7,602 research outputs found

    Property-based Locking in Collaborative Modeling

    Get PDF

    Property-Based Locking in Collaborative Modeling

    Full text link

    A component-based collaboration infrastructure

    Get PDF
    Groupware applications allow geographically distributed users to collaborate on shared tasks. However, it is widely recognized that groupware applications are expensive to build due to coordination services and group dynamics, neither of which is present in single-user applications. Previous collaboration transparency systems reuse existing single-user applications as a whole for collaborative work, often at the price of inflexible coordination. Previous collaboration awareness systems, on the other hand, provide reusable coordination services and multi-user widgets, but often with two weaknesses: (1) the multi-user widgets provided are special-purpose and limited in number, while no guidelines are provided for developing multi-user interface components in general; and (2) they often fail to reach the desired level of flexibility in coordination by tightly binding shared data and coordination services. In this dissertation, we propose a component-based approach to developing group- ware applications that addresses the above two problems. To address the first prob- lem, we propose a shared component model for modeling data and graphic user inter- face(GUI) components of groupware applications. As a result, the myriad of existing single-user components can be re-purposed as shared GUI or data components. An adaptation tool is developed to assist the adaptation process. To address the second problem, we propose a coordination service framework which systematically model the interaction between user, data, and coordination protocols. Due to the clean separation of data and control and the capability to dynamically "glue" them together, the framework provides reusable services such as data distribution, persistence, and adaptable consistency control. The association between data and coordination services can be dynamically changed at runtime. An Evolvable and eXtensible Environment for Collaboration (EXEC) is built to evaluate the proposed approach. In our experiments, we demonstrate two benefits of our approach: (1) a group of common groupware features adapted from existing single- user components are plugged in to extend the functionalities of the environment itself; and (2)coordination services can be dynamically attached to and detached from these shared components at different granules to support evolving collaboration needs

    Designing Secure Ethereum Smart Contracts: A Finite State Machine Based Approach

    Full text link
    The adoption of blockchain-based distributed computation platforms is growing fast. Some of these platforms, such as Ethereum, provide support for implementing smart contracts, which are envisioned to have novel applications in a broad range of areas, including finance and Internet-of-Things. However, a significant number of smart contracts deployed in practice suffer from security vulnerabilities, which enable malicious users to steal assets from a contract or to cause damage. Vulnerabilities present a serious issue since contracts may handle financial assets of considerable value, and contract bugs are non-fixable by design. To help developers create more secure smart contracts, we introduce FSolidM, a framework rooted in rigorous semantics for designing con- tracts as Finite State Machines (FSM). We present a tool for creating FSM on an easy-to-use graphical interface and for automatically generating Ethereum contracts. Further, we introduce a set of design patterns, which we implement as plugins that developers can easily add to their contracts to enhance security and functionality

    Architectural Limitations in Multi-User Computer-Aided Engineering Applications

    Get PDF
    The engineering design process evolves products by a collaborative synthesis of specifications, personnel and organizations. Unfortunately, collaborative effectiveness is thwarted by existing single-user computer-aided applications like computer-aided design, computer-aided analysis, and others. These applications and associated file management systems assign editing rights to one technical person, e.g., a designer, analyst, or a process planner. In the absence of collaborative computer-aided engineering applications, we conducted a survey to establish that product collaboration is limited to interactive, either formal or ad-hoc design sessions, social communication tools, serial model sharing, terminal/screen sharing, and to conference call interactions. Current computer-aided (CAx) tools do not permit simultaneous model changes by a collaborative team editing the same model. Although over a decade of prior research has demonstrated multi-user feasibility for computer-aided applications, the architectural breadth of this research has apparently not yet compelled developers and end-users to develop and adopt new multi-user computer-aided applications devoted to product development. Why have collaborative engineering CAx tools not been commercialized for mainstream use? This paper uses several multi-user prototypes, including the first Computer-Aided Engineering multi-user prototype called CUBIT Connect, to expose additional architectural hurdles to implementing new multi-user collaborative paradigms. These challenges relate to variable algorithmic performance times, multi-threading and event driven client notification processes, distributed access level security, and model change management in design sessions

    Framework for Real-time collaboration on extensive Data Types using Strong Eventual Consistency

    Get PDF
    La collaboration en temps réel est un cas spécial de collaboration où les utilisateurs travaillent sur le même élément simultanément et sont au courant des modifications des autres utilisateurs en temps réel. Les données distribuées doivent rester disponibles et consistant tout en étant répartis sur plusieurs systèmes physiques. "Strong Consistency" est une approche qui crée un ordre total des opérations en utilisant des mécanismes tel que le "locking". Cependant, cela introduit un "bottleneck". Ces dix dernières années, les algorithmes de concurrence ont été étudiés dans le but de garder la convergence de tous les replicas sans utiliser de "locking" ni de synchronisation. "Operational Trans- formation" et "Conflict-free Replicated Data Types (CRDT)" sont utilisés dans ce but. Cependant, la complexité de ces stratégies les rend compliquées à intégrer dans des logicielles conséquents, comme les éditeurs de modèles, spécialement pour des data structures complexes comme les graphes. Les implémentations actuelles intègrent seulement des data linéaires tel que le texte. Dans ce mémoire, nous présentons CollabServer, un framework pour construire des environnements de collaboration. Il a une implémentation de CRDTs pour des data structures complexes tel que les graphes et donne la possibilité de construire ses propres data structures.Real-time collaboration is a special case of collaboration where users work on the same artefact simultaneously and are aware of each other’s changes in real-time. Shared data should remain available and consistent while dealing with its physically distributed aspect. Strong Consistency is one approach that enforces a total order of operations using mechanisms, such as locking. This however introduces a bottleneck. In the last decade, algorithms for concurrency control have been studied to keep convergence of all replicas without locking or synchronization. Operational Transformation and Conflict free Replicated Data Types (CRDT) are widely used to achieve this purpose. However, the complexity of these strategies makes it hard to integrate in large software, such as modeling editors, especially for complex data types like graphs. Current implementations only integrate linear data, such as text. In this thesis, we present CollabServer, a framework to build collaborative environments. It features a CRDTs implementation for complex data types such as graphs and gives possibility to build other data structures

    Noise considerations when determining phase of large-signal microwave measurements

    Get PDF
    Advances in microwave instrumentation now make it feasible to accurately measure not only the magnitude spectrum, but also the phase spectrum of wide-bandwidth signals. In a practical measurement, the spectrum is measured over a finite window of time. The phase spectrum is related to the position of this window, causing the spectrum to differ between measurements of an identical waveform. It is difficult to compare multiple measurements with different window positions or to incorporate them into a model. Several methods have been proposed for determining the phase spectrum such that multiple measurements can be effectively compared and utilized in models. The methods are reviewed in terms of the information required to determine the phase and compared in terms of their robustness in the presence of measurement noise
    corecore