
Mississippi State University Mississippi State University

Scholars Junction Scholars Junction

Theses and Dissertations Theses and Dissertations

12-13-2002

Scheduling for Proportional Differentiated Services on the Internet Scheduling for Proportional Differentiated Services on the Internet

Manimaran Selvaraj

Follow this and additional works at: https://scholarsjunction.msstate.edu/td

Recommended Citation Recommended Citation
Selvaraj, Manimaran, "Scheduling for Proportional Differentiated Services on the Internet" (2002). Theses
and Dissertations. 3860.
https://scholarsjunction.msstate.edu/td/3860

This Graduate Thesis - Open Access is brought to you for free and open access by the Theses and Dissertations at
Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of
Scholars Junction. For more information, please contact scholcomm@msstate.libanswers.com.

https://scholarsjunction.msstate.edu/
https://scholarsjunction.msstate.edu/td
https://scholarsjunction.msstate.edu/theses-dissertations
https://scholarsjunction.msstate.edu/td?utm_source=scholarsjunction.msstate.edu%2Ftd%2F3860&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsjunction.msstate.edu/td/3860?utm_source=scholarsjunction.msstate.edu%2Ftd%2F3860&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholcomm@msstate.libanswers.com

SCHEDULING FOR PROPORTIONAL DIFFERENTIATED SERVICES ON THE

INTERNET

By

Manimaran Selvaraj

A Thesis
Submitted to the Faculty of
Mississippi State University

in Partial Fulfillment of the Requirements
for the Degree of Master of Science

in Electrical Engineering
in the Department of Electrical and Computer Engineering

Mississippi State, Mississippi

December 2002

Copyright by

Manimaran Selvaraj

2002

SCHEDULING FOR PROPORTIONAL DIFFERENTIATED SERVICES ON THE

INTERNET

By

Manimaran Selvaraj

Approved:

Georgios Y. Lazarou
Assistant Professor of Electrical and
Computer Engineering
(Major Professor)

Nicholas Younan
Professor of Electrical and Computer
Engineering
Graduate Coordinator
(Committee Member)

Robert J. Moorhead
Professor of Electrical and Computer
Engineering
(Committee Member)

A. Wayne Bennett
Dean of the College of Engineering

Name: Manimaran Selvaraj

Date of Degree: December 13, 2002

Institution: Mississippi State University

Major Field: Electrical Engineering

Major Professor: Dr. Georgios Y. Lazarou

Title of Study: SCHEDULING FOR PROPORTIONAL DIFFERENTIATED SER-
VICES ON THE INTERNET

Pages in Study: 59

Candidate for Degree of Master of Science

Proportional Differentiated Services can be provisioned in terms of bandwidth, delay,

or packet loss. Several studies contributed schedulers and packet droppers that achieved

proportional bandwidth, delay, or loss differentiation. However, all these schemes differ-

entiated in terms of only one of the three metrics. A simple, unified, scalable, and robust

scheme to simultaneously control all three metrics was felt important.

By controlling just delay and packet loss, proportional differentiation can be achieved

in terms of all three metrics. A robust adaptive scheduler for proportional delay differentia-

tion services is presented. Proportional services are further policed by a class based packet

dropper. The combination of the adaptive scheduler and the packet dropper treats different

traffic classes proportionally in terms of all three metrics. Simulation experiments show

that regardless of the network traffic characteristics, our scheme can effectively differenti-

ate services in terms of bandwidth, delay, and loss simultaneously.

DEDICATION

This work is dedicated to the Telecommunication and Information Technology Labo-

ratory (TITL).

ii

ACKNOWLEDGMENTS

This work would not have been possible without the relentless guidance and support

of my major advisor Dr. Georgios Lazarou. His belief in my capacity really helped me

complete this work. It was a rewarding experience to work under his guidance for more

than an year. My sincere thanks are due to him.

I thank Dr. Robert Moorhead, my committee member, for his patient and timely guid-

ance on my career path. I also thank him for really understanding my career motives and

directing me to Dr. Lazarou for this work.

I thank Dr. Nicholas Younan, Graduate Coordinator and my committee member, and

the Department of Electrical and Computer Engineering for all the financial support, office

space, computer, and all the other help.

I also thank my friends and members of TITL (Gomathi Anandan and Dong Zheng in

particular) who helped me at various stages of this work.

Finally, I would like to say that the time spent in Simrall Hall will be the most memo-

rable of my student life.

iii

TABLE OF CONTENTS

Page

DEDICATION . ii

ACKNOWLEDGMENTS . iii

LIST OF TABLES . vi

LIST OF FIGURES . vii

LIST OF SYMBOLS, ABBREVIATIONS, AND NOMENCLATURE viii

CHAPTER

I. INTRODUCTION . 1

1.1 The Problem Statement . 4
1.2 Summary of Main Contributions . 7

II. BACKGROUND AND RELATED WORK 10

2.1 QoS Basics . 10
2.1.1 IntServ Basics . 10
2.1.2 DiffServ Basics . 11

2.1.2.1 The Winning QoS Solution: DiffServ 13
2.2 The Origin of Proportional Differentiation Mechanism 15
2.3 Related Research . 16

III. PROPORTIONAL DIFFERENTIATION MECHANISMS 21

3.1 Proportional Delay Mechanism . 21
3.1.1 Adaptive HPD . 22

3.2 Proportional Bandwidth Mechanism 27
3.2.1 Colored RED . 27
3.2.2 Setting CRED Maximum Drop Probabilities 29
3.2.3 Average Queue Size Calculation 29

iv

CHAPTER Page

IV. PERFORMANCE EVALUATION . 31

4.1 Simulation Model . 32
4.2 Simulation Experiment Results . 34

4.2.1 Experiments with FTP traffic over TCP SACK 35
4.2.2 Experiments with Constant Bit Rate Sources 37
4.2.3 Experiments with Exponential Traffic Sources 41
4.2.4 Experiments with Pareto Traffic Sources 43
4.2.5 Experiments with Flows Differing in RTT 46

V. CONCLUSIONS AND FUTURE WORK 50

5.1 Conclusions . 50
5.2 Future Work . 53

REFERENCES . 55

APPENDIX

A. FAIRNESS INDEX . 58

v

LIST OF TABLES

TABLE Page

3.1 Maximum and minimum weights for each class. 25

4.1 Parameters for CRED . 33

4.2 Delay Comparison for FTP Sources . 37

4.3 Delay Comparison for CBR Sources . 40

4.4 Delay Comparison for EXP Sources . 41

4.5 Delay Comparison for Pareto Sources . 45

4.6 Bandwidth Comparison for RTT Experiment 48

4.7 Delay Comparison for RTT Experiment . 48

4.8 Percentage of Delay increase from ideal values. 49

vi

LIST OF FIGURES

FIGURE Page

3.1 Adaptive HPD . 22

3.2 WRED Drop Probabilities . 30

4.1 Simulation Topology . 32

4.2 AHPD and CRED: FTP over TCP SACK. 36

4.3 Original HPD and RIO: FTP over TCP SACK. 36

4.4 AHPD and CRED: All 9 flows are CBR over SACK 38

4.5 AHPD and CRED: One flow in each class is CBR/UDP. Rest FTP/SACK . . 38

4.6 AHPD and CRED: All 9 flows are CBR/UDP 39

4.7 AHPD and CRED: Exponential traffic over SACK 42

4.8 AHPD and CRED: Exponential traffic over UDP 42

4.9 AHPD and CRED: Pareto over SACK . 43

4.10 AHPD and CRED: Pareto over UDP . 44

4.11 Original HPD and RIO: Pareto over UDP 44

4.12 Original HPD and RIO: Flows with Different RTT 46

4.13 AHPD and CRED: Flows with Different RTT 47

vii

LIST OF SYMBOLS, ABBREVIATIONS, AND NOMENCLATURE

���
Assured Forwarded PHB

��������	�
���
Differentiated Services

� �
Epedited Forwarded PHB

�����
Hybrid Proportional Delay

����� �
Internet Engineering Task Force.

������	�
���
Integrated Services

���
Internet Protocol

��	��
Internet Service Provider

� � �
Proportional Average Delay

� �!�
Proportional Delay Differentiation

� �#"
Per-hop Behavior

$ % 	
Quality of Service

&'���
Random Early Detection

&'��(
RED with In/Out packets

&�	�) �
Resource Reservation Protocol

	�* �
Service Level Agreement

�,+ �
Transmission Control Protocol

-��!�
User Datagram Protocol

. � $
Weighted Fair Queing

./�,�
Waiting Time Priority

viii

CHAPTER I

INTRODUCTION

The Internet which originally started as a means of moving files from one computer to

another has now evolved into a global communications network. The number and variety

of applications on the Internet has grown in leaps and bounds. The IP1 based Internet is

now serving users ranging from ordinary home users to huge corporations. In spite of this

tremendous growth in usage, the Internet architecture has under gone very little change.

The Internet is still based on the best-effort service model. In this model, all data packets

are treated equally and the network tries its best to ensure reliable delivery. This design is

very simple and easily scalable, but it offers no guaranteed delivery of packets.

The huge success of the best-effort service model can be attributed to the underlying

transmission mechanism - Transmission Control Protocol (TCP)[27]. During the early

stages of the Internet’s development, most of the applications used TCP as their trans-

mission mechanism for reliable delivery. Only a few applications were using unreliable

transmission layer protocols such as User Datagram Protocol (UDP) . Traffic sources that

use TCP to transmit their data regulate their sending rate according to the perceived level

1IP Internet Protocol is the main data transfer protocol based on which the Internet is built

1

2

of congestion within the network [26]. Thus, these self-regulating TCP sources appear to

share the network among themselves.

With the emergence of new applications like multimedia, voice, video, and fax over

the Internet, this sharing of the network among the users is becoming increasingly unreal-

istic. For example, during congestion, a greedy UDP traffic source may continue to send

data at the same rate, while the TCP sources would reduce their sending rate. Thus, the

non-responsive UDP source gets a higher share of the network resources than the conges-

tion responsive TCP sources. This indicates that the best effort model can not distribute

resources in a fair manner in the near future. Thus, all the new applications, which are rev-

olutionizing the communication industry, demand a better than best effort service. More-

over, in the future, businesses will place their mission-critical data, voice, and multimedia

applications on the public Internet only if they are guaranteed a secure, predictable, and

measurable service. Such demands can not be met by the best effort service model.

Today’s Internet supports a much bigger number of users than ten years back. Very

soon this increase would result in the full utilization of the global telecommunication net-

work’s bandwidth (physical carrying capacity). Therefore, the Internet must evolve into

a new form using a new architecture to support the increased number of users and traffic

load. This new architecture must not only be scalable (ability to handle expansive network

growth), but must also support the older and existing applications.

The Internet service providers (ISP) consider these demands as a source of revenue.

By offering service guarantees, security, and predictability, the ISPs can attract business

3

customers with mission-critical traffic. In order to do this, ISPs have to classify and prior-

itize traffic according to the application’s specific needs. In other words, the Internet must

be able to discriminate users through the offered service quality. For example, the quality

discrimination must be in such a way that users willing to pay more should receive a better

service.

The need for such quality assurance, service guarantee, and reliability drove the In-

ternet Engineering Task Force (IETF) to define two Quality of Service (QoS) solutions -

Differentiated Services (DiffServ) and Integrated Services (IntServ). Of these two meth-

ods, the DiffServ gained popularity due to its inherent scalability, ease of implementation,

and reduced operation complexity at the core of the Internet. These two solutions are

described in detail in the next chapter.

In this thesis, a robust adaptive scheduler2 for proportional delay differentiation ser-

vices is presented. Proportional services are further policed by a class based packet drop-

per3 which works along with the adaptive scheduler. The combination of the adaptive

scheduler and the packet dropper treats different traffic classes proportionally in terms of

all three QoS metrics: bandwidth, delay, and packet loss. We show through simulation

experiments that regardless of the network traffic characteristics, the adaptive scheduler

combined with the packet dropper can effectively differentiate services in terms of delay,

bandwidth and loss simultaneously.

2Scheduling is the process of deciding which packet to send first in a system of multiple queues.

3A packet dropper drops packets at routers when congestion occurs.

4

1.1 The Problem Statement

In a DiffServ network, the quality of service (QoS) is measured in terms of [8] [12]:

1. Bandwidth - the maximum data transfer rate possible between the source and the

destination,

2. Delay or Latency - the time a packet takes to traverse from the source to the desti-

nation, and

3. Reliability or Packet loss - the average error rate of the transmission medium.

The QoS solution is largely aimed at controlling one or more of these metrics for a partic-

ular data communication session between a sender and a receiver. In a DiffServ network4,

these performance metrics are controlled by packet schedulers and droppers.

DiffServ can be provided in an absolute or relative manner. In the former approach,

DiffServ strives to achieve IntServ like performance guarantees; whereas in the latter, a

traffic class is treated relative to another traffic class. The relative service differentiation

has several advantages over the absolute service differentiation. The absolute service dif-

ferentiation makes use of several mechanisms including, admission control5, bandwidth

brokerage6, and resource reservation. Hence like IntServ, the absolute service differentia-

tion suffers from scalability issues. On the other hand, the relative differentiation is much

4A DiffServ network is one that employs the DiffServ solution to provide QoS

5Admission Control is the decision process of whether to accept a request for resources

6A bandwidth broker is an agent responsible for allocating preferred service to users as requested and for
configuring the network routers to the correct forwarding behavior for the defined service.

5

simpler. It is achieved through the use of packet schedulers and packet accept/discard

rules. In the relative differentiated approach, Internet traffic is grouped into N finite num-

ber of classes. Class i gets a better or at least no worse service than class i-1.

Three scheduling algorithms were proposed in [5][7] to achieve a proportional (rela-

tive) delay differentiation between different traffic classes. Several scheduling algorithms

[9][18][19][20] were later proposed based on [5][7]. A proportional loss differentiation

technique was proposed in [6]. Soetens et. al. [25] made use of a version of the widely

famous Random Early Detection (RED) algorithm [14] to achieve a relative bandwidth

differentiation between individual TCP flows.

However, all these algorithms provide a relative service differentiation in terms of

only one of the three service metrics (delay, loss or bandwidth). Although the work in

[5][6][7] presents schemes to achieve a proportional delay as well as loss differentiation,

a study of co-existence of the loss and delay differentiation schemes was not performed.

Many of these schemes were not robust to handle traffic under various network conditions.

Moreover, complex off-line computations [9] or computationally demanding algorithms

[18] were needed for some of the schemes. Also, experiments conducted by Chen et. al.

[3] demonstrated that due to the burstiness of the web traffic, DiffServ networks based on

the Weighted Fair Queuing (WFQ) packet scheduling scheme cannot achieve the desired

QoS guarantees.

The Internet has rapidly evolved into a heterogenous network. Internet applications

greatly differ in QoS requirements. The DiffServ technique reduces this heterogeneity to a

6

small extent by combining applications with similar QoS requirements into traffic classes.

Nevertheless, in a global network like the Internet, a certain class of traffic may request

strict delay guarantees, while another class would not tolerate excessive packet loss rate or

inadequate bandwidth. In such networks, a simultaneous control of all QoS performance

metrics is very much essential.

Since the Internet is a global network, three different schemes to control each of the

three performance metrics independently would increase the complexity at every router.

Moreover, Internet traffic load fluctuates greatly. Any scheme that controls the perfor-

mance metrics must be very robust and tolerant to changing network conditions. Hence, a

unified, simple, and robust technique, that simultaneously controls all the above three QoS

metrics is required for the Internet.

To summarize, we address the following issues in this thesis:

1. A need for the simultaneous control of all three (bandwidth, delay, and packet loss)

QoS performance metrics.

2. Such a scheme must be very simple to implement.

3. Although simple in nature, the scheme must be robust to handle the highly varying

Internet traffic loads.

4. For a network that is as wide as the Internet, the scheme must be highly scalable.

5. And finally, the scheme must work extremely well in a heterogeneous network like

the Internet.

7

Using our proposed simple scheme, we show that a simultaneous control of all three

performance metrics is possible. The simulation experiment results also show that our

scheme is robust.

1.2 Summary of Main Contributions

In this thesis, we propose a novel technique to simultaneously achieve proportional band-

width, delay, and loss differentiation. We achieve our goal by developing a robust adaptive

delay scheduler and integrating it with a class based packet dropper. The main contribu-

tions of this work are the following:

1. We developed a novel scheduler to achieve proportional delay differentiation be-

tween traffic classes. The scheduler adapts to the delay difference between classes.

2. Unlike other techniques [9] [18], our scheduler does not involve any complex com-

putations. Hence, it is very simple.

3. We propose the use of multi-class RED [14][24] to achieve a proportional band-

width differentiation. The proposed dropping scheme works in conjunction with

the scheduler. The selective dropping and delaying of packets is reflected in the

throughput achieved by the different classes.

4. Our packet dropper drops packets belonging to different classes proportionately.

This results in proportional loss differentiation. Thus, our scheme simultaneously

attains proportional bandwidth, delay, and loss differentiation.

8

5. Based on its class, the packet receives a particular scheduling (queuing) treatment

and drop precedence. Thus, the adaptive scheduler and the class based dropper work

together as a single unit in controlling the packet delay and bandwidth.

6. Our scheme does not depend on any external parameters like network load. Hence,

irrespective of the network characteristics, our scheme can result satisfactory QoS.

To summarize, using our scheme, we show that by just manipulating the packet delay

and loss, all three QoS metrics can be controlled in a robust manner. Hence, a proportional

bandwidth, delay, and loss differentiation can be achieved simultaneously. Moreover, our

technique involves much less complexity than techniques that have similar aims.

The rest of this thesis is organized as follows. In chapter II, we present the fundamen-

tals of the two QoS provisioning methods. We discuss in brief, the IntServ and DiffServ

Internet architectures, followed by the latter’s advantages over the former. We then present

a short list of requirements that led to the development of proportional DiffServ. Finally,

we list several related works on the proportional DiffServ model.

Chapter III describes our proportional DiffServ technique. In this chapter, we present

the theory and mathematics of our adaptive proportional delay scheduler and the class

based packet dropper. We describe in detail the design of the scheduler and packet dropper.

We also describe the initialization, parameter settings, and working of the two schemes.

In chapter IV, we present the performance evaluation methodology. We define the sim-

ulation model used to test our proposed proportional DiffServ scheme. The simulation set

up, traffic sources used, and measurements made are all described in this chapter. Finally,

9

we present results from the many simulation experiments that were performed to validate

our claim that all three performance metrics can be simultaneously controlled.

In the final chapter V, we present our conclusions and discussions. We also suggest

several ways in which this work can be enhanced further in other directions.

CHAPTER II

BACKGROUND AND RELATED WORK

2.1 QoS Basics

QoS refers to a set of rules or techniques that help the network administrators use the

available network resources optimally to manage the effects of congestion [1] and to treat

the applications according to their needs. Thus, the applications receive network resources

in a controlled manner. As mentioned earlier, QoS provisioning can be achieved by us-

ing either the IntServ or the DiffServ mechanism. Numerous research experiments were

performed using these two techniques to provision QoS in a network. In the rest of this

chapter, we explain the fundamental principles of these two QoS provisioning methods.

We then present several reasons that led to the success of the DiffServ architecture. It

is then followed by the requirements that gave birth to the proportional DiffServ model.

Finally, we list several works that contributed to the proportional DiffServ model.

2.1.1 IntServ Basics

The IntServ framework provides end-to-end QoS for each and every packet flow1. The

end-to-end QoS provisioning is realized by pre-determining traffic path and pre-allocating

1A flow is a single stream of packets with common source and destination addresses, and port numbers

10

11

network resources for each and every flow. The IntServ achieves this by the integrated

operation of four components [29]: signaling scheme, admission control routine, packet

classification2, and packet scheduling.

The signaling scheme currently used is the Resource Reservation Protocol (RSVP)

[29]. The applications that require a preferential treatment set up paths and reserve re-

sources in advance using RSVP (before actually transmitting any data). The admission

control routines present at the intermediate routers along the path determine as to whether

a request for resource could be granted or denied. The classifier verifies each packet’s

header and then forwards the packet to the appropriate packet queue. The packet sched-

uler then decides or selects the packet to be serviced so that its QoS requirements are

met.

The IntServ architecture provides only two new classes of service [22]. Apart from

supporting the already existing best effort service, the IntServ offers a guaranteed-service

class and a controlled-load service class. In guaranteed-service class the service provider

offers the user a strict service level bound. On the other hand, in the controlled-load service

class, the ISP only promises the user a service quality level.

2.1.2 DiffServ Basics

DiffServ is based on the idea that all the traffic flows can finally be grouped into a finite

number of traffic classes. Individual traffic flows with similar QoS requirements are com-

2Classification is the process of sorting packets based on the content of the packet headers.

12

bined together to form traffic aggregates (classes). The packet class is identified by a short

label in the IP header called the DiffServ code point 3 (DSCP).

Whenever a host or edge router sends data into a DiffServ network, they first mark

every packet with the appropriate DSCP value. The DSCP value is decided by a complex

packet classification procedure. One or more entries of the packet (IP) header is used in

this decision making process. In the DiffServ network, only the edge routers do this packet

classification and thus the complexity is pushed to the network boundary.

The intermediate routers (routers internal to the DiffServ network) treat the received

packets based on the short DSCP value alone4. In other words, the queuing behavior to be

applied on the packet is selected based on the DSCP value. This queuing behavior is called

the per-hop behavior5 (PHB). The PHBs may differ at each and every hop (or router).

At present, four types of PHBs have been defined and have been standardized [2]. They

are the default PHB, the class-selector PHB, the expedited forwarding (EF) PHB and the

assured forwarding (AF) PHB. The default PHB provides the same kind of service as the

existing best effort model. The Class-selector PHB offers seven different queuing behav-

iors, with increasing timely packet forwarding probability. The EF PHB offers premium

end-to-end services consisting of low loss, low latency, low jitter, and assured bandwidth

[15]. The AF PHB offers different levels of forwarding assurances for the received pack-

3The DSCP is a 6 bit field spanning the type of service (TOS) field and IP precedence field of the IP
header [1].

4In the current Internet, the routers treat packets based on a full IP address search

5PHB defines how an individual router will treat a packet when sending it over the next hop through the
network [2].

13

ets [13]. It delivers IP packets in four independently forwarded AF classes. Within each

AF class, the IP packet can further be assigned to one of the three levels of drop probability

or precedence.

Service level agreements (SLA) between the customer and service provider decides the

type of service provided. The SLAs specify the available resources and the class of service

offered by the service provider. The SLAs also restrict the amount of traffic allowed in

each class. The SLAs are defined at the boundaries where the user submits traffic to the

DiffServ network’s ingress router. Any traffic that exceeds the SLA will be treated as a

best-effort traffic. The SLAs also contain the rules that the ingress routers must follow

while classifying, policing 6, and shaping 7 traffic. Whenever a packet leaves one DiffServ

domain and enters another DiffServ domain, the DCSP values are remarked. The rule for

this remarking procedure is derived from the SLA between the two DiffServ domains.

2.1.2.1 The Winning QoS Solution: DiffServ

A major difference between the two QoS provisioning architectures is that the DiffServ is

a per-aggregate mechanism, while the IntServ is a per-flow mechanism. Since the num-

ber of service classes is very small in the DiffServ architecture, the amount of the state

information held in the routers is small. Whereas, in the IntServ network, the routers have

to store state information for every flow. Moreover, the DiffServ architecture deals with

6Policing is the process of handling out-of-profile traffic i.e., excess traffic [29].

7Traffic Shaping is the process of delaying packets within a traffic stream to cause it to conform to some
defined traffic profile [29].

14

aggregates rather than individual flows. In order to serve these traffic aggregates, Diff-

Serv does not need any signalling schemes like the way IntServ does. Thus, the less state

information at the routers and the absence of a signalling scheme greatly increases the

scalability of the DiffServ architecture.

The DiffServ architecture does not require the intermediate routers in the path to do

complex packet classification (full IP header based) or reserve resources for each and

every flow. Packet classification can be limited to the boundary routers present between

the user and the service provider. The intermediate routers just have to do a simple packet

forwarding based on the DSCP value. Hence, the core routers investigate the DSCP byte

alone and forward the packets very quickly. This is not the case in the IntServ architecture

where each and every router has to respond to resource reservation messages and also

classify packets.

Another advantage of the DiffServ architecture is interoperability. DiffServ networks

can be built on top of a set of independent DiffServ domains, each deploying an indepen-

dent set of PHBs. Interoperability is achieved through specific functions at the boundaries

between different domains like SLAs, PHB mapping, traffic shaping and policing.

Thus, for the above mentioned several reasons, the DiffServ architecture has emerged

as the winning solution to provide QoS for the Internet. Many network equipment man-

ufacturers are now actively looking into DiffServ as a viable solution for the future net-

works.

15

2.2 The Origin of Proportional Differentiation Mechanism

With the ever increasing number of Internet based applications, the need for service dif-

ferentiation is being increasingly felt important. Many ISPs are now beginning to make

use of techniques that differentiate one application from the other. This differentiation is

necessary due to several issues such as QoS provisioning and pricing policies.

As mentioned earlier, the QoS offered to the applications can be measured in terms

of one or a combination of the three performance metrics, namely, bandwidth, delay, and

packet loss rate. On a monetary basis, a network user who pays more will expect a lower

delay level and packet loss rate than a user who pays less. Likewise, from a performance

point of view, a real time video transmission must experience lower delay levels than an

ordinary email or file transfer. Thus, from an application point of view, traffic ought to

be differentiated in terms of the delay and packet loss, since they differ in delay and loss

requirements. This necessitates the need for a proportional delay and loss differentiation.

Large business traffic, IP based voice traffic, and video traffic are some of the huge

opportunities identified by service providers in recent years. ISPs can attract these kind

of customers by offering different levels of service. A higher priced service needs to

have more bandwidth than a lower priced service. Hence, ISPs need to handle bandwidth

more efficiently. In other words, bandwidth will also have to be relatively shared between

applications. The service providers can also beat their competition by offering multiple

classes of better than best effort services which differ in bandwidth. Thus, a bandwidth

16

differentiation is needed in this case. Hence, the service offered must be differentiated in

terms of all three (bandwidth, delay, and loss) quality metrics.

The Proportional DiffServ model was first proposed in [5][7][6]. Two independent

versions of the model, namely, proportional delay differentiation and proportional loss

differentiation were proposed. These models were the first in the proportional differenti-

ation area and it served as a motivation for a number of works which proposed ways to

proportionally differentiate service in terms of one of the three service metrics. Our work

was also motivated by this trend setting proportional DiffServ model.

2.3 Related Research

The Proportional Delay Differentiation (PDD) model proposed in [5][7] paved the way to

a whole new area of Internet research. In this model, the ratio of the overall long term

average delay,
�
, experienced by two different traffic classes i and j is equal to the ratio of

their corresponding delay differentiation parameters (DDP) � :

���
����� � �

� � � �
	�� ������������ (2.1)

The delay differentiation parameters ��� ��� , are ordered as ��������� � ���!� �"�$#%�'& , so

that the higher classes experience less delay than the lower classes.

The work in [5] and [7] proposed to achieve proportional delay differentiation through

the use of packet schedulers. Three schedulers were addressed and their performance was

17

compared. The schedulers are the proportional average delay scheduler (PAD), the waiting

time priority scheduler (WTP), and the hybrid proportional delay scheduler (HPD).

The PAD scheduler aims to equalize the normalized average delay among all classes.

The normalized average delay is given by
�� � � � ��� � � . The PAD scheduler selects the queue

with the maximum normalized delay from a set of backlogged classes. The normalized

average delay in this case is given as:

�� � � � � �
� �
	 �
� � (2.2)

where
	 �

is the sum of the queuing delays of all the class i packets that have already been

serviced at the current time t, and
� �

is the corresponding count of class i packets that have

been dequeued.

The WTP scheduler, which was originally studied by Kleinrock [17] under the name

Time dependent Priorities, works to minimize the normalized head waiting times of dif-

ferent classes. The normalized head waiting time is given as:

�� � � � � � � � � � �
� � (2.3)

where � � � � � is the waiting time of the head packet of a class or queue. The waiting time

is measured as the difference between current system time and the time when a particular

packet entered the queue. WTP provides a relative delay differentiation between succes-

sive packet departures and hence WTP works correctly even in short time scales. WTP’s

major drawback is that it fails to proportionally delay differentiate when the system uti-

lization is low. Thus, at heavy loads WTP works perfectly well, but when load decreases,

18

WTP fails to delay differentiate. In other words, WTP fails to delay differentiate bursty

traffic where load fluctuates.

The higher system utilization requirement of WTP was overcome in two separate

works - [9] and [18]. Both the approaches attempt to make WTP adaptive to varying

loads. The adaptive approaches derive a feasible load distribution range for a given set

of delay differentiation parameters (DDP) or class weight. Different approaches are pro-

posed to calculate DDPs for any given load conditions. While the scheme in [18] made use

of the Gauss-Seidel iterative method, [9] opted for an off-line DDP computation method

followed by a table lookup procedure.

The HPD scheduler was an attempt to design a packet scheduler which had the best

features of both PAD and WTP. The corresponding normalized average delay for HPD is

given as:

�� � � � � � ��� � �� � � � ��� � �� � � �� � � � � (2.4)

where ’g’ is the HPD parameter,
�� � � � � is the normalized head waiting time as defined by

(2.3), and
�� � � � � is the normalized average delay as defined by (2.2).

In general, the WTP and HPD schedulers perform better than the PAD. PAD is able

to meet the PDD model only when the delay differentiation parameters are available;

whereas, WTP works only under heavy loads. The selection of the HPD parameter ’g’

plays a very significant role in HPD’s performance. Under heavy load conditions, the

value of ’g’ does not affect the performance of HPD, since both PAD and WTP work well

19

under heavy loads. But when the utilization decreases, the value of ’g’ must be close to 1

so that HPD works more like PAD [5].

Weighted fair queuing (WFQ) algorithm was used in [19] to achieve a proportional

delay differentiation. In this scheme, an extended version of WFQ is used to achieve

proportional delay differentiation. The scheme controls the delay difference between the

classes by dynamically adjusting the weight of each class.

Dovrolis in [6] proposed a proportional loss differentiation mechanism. The technique

was based on packet loss counters. So, the drop probability was decided based on the ratio

of the loss count value of one class with respect to the other. [20] proposed yet another

technique to achieve proportional loss differentiation between classes. In [20] a buffer

management scheme was utilized to proportionally drop packets.

A relative bandwidth differentiation between TCP micro-flows was achieved in [25] by

making use of the weighted version of RED8, called WRED [24]. The authors made use

of WRED to achieve a per-flow relative loss differentiation. They further proposed that

a relative bandwidth differentiation could be achieved by a combination of a relative loss

and a relative delay differentiation of the TCP micro-flows. By controlling packet loss rate

and delay, a relative bandwidth differentiation was achieved between TCP micro-flows.

The relative bandwidth differentiation between flows can be represented as:

" . �
" . � �

� �
� � (2.5)

8Random Early Detection [14]

20

where
" . �

is the bandwidth or throughput achieved by flow i, and
� �

is the bandwidth

differentiation parameter of flow i.

To summarize, several algorithms were proposed to control the bandwidth, delay, or

loss rate. But none of the technique simultaneously controlled more than one performance

metric. Moreover, several schemes were also computationally demanding.

CHAPTER III

PROPORTIONAL DIFFERENTIATION MECHANISMS

As mentioned earlier, we can achieve simultaneous proportional bandwidth, delay, and

loss differentiation by controlling the packet delay and loss factor alone. Our proposed

adaptive scheduler provides a proportional delay differentiation, while the class based

packet dropper proportionally loss differentiates. The scheduler and the packet dropper

work in tandem to produce the desired bandwidth, delay, and loss differentiation. In this

chapter, we present the design and working principles of these two schemes.

3.1 Proportional Delay Mechanism

We attain proportional delay differentiation between traffic classes by using an extended

version of the HPD scheduler proposed in [5][7]. Motivated by the works in [9], [10],

and [18] we made the HPD packet scheduler adaptive, so that the scheduler maintains

the desired delay differentiation ratio under all network conditions. Numerous simulation

experiments were performed with this new scheduler and the adaptiveness in the HPD

scheduler helped to maintain the desired proportional delay differentiation. Reiterating our

claims again, unlike other adaptive approaches [10][18], our adaptive approach proposed

here is much simpler, robust, and it does not depend on the network load.

21

22

Compute
Delay Ratio

Compute
New Weights

HPD
Scheduler �

�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

���
���
���

���
���
���

	
	
	

���
���
���

���
���
���

Weight
Update

AF3

AF2

AF1

�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

Input Queues

Output Queue

Figure 3.1 Adaptive HPD

3.1.1 Adaptive HPD

The work conducted by Dovrolis [7] was the first to define the proportional delay differen-

tiation model and it gave examples of the environments in which the model worked. But,

the schedulers mentioned in [7] do not achieve a proportional delay differentiation under

low and medium system utilization. High system utilization is an important requirement

of the model. Moreover, the schedulers PAD, WTP or HPD are not able to maintain a

proportional delay differentiation strictly under various network conditions.

We propose a major addendum to the HPD scheduling scheme by adding a feedback

component to the scheduler. We call this the adaptive HPD (AHPD) scheduler and is

depicted in Fig. 3.1. As observed in the figure, in this proposed adaptive scheduler, the

actual delay ratio between two traffic classes is periodically monitored and the delay ratio

is computed. Using this calculation, the class weights are changed in such a way that the

delay ratio is always maintained at the desired value.

23

We begin the design of our adaptive scheduler from the HPD scheduling scheme.

Equation (2.4) which gives the normalized average delay for the HPD scheduler is re-

peated here for convenience. The HPD normalized average delay is given as:

�� � � � � � ��� � �� � � � ��� � �� � � �� � � � �
Let

� �
be the corresponding average end-to-end delay experienced by the AF classes

� � �
.

Let the delay differentiation ratios be
� � � � ��� � ��� � . The overall average delay

� �
is

inversely related to the normalized delay
�� � � � � , because the scheduler serves the queue

with the highest priority or maximum normalized delay. In other words, if
�� � � � � gets

higher, then that particular queue is more likely to be served and the corresponding overall

delay
� �

will be reduced. Therefore, the instantaneous normalized delay
�� � � � � reflects the

average long term delay
� �

. Hence, the delay differentiation ratios can then be represented

as follows:

� � �
� �
� ��� � �

�� ��� � � � ��� � � � �
	

(3.1)

The new scheduler works to maintain the delay differentiation ratios
� �

at a desired level

by varying the AF class weights � � , (i = 0, 1, 2...).

Whenever a packet is served,
� �

is computed using Equation (3.1). Ideally, if the

scheduler delay differentiates perfectly,
� �

will always be equal to a desired (constant)

value K. But this does not happen always. So in our scheme, when the delay ratio is greater

(less) than K, the weights are adjusted, so that the delay ratio becomes equal to K. The

experiments performed with this setting showed an increase in computation, since weights

were recalculated upon the arrival of every packet. In order to avoid this computational

24

overhead, we relaxed the condition as follows. If the delay ratio falls inside a window (
�
�

� 	�� � �) around the desired value K, the scheduler parameters are left unchanged. Here, �
is the window width. The scheduler adjusts the weights whenever the delay differentiation

ratio
� �

deviates from its corresponding window (
�

� � , � � �).
In order to maintain the delay differentiation ratio between classes, the weights are

changed according to the weight function:

� � � � � �

���������� ���������

� � � � � ��� 	 � ��
 � � � ��
 � �� � % � �����
� �

� � � �
�������� 	 � ��
 � � �

��� �����
 � � % � �
� � � � � ���

� �
� � � � � ��� 	 � ��
 � � � ��
 � ��� � % � � � � �

� �
(3.2)

where �
��������

is the initial value of weight i. This function was formulated based on the

property mentioned in [5], which states that decreasing/increasing the weight of a class

affects the average delay of all other classes as well as its own average delay. In the

experiments that were performed, � was set to 0.25. � is set based on a tradeoff between

the number of computations and the stringent maintenance of the delay ratio. Setting � = 0

would result in weight update computations upon every packet arrival, while a very higher

value of � (say � �), would result in a performance similar to the original HPD scheme.

In (3.2), � and � are calculated as:

�'� � �
������ � �

����! " �$#�% � � � � � � � � %
� � ��&�'� � �

�� �(� �

� � � �
��&�'� � �

����) * �+#�% � � � � � � � �,%
� � ������ � �

�� ��� �

25

where �
����'� and �

�� �(� are the maximum and minimum possible values of a class weight

respectively, and �
�� �! " is the current value of the weight in a cycle. % � � � � � � � �,% rep-

resents the deviation of the computed delay differentiation ratio
� �

from the window (

�
� � 	�� � �). The difference � �

��&�'� � �
�� ��� � , is the range of weights and � �

������ � �
����) * � is

the maximum value by which the current value of a weight can be increased or decreased.

Thus, deviations in the delay ratios are corrected by an increase or decrease of the weights

in a linear fashion.

The class weights initially take the values of the inverse of the corresponding � ’s, the

delay differentiation parameters. For example, when the initial ideal weight values are

set as � � = 1, � � = 2, and ��� = 4, the desired delay ratio, which (in ideal cases) must

be proportional to the ratio of weights, is
� �

= � ��� � � � � = K = 2 . Table 3.1 gives the

corresponding maximum and minimum weights for each of the AF classes. The maximum

(minimum) value of a particular weight is computed as the average of the weight’s initial

value and the initial value of the next higher (lower) weight.

Table 3.1 Maximum and minimum weights for each class.

Class Initial Weight Maximum Weight Minimum Weight

AF1 ������ ��� = 1 �������� = 1.5 ���� ��� = 0.5

AF2 � ���� ��� = 2 � ��&�'� = 3 � �� ��� = 1.5

AF3 � ���� ��� = 4 � ��&�'� = 6 � �� ��� = 3

26

The action taken by the proposed AHPD scheduler when each and every packet arrives

is described by the followings:

1. Initialization. Set the initial parameters � � , g, and the desired delay differentiation

ratio
� �

. Compute initial
�� �

. When no packet has been served, select the queue to

start service using the initial ideal weights � � .

2. Whenever a queue is served, update the parameters as follows.

(a) Calculate new
� � using equation (3.1).

(b) Update the weights � � and � � using equation (3.2).

(c) Calculate new
� � using equation (3.1).

(d) Update weight ��� using equation (3.2).

(e) Compute the new normalized average delay by using equation (2.4).

3. Select the queue with the maximum normalized average delay and serve that queue.

4. Save the updated weights for the next cycle.

5. Go back to 2.

To summarize, we first update the weights of the two highest priority classes. Then the

weight of the next low priority class is updated based on the weight of its predecessor.

27

3.2 Proportional Bandwidth Mechanism

The basis for a relative bandwidth differentiation is that a combination of the packet delay

and loss of a flow reflects on the overall throughput achieved by the flow [25]. In a multi-

class RED environment, the traffic classes are treated with different sets of RED parame-

ters. The three RED parameters, namely, minimum threshold (�
� � ���

), maximum thresh-

old (����� ���), and the maximum drop probability (�������), govern the packet accept/discard

behavior at network nodes [14]. Dovrolis in [6] stated that the multi-class RED scheme

is not suitable for a proportional loss differentiation. We do not contradict this statement,

but propose to make use of multi-class RED to achieve a proportional bandwidth differ-

entiation. While the adaptive HPD scheduler described above controls the packet delay,

the class based dropper takes care of packet loss rate. These two actions reflects on the

bandwidth or throughput achieved by the traffic class.

3.2.1 Colored RED

As mentioned earlier, in [25] a weighted RED (WRED) scheme was use to achieve a

relative bandwidth differentiation between individual TCP flows. In WRED, more than

one set of RED parameters are used to bandwidth differentiate flows. Motivated by this, we

propose the use of a RIO-like1 packet marking and dropping scheme, where the RED drop

probabilities of the different classes are proportional to each other. The major difference

1RIO is RED with In/Out packets. It has two classes which differ in RED drop thresholds [4]

28

is that we achieve a per-class differentiation instead of per-flow differentiation. The RED

parameters are fixed according to the following relation:

&'� � � � % ��� � %�� � � ��� � ��� % �	�
� ���� �
&'� � � � % ��� � %�� � � ��� � ��� % ���
� ���� � �

� �
� � (3.3)

where � is the loss differentiation parameter. As mentioned earlier, according to the AF

PHB definition [13], there are currently 4 AF classes and within each of the AF classes,

packets may belong to one of the three drop precedences. In the simulation experiments,

we applied our scheme on a system with 3 AF classes, each with 2 drop precedences.

In our scheme, the sender marks the packets with the appropriate DSCP. When an

edge router receives a packet, it checks the packet’s DSCP and then marks it as either

green, yellow or red colored packet. The RED parameters differ proportionally for the

three colors. All the flows within a class are marked with the same color. The packets

with different colors experience different accept/discard treatment. We call our scheme

colored-RED (CRED), since the RED parameters are different for different colors. Unlike

other similar multi-class RED schemes which treat individual flows, our CRED scheme

acts on the traffic classes (aggregates).

The ability of CRED scheme to bandwidth differentiate greatly depends on the way its

RED parameters (����� ��� 	 � � � ��� 	 and ����� �) are set for the different colors. In CRED, the

colors differ in ����� � values alone. The other parameters are the same for all classes or

colors. Another factor that affects the CRED’s performance is the calculation of average

queue size. The average queue size value determines whether a particular packet is within

29

the drop threshold limits. Here, we describe the way the ����� � values are set for different

colors, followed by CRED’s average queue size computation.

3.2.2 Setting CRED Maximum Drop Probabilities

In CRED, the packets belonging to AF3, AF2, and AF1 classes are colored green, yellow

and red respectively. The drop probability for AF3 class is the smallest of the three. The

average queue size and the maximum drop probability are calculated in such a way that

the condition given by (2.5) is met. Equation (2.5) which defines proportional bandwidth

differentiation, is repeated here for convenience. It is given as:

" . �
" . � �

� �
� �

The maximum drop probability ������� of the different AF classes is fixed in the same

way as in [25]. The ������� values of the different colors(classes) are related as: ����� � (red)

= QDP * ����� � (yellow) and ����� � (yellow) = QDP * ����� � (green), where QDP is the

quality differentiation parameter. In this case the quality metric is bandwidth. Fig. 3.2

gives the drop probability versus the average queue size for three color WRED. It is clear

from the figure that the colors differ only in ����� � values and not in ����� ��� or �
� � ���

.

3.2.3 Average Queue Size Calculation

The average queue size (AQS) of the
��� �

(i = 1, 2, 3) class is computed based on the

number of the
��� �

class packets alone. A major difference between CRED and the scheme

30

Average
queue length

maxp

green
yellow

red

max_thmin_th

Figure 3.2 WRED Drop Probabilities

used in [25] is that, in CRED, the AQS calculation of a class is independent of the other

class packets. In [25] the average queue size is computed as:

� $ 	
���
�

= TSW estimate based on all (AF1 + AF2 + AF3) packets.

where i = 1, 2, 3.

But in CRED,

� $ 	
���
�

= TSW estimate based on the AFi packets alone.

This is done in order to adhere to the AF PHB specifications [13], which state that the

servicing of one AF class must be independent of the other AF classes. The AQS compu-

tation in CRED is also similar to the AQS calculation in the decoupled version of RIO [4],

where the AQS of In and Out packets are independently determined.

CHAPTER IV

PERFORMANCE EVALUATION

The performance of the proposed combination of the adaptive HPD and colored RED

schemes is evaluated through simulation experiments. All experiments are performed us-

ing the network simulator ns-2 [28]. Several traffic types are used to evaluate the robust-

ness of the proposed scheme. They are as follows:

1. FTP sources.

2. Constant bit rate (CBR) sources.

3. On-/Off- sources with burst and idle times exponentially distributed.

4. On-/Off- sources with burst and idle times Pareto distributed.

5. Sources differing in RTT.

Notable sources are the On-/Off- traffic sources with burst and idle times taken from the

Pareto and exponential distributions. The average value of the burst and idle times are set

to 500 msec each. TCP and UDP flows are used in some of the experiments to study their

interactions. All the TCP agents use the selective acknowledgment (SACK) mechanism

[21]. A fixed packet size of 1000 bytes is used in all the experiments. The value of ’g’ in

(2.4) is set to 0.85.

The proposed scheme is compared with a combination of the original HPD packet

scheduler [5] and the RIO dropping scheme[4]. For this combination, the same RIO pa-

31

32

rameters are used for all the classes: (10, 20, 0.04) for OUT1 packets and (20, 40, 0.04)

for IN2 packets, where the three parameters represent (�
� � ��� 	 ����� ��� 	 ����� �), respectively.

4.1 Simulation Model

Fig. 4.1 depicts the topology used in all the simulation experiments. The topology consists

20 Mbps
1 msec

8 Mbps
10 msec

8 Mbps
10 msec

20 Mbps
1 msec

EDGE

EDGE

CORE

CORE

Customer Origin

1

2

9

DiffServ enabled network

2

Customer Destination

8 Mbps
10 msec

9

1

Figure 4.1 Simulation Topology

of 9 sources and 9 destinations connected through 2 edge routers and 2 core routers. The

edge routers differ from the core routers in the way that, they have built-in packet meters,

policers, and markers. The core routers on the other hand do not meter or mark the pack-

ets. They only employ the proposed adaptive HPD scheduler and CRED dropper. The

packet meters use a time sliding window technique (TSW) [4] to compute each flow’s in-

stantaneous sending rate. This instantaneous sending rate is used to determine the packet’s

1Packets that fall outside service agreement

2Packets that fall inside service agreement

33

Table 4.1 Parameters for CRED

Queue Type � � � ��� ����� ��� ����� �

Red / AF11 (IN) 20 40 0.08

Red / AF12 (OUT) 10 20 0.16

Yellow / AF21 (IN) 20 40 0.04

Yellow / AF22 (OUT) 10 20 0.08

Green / AF31 (IN) 20 40 0.04

Green / AF32 (OUT) 10 20 0.02

drop probability. The packets from the customer network are classified to one of the 3 AF

classes based on the agreement between the service provider and the customer, and then

the packets are marked as green, yellow or red accordingly. Further, the edge routers meter

the flows and subject the packets to one of the two drop threshold levels. Table 4.1 gives an

example of a parameter set used in the simulation experiments. In all the routers the buffer

length is set high enough so that the queues never experience buffer overflows. In all the

cases, the bottleneck link bandwidth is set to 8 Mbps. All the simulation experiments are

performed for a period of 300 seconds. The flows are preallocated bandwidth according

to a service level agreement. Experiments were carried out using different traffic types so

as to validate our claim that our scheme provides a proportional bandwidth, delay and loss

differentiation under several network conditions.

34

4.2 Simulation Experiment Results

In order to analyze the performance of our scheme, we made the following measurements:

1. The average throughput achieved by each flow. The throughput is calculated as the

sum of the bytes successfully transmitted divided by the total simulation time.

2. The average one way end-to-end delay of each flow. This is the average of the delay

experienced by every packet of the flow.

3. The packet loss rate. This is the ratio of the number of packets lost to the total

number of packets transmitted.

The above three measurements are presented in the form of bar plots. The three horizontal

lines in the throughput differentiation bar plot represent the target rates of the three AF

classes: 380 Kbps, 760 Kbps and 1520 Kbps respectively. Likewise, the horizontal line in

the delay differentiation bar plots represents the minimum one way end-to-end delay that

each packet would experience. This delay is 32 msec in all the simulation cases except in

the last test case where all the flows differ in the round trip times (RTT). Assuming that

the packet transmission delays, the packet processing delays, and the queuing delays are

negligible, the 32 msec then consists only of the propagation delays alone.

Apart from the above three measurements, the following were also calculated for the

analysis:

35

1. Delay ratio between classes. The class delay is computed as the average of the delay

experienced by the flows constituting the class. From this the delay ratio between

classes is computed.

2. In some experiments, the bandwidth ratio is also calculated in a fashion similar to

that of delay ratio.

3. Fairness index. The Fairness index was calculated using the formula given in Ap-

pendix A.

4. In the experiment that used flows differing in RTT, the percentage of increase in

average delay from the ideal value is calculated.

4.2.1 Experiments with FTP traffic over TCP SACK

In the first set of experiments, FTP traffic from greedy sources is carried over TCP by all

the nine flows. Fig. 4.2 shows the bandwidth, delay, and loss differentiation achieved by

our scheme. Fig. 4.3 shows the differentiation achieved using the original HPD scheme.

There is not much difference in the bandwidth differentiation between our scheme and

the original HPD. But in the case of a delay differentiation, our scheme maintains the

required delay differentiation ratios better than the original HPD scheme. In our scheme,

the delay differentiation ratios
� � and

� � are very close to 2 (the desired value). This is

achieved by the reduction in the delay levels of AF3 class and an increase in the delay

levels of AF1 class. Table 4.2 shows the average delays and the delay ratios for each of

36

1 2 3
0

500

1000

1500

2000

3 AF Classes − 3 Flows Each

A
ch

ie
ve

d
R

at
e

in
 k

bp
s

Throughput Differentiation

1 2 3
0

50

100

150

200

3 AF Classes − 3 Flows Each

A
ve

ra
ge

 d
el

ay
 in

 m
se

c

Delay Differentiation

1 2 3
0

0.5

1

1.5

2

2.5

3

3 AF Classes − 3 Flows Each

Lo
ss

 r
at

e
in

 %
Loss differentiation

Figure 4.2 AHPD and CRED: FTP over TCP SACK.

1 2 3
0

500

1000

1500

2000

3 AF Classes − 3 Flows Each

A
ch

ie
ve

d
R

at
e

in
 k

bp
s

Throughput Differentiation

1 2 3
0

50

100

150

200

3 AF Classes − 3 Flows Each

A
ve

ra
ge

 d
el

ay
 in

 m
se

c

Delay Differentiation

1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

3 AF Classes − 3 Flows Each

Lo
ss

 r
at

e
in

 %

Loss differentiation

Figure 4.3 Original HPD and RIO: FTP over TCP SACK.

the schemes. It is clear that our proposed scheme works better in maintaining the delay

ratios between classes. It should also be noted that our scheme achieves lower loss rates

37

Table 4.2 Delay Comparison for FTP Sources

Average Class Delay

Scheme Delay msec Ratio

AF1 AF2 AF3
��� �
��� � ��� �

��� �

AHPD & CRED 193.67 97.4 59.66 1.99 1.63

HPD & RIO 153.6 94.94 65.53 1.62 1.45

than the original HPD scheme. Hence, traffic is differentiated well in terms of all three

performance metrics.

4.2.2 Experiments with Constant Bit Rate Sources

Three different experiments are performed with CBR sources. In the first case, all the flows

carry CBR traffic over TCP. In the second case, one flow in each AF class carries CBR

traffic over UDP while the other flows carry FTP traffic over TCP. In the last experiment,

all the flows consist of CBR traffic over UDP. The corresponding bandwidth, delay, and

loss differentiation for the 3 simulation experiments are shown in Fig. 4.4, 4.5 and 4.6.

In all the cases, the CBR sources generate packets at a rate greater than their target rates.

When such a CBR sources transmits over UDP, it greatly misbehaves and does not adhere

to service agreements.

38

1 2 3
0

500

1000

1500

2000

3 AF Classes − 3 Flows Each

A
ch

ie
ve

d
R

at
e

in
 k

bp
s

Throughput Differentiation

1 2 3
0

50

100

150

200

3 AF Classes − 3 Flows Each

A
ve

ra
ge

 d
el

ay
 in

 m
se

c

Delay Differentiation

1 2 3
0

0.5

1

1.5

2

2.5

3 AF Classes − 3 Flows Each

Lo
ss

 r
at

e
in

 %

Loss differentiation

Figure 4.4 AHPD and CRED: All 9 flows are CBR over SACK

1 2 3
0

500

1000

1500

2000

3 AF Classes − 3 Flows Each

A
ch

ie
ve

d
R

at
e

in
 k

bp
s

Throughput Differentiation

1 2 3
0

50

100

150

200

250

3 AF Classes − 3 Flows Each

A
ve

ra
ge

 d
el

ay
 in

 m
se

c

Delay Differentiation

1 2 3
0

20

40

60

80

3 AF Classes − 3 Flows Each

Lo
ss

 r
at

e
in

 %

Loss differentiation

Figure 4.5 AHPD and CRED: One flow in each class is CBR/UDP. Rest FTP/SACK

39

1 2 3
0

500

1000

1500

2000

3 AF Classes − 3 Flows Each

A
ch

ie
ve

d
R

at
e

in
 k

bp
s

Throughput Differentiation

1 2 3
0

50

100

150

200

250

300

350

3 AF Classes − 3 Flows Each

A
ve

ra
ge

 d
el

ay
 in

 m
se

c

Delay Differentiation

1 2 3
0

20

40

60

80

3 AF Classes − 3 Flows Each

Lo
ss

 r
at

e
in

 %

Loss differentiation

Figure 4.6 AHPD and CRED: All 9 flows are CBR/UDP

We see that our proposed scheme achieves the desired bandwidth, delay and loss dif-

ferentiation in the first and third experiment. Bandwidth and delay differentiation is also

attained in the second case, but the TCP/UDP interaction effect arises in this case. From

Fig. 4.5, the UDP flows within each class appears to get a higher share of bandwidth than

TCP. The fairness index between flows within each class in the second experiment was

calculated as 0.96, 0.97, 0.99 for AF1, AF2 and AF3 classes respectively. This level of

fairness is quite acceptable for practical purposes.

A very important fact to note is that, the non-responsive UDP flows are heavily pun-

ished when they try to exceed their allocated share of the bandwidth. However, these UDP

flows still attain their target rates. All the packets lost by the UDP flows were in excess

of their service level agreements. The severity of the UDP packet drop also depends on

the packet’s class. Hence, we can observe from Fig. 4.5 that a loss differentiation is also

40

achieved. Since the TCP sources regulate themselves during congestion, they experience

a far lower packet loss than the UDP sources. Table 4.3 shows the delay comparison be-

tween the proposed scheme and the original HPD scheme. As in the earlier case with FTP,

Table 4.3 Delay Comparison for CBR Sources

Average Class Delay

Traffic Scheme Delay msec Ratio

Type AF1 AF2 AF3
��� �
��� � � � �

� � �

All flows are AHPD & CRED 191.65 96.90 56.83 1.97 1.7

CBR/TCP HPD & RIO 152.55 94.47 65.36 1.61 1.45

One flow in each AHPD & CRED 218.33 104.43 60.92 2.09 1.71

class is CBR/UDP HPD & RIO 170.48 103.24 69.67 1.65 1.48

All flows AHPD & CRED 314.78 136.53 68.29 2.3 1.99

are CBR/UDP HPD & RIO 216.49 126.32 81.13 1.71 1.56

delay differentiation ratio is better maintained using our scheme than the original HPD

scheme. Thus, bandwidth, delay, and loss differentiation is achieved simultaneously.

41

Table 4.4 Delay Comparison for EXP Sources

Average Class Delay

Traffic Scheme Delay msec Ratio

Type AF1 AF2 AF3
� � �
� � � ��� �

��� �

Exponential AHPD & CRED 186.64 94.94 58.66 1.97 1.61

over TCP HPD & RIO 151.83 94.07 65.10 1.61 1.45

Exponential AHPD & CRED 241.61 123.46 70.49 1.96 1.75

over UDP HPD & RIO 217.43 128.93 82.38 1.68 1.56

4.2.3 Experiments with Exponential Traffic Sources

Two different simulation experiments were performed with the On-/Off- traffic sources

whose burst and idle times are exponentially distributed. In the first case, all the flows

carry traffic from Exponential source over TCP and in the other case, all traffic is carried

over UDP. The corresponding results are shown in Fig. 4.7 and 4.8. In both the cases,

a bandwidth, delay and loss differentiation is achieved simultaneously. As in the earlier

cases, the new scheme maintains the delay ratio better than the original HPD scheme. The

delay comparison is shown in Table 4.4.

In the experiment with traffic over UDP, the UDP flows experience losses greater than

50%. Thus, the dropping scheme effectively punishes AF1 and AF2 classes when they

42

1 2 3
0

500

1000

1500

2000

3 AF Classes − 3 Flows Each

A
ch

ie
ve

d
R

at
e

in
 k

bp
s

Throughput Differentiation

1 2 3
0

50

100

150

200

3 AF Classes − 3 Flows Each

A
ve

ra
ge

 d
el

ay
 in

 m
se

c

Delay Differentiation

1 2 3
0

0.5

1

1.5

2

2.5

3

3 AF Classes − 3 Flows Each

Lo
ss

 r
at

e
in

 %
Loss differentiation

Figure 4.7 AHPD and CRED: Exponential traffic over SACK

1 2 3
0

500

1000

1500

2000

3 AF Classes − 3 Flows Each

A
ch

ie
ve

d
R

at
e

in
 k

bp
s

Throughput Differentiation

1 2 3
0

50

100

150

200

250

3 AF Classes − 3 Flows Each

A
ve

ra
ge

 d
el

ay
 in

 m
se

c

Delay Differentiation

1 2 3
0

20

40

60

80

3 AF Classes − 3 Flows Each

Lo
ss

 r
at

e
in

 %

Loss differentiation

Figure 4.8 AHPD and CRED: Exponential traffic over UDP

try to obtain a greater share of the link capacity. Again, our scheme maintains the delay

differentiation ratio better than the original scheme.

43

1 2 3
0

500

1000

1500

2000

3 AF Classes − 3 Flows Each

A
ch

ie
ve

d
R

at
e

in
 k

bp
s

Throughput Differentiation

1 2 3
0

50

100

150

3 AF Classes − 3 Flows Each

A
ve

ra
ge

 d
el

ay
 in

 m
se

c

Delay Differentiation

1 2 3
0

0.5

1

1.5

2

3 AF Classes − 3 Flows Each

Lo
ss

 r
at

e
in

 %
Loss differentiation

Figure 4.9 AHPD and CRED: Pareto over SACK

4.2.4 Experiments with Pareto Traffic Sources

Two more different simulation experiments were performed with On-/Off- sources with

burst and idle time following the Pareto distribution. The distribution’s shape parameter �

is set to 1.2. Traffic sources adhering to Pareto arrival pattern, represent the bursty nature

of today’s Internet. In the first experiment, packets from Pareto sources are carried over

TCP and in the other, all traffic is carried over UDP. The corresponding results are shown

in Fig. 4.9 and 4.10. As it can be observed from the figures and the delay comparison

Table 4.5, a bandwidth, delay and loss differentiation is achieved for both of the cases.

The delay differentiation ratios are also maintained better than the original HPD scheme.

44

1 2 3
0

500

1000

1500

2000

3 AF Classes − 3 Flows Each

A
ch

ie
ve

d
R

at
e

in
 k

bp
s

Throughput Differentiation

1 2 3
0

50

100

150

200

250

3 AF Classes − 3 Flows Each

A
ve

ra
ge

 d
el

ay
 in

 m
se

c

Delay Differentiation

1 2 3
0

20

40

60

80

3 AF Classes − 3 Flows Each

Lo
ss

 r
at

e
in

 %

Loss differentiation

Figure 4.10 AHPD and CRED: Pareto over UDP

1 2 3
0

500

1000

1500

2000

3 AF Classes − 3 Flows Each

A
ch

ie
ve

d
R

at
e

in
 k

bp
s

Throughput Differentiation

1 2 3
0

50

100

150

200

3 AF Classes − 3 Flows Each

A
ve

ra
ge

 d
el

ay
 in

 m
se

c

Delay Differentiation

1 2 3
0

20

40

60

80

3 AF Classes − 3 Flows Each

Lo
ss

 r
at

e
in

 %

Loss differentiation

Figure 4.11 Original HPD and RIO: Pareto over UDP

In the first experiment with Pareto traffic over TCP (Fig. 4.9), the bandwidth distri-

bution appears to suffer. Although, one of the AF3 flows in Fig. 4.9 appears to receive a

45

Table 4.5 Delay Comparison for Pareto Sources

Average Class Delay

Traffic Scheme Delay msec Ratio

Type AF1 AF2 AF3
��� �
��� � ��� �

��� �

Pareto AHPD & CRED 143.33 82.59 56.93 1.73 1.45

over TCP HPD & RIO 135.96 86.39 61.40 1.57 1.41

Pareto AHPD & CRED 181.27 97.22 63.12 1.86 1.54

over UDP HPD & RIO 167.46 104.46 69.96 1.60 1.49

less share of the bandwidth, the fairness index calculated proves otherwise. The fairness

indices calculated for the 3 classes when Pareto traffic was carried over TCP SACK are

0.99, 0.99 and 0.99 for AF1, AF2 and AF3 classes respectively. The delay differentiation

ratios are also strictly maintained by our scheme, which is not the case with the original

HPD scheme.

Remarkably, Fig. 4.11 shows the failure of the original HPD and RIO combination

to bandwidth differentiate when the bursty traffic is carried over UDP. On the other hand,

our scheme distributes the bandwidth in the desired manner and the delay differentiation

ratios are properly maintained. Proportional loss differentiation is also achieved in both

the experiments. With the increasing number of applications using UDP, the ability of

46

1 2 3
0

500

1000

1500

2000

3 AF Classes − 3 Flows Each

A
ch

ie
ve

d
R

at
e

in
 k

bp
s

Throughput Differentiation

1 2 3
0

50

100

150

200

3 AF Classes − 3 Flows Each

A
ve

ra
ge

 d
el

ay
 in

 m
se

c

Delay Differentiation

1 2 3
0

0.5

1

1.5

2

2.5

3

3 AF Classes − 3 Flows Each

Lo
ss

 r
at

e
in

 %
Loss differentiation

1 2 3
0

50

100

150

200

250

300

350

3 AF Classes − 3 Flows Each

%
 o

f i
nc

re
as

e
in

 a
ve

ra
ge

 d
el

ay
Figure 4.12 Original HPD and RIO: Flows with Different RTT

our scheme to effectively bandwidth, delay, and loss differentiate bursty traffic over UDP

supports our claim that our scheme is more robust.

4.2.5 Experiments with Flows Differing in RTT

The performance of the proposed scheme is tested with flows having different round trip

times (RTT). The 9 flows starting from class AF1 to AF3 have RTTs of 68, 76, 84, 92,

100, 108, 116, 124, and 132 msecs respectively. Thus, a higher priority flow has a higher

RTT than a lower priority flow. Fig. 4.12 and 4.13 show the performance of the original

HPD scheme and our proposed scheme respectively.

The proposed CRED scheme suppresses the effect of difference in RTT between the

flows and thus the classes get a proportional share of bandwidth. On the other hand, the

bandwidth ratios between classes is affected in the experiments with the original scheme.

47

1 2 3
0

500

1000

1500

2000

3 AF Classes − 3 Flows Each

A
ch

ie
ve

d
R

at
e

in
 k

bp
s

Throughput Differentiation

1 2 3
0

50

100

150

200

3 AF Classes − 3 Flows Each

A
ve

ra
ge

 d
el

ay
 in

 m
se

c

Delay Differentiation

1 2 3
0

0.5

1

1.5

2

3 AF Classes − 3 Flows Each

Lo
ss

 r
at

e
in

 %
Loss differentiation

1 2 3
0

50

100

150

200

250

300

350

3 AF Classes − 3 Flows Each

%
 o

f i
nc

re
as

e
in

 a
ve

ra
ge

 d
el

ay
Figure 4.13 AHPD and CRED: Flows with Different RTT

This is because the low priority classes, due to their lower RTTs, get a greater than allo-

cated share of bandwidth. Table 4.6 shows the average bandwidth obtained by the different

classes and the bandwidth ratios between the AF classes for the two test cases. Clearly, our

proposed scheme achieves a proportional bandwidth differentiation better than the original

HPD and RIO combination.

Regardless of the low priority classes having lower RTTs, both the original HPD and

our scheme succeed in achieving a delay differentiation. Table 4.7 shows the delay ratio

comparison between our scheme and the original HPD scheme. The difference in the RTT

has however affected the delay ratios between the classes. Again, our scheme shows an

improved performance over the original HPD scheme. Fig. 4.12 and 4.13 also show the

percentage of the increase in the delay of the individual flows from their ideal one way

delay values. Table 4.8 gives the corresponding numerical values. In most of the cases our

48

Table 4.6 Bandwidth Comparison for RTT Experiment

Average Class Bandwidth

Scheme Bandwidth kbps Ratio

AF1 AF2 AF3
��� �
��� � ��� �

��� �
AHPD & CRED 415.12 761.11 1433.90 1.83 1.89

HPD & RIO 442.43 782.98 1397.22 1.77 1.78

scheme increases the end-to-end delay to a lesser extent than the original scheme. Hence,

our scheme achieves proportional delay, loss and bandwidth differentiation simultaneously

and also shows great resilience to variation in RTT.

Table 4.7 Delay Comparison for RTT Experiment

Average Class Delay

Scheme Delay msec Ratio

AF1 AF2 AF3
��� �
��� � ��� �

��� �

AHPD & CRED 147.97 100.50 85.90 1.47 1.17

HPD & RIO 149.02 107.87 92.93 1.38 1.16

49

Table 4.8 Percentage of Delay increase from ideal values.

Adaptive HPD (in %) Original HPD (in %)

312.00 323.97

290.71 293.11

269.69 265.55

115.80 126.80

100.62 116.32

88.93 105.79

43.53 54.44

38.48 49.52

34.26 46.22

CHAPTER V

CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

In this thesis, we presented a novel scheduling technique (Adaptive HPD) to proportionally

delay differentiate service quality. The adaptive HPD scheduler fine tunes its weight by

monitoring the delay difference between the traffic classes. The simple, scalable, and

robust scheduler maintains the delay ratio between traffic classes under various network

conditions. In addition, we used a class based dropper (CRED) to achieve proportional

loss differentiation. The combination of the scheduler and the dropper also results in

a proportional bandwidth differentiation. Thus, we simultaneously attain a proportional

bandwidth, delay, and loss differentiation.

The resource demanding and heterogenous nature of today’s Internet applications can-

not be handled appropriately by the simple best-effort Internet architecture. The best-effort

Internet model will soon be obsolete. Future applications will demand service guarantees

from the service provider. The Internet user will no longer be satisfied with a mere promise

of good service. On the other hand, the service providers will begin to see service differen-

tiation as a means of revenue. By offering services which differ in quality, more customers

can be attracted. QoS provisioning methods not only give the ISPs a competitive edge, but

50

51

also are a source of revenue. Thus, the ISPs will greatly make use of QoS provisioning

methods to satisfy all these customer needs. Our proposed scheme is a very good solu-

tion to all these demands. The significance of our scheme lies in the fact that it is simple,

unified, robust and above all, controls all three quality metrics. Thus, while applications

are offered services proportionally differing in terms of delay and packet loss, the ISP can

make use of our scheme to distribute bandwidth between classes proportionately.

We tested our scheme with various traffic sources. The results obtained from these

simulations experiments suggest the following:

1. The need for maintaining the delay ratio between classes grows as the number of

applications increases. When service policies are provisioned, care must be taken to

assign delay tolerant applications to the low priority classes. Experimental results

prove that the delay differentiation ratios obtained using our scheme is very much

close to the ideal desired value. Moreover, our scheme also maintains the delay

ratios better than the original HPD scheme.

2. Setting the parameters for the RED portion of the CRED scheme is not trivial. A

better bandwidth differentiation ratio can be achieved by using stricter RED param-

eter values and thus punishing the misbehaving flows in a harsher manner. Queuing

delays at the routers and packet losses must also be taken into consideration while

setting RED parameters.

52

3. Loss rates and loss differentiation is better in the experiments which use congestion

responsive transport agents (TCP) than those experiments which use non-responsive

transport agents (UDP). A good example of this case is the experiment with the

CBR sources. Nevertheless, the non-responsive flows are also proportionally loss

differentiated, but have to pay a price in the form of a higher loss rate. Also, CBR

traffic, especially over UDP greatly affects the fair distribution of resources in an un-

controlled environment. The UDP flows with AF1 and AF2 class labels, experience

very high packet loss rates, since these flows try to take advantage of the TCP flows

and obtain a more than allocated resource share. Our scheme effectively punishes

the misbehaving UDP flows appropriately and distributes bandwidth proportionally.

Since the scheduler works entirely based on the packet’s class rather than the under-

lying transport mechanism (TCP/UDP), the delay differentiation is not affected by

the presence of UDP. Hence, our scheme is robust even in the presence of misbe-

having UDP flows.

4. The experiment with Pareto sources further augments our claim that our scheme

is more robust. Our scheme out-performed the existing HPD and RIO combina-

tion in these tests with bursty traffic. For example, when bursty traffic was carried

over UDP, the existing algorithm (HPD and RIO) even failed to bandwidth differ-

entiate, while our scheme bandwidth differentiated in a far better manner. Hence,

our scheme is more robust in achieving a bandwidth, delay, and loss differentiation

simultaneously.

53

5. Networks have a bias against flows with longer RTTs. The ability of the drop-

ping mechanism to deliver bandwidth in a proportional manner in-spite of this bias,

proves the tolerance of the dropping scheme to RTT effects.

With the support of the simulation experiment results, we argue that the bandwidth,

delay, and loss can be controlled simultaneously by acting on the delay and packet loss

alone. We further compare our scheme with the popular combination of HPD and RIO

scheme. We conclude that our proposed combination of an adaptive scheduler and a packet

dropper is more robust than the combination of original HPD and RIO.

5.2 Future Work

This thesis work gave birth to new ideas along the same directions. These ideas if success-

ful would contribute greatly to proportional differentiated services model.

The original HPD scheduler was designed with the purpose of making a balance be-

tween the WTP scheduler and the PAD scheduler. In the HPD scheme, the factor ’g’

decided the balance between WTP and PAD. Although experiments with a fixed ’g’ re-

sulted in good results, the scheduling scheme can be made more robust by making this

factor adaptive to packet arrival pattern. Hence, as the arrival pattern of packets varies

over a small window of time, the factor ’g’ can also be varied accordingly.

The class based packet dropper, CRED, drops packets based on the TSW metering

of the flows. The packet dropper can be made more robust by maintaining a history of

the packet loss rate. The count of packets lost by every class can be compared and their

54

respective drop probabilities can be modified accordingly. This would help maintain the

proportional loss differentiation in a robust manner.

A much broader topic to work on from this stage would be to test the effectiveness

of the proposed DiffServ techniques in a Multiprotocol Label Switching (MPLS) enabled

network[11][23]. Several recent works have contributed greatly to the success of a Diff-

Serv architecture over laid on a MPLS network. The proposed scheme can be further fine

tuned by making use of MPLS’s traffic engineering mechanisms.

REFERENCES

[1] Y. Bernet, “The Complementary Roles of RSVP and Differentiated Services in the
Full-Service QoS Network,” IEEE Communications Magazine, vol. 38, no. 2, Febru-
ary 2000, pp. 154–162.

[2] B. E. Carpenter and D. D. Kandlur, “Diversifying Internet Delivery,” IEEE Spectrum,
vol. 36, no. 11, November 1999, pp. 57–61.

[3] Z. Chen, T. Yang, and D. Makrakis, “Realistic bursty traffic modeling for differen-
tiated services network,” Proceedings of IEEE Conference on PACRIM, May 2001,
pp. 575–578.

[4] D. D. Clark and W. Fang, “Explicit Allocation of Best-Effort Packet Delivery Ser-
vice,” IEEE/ACM Transactions on Networking, vol. 6, no. 4, August 1998, pp. 362–
373.

[5] C. Dovrolis, Proportional Differentiated Services for the Internet, doctoral disserta-
tion, University of Wisconsin - Madison, May 2000.

[6] C. Dovrolis and P. Ramanathan, “Proportional Differentiated Services, Part II: Loss
Rate Differentiation and Packet Dropping,” IEEE/IFIP International Workshop on
Quality of Service (IWQoS), June 2000, pp. 52–61.

[7] C. Dovrolis, D. Stiliadis, and P. Ramanathan, “Proportional Differentiated Services:
Delay Differentiation and Packet Scheduling,” IEEE/ACM Transactions on Network-
ing, vol. 10, no. 1, February 2002, pp. 12–26.

[8] A. Dutta-Roy, “The Cost of Quality in Internet Style Networks,” IEEE Spectrum,
vol. 37, no. 9, September 2000, pp. 57–62.

[9] L. Essafi, G. Bolch, and A. Andres, “An Adaptive Waiting Time Priority Scheduler
for the Proportional Differentiation Model,” Proceedings of ASTC HPC, April 2001.

[10] L. Essafi, G. Bolch, and H. D. Meer, Dynamic Priority Scheduling for Propor-
tional Delay Differentiated Services, Technical Report TR-I4-01-03, University
of Erlangen-Nuremberg, Germany, [Online] Available: http://www4.informatik.uni-
erlangen.de/TR/pdf/TR-I4-01-03.pdf 2001.

55

56

[11] F. L. Faucheur, L. Wu, B. Davie, S. Davari, P. Vaananen, R. Krishnan, T. Cheval, and
J. Heinanen, “MPLS Support of Differentiated Services,” May 2002, Request for
Comments 3270.

[12] P. Ferguson and G. Huston, “Quality of Service in the Internet: Fact, Fiction, or
Compromise?,” INET, Geneva, Switzerland, July 1998, pp. 21–24.

[13] J. Heinanen, F. Baker, W. Weiss, and J. Wroclawski, “Assured Forwarding PHB
Group,” June 1999, Request for Comments 2597.

[14] V. Jacobson and S. Floyd, “Random Early Detection Gateways for Congestion
Avoidance,” IEEE/ACM Transactions on Networking, vol. 1, no. 4, August 1993,
pp. 397–413.

[15] V. Jacobson, K. Nichols, and K. Poduri, “An Expedited Forwarding PHB,” June
1999, Request for Comments 2598.

[16] R. Jain, The Art of Computer Systems Performance Analysis, vol. 1, John Wiley and
Sons, 1991.

[17] L. Kleinrock, Queueing Systems, Volume II: Computer Applications, vol. 1, Wiley,
1976.

[18] M. K. H. Leung, J. C. S. Lui, and D. K. Y. Yau, “Adaptive Proportional-delay Differ-
entiated Services: Characterization and Performance Evaluation,” IEEE/ACM Trans-
actions on Networking, vol. 9, no. 6, December 2001, pp. 801–817.

[19] C.-C. Li, S.-L. Tsao, M. C. Chen, Y. Sun, and Y.-M. Huang, “Proportional delay
differentiation service based on weighted fair queuing,” Proceedings of The 9th
International Conference Computer Communications and Networks, May 2000, pp.
418–423.

[20] M. E. Markaki, M. P. Saltouros, and I. S. Venieris, “Proportional packet loss dif-
ferentiation and buffer management for differentiated services in the Internet,” Pro-
ceedings of The 25th Annual IEEE Conference on Local Computer Networks, June
2000, pp. 306–313.

[21] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, “TCP Selective Acknowledge-
ment Options,” October 1996, Request for Comments 2018.

[22] L. Mathy, C. Edwards, and D. Hutchison, “The Internet: A Global Telecommunica-
tions Solution?,” IEEE Network, vol. 14, no. 4, July/August 2000, pp. 46–57.

[23] E. C. Rosen, A. Viswanathan, and R. Callon, “Multiprotocol Label Switching Archi-
tecture,” January 2001, Request for Comments 3031.

57

[24] G. Ruzzo and N. Chiminelli, “WRED Tuning for Bottleneck Link,” February 2000,
Available: http://carmen.cselt.it/papers/wred-cern/home.html.

[25] T. Soetens, S. D. Cnodder, and O. Elloumi, “A relative bandwidth differentiated
service for TCP micro-flows,” Proceedings of First IEEE/ACM International Sym-
posium on Cluster Computing and the Grid, August 2001, pp. 602–609.

[26] R. Stevens, TCP/IP illustrated, vol. 1, Addison Wesley, 1994.

[27] K. Thompson, G. J. Miller, and R. Wilder, “Wide-area Internet traffic patterns and
characteristics,” IEEE Network, vol. 11, no. 6, November 1997, pp. 8–18.

[28] UCB/LBNL/VINT, “The Network Simulator ns-2,” May 2002,
http://www.isi.edu/nsnam/ns/.

[29] X. Xiao and L. M. Ni, “Internet QoS: A Big Picture,” IEEE Network, vol. 13, no. 2,
March/April 1999, pp. 8–18.

APPENDIX A

FAIRNESS INDEX

58

59

The fairness index was calculated using the following formula as given in [16]:

� � � ����
 �� ��� �
 � � � �
��� � � ��� �
� � � � �

where fairness index ranges between 0 and 1, �
�

is the mean throughput of traffic source i,

and N is the total number of sources under consideration. The closer the fairness index to

1, the fairer is the bandwidth distribution between sources.

	Scheduling for Proportional Differentiated Services on the Internet
	Recommended Citation

