EAQM is easier to implement, and it achieves similar or better performance than traditional AQM schemes. With respect to the Assured Forwarding, a network-assist packet marking (NPM) scheme has been proposed. It has been demonstrated that NPM can fairly distribute bandwidth among AF aggregates based on their Committed Information Rates (CIRs) in both single and multiple bottleneck link networks

    Adaptive admission control in a NGN service platform

    Get PDF
    http://wts2010.eng.usf.edu/In NGN service-provisioning platforms the existence of an efficient and flexible admission control mechanism is essential for providing quality of service in a reliable and stable way, avoiding congestion scenarios caused by indiscriminate and uncontrolled service requests. The capability of modulating and regulating the rate of call acceptance, and provide service differentiation allow indirect control of the load submitted to the platform. This paper presents a service admission control solution that enables to differentiate, limit and modulate the rate by which service requests are submitted into a NGN service-provisioning platform. The solution is focused on providing a fair level of bandwidth sharing among service classes, in a configurable and dynamic way so that it can adapt the distribution by which service requests are served. To sustain the design goals of our solution, major scheduling disciplines and rate control mechanisms are here studied and compared in order to elect the more adequate components. The implemented solution was submitted to unit and charge tests; the results show its effectiveness and robustness in controlling and differentiating incoming service calls

    Cross-layer scheduling and resource allocation for heterogeneous traffic in 3G LTE

    Get PDF
    3G long term evolution (LTE) introduces stringent needs in order to provide different kinds of traffic with Quality of Service (QoS) characteristics. The major problem with this nature of LTE is that it does not have any paradigm scheduling algorithm that will ideally control the assignment of resources which in turn will improve the user satisfaction. This has become an open subject and different scheduling algorithms have been proposed which are quite challenging and complex. To address this issue, in this paper, we investigate how our proposed algorithm improves the user satisfaction for heterogeneous traffic, that is, best-effort traffic such as file transfer protocol (FTP) and real-time traffic such as voice over internet protocol (VoIP). Our proposed algorithm is formulated using the cross-layer technique. The goal of our proposed algorithm is to maximize the expected total user satisfaction (total-utility) under different constraints. We compared our proposed algorithm with proportional fair (PF), exponential proportional fair (EXP-PF), and U-delay. Using simulations, our proposed algorithm improved the performance of real-time traffic based on throughput, VoIP delay, and VoIP packet loss ratio metrics while PF improved the performance of best-effort traffic based on FTP traffic received, FTP packet loss ratio, and FTP throughput metrics
    • 

    corecore