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ABSTRACT

A Component-Based Collaboration Infrastructure. (December 2005)

Yi Yang, B.E., Southeast University, Nanjing, China;

M.E., Nanjing University, Nanjing, China

Chair of Advisory Committee: Dr. Du Li

Groupware applications allow geographically distributed users to collaborate

on shared tasks. However, it is widely recognized that groupware applications are

expensive to build due to coordination services and group dynamics, neither of which

is present in single-user applications. Previous collaboration transparency systems

reuse existing single-user applications as a whole for collaborative work, often at

the price of inflexible coordination. Previous collaboration awareness systems, on

the other hand, provide reusable coordination services and multi-user widgets, but

often with two weaknesses: (1) the multi-user widgets provided are special-purpose

and limited in number, while no guidelines are provided for developing multi-user

interface components in general; and (2) they often fail to reach the desired level of

flexibility in coordination by tightly binding shared data and coordination services.

In this dissertation, we propose a component-based approach to developing group-

ware applications that addresses the above two problems. To address the first prob-

lem, we propose a shared component model for modeling data and graphic user inter-

face(GUI) components of groupware applications. As a result, the myriad of existing

single-user components can be re-purposed as shared GUI or data components. An

adaptation tool is developed to assist the adaptation process.

To address the second problem, we propose a coordination service framework

which systematically model the interaction between user, data, and coordination

protocols. Due to the clean separation of data and control and the capability to
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dynamically “glue” them together, the framework provides reusable services such as

data distribution, persistence, and adaptable consistency control. The association

between data and coordination services can be dynamically changed at runtime.

An Evolvable and eXtensible Environment for Collaboration (EXEC) is built to

evaluate the proposed approach. In our experiments, we demonstrate two benefits of

our approach: (1) a group of common groupware features adapted from existing single-

user components are plugged in to extend the functionalities of the environment itself;

and (2)coordination services can be dynamically attached to and detached from these

shared components at different granules to support evolving collaboration needs.
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CHAPTER I

INTRODUCTION

Groupware applications such as e-mail, instant messaging, multi-user gaming, desk-

top conferencing, and collaborative learning systems have been increasingly gaining

popularity in recent years. They allow a geographically separated group of people to

work on a common task or pursue a common goal together over a computer network

[1]. They generally aim to promote the productivity of human collaboration. In gen-

eral groupware must be reusable and flexible to cater for the different and evolving

needs of a range of collaboration tasks. However, the development of groupware ap-

plications has long been recognized as a challenging task due to a number of subtly

interacting social and technical issues [2].

To reduce the costs of groupware engineering, a plethora of collaboration infras-

tructures have been developed over the past two decades. These approaches largely

fall into two categories: collaboration transparency and collaboration awareness [3].

A. Collaboration Transparency

Collaboration Transparency aims to re-purpose existing single-user applications for

cooperative work without modifying their source code, such as [3, 4, 5, 6]. The philos-

ophy behind is simple - since there have been many popular single-user applications

which are used by people in their daily activities, why not build a runtime system

enabling them to do the collaborative work? The benefit is that there would be no

need to re-build many futures that have already been built in single-user applications.

Additionally, users do not need to learn how to use new applications. A typical ex-

The journal model is IEEE Transactions on Automatic Control.
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ample of collaboration transparency system is Microsoft NetMeeting. Once a user

starts a collaboration session in NetMeeting, he/she can invite other people to join

this session. Then users can share specific applications or their desktops (the screen)

to other users. Usually users take turns to operate on shared applications.

Some usability problems are quickly identified in collaboration transparency sys-

tems [7, 4]. First, They are rather rigid in supporting concurrent work because at any

moment only one user can manipulate the shared application. This limitation effec-

tively excludes concurrent work. Second, a related problem is that it only supports

what-you-is-what-I-see(WYSIWIS) [7] kind of collaboration which forces the collab-

orators to see exactly the same view of an application. Third, their performance is

generally poor especially in a wide-area network due to image broadcasting used for

viewing sharing.

Notably, even with these problems, collaboration transparency systems are still

useful for sporadic collaboration needs when specialized collaborative applications are

not available. For example, the remote assistance function in Windows XP allows the

system administrators to remotely assist users in configuring or diagnosing system

problems.

B. Collaboration Awareness

Special-purpose groupware applications are usually built to address the limitations in

early collaboration transparency systems. Since these applications are built with the

intention of supporting collaboration, they are called collaboration-aware systems

or simply collaboration awareness. Collaboration-aware systems focus on provid-

ing reusable coordination services (e.g., access control and concurrency control) and

multi-user interface widgets to ease the development of special-purpose groupware ap-
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plications, such as [8, 9, 10, 11]. Systems taking this approach can achieve improved

performance and flexibility. For example, they allow collaborators to simultaneously

work on different parts of a shared application. This is called relaxed-WYSIWIS [7].

However, reusability and flexibility in previous collaboration-aware systems have

not reached desired levels, for the following reasons: First, they usually require the

developers to follow custom programming abstractions to access the reusable coor-

dination services provided in the infrastructures. They generally do not address the

large base of third-party programs that fail to follow their programming abstractions.

Second, the coordination services are often tightly bound with data objects they

control and cannot be reused in many applications without refactoring.

C. A Summary of This Research and Contributions

From above, we can see that much progress can still be made towards achieving

more flexibility and reusability in collaborative systems. Our research hypothesis is

that flexibility and reusability are not necessarily competing goals that compromise

each other. Our objective is then to investigate an alternative approach to building

collaborative systems which can meet desired flexibility in supporting collaboration

while reasonably reusing previous development effort without forcing developers to

discard the standard practice.

In this dissertation, we propose a component-based approach to developing group-

ware applications that addresses the above reusability and flexibility issues of previ-

ous approaches. To address the reusability problem, we propose a shared component

model for modeling data and graphic user interface(GUI) components of groupware

applications. Since this model only requires that the components conform to indus-

trial component standards such as JavaBean and .NET component, the myriad of
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existing single-user components can be re-purposed as shared GUI or data compo-

nents. An important implication of this is that multi-user widgets can be built almost

as simply as their single user components. An adaptation tool is built to assist the

adaptation process.

To address the flexibility problem, we cleanly separate the shared data, consis-

tency protocols, and systematically model users’ interaction with them in our coor-

dination framework. A meta-service is provided in our coordination infrastructure to

dynamically glue data and control components at runtime. Users can dynamically

switch collaboration protocols in order to support evolving needs for coordination.

As a byproduct of the data-control separation, the coordination services can also be

reused.

An Evolvable and eXtensible Environment for Collaboration (EXEC) is built to

evaluate the proposed approach. Newly adapted shared components can be incremen-

tally plugged in to extend the functionalities of the environment itself. Coordination

services can be dynamically attached to and detached from the shared components

to support evolving collaboration needs.

D. Organization of Dissertation

The rest of dissertation is organized as follows: Chapter II introduces important con-

cepts, techniques and principles related to building groupware applications and lays

a research foundation for this dissertation. Chapter III introduces the share compo-

nent model, its Java embodiment, and a component adaptation tool which converts

existing single-user components into shared components. Chapter IV introduces a

coordination services framework. For the scope of this dissertation, we focus on

adaptable consistency control while briefly overviewing others coordination services.
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After that, in Chapter V, we empirically evaluate our contributions on the EXEC

platform by demonstrating the reuse of existing single-user components and the flex-

ible application of coordination services. In the end, in Chapter VI, we summarize

contributions of this dissertation and point out possible future research directions.
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CHAPTER II

BACKGROUND

In this chapter, we explain important concepts, technologies, and principles related

to building groupware applications. This lays the foundation of our own work.

A. A Groupware Taxonomy

There are many different groupware applications enabling people to collaborate with

each other to finish tasks with different nature. Even though there is no common

agreement on the definition of “groupware”, people tend to agree that groupware

applications support teams or a group of people work together towards a common

goal. Based on whether the collaboration happens at the same time and whether at

the same physical space, groupware applications can be largely categorized into four

kinds [12], as shown in table I.

Table I. Groupware taxonomy

Place and Time Same Different

Same Single-Display Collaboration Work-Shift

Conventional Gaming

Different Collaborative Writing, Networked E-mail, Bulletin Board

Gaming, Instance Messaging Workflow

Team-Room

If each user’s actions are expected to be seen and responded by other collabora-

tors close to their initiating time, the collaboration is considered as synchronous or

real-time. Otherwise, the collaboration is considered as asynchronous. Notably,
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this definition is only conceptual and there is no hard line between synchronous and

asynchronous collaboration. For the same groupware application, both technical and

non-technical factors could affect the delivery of remote user actions on local ma-

chine, which in turn affects the collaborators’ response. For example, e-mail is usually

considered as groupware supporting asynchronous collaboration. However, frequent

exchanging messages between collaborators can certainly increase the degree of syn-

chrony. Our focus in this dissertation is the collaboration happening in real time at

different places. However, we need to point out that applications built with our in-

frastructure can support both synchronous and asynchronous styles of collaboration,

depending on the nature of the collaborative task.

B. Overview of Collaborative Systems

In this section, we overview collaborative systems in two general categories: collabo-

ration transparency and collaboration awareness.

1. Collaboration Transparency Systems

Collaboration transparency is also called application sharing due to the nature of

this approach. Collaboration transparency systems are runtime systems that enable

existing single-user applications to be collaborative. They generally adopt either

centralized or replicated architectures.

Centralized application sharing systems, such as XTV [13] and NetMeeting [6],

execute a shared single-user application on a server. The main advantage is that

the infrastructure is generally reusable for sharing arbitrary single-user applications.

However, the following disadvantages exist: As the single-user application is usually

not designed to process multiple concurrent input streams, the users must take turns



8

to provide input to the application, which limits concurrent work and is often counter-

productive. The application’s graphics output is multicasted to all collaborating sites

for display, which often generates considerable network traffic. When the interaction

is not local, the response time is sensitive to networking delays. Moreover, output

broadcasting makes it only possible to support a strict what-you-see-is-what-I-see

(WYSIWIS) type of collaboration [7].

Typical replicated application sharing systems, such as Dialogo [3] and Disci-

ple [5], execute a copy of the shared single-user application at all sites. Each user

interacts with the local replica directly, which implies improved response time and

reduced network traffic compared to centralized application sharing. Only the input

is duplicated for synchronization. However, users generally still have to take turns to

input locally and see exactly the same view.

As documented in [3], the following problems make it difficult for replicated ap-

plication sharing systems to be as generic as their centralized counterparts: First,

replicated application sharing systems generally synchronize application replicas by

replaying input events at all sites. This essentially assumes that the shared applica-

tions are deterministic, i.e., they must always generate the same output in response

to the same input. Unfortunately, many single-user applications are not deterministic

because of time-dependent behavior.

Second, the shared applications usually need to access external resources, such

as disk files, databases, system clocks, network sockets, environment variables, the

window manager, and other processes. To maintain consistency among application

replicas, the sharing infrastructure must be able to manage these external resources,

which generally cannot be achieved without a redesign of the operating systems.

Several recent replicated application sharing systems have been developed to

address the above problems by taking domain-specific approaches, such as Flexible
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JAMM [4], ICT [14], CoWord [15], and Zipper [16]. However, in general flexibility is

achieved at the loss of generality (or reusability) of the infrastructure.

Flexible JAMM [4] exploits the component dynamic loading mechanism in Java

and is able to replace some components in the shared Java application with custom

versions at run time. This achieves two important features: First, the application’s

accesses to external resources can be managed by the infrastructure by dynamically

adding custom resource proxies. Second, some user interface components can be

replaced with multi-user versions to implement relaxed-WYSIWIS and allow for more

concurrent work. However, the extra flexibility is only achievable on a subset of Java

Swing-based applications.

ICT [14, 17] allows the users to share heterogeneous single-user applications for

cooperative work. However, the infrastructure needs application-specific knowledge to

translate the input events to abstract operations in order to interoperate the shared

applications. While the application knowledge is generally difficult to acquire, the

problem can be mitigated in specific domains. For example, when it is known that

the shared applications are single-user editors, diffing can be used to derive the editing

operations, which eliminates the need to translate window events. As a result, the

users’ views and inputs do not need to be constrained for synchronization purposes

as in early systems.

CoWord [15] aims to share productivity tools such as Microsoft Word and Power-

Point. Similar to ICT, it can also achieve unconstrained interaction by understanding

and translating window events. The translation is aided by the APIs provided in the

shared applications but still labor intensive and must be done on a per-application

basis. Consequently the cost of adapting (reusing) single-user applications to achieve

the desired flexibility is high.

Zipper [16] explores aspect-oriented programming techniques to adapt single-
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user applications for cooperative work. Relaxed WYSIWIS and flexible control are

achieved as a result. However, it assumes the availability of source code and requires

the developers to manually find out the right places in the original programs where

new code that implements the advanced features can be correctly injected. Hence the

cost of reuse is also high.

Roussev et al. [18] transparently share JavaBean components such that coordi-

nation services can be applied externally. The components are assumed to follow an

extended naming convention such that their logical structures can be introspected.

The runtime infrastructure maintains a copy of the logic structure of each shared

component and uses diffing to derive the state changes before they can be applied

on the actual components. However, it does not address how to share components

that fail to follow the extended naming convention. In addition, it admittedly fails

to provide sufficient performance for synchronous collaboration.

2. Collaboration Awareness Systems

Application sharing is useful in adapting (reusing) familiar single-user applications

for cooperative work to save engineering and learning costs. However, it does not

eliminate the needs for developing specialized groupware: First, existing application

sharing systems are often either inflexible or domain-specific. Second, many collabora-

tive tasks require specialized user interfaces that are often awkward, if not impossible,

to implement in collaboration transparency.

To address the flexibility limits of early application sharing systems, many re-

searchers turned to collaboration awareness, which effectively lowers the ambition of

reusing existing applications as a whole to reusing libraries of coordination services

[19]. As a result, a large number of groupware toolkits have been developed, such as

Suite [8, 20], DistView [21], GroupKit [11], Corona [10], and JView [9]. These toolkits
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usually provide reusable functions such as multi-user interface widgets [8, 11], group

communication [11, 10], concurrency control [20, 21], and bundled services [9].

These pioneering toolkits were designed when there lacked commonly accepted

software development practices. Consequently the following limitations are retro-

spected: First, they generally define system-specific programming abstractions for

accessing the provided coordination services, such as the predefined data types in [20]

with embedded locking protocols. Apparently the intended reusability is undermined

if their custom abstractions are not followed by the developers.

Second, their coordination services (see next section for detail) are generally

tightly bound with the programming abstractions, as in [20, 9]. Due to the lack of a

clean separation between data and control, the toolkit often has to be redesigned if the

functions need to be revised or extended, e.g., for different groupware applications.

Third, little has been done in previous toolkits to adapt (reuse) third-party pro-

grams that do not follow the expected programming patterns. Hence much redundant

effort is still required in developing groupware application despite the growing base

of available single-user programs.

C. Groupware Architecture

In general, there are three architecture choices for building a groupware application -

centralized architecture, replicated architecture, and hybrid architecture [3]. Differ-

ent architectures imply different pros and cons in the resulted groupware applications.

So it is important to understand the tradeoffs of different architectures. In the fol-

lowing, we use collaboration-transparency systems as an example to compare the

tradeoffs between different architectures. Notably, these tradeoffs generally apply in

collaboration-aware systems.
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Fig. 1. Centralized and replicated architecture

1. Centralized Architecture

In a typical centralized architecture, the application or data resides in a centralized

server, as shown on left side of Figure 1. On the clients, collaborators share the output

of the application. A conference agent usually resides on the server in order to merge

user inputs and broadcast application outputs to the views on different clients.

The strength of centralized architecture is its simplicity. Since all user inputs

are first sent to the conference agent on the server, the server can naturally act as a

rendezvous to serialize the concurrent user inputs. Coordination such as consistency

control becomes very simple. Since there is only one copy of the shared data located

on the server, it is impossible for shared data to diverge. Since all users receive

the same output of the application, naturally all users share the same view of the

application.

However, the price for this simplicity is degraded system performance and flex-

ibility of collaboration. First, user inputs will have to be sent across the networks

before being computed by the application. The output will again be sent across the

network back to the clients for display. The response to local user action can be slow.
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Second, since application output is usually graphic image and will be broadcast to

different collaboration sites, it can consume a lot of network bandwidth. Third, since

all users have exactly the same view of an application, it becomes difficult for different

users to work on different areas of an application, which forces the users to scroll the

view port up and down in order to work on their own areas. Hence only one user can

work on the application at one time, which effectively reduces the concurrency of the

collaborative work.

2. Replicated Architecture

On the right hand side of Figure 1, we show an example of fully replicated architecture

with only two collaboration sites. In this architecture, all components of an appli-

cation are replicated among all sites, including the conference agents. User inputs,

instead of being sent out for computation, can be computed locally. Thus the view

can be updated quickly without being affected by network delays. The conference

agent only sends out the local inputs and receives remote inputs and there is no need

to broadcast the application outputs anymore. Thus the bandwidth consumption

in replicated architectures is lower than centralized architectures. In addition, since

different users do not share the view image directly, it is possible for them to work

on different area of the application independently. For example, an replicated group

editor can choose not to synchronize the user actions that trigger coordinates changes

of application’s viewport, e.g., actions that scroll up and down the editing window.

Then people can work on different portions of the document without interfering with

each other, achieving improved concurrency in collaborative editing.

A replicated architecture has its own drawbacks. One of the main challenges is to

maintain the consistency of application states. Since the shared data are replicated,

any change to any copy of the shared data will have to be applied at all sites in a
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certain order. Many different consistency protocols have been devised in the group-

ware domain for this purpose, as we will detail in Chapter IV. Another challenge for

replicated architecture is how to support new comers in an on-going conference. This

needs all active users to agree on an up-to-date image of the shared data and then

some logging and process migration mechanism needs to be used in order to let the

new comer catch up with the latest state of the application.

3. Hybrid Architecture

As pointed out in [22], it is generally rare for groupware application to have a pure

centralized architecture or a fully replicated architecture. For centralized architecture,

groupware applications might choose to replicate some parts of the functionalities to

local site in order to improve the performance. On the other hand, in replicated

architecture, to support long lasting collaboration, a centralized server can be chosen

to store the collaboration data so that different users can leave and re-join the col-

laboration session anytime they want and still be able to carry on the collaboration.

Traffic-wise, a centralized server can serve as relay-point for broadcasting user inputs

to remote sites, thus reduce the number of communication links from between the

sites and increase the scalability of the system. The downside of this is the delivery

time for messages will increase due to message relay.

4. Summary of Tradeoffs of Architectures

From above, we can see different architectures have their advantages and disadvan-

tages for the resulted groupware applications. Notably sometimes the choice of ar-

chitecture is also related to the hardware . For example, for a given client with

low computation power, e.g. PDA, the groupware application designers might con-

sider avoiding replicating computation intensive components on this device. Thus
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the architecture choice for a specific collaborative application is really related to the

collaborative task and available hardware resources. In this dissertation, we choose a

hybrid architecture to to gain the benefits of both centralized and replicated architec-

tures. On one hand, we replicate the data and coordination services at collaboration

sites for fast local response. On the other hand, a centralized server serves as the

place for persisting shared data and relay messages, which simplifies the design of the

system itself.

D. Coordination Services

An important difference between the single-user applications and groupware appli-

cations is the need for coordination services. Coordination services can have many

aspects and a common decomposition is communication, consistency control, access

control and awareness control [23].

1. Communication

In order to coordinate multi-user activities, communication is a must. Other coor-

dination services are based on communication service . In early systems, groupware

developers build their communication services on top of the TCP/IP protocol stack,

e.g., the group multi-casting service provided in GroupKit [11]. Later, more advanced

communication capabilities are provided by different platforms, e.g. Sun RPC, Java

RMI, .NET remoting, CORBA, and XML based RPC etc. These new communication

capabilities enable developers to build other coordination services more easily without

dealing with the error-prone details of encoding and decoding message protocols.
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2. Consistency Control

Consistence control is an important coordination service in groupware. Its basic

function is to ensure the consistency of the shared data. Since different users oper-

ate individually, their actions have to be “sorted out” in some way to prevent the

divergence of shared data. The most common way of consistency control is to use

lock. Before the shared data is modified, a lock is first applied to exclude other users’

actions on the shared data. The locking scheme is straightforward, but it sacrifices

concurrency of collaborative work. More advanced consistency control such as opera-

tion transformation (OT) [24] and its variations have been devised to support higher

degree of concurrent work while still maintaining consistency of shared data. We will

give more detailed discussion of consistency control in chapter IV.

3. Awareness Control

In general, awareness information provides the context for collaborative work, which

is critical for coordinating user activities [25]. It answers the question of ”who is doing

what at where?” It then can be divided into several basic questions as ”who is collab-

orating, what they are doing, and where they are working” [26]. Presence awareness

is used to indicate whether an user is present in the collaborative environment or not.

Location awareness indicates where the user is working at in the shared environment.

User state indicates current state of user, e.g. “idle”,“available”, or “busy” etc in the

collaborative task. Many different awareness gadgets have been created to answer

one or more aspects of awareness, e.g. radar view, multiple-user scrollbar, online user

list, telepointer.
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4. Access Control

Access control answers the question of “who can access what question” in a multi-user

environment. The canonical discretion access control model used in file systems is

also brought in groupware applications. A matrix of (subject, object, permissions)

is used to describe the access rules for different users to different objects. Dewan

and Shen [27] extends this basic model by introducing access right inheritance, the

viewing right of interface object and negative right in accessing Suite active variable.

5. Session Control

Session control determines if a user can join a collaborative session and what role(s)

he will take in the session. Session control can be explicit or implicit, depending on

whether or not there is an explicit notion of sessions. According to Edwards [28, 29],

session control must be so flexible that collaborators can dynamically join and leave

sessions, and change their roles in a session.

E. Component Technologies

Collaboration transparency systems focus on the reuse of existing applications. This

can be considered as the coarsest granule of reuse of previous development effort.

Unfortunately, collaboration transparency system can not address how to achieve

reusability in developing new groupware applications. On the other hand, reuse,

as one of the most important qualities of software, has been extensively studied by

researchers in the domain of software engineering. Component-based development

(CBD) has been considered as the latest break-through in building reusable sys-

tems. The popularity of different component models in industry has demonstrated

the attractions and power of CBD. Further more, modern object-oriented languages
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such as Java and .Net provide direct support on component-based development at

the language level. Component-based development provides new opportunities both

groupware developers.

Component technologies can be categorized into two kinds - the local component

model [30] and server component model [31]. Popular local component models include

Microsoft COM (Component object Model), and ActiveX control(Based on COM),

Borland Delphi VCX(Based on ActiveX), and Sun JavaBean. Server component

models, also called distributed component technologies, include Distributed COM

or(COM+), CORBA component model, and Enterprise JavaBeans.

Both component models emphasize component composition and replacement us-

ing well-defined interfaces. The idea is that the development process of an application

could be accelerated by purchasing third-party components and integrating them into

the applications. Additionally better versions of these components could replace the

old ones as long as the interfaces do not change. Local component models focus on

building user interface widgets. Server component models emphasize enabling the

communication among objects residing on different networked machines. Usually a

middleware infrastructure is provided to enable remote object invocation transpar-

ently. Besides this basic communication capability, additional services are usually

built atop, e.g. data transaction service, naming and directory services, and security

auditing.

Our focus in this dissertation is client component model, which mostly contribute

to the construction of graphic user interfaces of applications. Traditionally these

components are developed for single-user applications. There are subtle implications

when they work with coordination services, as we will detail in the next chapter.
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F. Summary

In this chapter we overview different groupware architectures and different approaches

to developing collaborative systems: collaboration transparency and collaboration

awareness. Then we introduce the important coordination services which differenti-

ate groupware applications from single-user applications. In the end, we introduce

component technologies which aim to reuse previous development effort.

Collaboration transparency has the main advantage of reusability. Collaboration

awareness, on the hand, can achieve better performance and flexibility. Our objective

is to develop a novel approach which can combine the merits of these two approaches.

On one hand, instead of reusing single-user applications as a whole , we try to reuse

the single-user components in developing new groupware applications. On the other

hand, to achieve the improved flexibility of coordination, the data and coordination

functions will be separated and dynamically coupled in our collaboration infrastruc-

ture. The immediate next two chapters address these two directions, respectively.
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CHAPTER III

SHARED COMPONENT AND ADAPTATION

A. Introduction

To address the flexibility and reusability limitations summarized in the previous chap-

ter, we propose a novel approach that combines the merits of collaboration trans-

parency and collaboration awareness. Our infrastructure provides reusable coordi-

nation services (e.g., consistency control) as well as an adaptation tool for reusing

third-party single-user components. This is achieved by defining a clean interface be-

tween data and control components and providing a runtime system to dynamically

“glue” them together. Our programming abstractions follow a well-established indus-

try component standard, or more specifically, JavaBean. Hence a large and growing

base of components can be reused for developing flexible special-purpose groupware

applications with no or only minor adaptation effort.

Figure 2 shows our abstract model of groupware applications: A groupware ap-

plication mainly consists of (graphic) user interfaces, shared data objects, and coor-

dination services such as access control and concurrency control. Conceptually all

these parts are replicated for responsiveness and availability reasons. Data objects

and coordination services are assumed to follow well-defined interfaces. Flexibility

is mainly exemplified by allowing the users to dynamically attaching coordination

services to different data objects in the same workspace.

The shared component model, its runtime system, the adaptation tool, and a

library of coordination services have been implemented. The runtime system and

adaptable coordination services will be presented in the next chapter. This chapter

presents the shared component model and the adaptation tool.
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Fig. 2. Separating data objects and coordination services to promote reusability.

B. Shared Component Model

We first motivate and define the shared component model and its JavaBean embodi-

ment, and then summarize the runtime system. In the next section, we discuss how

third-party components can be adapted and shared.

1. Modeling Shared Data

First, shared data in a multi-user environment will have to be controlled by different

coordination services to maintain their security and consistency. Coordination ser-

vices, e.g., access control and concurrency control, answer questions such as whether

or not specific property changes can happen on a data object and how to apply

the changes to other replicas of the same object. To enable flexible sharing of data

objects, the collaboration infrastructure must be able to allow for a range of control

policies with different levels of optimism. To achieve so, we need to intercept property

changes before they actually take effects on the data objects.

Secondly, for performance and flexibility reasons, different types of property

changes often have to be distinguished. Even though all property changes can be
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modeled as replacing an old value with a new one, some property changes that are in-

cremental by nature should be modeled differently, such as the increase and decrease

of texts.

Thirdly, data objects often have structures. A composite object may recursively

contain many other objects. Objects have different structures and applications can

have their own way of expressing the relationships between objects. However, the

way of object composition must be standardized for coordination services that access

and control the data objects to be reusable.

Last but not least, the infrastructure must be able to globally identify different

replicas of the same object. Eventually property changes at one site must be applied

on all data replicas at other sites to maintain consistency.

To summarize, a shared data model and its component embodiment must address

the following requirements:

1. A shared data component instance must identify itself using a global unique id.

This id is assigned when the instance is created and it is immutable afterwards.

2. A shared component must provide a well-known interception point for any of

its shared property changes. By hooking up to this point, coordination services

can intercept property changes before they take effects.

3. A shared component must define a well-known way for the coordination services

to apply desired property changes.

4. Shared components that have composite structures must provide a well-known

way for coordination services to access subordinate components.

5. A shared component is encouraged to provide a well-known way of applying

shared property changes atomically as well as incrementally, if it contains shared
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properties that are incrementally changeable.

Currently no client component models mentioned in previous chapter could ac-

commodate these requirements. This is natural since these components are supposed

build the single-user application. Our objective is then to patch existing compo-

nent model to accommodate our requirements. In the following, we address these

requirements in a specific component model. In the scope of this dissertation, we use

JavaBean component model as our testing component model, even though the same

techniques can be used on other client component model such has .NET controls.

2. Java Embodiment

In this subsection, we give Java interface definitions for our share component model.

It includes a shared component interface and a shared container interface, inside

which methods signatures differentiate atomic and accumulative property changes.

The reason to define interfaces instead of default class implementation is because

Java only allows single inheritance in sub-classing. Using interfaces allows more flex-

ibility when the user wants to adapt existing components as shared components.

Nevertheless, we include a default implementation of shared components, called De-

faultSharedComponent, which extends the JDK JComponent class and implements

the ISharedComponent interface. It provides a starting point for developers to build

fresh new shared components.

a. Shared Component

Figure 3 gives a Java specification of the shared component interface. The methods

defined in this interface fall into three groups. The first is a method, getOid(), that

returns the global unique id of the shared component. By this method, each shared
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public interface ISharedComponent {
//(1) to return the global unique id of shared component
public String getOid();

//(2) to modify shared properties
public void insert(String propertyName,

int offset, Object value);
public void delete(String propertyName, int offset);
public void update(String propertyName,

Object oldVlaue, Object newValue);

//(3) to hook coordination services
public void addSharedPropertyChangeListener(

ISharedPropertyChangeListener p);
public void removeSharedPropertyChangeListener(

ISharedPropertyChangeListener p);
public void fireSharedPropertyChange(

SharedPropertyChangeEvent e);
}

Fig. 3. Shared component interface

component instance identifies itself globally. The second group of methods is used

to insert, delete, and update shared properties of this component. They are abstract

operations on shared properties and indirectly define the shared properties. The third

group contains three methods: the first two are for the runtime system to hook up

coordination services with the shared component to intercept its property changes.

The third method is used for happen-before notification of shared property changes.

The SharedPropertyChangeEvent class wraps up three event types and their cor-

responding parameters into one common class definition. Whenever an application

invokes insert, delete, or update method of a shared component, a corresponding

SharedPropertyChange event will be fired out from this shared component by its in-

voking of the fireSharedPropertyChange method. This method iterates all registered

ISharedPropertyChangeListener instances and then invokes the well-known notifica-
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tion method defined by the ISharedPropertyChangeListener interface. The runtime

is itself a ISharedPropertyChangeListener instance which is registered to be listener

of all shared component instances. Whenever a SharedPropertyChange event is fired,

the runtime will be notified before the property change takes effects on the shared

component. Then the runtime delivers the event to corresponding coordination ser-

vices.

b. Shared Properties

We distinguish two types of shared properties. The first type is called atomic prop-

erty. The value of an atomic property is only dependent on the last operation on

this property. For example, the foreground color of a circle only depends on the last

setColor operation on this circle. Apparently, it is enough to use method update

in Figure 3 to characterize the value changes of an atomic property. All JavaBean

properties can be treated as atomic properties.

The second type is called accumulative property. The current value of an

accumulative property may depend on not only the last operation, but also all the

other operations in its operation history. For example, in a text component, its

content can be changed by characterwise insert and delete operations. The final

content depends on all the insertions and deletions that have been executed on the

component.

Atomic and accumulative properties are directly mapped to the atom and in-

dexed properties, respectively, in JavaBean and .Net. In this sense our shared prop-

erty model does not lose any expressive power of the original host component model

(JavaBean or .NET). While all properties can be treated as atomic properties, dis-

tinguishing some of them as accumulative properties can sometimes implement more

fine-grained control or achieve better system performance.
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public interface ISharedContainer extends ISharedComponent {
public void insertChildren(int offset,

ISharedComponent child);
public void deleteChildren(int x);
public ISharedComponent getChildren(int x);

}

Fig. 4. Shared container interface

c. Shared Container

Figure 4 specifies a shared container interface for modeling data objects that have

composite structures. A shared container is also a shared component. Hence it ex-

tends the ISharedComponent interface. Additionally it defines three methods for

retrieving, inserting and deleting subordinate components. By this definition, coordi-

nation services such as concurrency control can be applied on more efficiently based

on the knowledge of the logical structure of the shared component. For example,

as in databases, when the component hierarchy is known, locking can be applied on

specific components as well as branches of the tree structure.

Note the pair of methods, insertChildren and deleteChildren, effectively define a

shared property called “Children” which is an accummulative property. They directly

correspond to the insert and delete methods in the ISharedComponent interface. The

other methods in the ISharedComponent interface are inherited.

3. Runtime System

Implementing the shared component interface does not automatically give Java com-

ponents the capability of being shared. Sharing these components and their property

changes relies on the additional support from the environment that these components

live in. This environment forms the sharing context and provides additional runtime
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support. Figure 5 shows a simplified view of the collaboration infrastructure that we

developed for sharing components. For the purposes of this chapter, we only show

the most relevant modules which support the identified requirements of the shared

component model.

Fig. 5. The EFG runtime system.

The runtime system takes a client/server architecture. The server maintains per-

sistent shared components and performs session control. It contains three modules:

the component store, concurrency control, and the property change enforcer. In ad-

dition to these three modules, the client has an additional module called the property

change interceptor. All clients in the same session communicate with each other and

the server through a conceptual communication bus. The component store at each

site maintains a copy of all shared data components. Each component instance is

assigned a globally unique id when it is instantiated. The concurrent control modules

at all sites together decide how to apply property changes on all data replicas.

The property change interceptor and enforcer modules are the most relevant to

this chapter. The interceptor only presents on the client, because the server does

not interact with users directly to trigger property changes. The interceptor registers

itself as the shared property change listeners of all shared components. Whenever

the application triggers shared property changes, the interceptor will be notified first.
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Then the property changes are pushed into the concurrency control module for neces-

sary computation. The computed property changes are then pushed into the enforcer

module to be applied on the shared components. Because the property changes are

intercepted before taking effects, both pessimistic and optimistic concurrency control

can be implemented.

The shared property change event is a tuple of (OID, PropertyName, Property-

ChangeType,Parameters). Based on OID, the enforcer locates the shared component

instance. Based on PropertyName and PropertyChangeType, the enforcer decides

the execution method signature for changing the property. Based on the execution

method signature, the enforcer converts the generic object types of Parameters into

the specific parameter types required by the execution method. Finally the enforcer

invokes this execution method on this component property dynamically. The whole

process requires explicit support of introspection and dynamical invocation. The en-

forcer also requires that the shared components follow the standard JavaBean naming

conventions.

4. Summary

The shared component model and the runtime system together fulfill the require-

ments identified in Section 1. Once a Java component conforms to the shared compo-

nent model, it can be used for developing groupware applications within our runtime

system. Due to the clean separation between data and control, the runtime is table-

driven: The association of data and control components is stored in a table. As a

result, different control protocols can be dynamically associated with different data

objects in the same workspace, and the same object can be dynamically associated

with different control protocols over time. This level of flexibility has never been

achieved previously in other collaborative systems [32].
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Notably the mechanisms required to implement the shared component model,

e.g., introspection and dynamical method invocation, are widely available in modern

industry component technologies such as JavaBean and .Net. Hence although our

shared component model has only been prototyped in Java, the same results can be

achieved on other platforms as well.

C. Component Adaptation

There have already been a number of client component technologies, e.g., ActiveX

control (based on COM) and .Net control on Microsoft platforms and JavaBean on the

Java platform. Vendors of these component technologies themselves as well as third

parties provide an ever-growing base of reusable components for developing applica-

tions. Unfortunately, those components generally cannot be used directly as shared

components in collaborative systems. The key requirements for sharable components,

as discussed in Section B.1, are generally not satisfied in those components. Thus

adaptation is necessary in order to reuse them for developing groupware applications.

If an adaptation tool is available for converting them into shared components, the

myriad of existing and emerging components can be reused for developing groupware

applications with little effort.

1. Adaptation Tool Design

We developed an adaptation tool for converting components that follow the stan-

dard JavaBean naming conventions into components that additionally conform to

our shared component model. It is worth noting that the tool does not need the com-

ponent source code. Instead, it generates a subclass of the original component directly

from its byte code. The subclass implements the ISharedComponent interface. By
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Fig. 6. The component adaptation process

default, all component properties are declared as shared properties. However, this

does not always make sense. For example, the background color of a shared text

component might be shared in some applications. But it might become a personal

preference that should not be shared in some other applications. Hence the adaptation

tool should allow the users to decide which properties are to be shared.

Fig. 7. Interface for setting adaptation parameters

Component adaptation generally goes through the process as shown in Figure 6.

The adaptation tool implements a graphical user interface to provide guidance at each
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step. The user (developer) is first prompted to provide name of the source component

and the name, package, and output directory of the target component, as shown in

figure 7.

Next, properties of the source component are introspected and presented to the

user. Then the user selects the set of properties to be shared. The default option is

to share all properties of the component. Manual adaptation is allowed to achieve

more flexibility, as shown in figure 8

Fig. 8. Interface for selecting shared properties and types

In the end, source code of the target shared component is generated and user

can add additional code and do the compilation to check if there is any error, and

then output to the specified directory, as shown in figure 9.

Code to implement the shared component interface is actually very simple. Be-

cause Java does not allow for multiple inheritance, however, we have to provide the

implementation source code in templates. As shown in Figure 10, these templates are

used in the final step in the adaptation process. Specifically, there are four templates,

namely, the template SharedComponent, SharedContainer and their corresponding
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Fig. 9. Editing and compiling generated shared component code

BeanInfo classes. A BeanInfo class is used to describe the set of shared properties of

a corresponding shared component, which is the convention in JavaBean.

As an example, Figure 10 shows the template source code of the shared com-

ponent class. The listeners vector is used to store the registered IShareProperty-

ChangeListener instances. As shown in Figure 5, it only includes the runtime, or

more specifically, its property change interceptor module in our current implementa-

tion. Variable oid is the global unique id of a shared component instance. Both of

oid and listers will be initialized when the shared component is instantiated. The

default constructor invokes getUUID(), which is provided in a Utility class in the the

Framework package to generate the global id.

The template contains special markups in the form of @markup@. Each of these

markups will be replaced by the adaptation tool using the actual values when the

target component source code is generated. These markups are configured in the

beginning of the adaptation process, including the package name, shared component

name, and base component name. The newly generated shared component class
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Fig. 10. Template source code of the shared component implementation

inherits the original component class and implements the ISharedComponent interface

whose boilerplate code provides the default implementations.

2. Experiments and Analysis

Using our adaptation tool, we successfully and automatically adapted all Swing com-

ponents (derived from the JComponent class) and all AWT components (derived from

the Component class) that come with JDK. The experiments used all default settings,

e.g. all original properties are treated as shared properties and all shared properties
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are atomic. All the generated shared component source passed Java compilation

without any exception.

However, we note several problems with automated adaptation that entail man-

ual intervention by the developer. These problems are not necessarily limitations of

the adaptation tool. Some of them may disappear as new conventions are established

in JavaBean, while some others must involve context-sensitive decisions by human

users. We document our experience as follows.

First, default adaptation typically results in an overwhelmingly large number of

shared properties. For example, a converted JButton component contains as many as

87 properties. In most cases, not all the properties of a component need to be shared

when used in a groupware application. Transmitting a lot of unnecessary property

changes across the network can degrade application performance and network effi-

ciency. Current component models such as JavaBean have no standard convention for

describing the usage of properties. It is impossible at this stage to automatically de-

cide shared properties. In fact, even the same property of a component may be shared

in one application while not shared in another. Only the developer knows whether a

property should be shared in a particular groupware application. The adaptation tool

allows the developer to check shared properties via a simple spreadsheet-like GUI.

Second, manual adaptation is also necessary when the developer wants to add

additional shared properties that do not exist in the original component. Sometimes

even although the properties do exist, the developer still needs to create virtual prop-

erties to simplify control. For example, each Swing component has properties X, Y,

Width, and Height, which describe the relative coordinates of the component in its

container. Instead of using these four properties directly, we may create one virtual

property called boundbox that logically congregates them. As this kind of adaptation

often happens on user interface components, we provide the virtual property and its



35

implementation in separate templates for the developer to choose during adaptation.

Third, manual adaptation is generally required to support accumulative proper-

ties for fine-grained sharing. Take the “text” property of the JTextPane component

as an example. By default it is adapted as an atomic property implemented by an

update method. The adaptation tool can create additional insert and delete method

signatures to implement it as an accumulative property. However, the body of these

two methods must be filled in by the developer manually because their actual imple-

mentation is type-specific. For example, Java types such as Vector and String provide

different functions for inserting and deleting elements.

Fourth, manual adaptation is also required when the desired property changes

happen in an inner component but are not exposed by the original outer component

developer. For example, the JTextPane component uses the StyledDcoment compo-

nent as its model (due to the well-known model-view-controller or MVC paradigm).

Incremental changes of the document, e.g., the insertion and deletion of characters in

the document, are emitted as model events, which are not exposed by the JTextPane

component. Thus interception of these incremental changes has to be done at the doc-

ument model level. Fortunately, the StyledDocument class provides a hooking point

through function setDocumentFilter. The developer can set a custom document filter

that implements the insert and delete methods.

Fifth, manual adaptation is mandatory when the shared use of a component

causes subtle side-effects on the user interface. Consider again the JTextPane com-

ponent. When the model-level insertion and deletion are intercepted, transformed,

and eventually applied say by a concurrency control protocol, the caret is not moved

automatically as usual. This may cause subsequent insertions and deletions by the

user to happen at the wrong position. This is because, in the JTextPane component,

the view is implemented by the JTextPane class itself, while the model is implemented
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by the StyledDocument class. When property changes work around the JTextPane

methods, the caret position maintained in JTextPane is thrown out of sync. There-

fore, in the adapted insert and delete methods, we need to calculate the right position

of the caret and adjust the caret every time after an incremental property change is

applied.

The amount of work increases progressively in the above five cases. However,

manual adaptation mostly can be done via well-documented APIs and does not re-

quire analysis of source code. Even in the fifth case, it only takes about 100 lines

of code in total. The kind of indepth plumbing work is only required on a few (text

editing related) JDK components when fine-grained sharing is really needed. This

represents a general tradeoff in collaboration transparency: adapting (reusing) ex-

isting applications and components saves the overall engineering costs but often at

the loss of flexibility. When truly advanced features are desired, extra effort cannot

be avoided. Nevertheless, the manual adaptation in the fifth case results in a group

editor, which would require months of work if it were built from scratch.

D. Discussions

In this section we first show the flexibility achieved in our work and then compare

our results with related approaches in terms of flexibility and reusability.

1. Achieved Levels of Flexibility

When a single-user component is not adapted to provide the shared component in-

terface, as in [4, 5], we can still implement a component sharing mechanism by the

transparent window techniques to intercept low-level user input events before they

take effects. This mechanism can be provided as part of the runtime system for users
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to share specified components. Due to the lack of object id, the runtime system

has to do extra bookkeeping to track different replicas of the shared component. In

the simplest case, when there is no component-specific knowledge for the mechanism

to understand the low-level events, we have to maintain consistency by replaying

these events verbatim to all the component replicas. As in typical replicated applica-

tion sharing systems [3, 5], however, a turn-taking protocol must be followed by all

participants to manipulate the shared component. Nonetheless, concurrency control

is allowed at the component level, which means different components in the same

workspace can be locked by different users. Furthermore, if the low-level events can

be understood and translated as in [14, 15], more concurrency is allowed on the same

shared component.

Using mechanical (or default) adaptation, a shared component can be automat-

ically generated out of an existing single-user component. There is no extra coding

effort required from the developer except some simple configuration in the beginning

of the adaptation process, e.g., to provide output component name. Despite the large

number of shared properties, much flexibility can be achieved with the generated

component. Now that the results of happen-before interception are high-level prop-

erty change events instead of the low-level window events, concurrency control can

happen at component as well as property levels. That is, different users are allowed

to work on different properties of the same shared component at the same time.

With manual adaptation, much more flexibility can be achieved. For example, if

some shared property is turned into accumulative, only the incremental changes are

transmitted over the network. Moreover, sophisticated concurrency control methods

such as operational transformation (OT) [33, 34] can be applied on this property to

allow for even more concurrency. With OT, multiple users are allowed to manipulate

the shared accumulative property simultaneously without being blocked. Any user



38

can edit any part of the content at any time and all modifications are preserved in

the final result.

Therefore, with no or limited adaptation, our work allows collaboration-transparent

components to be shared under a range of strict and relaxed WYSIWIS policies. Con-

currency control can be applied on individual components as well as properties. With

support from the runtime system, control protocols can be dynamically switched [32].

2. Comparison with Related Work

In general the presented work takes a middle ground between collaboration trans-

parency and collaboration awareness. It provides an adaptation tool for transforming

third-party components to implement a shared component interface. It also provides

middleware services such that the adapted components can be used for constructing

groupware applications that allow for flexible sharing at component and property

levels. The adaptation is done without modifying source code of the original compo-

nents.

By comparison, traditional collaboration transparency systems such as [13, 4,

3, 5, 14, 15] aim to share a single-user application as a whole instead of individual

components. Typical application sharing systems such as [13, 3, 5] can only allow

for strict-WYSIWIS mode of collaboration. Although [4] is able to replace certain

components in an application with custom multiuser versions, relaxed WYSIWIS is

only limited to these custom components while the rest of the shared application

is still strict-WYSIWIS. Other domain-specific application-sharing systems, such as

[14, 15, 16], can also implement flexible collaboration at the application level. How-

ever, they require much higher engineering effort to adapt and reuse single-user ap-

plications. Moreover, due to reliance on application-specific knowledge, reusability of

their infrastructures is generally low.
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In [18], it is also possible to adapt components to support component and prop-

erty level sharing policies. However, it requires the source components follow an

extended naming convention (which is different from the JavaBean standard) but

does not address how to translate the myriad of components that fail to observe their

naming convention. Moreover, it relies on object diffing for implementing happen-

before interception of property changes, which suffers from performance problems. It

is admitted in [18] that their work is not suitable for synchronous collaboration.

Traditional collaboration-aware approaches, such as [8, 9], define custom pro-

gramming abstractions that tightly couple data and control, without addressing the

large base of components that do not observe their programming abstractions. By

comparison, in our work, the programming abstractions strictly follow the standard

JavaBean component model, data and control are separated components, and a tool

is provided to translate components that do not observe our shared component model.

Hence more flexibility and reusability are achieved.

Specification-based approach has been used to explore automatic component re-

trial and adaptation for reuse, e.g. [35], [36]. However, these approach based on the

assumption that a component has the needed specification, e.g. the state based spec-

ification, for both the problem and component. However, this assumption does not

hold for most of the existing popular components. They also usually didn’t address

the specific adaptation needs of component for reuse in groupware applications.

E. Conclusions

We claim the following two contributions in this chapter: First, we propose a new

shared component model for building flexible groupware applications. Based on this

model, coordination services are decoupled and dynamically associated with shared
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data objects at different granules. Secondly, a new adaptation tool is provided for re-

purposing third-party components into shared components without modifying their

source code. Notably all the source components are only required to follow standard

industry component models. Much flexible sharing is achieved with no or minor

manual work. Techniques required to implement the proposed model and system are

generally available in modern component technologies such as .Net and JavaBean. As

a result, the large and ever-growing base of components can be reused for constructing

collaborative systems.
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CHAPTER IV

ADAPTABLE COORDINATION SERVICES

A. Introduction

In the previous chapter, we motivate the shared component model and provide its

Java embodiment. A component adaptation tool is also provided to convert existing

single-user component to be sharable components. In this chapter, we look into the

collaboration infrastructure providing reusable coordination services. Our main focus

is the adaptable consistency control issue. As noted in [37], consistency control in

interactive groupware is both a technical problem and a human problem. Traditional

approaches cannot be applied directly in groupware because the distributed system in

question must include support for human social protocols. Specific consistency control

methods impact groupware interfaces and ultimately groupware users. Therefore the

choice of consistency control must reflect the way people actually work together. The

human and technical issues must be considered together because the design of user

interfaces and the choice of consistency control algorithms often compromise each

other.

Significant progress has been made in the groupware field over the past decade in

devising consistency control mechanisms that appear more effective for people, e.g.,

[38, 39, 37, 33, 20, 40, 41, 42]. The rich variety of consistency maintenance methods

in the literature is testament to the fact that no single approach is applicable in all

systems or application domains. For example, turn-taking protocols are generally es-

tablished in application sharing systems [19], one of the most accepted collaboration

technologies. However, studies [4, 43] show that they are not as effective for intellec-

tual work due to the low level of concurrency. Operational transformation algorithms
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[44], on the other hand, are widely implemented in group editors because they are able

to achieve high responsiveness and concurrency. However, they may not be effective

for large or unfamiliar groups due to heavy reliance on the users’ conscious following

of specific social protocols for coordination [1, 37]. Specific consistency protocols each

have their own niche where they are more effective than in other situations. Ideally

we would like to use the most effective protocol for each collaboration scenario, and

apply a protocol only when the scenario matches its design tradeoffs.

Early collaborative systems generally focused on exploring the innovative aspects

of a specific consistency control algorithm or framework. As a result, design consider-

ations are usually biased towards some collaboration scenarios and are not sensitive

to the situated and dynamic nature of cooperative work [45]. The lack of flexibility

in these systems has two consequences. First, when a consistency protocol designed

for one scenario is used with another, system efficiency may be undermined because

tradeoffs differ significantly from expectation. Second, a consistency protocol that is

effective for one user group may be disastrous for another in which the participants

have drastically different cultural background or personalities. “Fascist” groupware

that fails to achieve the desired level of flexibility often suffer from low acceptance or

organizational resistance [46].

Therefore the consistency control mechanism of collaborative systems should be

implemented such that it is possible for the users to choose the “right” consistency

protocols when the needs emerge, instead of trying to prescribe possible protocols

and scenarios [29]. Technically, consistency control requires maintaining consistency

among replicas of shared data. When the same set of data objects is manipulated

in different scenarios, being able to switch between consistency protocols necessarily

implies a clean separation between data and control. That is, only when consistency

protocols are decoupled from the data or interfaces they control, is it possible to
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implement a reusable library of consistency protocols that can be chosen to apply in

specific collaboration scenarios. The question is how.

Most previous collaborative systems are only able to provide limited adaptability

in consistency maintenance. The only type of adaptation allowed at run time is often

through setting parameters to choose between different policy variations within the

provided consistency protocols. This is the case in most groupware frameworks, e.g.,

[20, 11], and groupware applications, e.g., [47, 48]. The reason is generally that they

tightly bind the consistency protocols, such as locking, serialization, and operational

transformation, to the shared data or interfaces in the system which they control.

As a result, they are not able to address the needs for applying different consistency

protocols on different shared data objects at the same time or on the same objects

over time, as have long been motivated in the literature, e.g., [38, 37, 7].

This chapter proposes a novel framework that supports adaptable consistency

protocols. Due to the separation between data and control, consistency control proto-

cols can be dynamically associated with the data or interface objects that they control

at various levels of granularities. The framework provides services to facilitate the

dynamic association and switching of protocols. As a result, different objects in the

same workspace can be controlled by different consistency protocols, and the same

objects can be controlled by different protocols as the collaboration needs change. All

these features are achieved at run time without modifying source code.

Our implementation follows the established component-based software engineer-

ing practices, e.g., [18, 31, 49, 9, 50, 51, 52]. Adaptable consistency control entails a

componentized design of data, protocols, and the “gluing” code that facilitates the in-

teraction between data and protocols at run time. These three types of components,

on the other hand, can often be reused across different collaborative applications.

Following the groupware engineering principles noted in [23], our approach has been
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prototyped over the past three years in a groupware framework called EFG (Evolv-

able Framework and Groupware) and a collaborative application environment called

EXEC (see next chapter for detailed description of EXEC and its extension). Both

the framework and the groupware applications developed atop are component-based

such that they can evolve together.

The rest of this chapter is organized as follows: In Section B we discuss how

to model user interaction in a shared workspace application and the behavior of

consistency control. After that, Section C describes the reusable coordination services

provided in the EFG framework. This is followed by a comparison with related work

in Section D. Finally, Section E concludes contributions of this chapter.

B. Consistency Protocol Modeling

Adaptable consistency control entails a well-defined interface between shared data

and protocols. Not to deviate from our main research focus, we assume that all

shared data objects are replicated in the system. Users collaborate by interacting

with a collaborative workspace that visualizes the shared data in some way. In this

section we model consistency protocols, and data-protocol their interaction.

1. User Interaction

The finite state machine (FSM) in Figure 11 depicts the typical lifecycle of a con-

sistency protocol as a three-stage process: At stage one, the user applies a protocol

to a shared data object; at stage two, concurrent changes are made on the object

under the control of the protocol; and at stage three, the protocol is detached from

the object so that it no longer controls concurrent manipulation of the object. In

most existing systems, stages one and three are performed by the system developer
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at design time. If it turns out that a protocol is no longer appropriate for the appli-

cation scenario, the developer often has to make a major system redesign such that

the object is controlled by a different protocol. Due to the tight coupling between

data and control in traditional systems, it is generally difficult for them to support

the dynamic switching between different types of consistency protocols.

Fig. 11. Lifecyle of a consistency protocol.

However, if data and control are separated, stages one and three will become

easier, even without incurring source-level modifications or redesign. A consistency

protocol can be attached to a shared object at stage one when the needs arise, and

then detached from the object when it is no longer needed. The attach and detach

actions at stages one and three can be either implicitly (automatically) triggered by

the system or explicitly (manually) triggered by the user. Since consistency protocols

are often parameterized for the user or the system to choose between different policy

variations, the parameter settings during their lifecycle can also be implicit or explicit.

If the triggering is explicit, we say the consistency control mechanism is adaptable; or

if the triggering is implicit, we say it is adaptive.

From the user’s perspective, stages one and three each have only one action to

attach (enable) or detach (disable) a protocol. At stage two when the protocol is
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effective, however, the user may perform arbitrary number of operations to cause

state changes on the object. Any action (attach, detach, or operation) the user

performs may take some time for the system to respond and for the user to perceive

its (visual or auditory) feedback on the user interfaces. Before the user moves on

to issue the next action, he may willingly or unwillingly be blocked until the system

response to a previous action is perceived. Or the user issues the next action in a

nonblocking manner, i.e., without being held back for a response to previous actions.

This observation is consistent with the model of [38] which suggests that, during a

user’s expected response time of 50-100ms, he may often issue several actions in a

row before perceiving response to the first action. In other words, it may not be

necessary or effective to execute every action in a blocking manner in an interactive

system. Some flexibility should be allowed.

Fig. 12. B/NB actions at each stage

Hence we refine the three-stage lifecycle FSM into the form of Figure 12, which

highlights the blocking (B) and nonblocking (NB) semantics of user actions. Based

on this new FSM, we can formulate four major action paths in regular expressions in

Table II.
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Table II. A model of four major action paths

Stage one Stage two Stage three

B (B|NB)* B

B (B|NB)* NB

NB (B|NB)* B

NB (B|NB)* NB

Stage two can contain arbitrary number of user actions and each of them can

be blocking or nonblocking. In a regular expression this is represented as (B|NB)*,

standing for a sequence of zero or more interleaved blocking or nonblocking actions.

It is general enough to generate numerous paths, e.g., (B)*, (NB)*, (3NB·B)*. Specif-

ically (B)* represents the case that all actions are uniformly executed in a blocking

way. (NB)* means that all actions are nonblocking. (3NB·B)* means that, after every

three nonblocking actions in a batch, a fourth action will be executed in a blocking

way. If we take the (B)* mode as a pure pessimistic policy and (NB)* as a pure

optimistic policy, then between these two extremes (B|NB)* effectively expresses a

continuous spectrum of policies of different degrees of optimism.

Note the actual behavior of consistency control protocols are usually beyond the

expressive power of regular expressions. For the purposes of this dissertation, however,

it suffices to use regular expressions only for modeling the observable behavior of

protocols from the framework perspective.

a. A Taxonomy of Policies

To testify the generality of our interaction model, here we examine some consistency

protocols that are frequently referenced in the literature and implemented in many
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collaborative systems. Example protocols are locking, serialization, and operational

transformation. Each protocol has a number policy variations. Our taxonomy extends

that of Greenberg and Marwood [37].

Locking - The locking protocol maintains consistency by excluding actions from

users who are not holding the lock. In this way, only operations from the current lock

holder are allowed to cause state changes to the shared object. Turn-taking or floor

control protocols [19] are but coarse-grained locking protocols that lock the whole

application [4]. Three variations of locking are given in [37] based on the level of

optimism in requesting and releasing the lock, namely, pessimistic, semi-optimistic,

and optimistic locking. A pessimistic policy blocks the user’s further actions when he

requests or releases the lock. A semi-optimistic policy only blocks the user’s actions

when he releases the lock. An optimistic policy blocks neither request nor release

actions. Table III maps these policies into our interaction model. Apparently the

taxonomy in [37] does not address user actions at stage two.

Table III. Mapping of locking policies

Locking Stage one Stage two Stage three

Pessimistic B B B

Semi-optimistic NB NB B

Optimistic NB NB NB

Serialization - The serialization protocol maintains consistency through a total

ordering of concurrent operations targeted at the same object. There are basically

two policy variations [37]: optimistic and pessimistic. While pessimistic serialization

blocks every user operation until it is guaranteed to be in the right order, optimistic

serialization allows user operations to execute locally and then undo their effects after
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they are detected out of order. Table IV shows how these two policies map into our

interaction model. The taxonomy in [37] only addresses actions in stage two.

Table IV. Mapping of serialization policies

Serialization Stage one Stage two Stage three

Pessimistic - (B)* -

Optimistic - (NB)* -

Operational Transformation - Operation transformation (OT) [44] is a pure

optimistic consistency protocol. Any local operations are allowed to execute in a

nonblocking manner. OT differs with optimistic serialization on how to repair in-

consistencies. Optimistic serialization always undoes operations that are out of order

and then redo them by a global order. OT transforms remote operations such that

concurrent operations can be executed in any order and at the same time their effects

relation is preserved [33]. Table V maps OT into our model.

Table V. Mapping of operational transformation

OT Stage one Stage two Stage three

Optimistic - (NB)* -

In the above analysis, locking seems to map closer to our model because locks

have to be requested (attached) and released (detached), implicitly or explicitly, as

a convention. Traditional systems that implement serialization and OT protocols do

not address stage one and stage three issues. The reason is that, in general, they only

consider application-wide concurrency control policies. The protocols automatically

take control of the shared data once the application is launched. Attach and detach
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actions are taken at the source level. In previous work, the protocol and policy deci-

sions are usually made by developers before hand, not by users at run time. Obviously

we can consider B/NB policies at both stages one and three for any protocols under

our framework.

In our model, all known protocols can be adapted to support a continuous spec-

trum of policy variations. Policies can also be chosen at stage two. Even under a

pure pessimistic policy, the user may not wish to synchronize every single operation.

Usually a batch of operations can be accumulated and propagated together to save

bandwidth and reduce interferences between users [38]. On the other hand, an op-

timistic policy does not necessarily mean that users do not want to be blocked at

all. For example, discussions in [47, 53] reveal a variety of synchronization policies in

optimistic serialization and OT protocols. For awareness reasons, a balance is often

sought in collaborative systems such that synchronization should not be delayed for

too long. Hence policies such as (3NB·B)* may often be more effective in practice

than pure (NB)* policies.

It is also worth noting that our taxonomy is intended to model consistency pro-

tocols for the purpose of supporting adaptable control. The above protocols each

have different merits and application domains. Boundaries between them are often

not as distinctive as they might appear. For example, although allowing for highly

concurrent and interactive collaboration, OT is applicable only when operations are

commutative after transformation. As revealed in [54, 34], serialization is used in

OT to handle conflicting or non-commutative operations that intend to change the

same property of the same object. Locking can also be integrated with OT to achieve

more flexibility, as shown in [41]. In addition, other types of consistency control pro-

tocols exist in collaborative systems, such as merging [55] and multi-versioning [56].

Nonetheless these facts do not really change the way these protocols and their varia-
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tions interact with the framework, although some of them may have more complicated

user interfaces in actual implementation.

b. General Implications on Design

The interaction model provides an important guideline for designing our adaptable

concurrency control framework such that it is able to accommodate a spectrum of

consistency protocols. It will serve as a contract between the framework and specific

consistency protocols, for devising services to support the plug-n-play of protocols,

and for devising interfaces for the protocols to receive such services. The follow-

ing analysis in turn motivates the needs for meta protocols, the interfaces between

framework and protocols, and undo mechanisms.

In a distributed workspace, any user action in the above three stages can clash

with concurrent actions from peer users. For example, two users may concurrently

attach different consistency protocols to the same data object. While operations at

stage two to change object states are controlled by specific consistency protocols,

the attach and detach actions are apparently beyond the duties of these consistency

protocols. Therefore, in addition to the “ordinary” consistency control protocols,

“meta” protocols must be implemented in the system for maintaining consistency

and resolving conflicts at stages one and three.

The B/NB semantics at different stages are interpreted by protocols at different

levels. Consistency protocols are on their own to process actions that are directed

to them. They are also responsible for providing the interfaces for users to choose

between policy variations, e.g., by setting protocol parameters. In other words, it

is the specific consistency protocols rather than the framework that interpret the

regular expression of (B|NB)* at stage two. For example, optimistic serialization

and operational transformation protocols usually have explicit rules for controlling
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operation synchronization among collaborating sites, as noted in [47, 53]. When cer-

tain conditions are satisfied, the system needs to synchronize a batch of nonblocking

operations which are probably combined. However, it is difficult and inefficient to

further externalize these conditions and their checking mechanisms from specific con-

sistency protocols and formalize them at the framework level. It is also dangerous for

the framework to bind itself with specific semantics of data objects and consistency

protocols.

To interpret the semantics of B and NB actions, we can conceptually imagine

an input queue inside each of the (“meta” and “ordinary”) consistency protocols.

Actions at stages one and three are queued by the meta protocols, while actions

at stage two are queued by the ordinary protocols. B means the current action is

processed by the corresponding protocol synchronously in collaboration with remote

sites, and the next action in the queue will not be processed until the processing of

the current one is finished. NB means the current action is dequeued and executed

immediately at the local site while the protocol is still processing it asynchronously

with collaborating sites. However, the next action in the queue is not blocked by this

background processing.

In addition, to support nonblocking interaction, it is necessary to provide “undo”

mechanisms in the framework. Nonblocking policies can in general achieve better local

response than blocking policies. However, while nonblocking actions are allowed to

proceed before consistency is ensured, it may turn out in the consistency protocol

(e.g., optimistic serialization or locking) that a nonblocking action should not have

happened. In that case the system must be able to restore the object state to a

previous one by undoing the effects of wrongly presumed actions. This requirement

has also been confirmed in previous work, e.g., [37]. Note the different purposes

between the system-generated undo here and the user-initiated undo in [42].
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2. Interface of Consistency Protocols

From the above analyses, we conclude that the framework (or more specifically, the

meta protocol) is responsible for resolving actions in stage one and stage three in our

user interaction model. In this subsection, we look into the (“ordinary”) consistency

control protocols themselves, which are responsible for resolving stage-two user ac-

tions. When an action gets deposited into a consistency protocol, the protocol can

treat the action differently based on the blocking (B) or nonblocking (NB) semantics

it poses on the action.

If the protocol interprets that this action should be treated in a nonblocking way,

then it should be executed immediately by the framework. However, to indicate that

it is really being resolved, a “pending” notification should be emitted to notify the

framework. For example, the application receiving the pending notification can some-

how indicate on the user interface that this action is still being resolved, although it

has been seemingly executed. This “pending” notification could be useful for users to

make sense of what is going on when this action is eventually “vetoed” by the consis-

tency protocol and its effects are undone from the user interface. If the resolution is a

success, however, a “confirmed” notification will be sent to the framework to indicate

that this NB action does not need undone.

On the other hand, if the protocol determines that this action should be treated

in a blocking way, no subsequent action shall be taken until this blocked action is

resolved by the consistency protocol. If the resolution is a success, the action will be

executed and a confirmation notification will be sent. Otherwise, a veto notification

will be sent. Notably, there is no action to be undone in this case since this action

has not been executed yet.

Figure 2 defines the Java interface that all (meta and ordinary) consistency
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public interface IConsistencyProtocol {
//(1) to get the unique id and description of this protocol
public String getProtocolId();
public String getProtocolDescription();
//(2) to deposit user actions and to register/deregister the protocol
public void deposit(String protocolOwner, AbstractUserAction action);
public void addUserActionResolutinListener(IUserActionResolutionListener l);
public void removeActionResolutionListener(IUserActionResolutionListener l);
//(3) to control the resolving of user actions
public void startResolution(int queueId);
public void suspendResolution(int queueId);
public void resumeResolution(int queueId);
public void stopResolution(int queueId);
//(4) to undo all actions resolved by this consistency protocol
public void undo();

}

Fig. 13. Consistency protocol interface

protocols are assumed to implement in our framework. The first group of two methods

are to return the unique id and the high level description of a consistency protocol,

respectively. In the second group, the deposit method is called by the application

to deposit user actions into the consistency protocol. The other two methods are

for the application to register/deregister itself as an action resolution listener. The

application can communicate with the protocol only when it is registered as a listener.

Methods in the third group and the fourth group are called by the meta protocol when

the application attaches or detaches an consistency protocol. We will give more details

of how these methods are used in Sections 3 and 4.

a. Collaborative Workspace Applications

We model a collaborative workspace application as a container containing shared

components. This conceptual model is compatible with modern (form/window based)
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interactive applications. For example, in Java, almost all form-based applications have

a root container JFrame which contains other Swing components. The contained

components can also be containers that contain other Swing components. Similarly

in .NET, window-based applications also have class Form (different .NET languages

may have different names) as the root container.

These components often form a hierarchical structure. There are mainly two ways

to construct components: inheritance and composition. For example, Java allows

developers to build a new JavaBean component by extending the JComponent class or

its subclass and by composing other JavaBean components. In .NET, the Component

class serves as the base class of all components. Inheritance and composition naturally

form the containment relationship between components. With a root container, all

components in an application form a component tree.

public interface ISharedContainer extends ISharedComponent {
public void insertChildren(int offset, ISharedComponent component);
public void deleteChildren(int offset);
public ISharedComponent getChildren(int offset);

}

Fig. 14. Shared container interface

As shown in Figure 14, we model a shared container as a shared component with

an accumulative property named “children”. Three methods are defined such that

a shared container can add a subcomponent into itself by method insertChildren,

remove a subcomponent from itself by method deleteChildren, or get a subcomponent

from itself by getChildren.

With this interface, the framework runtime system will be able to traverse a

shared container and dynamically reflect all its descendant components. For the pur-

poses of this dissertation, we assume that all shared data components implement the
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ISharedComponent interface. In future work we will consider how to transparently

adapt third-party components to provide the same interface.

C. Framework and Meta-Services

In the previous section we have discussed the modeling of shared data and consistency

control protocols in collaborative workspace applications. In this section, we describe

our adaptable consistency control framework, which at run time dynamically binds

the separated data and protocol components and facilitates their interaction. We

will discuss in turn its architecture, the support of multi-granularity protocols, the

processing of user actions, and the working of meta protocols. This framework is

actually part of a larger initiative to build evolvable framework and groupware (EFG)

using a component-based approach. In this dissertation, we refer to the part in EFG

that supports adaptable consistency control as EFG for brevity.

Fig. 15. Architecture of the EFG framework
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1. Architecture Overview

EFG takes a client/server architecture as shown in Figure 15. The server maintains

persistent shared data and performs session control. There are five modules in the

server that are relevant to implementing adaptable consistency control: component

store, protocol manager, protocol runtime, meta-protocol coordinator, and action

queue. While sharing these five modules with the server, the client has an additional

module called the shared property change interceptor. All clients in the same session

communicate with each other through the server on an abstract communication bus.

The users interact with each other via the groupware application that uses services

provided by the EFG client at each site.

The data distribution service replicates the shared data and collaboration func-

tions from the server to the client each time a client is launched. Currently we use

Java serialization and Java RMI as the replication mechanism. (Notably similar

mechanism could be found .NET framework). Java serialization has known problems

of version compatibility in byte-code formats. More general serialization mechanisms

will be used to replace Java serialization, e.g., XML-based serialization. The shared

data must persist across multiple collaboration sessions. Similar to data distribu-

tion service, we use the Java serialization as for implementation. In the following we

describe these modules and their interaction.

Component Store: it maintains all the shared data components in a table

with the schema of <UID,LocalID>, where UID is a universal unique id of the

component instance and LocalID is the local reference to the component instance.

Protocol Manager: it maintains a property-protocol table that associates

shared component properties to consistency protocol instances. The schema of this

table is < ComponentId, PropertyName, ProtocolId >, where ComponentId is the
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universal id of a shared component, PropertyName is a shared property of the com-

ponent, and ProtocolId identifies a consistency protocol instance from a table main-

tained by the protocol runtime module. The protocol manager also maintains several

other tables for implementing multi-granularity protocols and default protocols, as

will be discussed in Section 2.

Action Queue: it stores user actions, including attach, detach, and property

changes. The action queue in the client stores both local and remote user actions.

Since the server does not have a local application instance, the server action queue

only store remote actions.

Shared Property Change Intercepter: it intercepts shared property change

events such as insertions, deletions and updates that are emitted from shared com-

ponents in the client, right before the changes really take effects on the component

states. Then it pushes these events into the action queue.

Meta-Protocol Coordinator: it runs in both the server and the clients to

implement meta protocols that will be described in Section 4. The application calls

the client meta-protocol coordinator to issue consistency protocol attach and detach

requests, which are resolved by the meta protocol. The server meta-protocol coordi-

nator acts as the moderator in the meta protocol execution.

Protocol Runtime: it maintains the consistency protocol instance table, the

fields and their meanings being shown in Table VI. The state field reflects the meta-

protocol resolution of actions to attach/detach this consistency protocol, where vetoed

and detached protocols can be safely removed from the table.

The groupware application built with the EFG framework resides in the same

address space as the client at each site. It talks to the client through the service

APIs provided by client. Actually these services are merely an aggregation of ser-
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Table VI. The consistency protocol instance table

Field Meaning

ProtocolId global Id of this protocol

ProtocolInstance local reference of this protocol instance

State Active - the attach of this protocol is a success

and it is valid for resolving property changes

Vetoed - this protocol is inactive because the

attach of this protocol is vetoed

Pending - attach of protocol is being resolved

nonblockingly

Detached - inactive because it has been suc-

cessfully detached

Owner ID of the client that attaches the protocol

<Seq1, Seq2, ..., Seqn> The numbers of local property changes from dif-

ferent clients that have been confirmed by this

protocol where n is the number of clients

Lease Time to expire

vices provided by the client’s internal components (modules). They largely fall into

the following four categories: First are methods for retrieving the shared data com-

ponents, querying the available consistency protocols and protocols attached to a

given shared property. The second type of methods are called to attach or detach

consistency protocols. The third type of methods are called by the application to

register or deregister itself as the user action resolution listener to get notified of reso-

lution results of user actions, including attach, detach, and property changes (see the

IConsistencyProtocol interface in Fig. 2). The fourth type of methods are called to
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register or deregister the property change interceptor as the shared property change

listener of shared components (see the ISharedComponent interface in Fig. 3). In

addition, we also provide APIs in the client such that the application can proactively

push the property changes into the action queue directly, instead of via the change in-

terceptor. All these APIs are just wrapper methods of the corresponding component

functions.

Now we briefly describe how the system is started and how the server, client

and application modules interact at run time. The EFG server initializes first and

reads in the persisted shared data components from the external data store. After

that, when an application is launched, it first starts the client. The client connects

and registers itself to the server and replicates the shared data components from

the server. After that, the application visualizes the shared data components and

available consistency protocols on its GUI. After the application initialization finishes,

the user can then start to issue commands to attach/detach consistency protocols and

change the shared component properties. For attach/detach requests, the client meta-

protocol coordinator will talk to the server coordinator to resolve the requests. The

resolution results will be sent to the application. For shared property changes, the

property change interceptor will catch the changes and push them to the action queue.

Then it will be dispatched to corresponding consistency protocol instance. Confirmed

changes will be propagated to remote collaboration peers for execution. At the same

time, the property change resolution will be sent to the application. Note that the

visualization of shared data and resolution results is application-specific and beyond

the scope of this disseratation.
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2. Multi-Granularity Protocols and Performance Issues

The property-protocol table in the protocol manager module is extended for support-

ing multi-granularity protocols (MGP). In this subsection, we discuss how MGP is

implemented and how performance issues that ensue are addressed. However, due

to the similarity between MGP the concept of multi-granularity locking (MGL) in

databases [57], our discussions will only be conceptual.

a. Aggregate Properties

As shown in the previous subsection, the property-protocol table in the protocol

manager module maintains the mapping between shared properties and consistency

protocols. To support MGP, we introduce three special built-in properties: “compo-

nent”, “workspace”, and “subtree”. Respectively, they are used when a user wants to

attach a consistency protocol to (1) all shared properties of a shared component, (2)

all shared properties of a shared container itself and all shared properties of its chil-

dren components, and (3) all shared properties of a shared container and all shared

properties of all its descendent components. By definition, a descendent component

of a container is (recursively) a child component of the container or a child component

of its descendent container.

The reasons of supporting these aggregate properties are performance and scal-

ability. First, attach and detach of protocols invoke the execution of meta protocols,

which may involve expensive communications between multiple parties. Using ag-

gregate properties, we can reduce such communication costs. Secondly, the use of

aggregate properties also reduces the size of the property-protocol table, which in

turn saves the time to read and update the table as its size grows. This eventually

translates to improved local response at run time.
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b. Intention Protocols

When user wants to attach a protocol to control the whole subtree of a shared con-

tainer, one part of performance penalty is addressed by introducing the “subtree”

property to reduce the number of meta-protocol requests. The other part of the

performance penalty comes from that the protocol manager has to scan the com-

ponent subtree to find out if there exist any attached protocols that conflict with

the protocol to be attached. To reduce this cost, we maintain an Intention Pro-

tocol table in the protocol manager module. Each entry in this table takes the

form of < ComponentId, ProtocolType,DestComponentId, DestPropertyName >,

where ComponentId is the component which is associated with an intention proto-

col, ProtocolType is the type of the consistency protocol, and DestComponentId and

DestPropertyName together point to the property of the component that was attached

wth this consistency protocol.

Each time a consistency protocol is attached to a shared property, an intention

protocol entry is added to each of its ancestor components. Accordingly, each time

a consistency protocol is detached from a property of a component, the intention

protocol entries will be removed from the ancestor components. Whenever a user

attaches a consistency protocol to a property, the protocol manager will check the

intention protocol table to see if it conflicts with any intention protocols along the

path leading to that property. If a conflict is detected, the current protocol is not

attachable and the request is vetoed without going through the meta protocol.

At current stage of this work, we only allow one data object (property, compo-

nent, workspace, or subtree) to be attached with one protocol at a time, although

we allow unrelated objects to be controlled by different protocols. The scopes of two

protocols conflict if they overlap or intersect on the same set of objects that they con-
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trol. For example, two different properties of the same component can have different

protocols. If one user say Alice has attached a locking protocol to the color property

of a circle, a second user say Kathy is prevented from attaching any protocol to the

circle at the component level. However, if the second user is also Alice herself, the at-

tach will be allowed and the original protocol on the color property will be detached.

This is called protocol upgrading. In future work we will allow for more flexibility

in defining whether or not two protocols are considered as conflicting and flexibility

in resolve conflicts. For example, as confirmed in [54, 41], locking, serialization and

operational transformation protocols can often coexist, rather than conflict, with each

other.

c. Default and Implicit Protocols

As discussed in Section B, a consistency protocol must be attached to a shared data

component before they can be modified by any user. After the intended changes are

made, the protocol should be detached. The attach and detach actions can be either

explicit or implicit. Given the flexibility provided by MGP, some obvious performance

problems need be addressed. First, non-expert users may not be able to, or not willing

to, decide which protocols should be used on which objects. Second, users may feel

distracted if they have to explicitly press buttons to issue attach/detach actions all

the time.

To mitigate the first problem, we allow the (expert-) users to configure default

protocols in a default protocol table via a spreadsheet user interface. This table

is persisted on the server and loaded into the client (more specifically, the protocol

manager) at initialization time. The default protocol table keeps information in the

following format: < ComponentType,PropertyType,DefaultProtocolType >. For ex-

ample, collaborative editing component by default use operational transformation for
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unconstrained group editing. A “meta” default protocol (e.g., locking) can be con-

figured as the default protocol for any property if its default protocol is not specified

explicitly.

The default protocols eliminate the needs for users to make protocol decisions

in “typical” situations. However, as users’ experience with the system accrues, they

may be willing to learn and explore more advanced features (e.g., adaptable consis-

tency control) to get extra benefits [58, 59]. We provide a simple user interface to

enhance the learnability of our adaptable consistency control mechanism. As shown

in Fig. 2, we assume every consistency protocol implements a method getDescription

to describe itself, e.g., how it works, where it should be used, and what the user expe-

rience and interface effects will be like. At initialization time, the client provides the

application with a listing of available consistency protocols with their descriptions.

The application user interface can display the description of a consistency protocol in

tool tips or balloon when the user points his cursor to the protocol. The description

is expected to help the user make more informed protocol decisions.

To address the second problem, we allow the user the specify a “Lease” parameter

for each consistency protocol, as shown in table VI. If a user explicitly attaches a

consistency protocol to an object, the protocol lease can be set to “forever” by default

such that the user must explicitly detach the protocol later. However, there are times

when the user may just want to make some casual changes, for which it would be an

overkill to do explicit attach and detach. Instead, a default protocol can be implicitly

attached in a nonblocking manner to the affected property once a user starts to make

changes without explicitly attaching a protocol. The lease of this protocol will be

set a default value, say 30 seconds. If the user continues to work on this property,

the lease will be renewed automatically. When the lease is eventually expired, the

consistency protocol is automatically detached.
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3. User Actions: Attach, Detach and Property Changes

In the following we describe how to implement the attach and detach of consistency

protocols and object state change operations. The application is ultimately respon-

sible for providing user interfaces for triggering these operations. As discussed in

Section B, the execution mode of each user action can be either blocking or nonblock-

ing. The mode of property change actions are determined by consistency protocols.

Now the question is who decides the execution mode of attach and detach. In gen-

eral, the application should allow users to configure the attach and detach policies of

consistency protocols.

In fact, the execution modes of attach and detach are not only application specific

but also situation dependent. For example, when a user explicitly attach a lock to

an object, the mode is set as blocking by default. However, the mode is nonblocking

by default if the locking protocol is attached automatically by the system, e.g., when

the user attempts to modify an object without explicitly attaching a protocol first.

We omit further details of the configuration since it is application specific and out of

the scope of this dissertation.

a. Attaching a Consistency Protocol

When a protocol attach action in the action queue is to be processed, the client first

checks whether or not the protocol is attachable by checking the intention protocol

table. If it is not attachable, e.g., due to the existence of attached conflicting con-

sistency protocol(s) in the scope of this protocol, the client simply vetoes this attach

action by sending a veto notification. If the protocol is attachable, the client checks

if it is blocking or nonblocking.

If the attach is blocking, the meta protocol is invoked to attach this protocol
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in all clients synchronously. The client will not proceed to the next action in the

action queue that operates on the same object until the attachment is resolved by

the meta protocol. The resolution result will be sent to notify corresponding listeners

(the application). If the attach resolution fails, the protocol state will be set as

“vetoed”. If the resolution is a success, an instance of the consistency protocol is

created in the protocol runtime of all clients and the server. In the protocol instance

table (Table VI), the Owner field of this instance is set as the client id, the “Seq#”

vector is zeroed since no stage-two action has been performed yet by this protocol,

and the protocol state is set as “active”. A tuple will also be added into the property-

protocol table in the protocol manager at all sites with the corresponding object id

and protocol id. Then the startResolution method of this protocol will be invoked

in order to start resolving stage-two user actions (refer to Figure 2). At the same

time, a tuple will be added into the intention protocol table for each of the ancestor

components of this component property.

If the attach is nonblocking, the client will first create an protocol instance in the

protocol runtime and set its state as “pending”. A pending notification of this attach

will be sent out. At the same time, a tuple is inserted into the property-protocol

table for resolving user property change actions. The intention protocol table will be

updated accordingly. While the client asynchronously resolves the attach action, it

proceeds to process subsequent actions on this property in the action queue. If the

resolution of the attach eventually succeeds, the state of this protocol instance will be

set as “active” and a confirmation notification will be sent out. The property change

actions confirmed by this protocol instance will be sent out to the server and other

peer clients for delivery since these actions are sure not to be undone later.

However, if the nonblocking attach fails, the client will first stop the resolution

of user actions by this protocol. It does so by invoking the stopResolution method of
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this protocol (refer to Figure 2). Then the client needs undo all local executed actions

which are based on the assumption that this attach would succeed. The processing

is complicated if the detach of this protocol is also nonblocking. In that case, the

client will also need to find consistency protocols that are nonblockingly attached (to

the same object) after this one. Then it invokes the undo method of this and all

the other protocols to undo actions they have executed, in the reverse order of their

attachment. Finally the state of this protocol will be set as “vetoed”. Corresponding

entries in the intention protocol table will be removed accordingly.

Apparently, nonblocking attach of protocols can achieve fast local response but

at the risk of cascading undo when the detach is also nonblocking. In this chapter we

investigate the feasibility of implementing adaptable consistency control mechanisms

and try not to foresee how these mechanisms will be used. Some of the B/NB combi-

nations of attach and detach may be found useful in some situations and not in some

other situations. Application developers and end users will be at their discretion as

how and where to use these mechanisms.

b. Detaching a Consistency Protocol

The detach action can also be blocking or nonblocking. If it is blocking, the client

does not proceed to the next user action (on the same object) until the resolution

result comes back. If it is a success, the state of this protocol is set as “detached”, the

corresponding tuples in the property-protocol table and the intention protocol table

are removed, and a “confirmed” notification will be sent out. If it fails, however, these

tables and the state of this protocol remain except that a “vetoed” detach notification

is sent out.

If the detach is nonblocking, the client will set the protocol state as “pending”

and then proceed to the next user action (on this object) without waiting. The user
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can attach a new protocol to the same object. If meta-protocol resolution comes

back positive, the protocol state is set as “detached” and the property-protocol and

intention protocol tables are updated accordingly. If the detach is vetoed, the assumed

attach of new protocol(s) will be undone, similarly to the undoes in nonblocking

attach. The resolution results will also be emitted.

c. Component Property Changes

Fig. 16. Shared property change propagation path

Figure 16 illustrates the propagation path of a shared property change. It is

first intercepted by the change interceptor and then pushed into the action queue.

When a shared property change in the action queue is processed, the client (or more
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specifically the protocol manager) checks the existence of a consistency protocol on

this property and its state.

If no entry exists in the “property-protocol” table for this property, the client

will try to attach a default protocol to this property. If the attach fails, this property

change will be vetoed. If there exists consistency protocol entry but its state is neither

“active” nor “pending”, this action is vetoed immediately since no effective protocol

is available for processing this action.

If a corresponding protocol exists and its state is either “active” or “pending”,

the client immediately deposits this action into the protocol instance for processing. If

the action is determined to be blocking, the consistency protocol will not send out any

resolution until after it resolves this action. If the action is confirmed, the protocol

will emit a confirmation notification (to the application) and get it executed by the

component store by forwarding the property change. Otherwise, a veto notification

will be sent out. In this case, the property change does not need undone because it

has not been executed yet.

For an action determined to be nonblocking, the protocol sends out a “pending”

notification immediately and has it executed by forwarding the property change to the

component store. After the action is eventually resolved positive, a confirmation will

be sent to the application. Otherwise, the action will be undone and a veto notification

is sent. In this case, the consistency protocol will also generate a compensation

property change for the component store to undo the property change that it executed

nonblockingly.

Confirmed actions of an “active” consistency protocol will be propagated to

remote clients via the communication bus. After being received, they are pushed

into the action queue for resolution and execution at remote sites. To avoid cyclic

processing, these remote actions will not be propagated again.
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Every time a property change is confirmed (and executed), the client will update

the Seq# vector of the corresponding consistency protocol by increasing the element

that corresponds to the originator of this property change. This is similar to the

maintenance of state vectors in [60].

4. Meta Protocols

As shown in Figure 15, the protocol manager is fully replicated for local respon-

siveness. There is a need to maintain consistency when multiple users concurrently

modify the property-protocol table. For example, two users may concurrently at-

tach different consistency protocols to the same shared object. Therefore consistency

protocols have to be used to determine which attachment wins. Since these proto-

cols maintain consistency among replicas of framework objects instead of application

objects, we call them meta (consistency) protocols. They control the attach and de-

tach of (ordinary) consistency protocols to and from application data objects. For

simplicity we assume that there are no communication failures.

Protocol attachment uses a two-phase commit (2PC) protocol to attach a con-

sistency protocol. The EFG server acts as the protocol coordinator.

Phase one: On receiving an attach action from a client, the server sends all

clients a query message to determine if they are “ready” for this new attachment.

On receiving this query message, each client first checks the intention protocol table

for conflicts. If a conflict is detected, the client will reply “not ready”. If there is

no conflict, the client will add an entry to the property-protocol table and create a

protocol instance with “pending” state. After that, the client sends back a “ready”

answer to the server.

Phase two: If all clients answered “ready”, the server sends a “commit” message

to all clients. On receiving the “commit” message, each client changes the state of
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the corresponding protocol from “pending” to “active” and then invokes the startRes-

olution method (refer to figure 2) of this protocol instance to enable processing of

property changes. If not all clients answered “ready” within a prespecified time in-

terval, however, the server sends an “abort” message to all clients that answered

“not ready”. On receiving the “abort” message, each client sets the protocol state to

“vetoed” and removes the corresponding entry from the property-protocol table. In

either cases, the intention protocol table will be modified accordingly, as explained in

the previous subsection.

Protocol detachment is more complicated than protocol attachment. The com-

plexity results from the requirement that a “quiescent” state must be reached within

the protocol instances before the protocol is detached from all peer objects. That

is, all peer objects must have executed exactly the same set of “confirmed” actions

that have been generated at all sites during the lifecycle of this protocol. We use a

three-phase commit (3PC) protocol for protocol detachment. By assuming no commu-

nication failures in the system, the 3PC protocol works similarly to 2PC as described

above, except that in 3PC the consistency protocol has to internally reach a quiescent

state first.

Phase one is for information collection. The process starts when a client sends

the server a detachment request which piggybacks the “Seq#” vector of the data

object. Recollect that “Seq#” is the number of state change actions that have been

confirmed by the consistency protocol. On receiving this request, the server sends a

“collect-info” message to all other clients. On receiving this message, each client will

stop enqueuing further local operations on this object (into the protocol instance)

by invoking its suspendResolution method (refer to figure 2). But the consistency

protocol does not stop processing remote actions. After all local actions are processed

by the current consistency protocol, the client sends its own “Seq#” back to server.
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Phase two is the preparation phase. On receiving the “Seq#” from all clients,

the server broadcasts them to all the sites. On receiving these “Seq#” of all other

clients, a client can determine if it has executed all the actions originated from all

other sites. If not, it will wait for the arrival of these remote actions, and then execute

them. After a client finishes executing all these actions, it sends a “ready” message

to server. When all clients finish executing all the required actions, they (and the

protocol) reach the “quiescent” state.

Phase three is the commit phase. On receiving the “ready” message from all

clients, the server will send all clients a “commit” message. On receiving “commit”

message, each client will detach a protocol from an object. First client stops the

consistency protocol from resolving user actions by invoking stopResolution method

of this consistency protocol. Then it removes the entry from the consistency protocol

manager and set the state of corresponding consistency protocol as “detached” in

consistency protocol runtime.

D. Related Research

Greenberg and Marwood [37] are the first to our knowledge who motivate to support

object-level consistency control such that different objects in the same workspace can

be associated with different protocols. However, their work does not address how

to achieve so. Specifically, there is no similar models of data and control, which we

consider key to achieving the objective. Although data and control are separated

in their work, the developer has to program in the application how the separated

(locking) protocols work together with the data objects. Application-independent

runtime mechanisms for “gluing” data and control are absent.

COAST [61] resembles our work in that it also models shared data objects in a
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collaborative system as visual user interface objects that can be directly manipulated.

However, it hard-codes consistency control protocols and does not address adaptable

control as we do.

The ideas of multi-granularity and intention locking have long been established in

databases [57]. Munson and Dewan [20] are the first to our knowledge to adapt these

ideas into collaborative systems for flexible concurrency control. We further extend

these ideas into general multi-granularity and intention protocols for the purposes of

improving the flexibility and performance of adaptable consistency control. Note our

use of multi-granularity protocols is at the user interface level. By comparison, the

concept of multi-granularity locking in databases is in the database kernel and not

exposed to the users.

Similar to multi-granularity and intention protocols, two-phase and three-phase

commit protocols are also adapted from databases [57]. We are not claiming any

innovation on these concepts. They are included for this chapter to be self-contained

and for examining the feasibility of implementing adaptable consistency control, which

is the main contribution claimed in this chapter.

In terms of supporting adaptable consistency control, Suite [20] provides param-

eterized access to the underlying (locking) protocols through a spreadsheet-like inter-

face. Protocols are coupled with a custom data model (called active variables), which

provides predefined data types such as sequence and record with embedded locking

tables. Applications developed under the Suite framework automatically come with

locking protocols if they construct shared data objects from these data types. Dif-

ferent locking policies are chosen at construction time by setting parameters in the

locking table. However, Suite does not address how to dynamically adapt the system

to use different consistency protocols that are not prescribed. Due to the lack of

component-based programming support in its implementation language (C/C++),
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data and control are tightly coupled.

Trellis [62], DCWPL [63] and our previous work on COCA [64, 65] also sepa-

rates control from data: Data objects are wrapped by the application code, and the

control part implements collaboration protocols including consistency control. These

two parts communicate by exchanging custom messages. Protocols are specified by a

custom language. It achieves adaptable system behavior by dynamic replacing pro-

tocols, at a different level of flexibility as compared to traditional spreadsheet-like

approaches. However, it focuses more on modeling and enforcing general collabora-

tion protocols, with limited automation and reusability. It requires the developer to

carefully craft the application such that it is able to voluntarily notify the control

part when the object state is changed, and to execute external commands from the

control part to cause the desired object state changes. By comparison, the presented

approach separates and externalizes the code for detecting and causing object state

changes from specific data components. These becomes general services in the frame-

work and can be reused with any application components that follow an industrial

standard like JavaBean. More flexibility is achieved with significantly less program-

ming efforts.

Roussev et al. [18] resembles our work in that it also takes a component-based

approach and separates data and control. The shared state of a data component

is modeled as JavaBean properties and state changes as property change events.

However, their work in general has a different focus and does not address adaptable

consistency protocols in particular. It also differs from ours in that the system has

to periodically compare object states in order to detect state changes, which appears

less efficient than our method of intercepting property changes.

Litiu and Prakash [51] and Hummes and Merialdo [50] provide system services

to support the dynamic migration of application components between collaborating
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sites. However, their goals are generally not to support adaptable consistency control

and they do not deliberately differentiate data and control components.

Grundy and Hosking [9] is another recent framework for developing component-

based groupware applications and it supports the plug-n-play of components. How-

ever, data and control are tightly coupled in those components. For example, the

distributed editing component in [9] embeds a locking protocol. It is impossible to

have different protocols coexist on different objects without a major redesign of the

editing component.

DICIPLE [5] uses glass panes to intercept mouse and keyboard events generated

from single-user applications (that are hosted by its runtime environment) and repli-

cates these events to remote peers for synchronization. While DICIPLE focuses on

transparent sharing of single-user (Java) applications, it does not address runtime

plug-n-play of consistency protocols.

Chung and Dewan [66] have an observation on the subtle differences in object

attributes that is similar to our differentiating of shared property changes in Section B.

In their work, object attribute changes are logged differently based on the ways how

these changes affect the object attributes – either “replacing” old value or doing

“cumulative” changes. However their work largely focuses on supporting efficient later

comer joining and does not address shared data modeling and dynamic consistency

control issues.

E. Conclusions

Object-level consistency control is a feature motivated as early as in [37]. As also

confirmed by numerous other researchers, to name but a few, [29, 7, 45], the capa-

bilities to allow for different policies on different objects in the same workspace and
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to support evolutionary policies in collaborative systems are important towards ad-

dressing the dynamic and situated nature of cooperative work. However, this has not

been achieved in previous collaborative systems to our knowledge. Our hypothesis

in this dissertation is that it is feasible to implement adaptable consistency control

mechanisms in a range of collaborative workspace applications.

To test this hypothesis, we first propose a novel model in Section B, which

cleanly separates data and consistency control protocols and defines their interfaces

and interaction. Second we devised a novel consistency control framework in Sec-

tion C that at run time “glues” together the data and protocols that are mutually

transparent to each other. As a result, consistency protocols can be dynamically at-

tached to data objects at the property, component, workspace, and subtree levels. We

also addressed some performance issues that come with the new level of flexibility it

achieves. The services provided in the framework are neutral to specific applications

and thus reusable in a range of collaborative workspace applications that follow our

data models. In immediate next chapter, we provide the evaluation for our approach.
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CHAPTER V

AN INTEGRATED EMPIRICAL EVALUATION

Chapter III proposes a shared component model which forms the cornerstone for the

groupware infrastructure as well as groupware applications. Based on this model, we

provide a shared component converter tool for converting existing single-user com-

ponents into shared components complying with the shared component model. Its

objective is to maximize the reusability of existing single-user components in building

groupware applications. In Chapter IV, we propose a coordination services framework

that it built atop the shared component model. We focus on adaptable consistency

control and explain in detail how to achieve dynamically switching of consistency

protocols.

In this chapter we do an empirical evaluation of this work. The evaluation con-

sists of two parts: (1).reusing single-user components to build groupware features and

(2).supporting adaptable consistency control in collaborative tasks. For demonstra-

tional purposes, we build a platform which can be used to test the shared components

and the flexibility of coordination services such as adaptable consistency control. The

organization of this chapter is as follows: in Section A, we introduce the demonstra-

tion platform - an Evolvable and eXtensible Environment for Collaboration (EXEC).

In Section B, we evaluate the shared component model by leveraging single-user com-

ponents into shared components and plugging them into the collaboration platform.

These groupware components represent typical collaboration features that can be

found in popular groupware applications as will be surveyed in this section. Then in

Section C we use exemplar tasks to study how different consistency protocols can be

applied in different collaboration scenarios.
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A. Overview of the Collaboration Environment

Fig. 17. EXEC screen shot: (1) general functions toolbar (2) workspace view (3) shared

components toolbar (4) shared component (5) workspace hierarchy (6) com-

ponent property-protocol table (7) presence awareness (8) status bar

The EXEC project aims to develop an extensible collaborative user interface.

Figure 17 shows a screen shot of EXEC. On the upper left, a tree view displays

the shared workspace hierarchy. On the right, a workspace view component displays

the content of the currently selected workspace in the hierarchy. An implicit session

control is provided by EXEC. By entering different workspaces in the hierarchy, users
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implicitly exit one session and join another. The property-protocol table on the middle

left displays which property of a selected shared component is currently controlled

by which consistency protocol. The user can switch between different protocols on

a shared property (component, workspace) by manipulating this table at run time.

When the user selects a shared property in this table, the corresponding default

consistency protocol for this property will be displayed on the protocol selection list.

Users can accept the default protocol or switch to other available protocols by using

the protocol list control. A presence awareness panel on the bottom left lists the

current online users. For each user, a telepointer is provided to display his mouse

trace on the shared workspace. The telepointer is a simulated mouse pointer tagged

with the user name.

The main area of the EXEC GUI is the workspace view on the right-hand side.

Its main function is to display the shared components in the selected workspace.

Workspace view is a complex component with multiple layers of panels. The bottom of

the workspace is a content panel which displays all shared components. A transparent

glass panel is laid atop to intercept user mouse and keyboard inputs and then to re-

dispatch these inputs to underlying shared components. The re-dispatching of events

is important for these shared components to function properly. Another usage of glass

panel is to display the components that must float above any other shared components

in the workspace. For example, in order to indicate a component is “selected” after

the user clicks on a shared component, several rectangular boxes are laid around this

shared component to indicate the “selected” mode. A user can also drag these boxes

to change the location and size of the selected shared component. The telepointer,

which has the same requirements, is also displayed on the glass panel.

There are two toolbars in EXEC. The top horizontal toolbar serves as shortcut

for a few general functions in the menu, e.g. displaying help information. The ver-
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tical toolbar is called shared component toolbar, which displays all available shared

components in this collaborative platform. Whenever the user clicks any icon on this

toolbar, a new instance of corresponding component will be inserted into upper left

corner of the selected workspace.Each time when EXEC starts, the shared compo-

nent toolbar loader will try to load the available shared component description from

an external XML configuration file. This capability is useful when testing the new

shared components. Plugging-in new shared components does not need to modify the

source code of the platform itself.

The Shared Semantic Directory (SSD) is a concrete groupware application built

atop the EXEC platform. In SSD, the shared components are also called semantic

components. The semantic components toolbar contains document(file), text and

graphics components. The look and feel of SSD mostly resemble familiar file sys-

tem interfaces such as Microsoft Windows Explorer and Linux Konqueror. Shared

Workspaces are organized in a hierarchy, as in [67]. Users can annotate documents

with semantic objects, including notes (texts) and graphics. Semantic relationships

between documents can be expressed explicitly by using semantic objects or implic-

itly as in spatial hypertext [68]. SSD allows the user to drag and drop files from local

file system into the SSD workspaces. The files will be uploaded into centralized SSD

server. A simple caching mechanism is provided to replicate the file locally when the

user tries to open this file using a local file opener.

Traditional distributed file systems (e.g., [69, 70, 71]) provide limited support for

cooperative work. While familiar LAN-based file systems such as NFS and Samba

rely on locking for consistency control and coordination, SSD affords awareness (e.g.,

who are present and working on which objects [26]) and allows the users to experiment

alternative consistency control protocols on shared objects.

The user experience of SSD in part resembles other typical workspace systems.
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For example, the use of persistent hierarchical workspaces for fluid session control

follows [72, 73], and the way users interact with shared objects follows [74]. One

of the main focuses of our work is on supporting adaptable consistency control at

property, object, and workspace levels, which is not addressed in previous work. The

resemblance of SSD to classic workspace metaphors suggests the generality of our

approach.

At its current stage, SSD is not intended to support the concurrent editing of the

same file. Currently real-time group editors are available only for limited document

types, e.g., [34]. We model the contents of documents as a content property in the

file component and by default only allow locking protocols to be applied for exclusive

access. Theoretically alternative consistency protocols are possible if corresponding

group editors are available.

B. Shared Component Model Evaluation

The major design objective of shared component model is to enable the reuse of ex-

isting single-user components in building groupware application. In Chapter III, we

have shown it is possible to blindly adapt all JDK components as shared components.

In this section, we will adapt components which could be potential more useful in a

practical multi-user environment. Our approach is to survey existing groupware ap-

plications and their common groupware features. Then we try to build these features

by leveraging existing single-user components. However, not all needed single-user

components corresponding to those needed groupware features can be found. Our

solution to this problem is to build the single-user component by ourselves and then

adapt them as the shared components. In this process, we record the effort and issues

that arise when adapting components. This approach saves engineering costs because
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developing single-user components is significantly easier than developing multi-user

components.

1. A Survey of Groupware Products

There have been many groupware products and research prototypes in the market.

The “groupware yellow page” [75] gives a comprehensive lists of up-to-date groupware

products available. Our survey is based on this list. Below, we only list the most

representative products and their features. Appendix A includes a complete list of

groupware products that we surveyed.

a. Groove Virtual Office

The Groove Virtual Office is the latest groupware product by Groove Networks(recently

acquired by Microsoft). It takes a replicated architecture to achieve better perfor-

mance. The supported groupware features are as follows:

1.Co-Editing: Groove supports multi-user editing using Microsoft Word. An

explicit turn-taking protocol is used for consistency control. The users take turns to

make any changes to shared document. The document changes made by a user are

transmitted to remote users when the user explicitly synchronizes the document.

2.Co-browsing: multiple people can browse web pages together. The multi-user

browser supports relaxed-WYSIWIS mode, in which different users can view different

portions of the same page. When a user clicks on a URL link or explicitly types in

the destination URL, peer browsers are updated accordingly.

3.Group Sketching - multiple users can insert or delete graphic objects together.

It serves as the most basic brain-storming tool. This tool uses a serialization protocol

for concurrency control.

4.Picture - multiple users can upload and view images together. This tool does
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not allow concurrent editing on the same image objects. It only uploads or removes

the pictures from the image repository.

5.Note - similar to the picture tool, multiple users can add their own notes.

Notably this tool does not support concurrent notes-taking. It only allows multiple

users to insert or remove notes from the note repository.

6.Presentation - allow collaborators to use Microsoft PowerPoint to do shared

presentation. When the turn-holder changes the current slide, all the collaborators

will update the current slide. However, it does not support concurrent slides editing.

b. LiveMeeting/NetMeeting

Microsoft LiveMeeting is successor of Windows NetMeeting. It is an application shar-

ing platform closely integrated with Microsoft products like office applications. It can

share any windows applications using screen sharing mechanism, as in NetMeeting.

Notably, a centralized architecture is used in collaboration. However, serialization

protocol is used as the basic concurrency control mechanism for Microsoft Office ap-

plications, which is different from the turn-taking in NetMeeting. LiveMeeting also

provides several built-in groupware features, including:

1.Whiteboard - multiple users can insert or delete graphic objects on the shared

canvas. This tool is similar to sketching tool in Groove

2.Text - Multiple users can concurrently edit plain text in the text editor. Similar

to the Groove co-editing tool, turn taking-is used to for consistency control.

3.Browser - Similar to the Groove Co-browsing tool, multiple user to view a web

page together.

4.SnapShot - Similar to the Groove Picture tool, it allows multiple users to view

the images together.
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c. InstaColl

InstaColl converts Microsoft Office applications, e.g. Microsoft Word, Excel and

PowerPoint - into collaborative applications. Different from Windows LiveMeeting,

it takes a replicated architecture, and requires the Office applications installed on the

local machines. Explicit turning taking is used as the collaboration protocol. For non

Microsoft office applications, screen sharing is used. There is no additional built-in

tools coming with InstaColl as in Groove or LiveMeeting.

d. CoWord/CoPowerPoint

Like InstaColl, CoWord[15] leverages existing popular Microsoft office applications

into collaborative applications. Similar to InstaColl, CoWord takes replicated archi-

tecture for fast local response. The major difference between Co-word/and InstaColl

is that CoWord uses the operational transformation [44] as the fundamental consis-

tency maintenance mechanism, which allows for unconstrained collaboration.

e. Communiqu/Web-Ex

Web-Ex is a typical Web-based conferencing tool that supports synchronous collab-

oration among multi-users. It has very similar functions as Windows LiveMeeting,

e.g., allowing for sharing a certain application or the host desktop. Turn-taking is the

consistency protocol. There are many other similar Web-based conferencing products

having similar functions, e.g. Gotomeeting, Helpmeeting, and Antaya BoardRoom

2.0.
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f. CommunityZero

CommunityZero is a Web-based communityware. We purposely choose Communi-

tyZero because collaboration in CommunityZero is asynchronous. However, it shares

many similar features to synchronous groupware products. Its main collaboration

features include:

1.Discussions - a threaded discussion board.

2.Note Board - announcements and informal discussions.

3.Shared Lists - collect and share structured information.

4.Calendar - to store time-sensitive information including meetings, reminders

and project milestones.

5.File Sharing - store and share file.

6.Chat - allows any number of community members to have a group text meeting

in realtime.

7.Community Messenger - A toolbar at the bottom of the screen includes a Who’s

on indicator that shows how many community members are online and accessible.

8.Member List - The Member List area is used to track and review community

membership. The list indicates when members joined and their most recent visits.

Access to detailed membership profiles is provided here.

g. Lotus Notes

IBM Lotus Notes provides an enterprise groupware platform. Its primary strength

is to model the business working flow. Other important features include content

management, web-conference, document sharing and white board session. Products

with similar functions include Microsoft Exchange server and SharePoint server.
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2. Building Example Groupware Features

There are many groupware products (see Appendix A for all surveyed products).

However, they can be categorized along different dimensions, e.g., centralized v.s.

replicated architecture, asynchronous v.s. synchronous collaboration. Based on their

functions, they can be also categorized as meeting software, content management

software, and business process management.

Most of these groupware products share a list of common features, e.g. group

editor, group sketch, group calendar, group browser, and group todo-list.

Hence we first evaluate how to build these groupware features by leveraging single-

user components. For each of these features, we examine its usage in groupware

applications and the strategy to build it, either from scratch or by adapting existing

components.

a. Group Editor

Group editing is a classic research topic of groupware. Many specialized group editors,

e.g., Groove [60], DistEdit [76], ShrEdit [43], Reduce [77], CoWord [34], have been

built as research vehicles of different CSCW issues like consistency control.

Our objective is to adapt the existing Java Text component into a sharable com-

ponent which comply with the shared component model. There have been three

built-in text components coming with JDK(Java Development Kit): JTextField,

JTextArea, and JTextPane. JTextField has the very basic editing function which

supports one-line plain text editing. JTextArea supports multiple-line plain text

editing. JTextPane is the most sophisticated component which has the capability of

supporting both plain text document and styled text document such as HTML and

RTF etc. In our experiement, we choose JTextPane.
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Using the component adaptation tool introduced in Chapter III, we can directly

convert the JTextPane component into the simplest form of shared component. Origi-

nal properties, e.g. x, y, width, height, background, and even the text content itself, can

be easily adapted as shared properties automatically. Then we plug this component

into EXEC platform for testing.

A preliminary testing of this component reveals that some usability problems.

First, different properties might need customized ways to change the value. For

example, the Background or Foreground color property usually needs a special color

selector to allow the user to choose its color intuitively. String-based properties might

need a text editor to change their values.

Fig. 18. General property editor

To address this problem, we provide a ”Shared Property Editor” component

(see Figure 18, which is adapted from Sun BeanBuilder), which incorporates editing

capability for a few common properties, e.g. numeric, string-based, and object-based

properties like Color. Nonetheless, there are two drawbacks in this approach: the

shared properties might not be in the list of supported properties, and the property

editor, mostly design for developers, is not always intuitive for end users. However,
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this problem can not be solved generally at the framework level. Refined design could

be applied in an application specific fashion.

The second problem is that changes to the shared text property can not be

caught prior to its happening. Even though we successfully declared the text as

an accumulative property by default adaptation, the shared property interception

service seemingly failed to catch the user actions in a happen-before fashion, and

more importantly, in an accumulative way. A deeper look into this issue reveal that

the users’ keyboard actions trigger text changes that actually did not happen directly

at JTextPane component level. Instead, it first happened at the document model

of JTextPane component. JTextPane component will be notified by its document

model for the changes and actively retrieves the value from its document model as

the value of text property. Hence the value of text property of JTextPane component

is always changed whenever we catch the property notification. Moreover, the value

that JTextPane retrieved from its document model is always a string, instead of the

incremental character-wise change that we expect.

Fortunately, Java provides an indirect way for developers to catch the document

changes before they actually happened. To do so, developers implement a class which

implements an interface called DocumentListener and register this class to be the

document change listener of the model of a JTextPane component. This interface

contains three public methods, insertString and remove, and update, which provide

a niche for developers to inject the code which will be executed right before the

execution of actual user actions. If the injected code exits those three functions before

user actions are executed, the model will never be changed. In our adaptation, the

injected code only needs to fire out shared property change (”text”) in these functions

and then exit these functions. Because whether or not these document changes are

allowed is subject to the collaboration protocols.
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The above “hacking” process is complex because it requires the developers to

open up the implementation detail of the JTextPane component. This process is

seemingly contradictory to the design principles of CBD which emphasize on compo-

nent encapsulation, that is, the components should interact with each other through

well-defined interfaces and avoid relying on knowledge of internal implementation.

In Java, however, this can not be achieved in some cases. The reason is that many

JDK components separate their model and GUI delegates on purpose in order to

reuse both. For example, the same JTextPane component can use different document

models, e.g., RTF, HTML, and plain text. This separation makes it difficult for GUI

delegates to wrap up the model events as their own events. Otherwise, the GUI

delegates will be bound with one model and can not be reused by others. Notably,

in the case of adapting JTextPane component, the actual manual adaptation is not

difficult. The majority part of the manual adaptation of JTextPane component only

takes around 60 lines of Java code to implement the DocumentListener class for the

happen-before interception. Since text is declared as an accumulative property, a few

lines of code is manually added to implement function signatures of insert and delete

text.

b. Group Sketch

Group Sketch is another common collaboration tool. There are many groupware pro-

totypes and products, e.g., GroupSketch [78], the graphic editor in RENDEZVOUS [79],

NetDraw [80], collaborative white boards in COCA [81] and Grace [56]. In general, a

group sketch tool allows multiple users to draw different types of graphic shapes on the

canvas of a collaborative workspace. In our approach, implementing the group sketch

is no different than implementing any other shared component. The real problem,

however, is to find the corresponding single-user components. There are no built-in
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Java graphic components coming with JDK. So our strategy is to build single-user

graphic components that we need and then leverage them as shared components.

The building of graphic components in group sketch takes three steps. First, since

all shape components share a lot of common properties. A base shape component is

implemented with these properties such as lineStyle, lineWidth, lineColor, filledColor,

and bounds. Bound property defines a minimum bounding box which can cover the

shape. By manipulating the bounding box, position parameters such as location,

width, and height of a shape can be changed in a shared workspace. Second, we then

build different shape components by inheriting this basic shape component. The

difference between them is small. The major difference is that different shapes have

different paint function in order draw corresponding shapes. Of course, designer can

add special properties to individual shapes. In the end, we directly leverage the shape

components using the component adaptation tool.

The base shape component takes around 110 lines Java code to implement the

setter and getter methods for common properties. Each inherited shape component

merely overloads the paint function of the base shape component, which costs around

10 lines of code. In the end, the conversion adds up the template code to the shape

component automatically. The building of group sketch tool demonstrates the case

that when needed single-user components are not available, we can build them and

then leverage them as the shared components. The main benefit is that developer

still build the components the same as how they do for single-user applications.

c. Group Browser

Group browser provides a convenient way for multiple users to do web browsing

together. It is essential to produce the same discussing context in a meeting when its

content is online. Java components such as JEditorPane and JTextPane can support
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Fig. 19. Group browser

displaying HTML documents either from local file system or online URLs. They both

fully support HTML 3.2 and now are migrating to support HTML 4.0. However,

there is no built-in Java web-browser component, which typical includes an address

bar which allows the users to type in the new URLs to go to new web-pages or go

back to previous visited pages. Our approach is to extend the JTextPane component

to include these basic functions and leverage it as a shared component. Figure 19

gives a screen shot of a simple web browser built with JTextPane component.

The leveraging merely declare two properties, the bound and currentURL, as the

shared properties. Whenever a user types in a new URL in the address bar, or clicks

on the web links in a page, or clicks on the back button, the currentURL property will
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be set to corresponding URL. For this prototype browser, we do not enforce different

users watch the exact same position of a page, thus allow for relaxed-WYSIWIS mode

of co-browsing. Building a single-user browser takes around 100 lines of Java code

and in total adds up to around 220 lines of Java code after leveraging it to be a shared

browser.

d. Group Calendar

Group calendar is another useful collaboration tool in groupware application. It has

been studied since early 90’s [82]. Now almost all meeting software and enterprise

applications have some form of group calendar. The functions of group calendar is

similar to its single-user counterpart, e.g., the calendar in Microsoft Outlook and

various PDA organizers. Basically they allow collaborators to browse a list events

in a selected date and collectively add or remove events. This is convenient for

collaborators to detect the schedule conflicts. Notably group calendar is also a basic

building block for advanced collaboration tools such as project tracking and web-

blogging.

There is no in-built calendar component coming with JDK. So we switch to

online resource for the single-user calendar component. We expect it could allow the

user to select date to browse the tasks or to add events to or remove events from

that date. A list of available event titles should be displayed for a selected date. If

the user selects a interesting event title, the event detail should be displayed. It is

quite easy to find a Java-Based calendar component with the most basic function,

e.g. choosing a date. However, it is rather difficult to find a Java calendar component

with additional functions we required. So our strategy is to extend the basic calendar

component and incorporate events management functions.

Figure 20 shows the outlook of this component. The left hand side of this com-
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Fig. 20. Group calendar

ponent is the calendar that we adapted from third-party Java calendar. The right

hand side is the event management functions that we developed. This component

is relatively complex in its functions, and consumes around 700 lines of Java code.

Half of the code (around 350 lines) is from third-party Java calendar component

which implements date-picking function. Around 250 lines are for newly added event

management functions such as displaying, adding, removing events associated with a

specific date. The adaptation declares the events property of the self-built single-user

component as an accumulative property, which requests developers manually adding a

few lines codes to implement the function signatures of inserting and deleting events.

e. Group Todo-List

Group todo-list is another popular tool to organize people’s activities with different

form. The basic function of a todo-list component is similar to group calendar -
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multiple users can browse the task list and add tasks to or remove tasks from the

task list collectively. These tasks might or might not associate a date with an due date.

Unlike calendar, which organizes the human activities by date, todo-list organizes the

activities by themselves. The tasks of todo-list tends to be more emergent and less

formally scheduled than the events in group calendar. Todo-list can be found on many

different applications, e.g. organizer tools on PDA, smartPhone, and many personal

and group productivity software.

Fig. 21. Group todo list

Like calendar, there is no build-in components coming with JDK or a third party

component that we match the functions that we expect. So we built group todo-list

component from the scratch. Figure 21 shows a screen shot of this component which

mostly resembles the todo-list in outlook. Building this single-user todo component

used around 300 lines of Java Code. Then after the leveraging, it adds up total

around 450 lines Java code. Similar to events property in group calendar component,
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the adaptation declares the tasks property of todo-list component as an accumula-

tive property. Developers needs to manually add a few lines code to implement the

function signatures of inserting and deleting tasks.

f. Discussion

So far, we finished building the listed common group features(components) that we

abstracted out from the survey of existing groupware products. These components can

be used as individual workspace, thus extends the EXEC to become a full-feathered

groupware application. They can also be used as individual components which re-

sides in a shared workspace to form “compound” shared workspaces, as displayed in

Figure 17. Table VII summarizes our adaptation results.

Table VII. Adaptation results

Group Feature Single-user Component Source Lines of Code manually added

group editor JDK built-in 120

(JTextPane)

group sketch self-built 100 for base shape

10 additional lines for each shape

group calendar extended from 250

third-party component

ground browser Extended from 100

JTextPane 100

group todo self-built 300

From above, we showed it is possible to adapt existing components to be shared

components. The key is to find proper single-user components. However, if a needed
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component is not available, building a shared component is usually divided into two

steps: building a normal single-user component, and adapting it into a shared com-

ponent. The adaptation process is mostly trivial unless the shared property resides

in inner component of a container, e.g. the adaptation of JTextPane component.

Currently we are extending the adaptation tool such that it can “look” into the

component and adapt inner component properties as the shared properties more eas-

ily. Compared to the ad-hoc approach of building collaboration-aware components

in Flexible-JAMM [4], our approach gives a clear guideline as how to develop the

share component. Comparing to the approach of JView [9], the developer does not

have to follow a heavy-weight class framework in developing share components. In-

stead, developers build their components as what they do for single-user application.

These components can then be leveraged into shared components. Compared to [18],

which also extends JavaBean naming convention, our approach has the benefits of

happen-before event interception and higher system efficiency.

These groupware components are ready for flexible consistency controls. First,

different shared properties of a shared component can be attached with different pro-

tocols by different collaborators. For example, the bound property of shared compo-

nents, which reflects the position and size for these components in a shared workspace,

can be attached with locking protocol by a collaborator in order to fix the layout of

a shared workspace. Other properties, such as the text property in GroupEditor, the

children property in GroupSketch tool, the currentURL property in group browser

can be controlled by other collaborators to allow them to change the contents of

the component. Also, consistency control can be applied by collaborator on different

granularity, e.g., individual property, component, and workspace level. Second, differ-

ent consistency protocols can be exercised on same component properties in different

scenarios. For example, for all accumulative properties, such as the text property in
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Group Editor, the events property in group calendar, and the tasks property in Group

todo-list, can be attached with constrained protocols like lock for exclusive control or

unconstrained protocols like operation transformation for concurrent manipulation.

All the above group components are finished using one person and in two weeks,

which, of course, does not include the effort of building the EXEC infrastructure itself.

Notably these groupware components serve as fast-prototyping purpose and testify

the feasibility and validity of our shared component model. They would certainly take

more lines of code if more comprehensive functionalities and polished user interfaces

are required. However, these does not undermine the validity of the model.

C. Adaptable Consistency Protocol Evaluation

EXEC, as a collaboration platform, can be extended to support a range of collab-

oration tasks. In this section, we use SSD, an extension of EXEC environment, to

describe how adaptable consistency protocol can support different collaboration sce-

narios in collaborative work.

1. Teaching Activities

Teaching is an interactive process including many collaborative activities and in-

volving different roles such as instructors, teaching assistants, and students. These

activities, depending on their natures, can be asynchronous or synchronous collabora-

tions. Many artifacts such as course syllabus, discussion notes, reports, assignments,

and exams, are generated in the course of the collaboration. In this subsection, we

discuss how adaptable consistency protocol in SSD(see Figure 17) can be used to sup-

port these activities. SSD serves as content management tool as well as collaboration

tool in this process.



98

First, instructors can set up corresponding root shared workspaces for courses

they are teaching. In the root workspace for each course, a “course information”

workspace is created. Inside, a calendar component is inserted. Important dates and

events will be added into the course calendar. A web-browser component is inserted

and displays the official description of this course. Other relevant information, e.g.

notes and slides from the instructors, can be inserted to give detailed information

about the courses. These material can be downloaded and viewed with local appli-

cation opener by students. However, no one except the instructor can make changes

to them. Thus Locking protocol is applied on this workspace by the instructor for

protecting purpose.

A workspace named “Discussion” can be created underneath the root workspace

for each course. This workspace serves as a free discussion board. Students can

post any ideas, questions, even complaints on this board. Since it severs as a free

discussion forum, a unconstrained consistency protocol is attached to workspace and

its hierarchy. Students or instructors can create threaded discussion by creating

additional workspaces inside the “discussion” workspaces. Graphic components can

be used to indicate the relationship of the discussion notes. The collaboration mostly

happen in a asynchronous manner which is similar the discussion forum.

Many courses have team projects, which require collaborative effort of a group

of students. For such courses, a workspace named “team projects” is created inside

of the root workspace of these courses. Multiple workspaces will be inserted inside

“group projects”, each of which corresponds to a specific group. Different names will

be assigned accordingly. Each of these workspaces serves as the root team workspace

for individual group. Inside of their own root team workspace, different group can

create additional workspaces as needs arise. For example, each group member can

have their own workspaces.
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Normally a team member will be chosen as the group leader of a team project and

all members will be assigned with roles and corresponding responsibilities. A group

todo-list component can be inserted into by the leader into root team workspace.

A face to face or online discussion will generate possible events and their due date

in the todo-list. The group leader is responsible for tracking all the progress of the

projects and making changes to the to-do list. A locking protocol is attached to

this component by the group leader to make sure that only he can change the list

contents. The same protocol can be attached to individual team member’s workspace

corresponding member so that they can work individually.

As the project deadline approaches, the group must come up with the final report

for the team project, which should different sections assigned to different team mem-

bers. A workspace called “final report” is created by coordinator and a unconstrained

consistency protocol is first attached to this workspace. Every team member can copy

their section of report into this workspace. Different note component can be be used

to display the content of different sections. The group leader will compose them into

an integrated report. Different team members will review the report at the same and

make the necessary recommendations. Sometimes they can make direct changes to

the report which presumably are small. unconstrained consistency protocol allows

them working together on the same note component.

In the end, if every team member agrees, the integrated report will be sealed

by the group leader attaching a locking protocol to it. After the deadline, the whole

team project workspace hierarchy will be applied with locking consistency protocol

by instructor so no one can make any change any more.
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2. Paper Writing Activities

Paper writing is another typical group activity in the research community. It usually

involves multiple people in the process. The writing process is often divided into

several stages such as kickoff, brainstorming, related work analysis, individual writing

and revision [83, 84]. Some of phase needs the people closely collaborate with each

other and some phases do not. One of the coauthors may take the lead by assuming

a moderator role to coordinate the whole process. Using SSD, different consistency

control protocols can be applied to address the evolving needs in different stages of

paper writing.

During the kickoff phase of the paper writing, a workspace for this paper writing

project is first created, with the name of corresponding conference or journal. This

workspace serves as the root workspace of this writing task. Every collaborator joins

in this workspace. A calendar component is first inserted by the moderator into

this workspace which is going to mark all the important dates and corresponding

milestones for this writing project. For example, When different phase should be

finished and who should do what in these phases. This calendar defines the writing

time line and individual responsibilities. In this process, only moderator can change

the schedule so the calendar will be locked by the moderator. Collaborators exchange

their thoughts and feedback through instance messaging software. After setting up

milestones of the paper writing task, the collaboration moves on the next phase -

brainstorming.

During the brainstorming stage, a “brainstorming” workspace is created in the

root workspace. Depending the task itself, a todo list component might be inserted

into this workspace and more detailed activities which should be done in this phase

are listed and initially marked “not finished” yet. The main focus of this phase is



101

to determine what to write. In order to come up with as many ideas as possible, an

unconstraining consistency control protocol (e.g., operational transformation [44, 33])

is attached to this workspace so that any coauthor can contribute at any time [43, 4].

Then, after carefully discussing and evaluating all candidate ideas, the topic and

abstract of this paper are chosen and the brainstorming phase is ended. To this

point, the whole “brainstorming” workspace together with artifacts generated during

the course of discussion are attached with a constraining consistency control protocol

(e.g., locking) to prevent unintentional damages. Only the moderator might be able

to make changes in this workspace.

Then the task moves to the next phase in which coauthors collect and analyze

related works. A research paper is typically related to the literature from multiple

different aspects. A “related work” workspace is created to allow coauthors to collect

materials and perform analyses in this shared workspace. Since the relevance of re-

lated works is often a result of articulation work, this workspace is also attached with

an unconstraining consistency protocol so that collaborators are not refrained from

contributing. Eventually the resulted materials are grouped into different categories

based on how they are related and sub-workspaces are created under the “related

work” workspace. For example, to write this paper itself, we created such related

work workspaces as “component-based groupware”, “consistency control”, “group-

ware frameworks” to address the various aspects of this work. At this point, coau-

thors agree to each work on some (but not all) of these different aspects. As a result,

a more constraining protocol is attached to each sub-workspace.

In the “group writing” phase, the moderator sets up an outline (plan) of the

paper and then assigns sections to coauthors, e.g., as a result of negotiation. A

“draft” workspace is created which initially only contains a note object holding the

outline and a few empty documents to hold individual sections. Only the moderator
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is allowed to modify the paper outline since any change to it may impact the sections

that have been agreed upon. Similarly only “owners” of the sections can modify

the contents of corresponding documents so that coauthors work in parallel and do

not interfere with each other. However, all the coauthors are allowed to create new

objects in the “draft” workspace, e.g., to comment on other people’s write-ups and to

create figures. Meanwhile the whole “related work” hierarchy is open to all coauthors

for them to evolve their understandings of related works abreast of the paper writing.

At this stage, modifications to any part of the “related work” hierarchy will unlikely

be intensive. An unconstraining protocol here would save the coordination costs of

constraining protocols.

After coauthors mostly finish their assigned sections, the task enters a revision

phase in which the individual pieces are smoothed out. A constraining protocol is

posed on the “draft” workspace such that coauthors take turns to make modifications.

During the course of revision, however, the “draft” workspace or some objects may be

re-openned from time to time for other coauthors to contribute, e.g., when a section

needs rewriting or comments from its original author. Sometimes it is necessary to

have discussions or help from colleagues if the current floor holder needs to reorganize

sections. Editing actions as such are often highly situated and it is generally difficult

to predict before hand how the control policies should be like [45, 29].

3. Summary

Even though we only use typical teaching and research activities to demonstrate

the usage of different consistency protocols in different collaboration scenarios, their

nature is shared by many other group activities. These activities contain collaboration

scenarios which require different consistency protocols. Due to the separation of data

and control in our infrastructure, applications like SSD could accommodate these
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changes easily. Compared to existing research prototypes and commercial products,

SSD demonstrates unique flexibility in its usage. First of all, SSD can accommodate

any shared components. Second, different components in the shared workspace can

be associated with different consistency protocols. The granularity and association

of consistency protocols can be dynamically changed in order to satisfy different

collaboration needs. This flexibility has not been seen in any research prototypes to

our best knowledge.
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CHAPTER VI

CONCLUSION AND FUTURE WORK

A. Summary of Dissertation

Previous collaboration transparency systems reuse existing single-user applications for

collaborative work. They generally achieve high level of reusability since no source

code of the single-user applications needs to be modified. However, they often suffer

from flexibility and performance problems. Previous collaboration awareness systems

provide reusable coordination services and multi-user widgets to reduce the costs of

developing specialized groupware applications. However, they often do not provide

guidelines as how to reuse existing single-user components in constructing groupware

widgets. The tight binding between data and coordination services often leads to

degraded flexibility and reusability.

In this dissertation, we propose a component-based approach to developing group-

ware applications. We propose a shared component model for modeling data and

graphic user interface (GUI) components of groupware applications(Chapter III). Due

to the simplicity of the share component model, the myriad of existing single-user

components can be re-purposed as shared GUI or data components. An adaptation

tool is built to assist the adaptation process.

We propose a coordination service framework(Chapter IV) with several reusable

coordination services such as data distribution, persistence, and adaptable consis-

tency control. The key for our coordination services to achieve improved flexibility

over previous work is the clean separation of data and coordination services and the

capability to dynamically “glue” them together. By doing so, users can dynamically

switch collaboration protocols in order to support evolving coordination needs.
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An Evolvable and eXtensible Environment for Collaboration (EXEC) is built

to evaluate our approach(Chapter V). In the first part of evaluation, we survey pop-

ular groupware products and their common features. Single-user components, either

acquired from open source or built in-house, are adapted into shared components

with relatively minor effort. By plugging in these shared components into EXEC,

the environment is extended to support different collaborative tasks. In the second

part of evaluation, we evaluate the adaptable coordination services by showing that in

different phases of exemplar collaborative tasks, different consistency control policies

can be applied to support evolving collaboration needs.

B. Future Directions

There are several possible directions to extend our current work. First, there are still

some system performance issues to be addressed in the presented work. Currently

consistency protocols are implemented in threads. This does not scale well with

the number of protocol instances in the system. When many fine-grained protocols

are running, e.g., at the property level, the system resources may be exhausted.

Although the use of aggregate properties mitigate this problem, there is a space for

improvement. One possible way is to only attach consistency protocols to objects

that are really shared (viewed or modified) by at least two users, which ultimately

depends on the timeliness of awareness information. Another direction is to run only

one protocol instance for each type of consistency control protocol, which may pose

new requirements on the design of consistency protocols.

Second, this research tackles more fundamental usability issues such as flexibility

of coordination. These issues are at the system level and we have performed corre-

sponding evaluation experiments. However, we have not done any usability study at
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the application level. Our current support of default and implicit consistency proto-

cols is a promising yet initial step towards addressing usability issues of the adaptable

consistency control mechanisms. We plan to refine and extend this design in future

work. Ideally the system should be adaptive by making some protocol decisions for

the users in some situations and suggesting some decisions to the users in some other

situations. We will explore these issues in specific applications.

Third, other coordination services such as access control and awareness control

are critical in building real-world groupware applications. How to model these services

in our shared component model and how these new services interact with existing

services are important issues to be investigate in future work.
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APPENDIX A

GROUPWARE PRODUCTS SURVEY LIST

Action Technologies modeling methodology and design tools for BPR

Antarya Web collaboration application suite

Attask Project Management Software

Avalon Business Systems Lotus Notes groupware development

Axista.com, Xcolla web-based collaborative project management software

bizOA messaging and groupware solution

Blackboard web-based courseware, support for collaborative classrooms

BPS Project management software, business process automation

Communique Web Conferencing Web conferencing solutions

CommunityZero web-based community development and hosting services

Cybozu web-based office groupware running on a LAN, a variety of applications

DCASoft makes BrightSuite KM and collaboration software that allows a corpora-

tion to deploy its entire knowledge base

Deep Woods consulting firm specializing in organizational technology and culture

Foraker Design usability consulting firm with ample experience in groupware and

website design, offering both user interface design and usability evaluation
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eBeam turns whiteboards into digital collaborative workspaces using infrared and

ultrasonic technology

eGroupware Enterprise collaboration suite

Business Collaborator collaborative knowledge management system

EPIware an efficient portal solution allowing any size organization to easily share

information and effectively collaborate on documents in a browser-based envi-

ronment

Facilitate.com virtual internet meeting area supporting discussions with various

tools such as brainstorming, organizing, voting, surveying, or chat.

Ferris Research publications on messaging

GFI Communications email based workflow software

BSCW a web-based shared workspace, The Social Web

Group Systems E-collaboration software to enable workgroup success by combin-

ing technology, methodologies, and expert services

GroupMind Express set of online work tools that connect people across geography,

functions and time

GroupVille a web-based collaboration solution

HelpMeeting.com data conferencing service

iCohere provides a collaborative web environment that integrates knowledge man-

agement and collaboration tools with principles of group dynamics and learning

ILINC a collaborative learning system
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Infowit web-based project management software solution

Inovie Software TeamCenter, a real-time collaborative project management system

INTERnetOFFICE web-based GroupWare solutions for today’s small to mid size

companies

JDH Technologies distance learning and collaboration environment

KMtechnologies a simple and flexible environment for the instant setup of light

multilingual Intranets and Extranets

Level 8 Systems messaging tools and component-based enterprise integration frame-

works

Lotus Notes enterprise working flow system

Lucane Free Collaborative Platform

Microsoft Exchange, NetMeeting

OPMcreator a web based team collaboration system

phpGroupWare multi-user web-based groupware suite written in PHP which also

provides an API for developing additional applications

PicturePhone videoconferencing

PictureTalk cross-platform visual conferencing

POLYCOM videoconferencing

projectplace.com Web service for project collaboration that includes shared docu-

ment archives, discussion forums, task lists, shared calendars etc.
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SoftArc a multiplatform electronic mail and group collaboration product

Teamsoft a cross platform group scheduler

Teamspace Online service for teamwork and collaboration

ThinkVirtual delivers advanced technology and services for implementing commu-

nication and process solutions

Tracker Suite Project management solution

WebCal group web calendar

WorkZone web-based shared documents and archived reports for advertising and

other professionals
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