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ABSTRACT

Real-time collaboration is a special case of collaboration where users work on the

same artefact simultaneously and are aware of each other’s changes in real-time. Shared

data should remain available and consistent while dealing with its physically distributed

aspect. Strong Consistency is one approach that enforces a total order of operations

using mechanisms, such as locking. This however introduces a bottleneck. In the last

decade, algorithms for concurrency control have been studied to keep convergence of all

replicas without locking or synchronization. Operational Transformation and Conflict-

free Replicated Data Types (CRDT) are widely used to achieve this purpose. However,

the complexity of these strategies makes it hard to integrate in large software, such as

modeling editors, especially for complex data types like graphs. Current implementa-

tions only integrate linear data, such as text. In this thesis, we present CollabServer, a

framework to build collaborative environments. It features a CRDTs implementation for

complex data types such as graphs and gives possibility to build other data structures.

Keywords: Concurrency Control, Concurrent Algorithms, Distributed Systems,

Optimistic concurrency control, Software Engineering, Shared Data, Strong Even-

tual Consistency



RÉSUMÉ

La collaboration en temps réel est un cas spécial de collaboration où les utilisateurs

travaillent sur le même élément simultanément et sont au courant des modifications des

autres utilisateurs en temps réel. Les données distribuées doivent rester disponibles et

consistant tout en étant répartis sur plusieurs systèmes physiques. "Strong Consistency"

est une approche qui crée un ordre total des opérations en utilisant des mécanismes tel

que le "locking". Cependant, cela introduit un "bottleneck". Ces dix dernières années,

les algorithmes de concurrence ont été étudiés dans le but de garder la convergence de

tous les replicas sans utiliser de "locking" ni de synchronisation. "Operational Trans-

formation" et "Conflict-free Replicated Data Types (CRDT)" sont utilisés dans ce but.

Cependant, la complexité de ces stratégies les rend compliquées à intégrer dans des logi-

cielles conséquents, comme les éditeurs de modèles, spécialement pour des data struc-

tures complexes comme les graphes. Les implémentations actuelles intègrent seulement

des data linéaires tel que le texte. Dans ce mémoire, nous présentons CollabServer, un

framework pour construire des environnements de collaboration. Il a une implémen-

tation de CRDTs pour des data structures complexes tel que les graphes et donne la

possibilité de construire ses propres data structures.

Keywords: Algorithme de concurrence, Data distribuée, Génie logiciel Gestion

de concurrence, Strong Eventual Consistency, Système distribués
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CHAPTER 1

INTRODUCTION

1.1 Context

In computer science, a distributed system is a network of independent computers that

appears to the users as one unique system. Data and computing resources are replicated

on multiple remote locations, which gives several advantages, such as fault tolerance,

performance, and availability for remote users distributed geographically. In case of

node failure, a transparent mechanism allows to automatically restore the system back

to a valid state. Users are not aware of distribution and the whole system is seen as

a unique entity. Distributed systems may require a consensus mechanism to deal with

concurrency. Paxos [37] and Raft [46] are examples of common consensus algorithms

in distributed systems.

Collaboration uses the same notions to provide its users a shared data that may be

edited concurrently over the network. Real-time collaboration is a special case of collab-

oration where users work on the same document simultaneously and are aware of other

changes in real-time. However, due to the network aspect of collaboration, operations

may be applied with unexpected latency due to some replicates. Therefore collaborative

editing faces the technical challenge of remaining available and consistent while dealing

with physically distributed data, as stated by the CAP theorem [54] described in Sec-

tion 2.1.1. In any case, at the end of collaboration, all replicates should converge to the

same state. Different approaches exist in order to keep convergence. Strong Consistency

enforces a total order of operations [36] so that all users see the exact same execution or-

der, but requires a consensus mechanism. Locking [6] is a simple approach that has been

used in collaborative environment [30, 45]. It allows only one user to concurrently edit

a specific data element at a time, so that conflicts are removed altogether. It is designed

for client/server architectures. Locking introduces an important bottleneck since users

have to wait for a resource to be released before applying any modification. To overcome
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this issue, several algorithms for concurrency control without locking have been studied

[17, 21, 55].

Operational Transformation (OT) [18] resolves the locking problem by applying

transformations on received operations. Concurrent editing is supported and users may

collaborate in real-time on the same document. It is designed for client/server archi-

tectures. GoogleDoc is an example of large-scale industrial software that uses OT algo-

rithm. Conflict-free Replicated Data Types (CRDTs) [55] is another concurrency control

algorithm that focuses on data design so that no locking is required. It is well suited for

peer-to-peer architectures but may be used for client/server architectures as well.

Lock-free concurrency control algorithm implementations generally support only

linear data, such as text (e.g., GoogleDoc, Etherpad). More complex and sophisticated

data structures, like graph-based specifications, are hard to design and implement. The

original authors of CRDT algorithm introduce an example of more advanced tree data

structure, called TreeDoc [50]. Moreover, they discuss theoretically graph data types in

their complementary CRDTs study [57]. There are many software applications that re-

quire collaboration of more complex data. This is the case of Model-Driven Engineering

(MDE) [35, 53] which uses models with strong semantics. MDE models are typically

encoded as graphs due to the complexity of there relations [62].

1.2 Problem Statement and Thesis Proposition

Building collaborative environments is not an easy task. One has to design and in-

tegrate features required by collaborative environments, such as network architecture,

concurrency algorithm (e.g., locking, OT, CRDT), user awareness (e.g., list of current

collaborators) and other possible features (e.g., undo/redo stack [11]). To ease these

software design and architecture choices, we present a feature diagram for collaborative

environments [42]. It may be used as a base of reflection in order to build any collabo-

rative environment.

Lock-free concurrency control algorithms such as OT and CRDT are well-documented

in the literature [17, 55], but their current implementations suffer from a growing com-
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plexity as soon as the shared data type becomes more sophisticated. Therefore, existing

software have their own implementations specific for their data structures and general

purpose implementations of these algorithms are still rare and uncommon (e.g., Google-

RealtimeAPI [26], YATA [44]). To achieve collaboration using such algorithms, one has

to do his own implementation, which is a complex and error-prone task. Our framework

tries to minimise this endeavor by providing a set of CRDTs primitives that allow the

developer to integrate more advanced data types, such as graph.

1.3 Contributions

The goal of this thesis is to ease the creation of collaborative software by giving tools

that hide its complexity. This thesis proposes a novel framework, called CollabServer,

based on CRDT to collaborate on extensive data types. It extends the current CRDT

approaches and implementations by providing a set of collaborative data primitives as

building blocks to construct more complex data structures. This framework helps de-

velopers build new CRDT data structures fit for their purpose. We provide an efficient

implementation in C++ available online 1.

1.4 Outline

This thesis is organized as follows. In Chapter 2, we introduce distributed systems

principles and present existing work on real-time collaboration. In Chapter 3, we enu-

merate and describe the features required for a collaborative environment. In Chapter 4,

we present our CRDT implementation used by CollabServer framework. In Chapter 5,

we describe the architecture of the CollabServer framework along with implementation

details. In Chapter 6, we discuss the evaluation of our solution. Finally, we conclude in

Chapter 7.

1https://github.com/geodes-sms/CollabServer/

https://github.com/geodes-sms/CollabServer/


CHAPTER 2

STATE OF THE ART

In this chapter, we introduce the principles for distributed systems as well as some

existing algorithms for collaboration.

2.1 Consistency in Distributed Systems

Shared data is distributed on several nodes. Therefore challenges in distributed sys-

tems/databases is to keep all nodes consistent. In this section, we are investigating the

principles that operations should conform to when they manipulate distributed data. The

goal is not only to ensure data consistency among the nodes, but also to satisfy the user

experience: delays, consistency, intent, etc. These properties have been formally dis-

cussed by different principles for distributed data, such as CAP Theorem, ACID, and

BASE principles.

2.1.1 CAP Theorem

The Brewer’s theorem (a.k.a., CAP theorem) [7] states that it is impossible for a

distributed data store to simultaneously provide more than two of the following three

guarantees.

Consistency Every read receives the most recent write or an error

Availability Every request receives a (non-error) response without guar-

antee that it contains the most recent write

Partition Tolerance The system continues to operate despite an arbitrary number

of messages being dropped (or delayed) by the network

CAP theorem does not state that one has to choose two of these three but one has to

choose between Consistency and Availability in case of network failure [8, 9]. However,

in normal conditions (Network with no failure and acceptable latency), all three guaran-
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tees may be provided successfully. CAP has been criticized [34, 54] for this ambiguity

it may introduce.

2.1.2 ACID properties

Database systems have data entries that may be created, queried, updated, and deleted.

These are the four basic operations applicable on a database, and are designated by the

CRUD acronym [33] (i.e., Create, Read, Update, Delete). ACID stands for Atomic-

ity, Consistency, Isolation, and Durability. ACID properties are widely used in relational

database. Any sequence of operations that satisfy ACID properties is called a transaction

and represents a logical operation.

Atomicity means that a sequence of operations that constitute a transaction are all

applied successfully, or none of them. This guarantee to see the transaction as a unique

atomic operation and does not partially update the database in case of failure.

Consistency means that the transaction brings a valid state to a valid state, according

to the integrity constraints imposed by the database. A transaction leading to an incon-

sistent state fails and is not applied. As an example, a transaction T may try to update an

SQL entry that has value range constraint. If this transaction would break this constraint

upon application, then the whole transaction fails so that it remains valid.

Isolation means that transaction does not interfere with other transactions executed

concurrently. Moreover, concurrent transactions leave the database in a state that is the

same as if they were applied sequentially.

Durability means that, upon completion, a transaction is guaranteed to be recorded

in durable storage and is visible to other transactions. As an example, transaction should

not be committed if only saved in a temporary buffer (power failure would lose this

transaction and lead to inconsistency).

2.1.3 BASE properties

Traditionally, ACID has been used for relational databases. However, new unstruc-

tured database model, such as NoSQL database, goes in favor of BASE [10]. Such
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databases rely on a distributed data to provide high availability and flexibility. For this

purpose, the ACID model becomes an overkill. The principles of BASE are Basic Avail-

ability, Soft State, and Eventual Consistency (EC). The former guarantees that data re-

mains available even in the presence of multiple failures. This is achieved by using a

distributed approach of the data that is replicated on several nodes. Soft State stipulates

that the database does not have to be in a consistent state all the time and, because of

EC, may change even once it stops receiving operations. Eventual Consistency is the

last but not least BASE property. Basic Availability through a distributed model allows

data to diverge at some replicas. EC guarantees that, at some point in the future, data

from all replicas will converge to a consistent state. EC is explained in further details in

Section 2.1.5.

2.1.4 Strong Consistency

Strong Consistency (SC) goes along with ACID properties, concurrency is resolved

by processing operations sequentially so that ACID properties are guaranteed. Opera-

tions are applied in a sequential order by a central consensus and sent to every replica

upon completion [36]. This ensures that only a consistent state is observed by all users

at all times but introduces needs for locking [30, 31, 45]. One central consensus server

is responsible of queuing operations in a specific order to process them sequentially in

that very order. Upon completion, newly applied operations are broadcasted to all users

so that they all see the latest value. As soon as a user sends its operation request, he

waits for an answer from consensus before applying it locally. Because of possible slow

network or high consensus server load, this action often leads to poor performance. As

an example, the user may experience slow User Interface (UI) reactivity because of a

high amount of concurrent users. Invalid operation are refused by consensus and an er-

ror message is returned. This, however makes roll-back features easy to implement since

an operation is locally applied only upon global validation.
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2.1.5 Eventual Consistency

Eventual Consistency (EC) [66] allows replicas to temporarily diverge locally but

eventually converge in the same state. Operations are not orchestrated by a central con-

sensus, instead, they are applied in parallel by different replicas. Upon application, a

local operation is broadcasted to all users through a propagation mechanism. The prop-

agation must ensure eventual delivery [47]. This is independent of the network commu-

nication protocol (e.g., UDP). In other words, an operation executed at a local replica is

eventually executed at all replicas. EC is a consistency model with convergence: replicas

that have executed the same operations eventually reach an equivalent state. EC offers

low latency at the risk of returning stale data (i.e., deprecated data) since, unlike SC,

local data is not guaranteed to be up-to-date. However, replicas are guaranteed to con-

verge when the system has been quiesced for a period of time so that all operations have

been applied on each replica. Consensus bottleneck from SC is removed and relocated

in each replica. In case of conflict, a global decision must exist so that all replicas apply

the same resolution. In case of EC, this is called reconciliation [1].

2.1.6 Strong Eventual Consistency

Strong Eventual Consistency (SEC) is a special case of EC. Reconciliation, resolv-

ing conflicts at a local replica, is hard to design and may require manual intervention

(e.g., manual merge in version control system). SEC removes this limitation by introduc-

ing rules in order to have a unique outcome for concurrent updates with a deterministic

outcome for any conflict [39]. There is no longer a need for consensus or synchroniza-

tion, since any kind of update is allowed and conflicts are removed altogether. This is

specially appropriate for real-time collaboration. Every update is immediately applied

and persisted. Replicas that have executed the same updates have equivalent state. Un-

fortunately, SEC may be very hard or impossible to implements for certain data type

[28].
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2.1.7 Optimistic Replication

Whenever a modification is applied locally, waiting for the server acknowledgement

may be long (As seen in Section 2.1.4). Optimistic Replication [52] goes in favor of

EC by having a data duplicate on each user’s machine. Updates are first applied locally

and then broadcasted using a propagation system with eventual delivery (such system has

already been described in Section 2.1.5). Eventually, all replicas converge. There are two

type of changes propagation: state transfer where the whole state is sent, and operation

transfer which only sends the atomic edit. Operation transfer is usually preferred over

state transfer for it requires less data to be passed over the network.

2.2 Real-time

In this section, we introduce the concept of real-time in software engineering, then

we discuss in further details the case of real-time collaboration.

2.2.1 Real-time software

Real-time software are subject to a well defined time constraint such as a maximum

response delay called deadline. Any processing must finish before it reaches this defined

deadline or it will fail. This requirement may vary among software as well as failure

consequences. For instance, real-time guidance systems for aircrafts have deadline in

the order of few milliseconds and failures are critical, whereas real-time video games

may have a similar deadline with less critical consequence in case of failure (e.g., screen

freezing for a short time).

2.2.2 Real-time collaboration

Real-time software have a wide range of uses in real-world applications, such as

embedded systems and communication software. Real-time collaboration is a specific

kind of real-time application that focuses on shared data across multiple users and al-

lows them to work on the same data simultaneously. It is often used through a graphical
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real-time collaboration editor. When real-time collaboration operates over a network,

deadlines may not be satisfied in case of network failure. To avoid failure, collaborative

software use replication and consistency features such as EC and SEC described in Sec-

tion 2.1. The case of real-time collaboration may require a deadline in the order of few

milliseconds.

Not all collaborative software are real-time. Although multi-user is supported for a

single data, they may exchange (or merge) their changes at specific time. This is for

instance the case of version control systems which uses Optimistic Replication (Sec-

tion 2.1.7) in order to allow several users to work on the same data. Manual merging is

used to reunite divergent copies and form a new version.

2.2.3 Requirements for collaboration

Updates have to respect several properties in order to be used in collaborative envi-

ronment without creating unexpected behaviors to its user.

• Convergence: data end up in the same state after all users updates are applied.

This is related to the notion of consistency defined in the previous sections (SC in

Section 2.1.4, EC in Section 2.1.5, and SEC in Section 2.1.6. Figure 2.1 describes

an example of collaboration on graph data. Alice and Bob both apply operations

on their local replica and then notify the central server. This server broadcasts

changes from Alice to Bob and vice versa. Upon completion, Alice and Bob see

the exact same data.

• User intention preservation: original user intention must be preserved. As an ex-

ample, Figure 2.1 pictures two users that apply concurrent editing. Alice adds a

new vertex C with edge f that links B and C. Concurrently, Bob removes the edge

e. Their intentions must be preserved regardless which algorithm is effectively

used for concurrency control. Bob’s deletion should not break Alice intention,

which is to link B and C with edge f .

• Causality Preservation: whenever two updates are causally related (e.g., create

before delete), the user should see them in this valid order. As an example, Alice
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Figure 2.1: Example of collaboration on graph

from Figure 2.1 adds vertex C and edge f . These operations are causally related,

meaning that add edge f can’t exists without the previous operation add vertex C.

This order must be respected by all replicas so that Bob and the server receives

add vertex C before add edge f .

2.3 Concurrency Control Algorithms

Concurrent updates may conflict: although an operation alone is valid, it may change

the context and, hence, be in conflict with concurrent operations. This case requires a

concurrency control to resolve this situation. Pessimistic Locking solutions use different

levels of locking to ensure SC and avoid conflicts preemptively. Locking a resource

makes it unavailable to the others for modification. The user owning the lock must

release it so others can modify it. This goes at the cost of productivity since only one
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user may own a lock at the same time, which introduce a bottleneck. All other users are

required to wait until the resource operated on is available. On the other hand, Optimistic

concurrency control uses more advanced concurrency control mechanisms to allow users

to work on a whole data at the exact same time. This goes at the cost of algorithm

complexity. Because of this growing complexity, these algorithms are more error-prone.

2.3.1 Pessimistic Locking

2.3.1.1 Coarse-grained locking

The whole data is locked until user releases it. This technique is not the most ap-

propriate choice for real-time collaboration since only one user may work at the same

time on the data (which goes against the very notion of collaboration). This is still rel-

evant solution for collaboration that does not require real-time, such as environments

with very few users or users working on a data at intervals (e.g., checklist shared by an

office where updates are occasional). As an example, this solution is used as the base

of concurrency control by WebGME [41] tool which uses global locking on the current

data. In order to allow several users to work on the same data, they introduce a complex

branching system that checkout a new branch whenever a user tries to work on a locked

data. This diverging branch may be manually merged with the original data as soon as

the lock is released.

2.3.1.2 Fine-grained locking

To avoid the whole data locked problem, this solution uses more locks to protect

smaller portions of data. This may be implemented as a fragment lock where the root

data is subdivided into several smaller fragments, each one with a distinct lock. Although

only one user may work on one segment at the time, a resource fragmented in N partitions

can accept up to N users with write operations simultaneously, assuming they each work

on a distinct fragment. Obeo Designer is an industrial example of Fine-grained locking

implementation that divides models serialized as XML documents into several locked

fragments [45].
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2.3.2 Optimistic concurrency control

2.3.2.1 Compare and Swap

Compare and Swap (CAS) is a multi-threading algorithm used to achieve synchro-

nization without locking any resources. It is an atomic operation that, upon completion,

checks whether the resource’s original value has not changed during execution. A mis-

match means that the resource has been used by another processes and Compare and

Swap should fail instead of updating the resource. In order to work, CAS uses three

parameters: the old resource value, the new resource value and the resource’s memory

location. Although this algorithm was originally designed for multi-threaded computing,

it may be used for collaboration. As an example, the software Flip from Irisate uses a

variation of CAS in order to achieve real-time collaboration without locking [28].

2.3.2.2 Three-way merge

This is the core algorithm used by version control systems such as Git and SVN. It

uses Optimistic Replication so that each user has his own copy of the data and applies

updates locally, giving the possibility to work offline. Diverging data are merged in order

to create a new version with all users changes. Three-way merge [43] name comes from

the algorithm’s pattern: two diverging copies are compared against their common base

data. Unfortunately, this is not appropriated for real-time collaboration since merge may

requires manual intervention when conflicts cannot be resolved automatically. Moreover,

during the merging process, data is locked and not accessible to any user The local user

merge his data with current server’s data , therefore the shared data on the server must

be locked.

2.3.2.3 Differential Synchronization

Originally developed by Neil Fraser (Google) in 2009 [21, 22], Differential Synchro-

nization (DS) uses Optimistic Replication in order to achieve real-time collaboration. DS

relies on the Diff / Patch / Match algorithm. Cached modifications are compared with a

copy of the previous known version called a shadow copy (diff algorithm [19]) in order
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to generate an edit which is sent to a remote replica. The former update its local copy

using this received edit (Patch algorithm [20]). DS has a client / server architecture,

where the server keeps a shadow copy for each client. Whenever the server receives an

edit, it patches its local copy and broadcast the change to the other users. This is a sym-

metrical algorithm, nearly identical code is running on server and clients. DS is suitable

for any content for which semantic diff and patch algorithm exists. Although DS only

sends minimal edits, DS is a state-based algorithm and doesn’t require that applications

maintain a history of edits. This makes DS appropriate for applications with synchro-

nization features. In case of network failure or unreliable network, DS implements a

version checker system to detect dropped edits in order to re-send them. Hence, DS is

highly fault-tolerant.

2.3.2.4 Operational Transformation

Operational Transformation was first introduced in 1989, primarily for text [17, 18].

It uses optimistic concurrency control to deal with real-time collaboration and is based

on operation transformations [61]. Every edit is an operation (e.g., Add ’x’ at pos

3) which is broadcasted to all other users. Upon reception by a replica, an operation is

compared to local operations and transformed before being applied [5], [26]. This mech-

anism guarantees that, upon successful application of all operations, replicas converge

to the same state. This is an operation-based strategy. GoogleDoc is a great example of a

real-time collaborative software based on OT. Unfortunately, OT is considered as a com-

plex and error-prone algorithm. Each possible transformation has to be defined, which

may grow indefinitely as soon as the number of possible operations grows, therefore OT

is often restricted to simple linear data, such as text. Google Wave is a relevant exam-

ple of this issue. Because of its extended available data types, its OT implementation

has grown nearly impossible to fully and successfully create for all possible transforma-

tions and Google Wave has been cancelled [23]. Moreover, OT has scaling problems in

peer-to-peer environments and is best suitable for client/server architectures.
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2.3.2.5 Conflict-Free Replicated Data Type

CRDT algorithm was presented in 2011 [55] by INRIA researchers (French Institute

for Research in Computer Science and Automation). CRDTs are data structures that

are replicated concurrently at all replicas using Optimistic Replication with SEC. They

can be state-based (CvRDT for Convergent Replicated Data Types) or operation-based

(CmRDT for Commutative Replicated Data Types). The CRDT algorithm focuses on

operations design in order to accomplish concurrency control instead of using transfor-

mations (e.g., OT). An operation represents the smallest atomic edits that a user is able

to apply on a data structure (e.g., add one value in a set). Concurrent users may apply

operations simultaneously. The idea behind CRDT is that all operations have the follow-

ing properties (with OpX for operation X. The notation Op1 + Op2 means that Op1 is

applied, then Op2 is applied on the same data):

• Commutativity:

Op1 +Op2 = Op2 +Op1

Applying Op1 followed by Op2 produces the same result as the other way round.

• Associativity:

Op1 + (Op2 +Op3) = (Op1 +Op2) +Op3

Applying Op1 followed by the result of Op2 and Op3 produces the same result as

applying the result of Op1 and Op2, followed by Op3.

• Idempotent:

Op1 +Op2 = Op1 +Op1 +Op2

Applying the same operation multiple times produces the same result as applying

the operation exactly once.

This gives the possibility for operations to be applied in any order (Commutativity, As-

sociativity), and be applied more than once without altering the result (Idempotent).

Thanks to such properties, CRDT removes the need for a central consensus bottleneck.

Each replica follows the exact same rules to apply operations, therefore they are guar-

anteed to eventually converge to the same state. It is highly fault tolerant and remains
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available even in case of network failure. It was originally designed for peer-to-peer

asynchronous collaboration. Each operation has to be designed for a specific data type,

which may become hard to implement for more complex data types. Unfortunately, even

simple data such as an ascending integer counter is already complex. Therefore, CRDT

may not be the most appropriate algorithm for all problems and data. The original re-

search study presents several common CRDTs such as counters, set, and graph [57].

Figure 2.2: State-based CRDTs: example with a set of numbers

State-based object (CvRDT): updates are first applied locally, then the whole data

state is sent to all other replicas and merged. An official example of implementation is

available online [56]. Formally, CvRDT is defined as the tuple 〈S, s0, q, u,m〉, where

S is the global state, s0 is the state at the beginning, q is the query method, u is the

update method, and m is the merge method [55]. si ∈ S is the local state at instant i. It

may be read with query q(...) and modified with update u(...). At some point, the entire

state is sent to other replicas. Received state is merged with local state using merge

method m(...), which is commutative, associative and idempotent. Figure 2.2 illustrates

the state-based CRDTs. The merge method follows the same rule at all replicas: number

are added in the list in ascending order. The state represents the current set of integers at

a replicas.

Operation-based object (CmRDT): unlike for CvRDT, only operations are broad-

cast to and applied on other replicas instead of sending the whole state. An operation

represents a possible data editing (e.g., add element). Operation-based object has the
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Figure 2.3: Operation-based CRDTs: example with a set of numbers

advantage of using less network traffic. All concurrent operations are commutative and

associative. Idempotent property is assured by the propagation mechanism with even-

tual delivery as explained in Section 2.1.5. This mechanism ensures that operations

are received exactly once at each replica. Formally, CmRDT is defined as the tuple

〈S, s0, q, t, u, P 〉. S,s0, and q are the same as for CvRDT. There are additional com-

ponents in CmRDT. Method update t(...) is a side-effect-free update only applied on

local replica and generates an operation to broadcast. Method update u(...) is then

applied on all replicas (local replica as well) and actually does the operation. P is a

reliable causally-ordered broadcast communication protocol. Such protocol guarantee

that messages are received exactly once by replicas and causally-ordered (idempotent).

Any operations that are not causally-ordered must commute. Figure 2.3 illustrates the

Operation-based CRDTs. Upon update application at local replica, the operation is sent

to all the other replicas. Each update method follows the same rule: number are added

in the list in ascending order.

2.4 Existing tools

Google Doc is one of the widely used collaborative tool for text editing. It imple-

ments OT algorithm in order to work with lock-free (Optimistic locking) concurrency

control. It supports online collaboration with several collaborators in real-time.

Google Realtime API [26] is a library to build real-time collaboration on extensive



17

data type using OT. A central server keeps the long-term storage data and several clients

may collaborate on the same data in real-time. The API provides with a set of ready-to-

use built-in data such as String, List, and Map.

Yjs [29] is an open source framework for offline-first peer-to-peer shared editing

on structured data like text, richtext, or XML. It introduces a variation of the CRDT

algorithm called YATA [44] in order to achieve SEC. YATA stands for Yet Another

Transformation Approach. It uses a linked list as its internal representation and can be

extended to achieve collaboration on new shareable data types. Operations are placed

in this linked list according to a predefined set a rules which creates a total order of

operations and removes possibility of conflicts. To support offline collaboration, each

operation has a set of metadata used to determine its position in the list (total order) and

doesn’t rely on time based value such as timestamps. Yjs is a web-based tool written

in JavaScript and may be pluggable with several kinds of databases such as in-memory

storage. YATA introduces an implementation of garbage collector to avoid ever-growing

memory.

Irisate Ohmstudio is a real-time collaborative digital audio workstation. It has a

client/server architecture which mixes both SC and Optimistic Replication. Updates

(called transactions) are applied locally before being propagated to the server. A trans-

action may be refused by the central server consensus and rolled back locally. This gives

fast responsiveness with guarantee of consistency across all users. In order to remove

the consensus bottleneck, ohmstudio uses its own concurrency control based on CAS

algorithm. Collaborative features are internally bundled inside a framework called Flip

which is reusable for extensive data types. Advanced real-time collaboration features

are well-supported by flip, such as user undo/redo stack, history with owner, and collab-

orators informations (e.g., cursor position, selection. . . ).
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FEATURE MODEL FOR COLLABORATIVE ENVIRONMENTS

In this chapter, we present a feature model for collaborative environment. This chap-

ter was originally part of a paper presented during the CommitMDE 2017 workshop [42]

and focused on collaborative environments for Model-Driven Engineering (MDE).

3.1 Features for collaborative environments

Modeling environments that directly support the collaboration of many stakeholders

on the same model(s) working independently are collaborative modeling environments.

These environments may be offline systems utilizing features similar to a version control

system to manage the shared artifacts or may allow collaborators to interact remotely

in realtime. We explored a variety of existing tools and potential solutions to identify

a set of features for the implementation of collaborative modeling environments. In

this section, we introduce and briefly discuss each feature. Figure 3.1 shows the top-

level feature diagram and the constraints of the model. The complete feature model is

available online in ReMoDD [12].

ExecutionConcurrency Conflict ManagementNetwork Architecture Multi-User

Realtime    Execution  =>  "Conflict Awareness"    "Distinction Mechanism"  v  "Sandbox Mode"v v

¬ API  =>  ClientType

Legend:
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Collaboration Scenario Support Data Storage Client Type

Undo-Redo  =>  History
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Realtime  =>  Multi-User    "Push Notification"
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"Multi-View Multi-Model"  =>  "Multi-View Single-Model"
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Figure 3.1: Top-level features and constraints
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3.1.1 Methodology

The feature model presented in this paper is the outcome of an iterative process.

To identify the feature of collaborative modeling systems, we investigated all kinds of

collaborative environments. Our sources are: our own software (AToMPM [14]), MDE-

specific environments (such as OBEO [45], MDEForge [4], GenMyModel [16] and,

CDO), and other collaborative environments (such as GoogleDoc [26], Eclipse Che,

Ohm Studio [28], Overleaf and, DropBox [27]).

We relied on published articles related to the collaboration aspect tools when avail-

able. We also reviewed technical documentation as well as relevant blogs, tutorials, and

videos that explain the technical implementation of the tools. Finally, we experienced

each tool ourself when freely available. In some cases, we studied specific algorithms, in

particular conflict management algorithms used by several collaborative environments,

such as Operational Transformation, locking mechanisms, and the DropBox synchro-

nization algorithm explained.

From the collected set of data, we identified which features are specific to MDE

collaborative environments.

3.1.2 Collaboration Scenario Support

Figure 3.2: Collaboration scenario features

An abstract model is the abstract syntax of a model conforming to the metamodel of

a given DSL. Conceptually, a view is a projection (in whole or part) of an abstract model

utilizing the most appropriate representation of a subset of the model’s elements for the
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needs of the modeler. An environment that does not support views could be categorized

as supporting only a single complete view for each model. Therefore, we can detail the

possible collaboration scenarios for both tools explicitly supporting views and those not

supporting views in similar terms. In collaborative modeling, we previously identified

four possible collaboration scenarios [14], that we briefly describe here. In the following,

we commonly refer to scenarios with only two collaborators, but recognize the scenarios

can scale to an arbitrary number of collaborators.

3.1.2.1 Multi-User Single-View

Users are working on the same view of the model. They both see the same informa-

tion in the same language and with the same concrete syntax. The changes made by a

user are reflected automatically to others.

3.1.2.2 Multi-View Single-Model

Users work on distinct views of the same model. The views may present the same,

overlapping, or disparate sets of elements in the same or different concrete syntax. Mod-

ifications on the abstract model of elements present in both views are perceived by the

other user.

3.1.2.3 Multi-View Multi-Model

Each user is working on a different view and each view is a projection of a different

model. These models have some dependency or satisfy a global constraint. Only changes

on elements related between the abstract models are perceived by both users.

3.1.2.4 Single-View Multi-Model

This is similar to Section 3.1.2.3, but the dependency is defined at the view level,

not at the model level, such as an aggregation of elements from both models. A user

may work on a view that projects several models while another is working on one of the
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Figure 3.3: Concurrency features

projected models. A change on an element used in the view is propagated to all views

with the same element.

3.1.3 Concurrency

Concurrency is concerned with issues related to multiple operations occurring at the

same time or in parallel.

3.1.3.1 Locking

When several users are working on the same model(s) concurrently, conflicting up-

dates may occur. Simple strategies, such as retaining only the last modification, could

result in losing work from one user and goes against the goals of a collaborative envi-

ronment. One approach to this issue is to avoid conflicts entirely allowing users to work

together transparently. However, the collaborative aspect requires that users are able

to work concurrently on components even closely linked. A general overview of the

file-sharing problem in the MDE environment is presented in the subversion book [2].

Pessimistic locking is a strategy widely used in concurrent systems. It is based on

data locking, which only allows one user to modify the locked data. A naive but simple

solution is to use a global Data Lock. All of the model is locked to a specific user and

other users cannot access the model until the lock is released. However, this reduces

collaboration, because only one user can work on the model at a time. Another solu-

tion is to use a Fragment Lock that applies the lock on a fragment (i.e., subset) of the

model. In this solution, each user is able to modify a distinct fragment concurrently. The



22

fragments should be as small as possible, minimizing the locked portions of the model.

However, the fragment lock approach requires a well structured data format supporting

well defined fragments. In the case of XML for example, we might lock the current

XML tag and its children. Additionally, fragment locks do not consider dependencies

that may indirectly affect the elements locked (e.g., metamodel relationships). OBEO

Designer implements data and fragment locking. Another approach relies on Depen-

dency Locking. This provides finer granularity that locks the element being modified

and its dependencies. Though this technique is seen as only an improvement here, tak-

ing dependencies into account may be seen as required by the semantic nature of models.

This is discussed in more detail in Section 3.3.

Though we try to minimize the set of elements to be locked, pessimistic locking

always blocks access to a set of data. This might lead to a situation where a user waits

for a resource to be free. OBEO shows an overview of these locking techniques in

their documentation [45]. Optimistic Lock tries to resolve this issue without locking.

Instead, it allows the users to modify, possibly the same, elements concurrently and

then merges all changes to create one unified new version of the model. For example,

this is how Google Docs allows for concurrent changes and relies on the Operational

Transformation (OT) algorithm [60] for merging. Unfortunately, though OT works well

for text based data, model merging requires merging graphs, which makes this approach

hard to apply [63].

3.1.3.2 Collaboration Type

We differentiate two scenarios of collaboration: Realtime and Offline. In the former,

the model is modified by several users at the same time; changes are applied on the data

immediately; and users are updated of changes made by others immediately. The model

is the unique source of truth that all users alter concurrently. Here even the changes from

a given user may not be considered complete until acknowledged by a central authority

or a set of peers. On the other hand, offline collaboration presents an asynchronous

approach. Users may apply modifications on the model without sending the changes

right away. This principle is often seen in version control systems (VCS) that allow
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working locally and pushing changes at a later time. This prevents immediate conflicts

between users, but local versions may diverge and result in complex merging processes

later, as in Git.

3.1.3.3 Batch Operations

All modeling systems support a set of atomic operations (e.g., creating or deleting

an element) that provide the ability to develop and manage models. We recognize that

some systems also allow collecting together these atomic operations in batches. The

processing scheme for these batches becomes significant when discussing collaborative

systems and handling potential conflicts. Resolve as Atomic resolves a set of operations

in an all-or-nothing approach. Every operation in the batch must succeed or none of the

operations can be applied. Thus, a single failing operation may result in the need to roll-

back changes from a set. Resolve Divided allows processing each operations separately.

However, this may result in partial sets being applied thereby generating unexpected or

even invalid results.

3.1.3.4 History

In a collaborative environment, storing the complex history of operations applied to

a given element can be beneficial. The series of events leading to a conflict or failure

may be complex, and not easily understood without a record of the operations. Here

we intentionally separate history from versioning. For instance, a basic feature of any

VCS is to manage the project history. Therefore, the presence of versioning mandates

the presence of some form of history (this is represented as a constraint in the feature

diagram). However, a collaborative environment might store some portion or form of

history without the presence of a VCS. GenMyModel [16], for example, has a full and

complex history feature, that allows replaying the history from a defined start time. His-

tory is Persistent if it persists when the environment halts. An example of non-persistent

history is an undo / redo stack that only lasts until a given session terminates. Using a

VCS implies that the history is persistent. However, it may not be enough to use the VCS
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history directly, but a user interface (UI) wrapper might be required. VCS integrates the

set of changes from the whole project. While working on a specific model, the user does

not need all of this information. Therefore, an environment might implement a history

wrapper that shows only the current data models history. Identified history adds the user

identity information to each modification. This is often the default behavior of a VCS.

Allowing attributing a change to a specific user helps in diagnosing a series of events

from multiple users that may have led to a conflict or failure.

3.1.3.5 Versioning

VCS are tools that trace all changes for a system and have facilities for managing

this history. A single user working on a data model has a complete view of its state at

all points and understands the full history of the model naturally. However, several users

working on the same data model may lead to misunderstandings and inconsistencies.

When trying to merge artefact(s), the data model(s) might be significantly altered since

the last connection. Changes performed by other users may be difficult to understand.

This introduces the need for versioning systems with history management. It adds the

possibility to look back at the changes performed over the intervening time and to un-

derstand the full series of changes. Moreover, VCS also support other features such as

documentation, reverting previous changes, or listing the added features for a release. A

survey on model versioning was provided by Altmanninger et al. [3].

3.1.3.6 Version Control System

VCS play an important role in software development. Tools like Git and SVN are

largely used and are very efficient. Therefore, collaborative modeling environments may

opt to integrate an External VCS into the environment rather than reinventing the wheel.

This places the data under the VCS management and each change is added to the history.

However, these VCS use compare and merge mechanisms to integrate the changes into a

new version, which require manual intervention. For instance, to integrate new changes

made under Git, changes must be commited and pushed manually. Moreover, these sys-
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tems are subject to conflicts, which require manual resolution. Employing locking with

a version control system may avoid conflicts. Merging is then performed automatically

in the background. This approach is utilized by MetaEdit+ that integrates Git with their

MDE collaboration [31]. They use fine granularity locking to avoid conflict, that allows

processing the merge without risk of conflicts. Furthermore, these VCS are specialized

for versioning, comparing and merging text files as opposed to complex semantical data

structures in MDE. For these reasons, some modeling systems may opt to build Custom

VCS. We discuss these issues in more details in Section 3.3.

3.1.3.7 SandboxMode

Sandbox is used to divorce a user from the typical collaborative environment. This

supports experimental or debugging processes. Working in a sandbox environment al-

lows developing components that temporary break other components or violate general

rules/expectations, without disturbing other users. The modifications may then be inte-

grated when complete, potentially resulting in complex merges.

3.1.3.8 Branching Type

Multi Branching is used to divide the project into several branches. In VCS, branches

are a divergent copy of the project where users may work independently from other

branches. Branches are often used for new incoming feature that are not stable yet. As

soon as the feature is stable and needs to be integrated, a merge with the main branch

is done. This eases the team work and separates the maintenance from the new release

components. However, a manual merge is required and the new feature(s) may be diffi-

cult to integrate with the main branch. New features are built on top of the old base code

that may be deprecated. This issue appears when maintenance largely diverges from

the main branch. Moreover, dependency ambiguities are complex to resolve, which is

emphasized by the semantic nature of models.

Single Branch avoids these issues. No branches are used and every change is per-

formed on a single version of the system. In order to separate new features, e.g., to
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exclude them from the release, Revision Flags may be used. In this way, new features

depend on the up to date state of the code, while still hidden from release. One great ex-

ample is Google with the Piper VCS which uses only one trunk for all its teams and flags

for new features [49]. It is important to note that the use of branches is not always rela-

tive to the actual VCS branching support. Though the used VCS may support branching,

users (or even environments employing an external VCS) can make the decision not to

use branching. This is the case with MetaEdit+ that uses Git as a VCS but does not use

Git branching feature.

3.1.4 Data Storage

Figure 3.4: Data Storage Features

Data storage is concerned with how models are stored and managed in the system to

enable reuse among collaborators.

3.1.4.1 Workspace Location

In a collaborative environment, data is often saved in a remote place (i.e., the “cloud”).

The workspace location is where the data is stored while users are modifying it. Data

may be Local, meaning that the relevant models are on the users local machine. This

may support an asynchronous workflow as with an offline collaboration type or be a re-

sponse to other constraints on the system. Collaboration is often reduced to active screen

sharing (single-view single-model) as supported by AToMPM. Since network latency is

sometimes high, having a local copy may remove the delay between an operation being
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requested and being applied on the data. In contrast, Remote locations do not require

loading the project locally. This is useful in the case of a project using a high quantity of

memory. Lazy loading may even be used to load specific data only when required.

3.1.4.2 Data Format

Models use a specific data storage format. The choice of format is important and

may influence or be influenced by other factors (e.g., the VCS). Some formats may be

hard to use with a text-based VCS, hard to fragment for locking, or mandated to be com-

patible with a distributed database utilized by the system. Popular formats are JSON (for

web-based modeling environments), XMI (for Eclipse-based tools), or NoSQL database

formats when scale is an issue.

3.1.4.3 Data Management

Data management refers to managing the basic operations and long-term storage in

the system (e.g., CRUD operations). Internal Management implies data is processed by

tools internal to the software, whereas External Management reuses existing tools like a

distributed database. Namespaces (e.g., URI) are crucial to access a model.

3.1.4.4 Format Optimization

Format Optimization identifies the way a system might optimize the model represen-

tation/storage for certain actions; e.g., Model Browsing or model Search. Basciani et

al. [4] overview different supported query mechanisms for several systems according to

the managed artifacts.

3.1.5 Network Architecture

Collaboration requires the use of the network so that instances of the modeling sys-

tem on different machines communicate and exchange data.
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Figure 3.5: Network Architecture Features

3.1.5.1 Communication Protocol

Clients and servers must be able to communicate using a common protocol. TCP/IP

is a widely used network protocol. It may be relevant to investigate reliable networks to

guarantee no data loss, but at the cost of time performance. Client and server must then

use the same data format to communicate information.

3.1.5.2 Architecture Type

This is the network architecture chosen for the collaborative environment. We dis-

tinguish two fundamental types of architectures: Centralized and Decentralized. Cen-

tralized uses a central authority. It has the advantage of having one source of truth: the

centralized storage is the true version of the work. Alternatively, Decentralized systems

distribute authority. An example of Decentralized architecture is Git, though often used

in a Centralized way (e.g., Using Github server as the main storage location).

Centralized architecture may be Single-Server or Distributed-Server. This is an in-

ternal detail, since end-users see the cluster as only one single-authority. Distributed-

Server adds complexity to handle data synchronization across all storage locations. Nev-

ertheless, it adds a layer of security (a single server crash will not affect the whole sys-

tem) and performance (distributing processes and storage across a large set of nodes).
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This is useful for servers with high traffic demand. An industrial example of this is the

Google Piper VCS [49], which is duplicated into 10 servers across the world using the

Paxos algorithm [37]. This divides the number of request performed on each unique

server and speeds up response time.

3.1.5.3 API

An API, though optional, may be integrated to allow extension of the system and

other client implementations. For example, we are working toward an API for collab-

orative modeling services to allow building and integrating potentially many distinct

clients [13]. Each client may support their own needs and rely upon the common mod-

eling services provided by the API to simplify system design and interoperability. APIs

are the basis for modeling as a service systems, such as MDEForge. Additionally, an

API may be provided purely for internal use to manage operations between layers or

nodes in the architecture. For example, there is a simplified API between the MVC and

MvK within the architecture described in our prior work [13].

3.1.5.4 Failure Recovery

Hardware and network systems are subject to failure and error, but user experience

should not be affected by a technical issue within the system. The possibility of recov-

ery is closely relative to the chosen Network Architecture. Decentralized architectures

mitigate this issue as each user owns a state of the project. Though the error might be dis-

connected from many users, consistency schemes must exist to manage the decentralized

authority.

Centralized architectures are notably subject to failure in the case of Single-Server

where there is a single point of failure sufficient to take the entire system down, and

recovery can be difficult to impossible depending on the severity of the failure. On

the other hand, Distributed-Server may implement a failure recovery system. If one

server crashes, the system may use another server instead to maintain availability and

redundancy may be used to prevent the loss of data.
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3.1.6 Conflict Management

Figure 3.6: Conflict Management Features

Divergent modifications on the same data model may lead to a conflict when trying

to resolve all modifications to a single consistent model state. It is important to detect

conflicts and act upon resolving them.

3.1.6.1 Conflict Resolution

Conflict resolution is the process by which all modifications are combined in order

to create a new version of the model. Automatic conflict resolution is the ideal solution,

where conflicts are resolved automatically. Other features, such as collaboration type and

locking, strongly impact the complexity of managing automatic resolution of conflicts.

A live collaboration environment with fine grained locking may be conflict free. High

risks of conflict appear when using offline collaboration and versioning. Each user works

separately on a divergent version of the work. To share his change with others, the

user needs to perform a merge action. This could be accomplished through a diff /

merge algorithm. In case of unambiguous changes, this action may be transparent to the

user. For example, if each user changed different parts of the model(s) without cross

dependencies. However, often Manual conflict resolution may be needed. This is the

case of WebGME tools that refuse a push request if the server has already been modified

[40]. The user must then first pull the latest changes and manually merge them with his

own changes before pushing them to the server.
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3.1.6.2 Conflict Awareness

When working in collaboration, users should be aware of other users changes. Con-

flict Awareness is the mechanism that warn users of conflicts. Notification may be sent

in response to conflict (e.g., 2 users move the same element) or to warn users about po-

tential conflict (e.g., elements being edited by other users). It is disruptive for a user

to perform a modification that results in unexpected behavior, because the user was not

notified of a conflict.

Warning conflict awareness are only mechanisms to inform user about conflicts and

concurrent actions. This feature provides only information about conflicts or potential

conflicts. This is often used by the GUI, which uses combinations of colors and anima-

tion to display the information. OBEO applies this solution by drawing a lock icon at

the bottom of any locked element. However, this is not only restricted to GUI, this can

also be applied in an API. For instance, it can be a special return value of a function in

case of conflict, or an object state that changes according to it’s conflict state. The case

of a GUI is discussed in more details in Section 3.3.

Prompt Action conflict awareness on the other hand, informs about conflict and re-

quests the user take some action, such as in MedaEdit+. The user is prompted to update

the model with the server to remove existing locks.

3.1.7 Multi-User

This feature is concerned with the fact that multiple users are interacting with the

same or related models.

3.1.7.1 Authentication Method

Collaboration implies that several users are able to access the data models. An au-

thentication mechanism can be incorporated to give access only to registered users or to

simply track who is responsible for a given operation. User Identification requires such

an authentication method. The method may involve utilizing an external authentication

method. For example, GenMyModel allows users to connect through their Github ac-
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Figure 3.7: Multi-User features

count. Alternatively or in addition, Anonymous Access may be provided to allow users

to connect without having to register. This can be used for example to allow read-only

access. One example outside MDE is the IRC channels that do not require registration.

3.1.7.2 Access Control

Users working in collaboration must be able to access the data model. However,

each user may be provided a distinct set of permissions. This is handled by the Access

Control feature. There are two distinct alternatives: Operation-Based and Data-Based.

They may be mixed together in order to have more fine-grained control. Operation-

Based restricts what a given user is able to do on any model, based on the possible set

of operations (e.g., CRUD operations). A user is granted a specific operation permission

that applies on any model from the project. This is similar to a database administrator

that has full access to all elements. On the other hand, other users may have a restricted

set of allowed operations. Data-Based access control may be provided to control the

elements (at model or element level) and operations for those elements available to the

user.

Access Control can be augmented with an Ownership System that adds the possibility

to restrict exceptional permission to only a set of users, as in GenMyModel. A project

can be shared with a team and permissions are given to certain users. They also add

project visibility. A public project is visible to everyone, though read only, any user can

clone the project in its own session, thereby creating a totally new project copied from

this public repository.
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3.1.7.3 User Presence Awareness

When collaborating, it is often preferred to know who is working concurrently. User

Presence Awareness is the mechanism used to know which users are currently working

on the same model. Current User Visible does not display any user other than the cur-

rent one. This is the behavior of non collaborative software. This might be useful in

collaboration in case of high number of users, to remove the information overload, but

instead only show the total number of current users. To fully use the power of collabo-

ration environment, it is recommended to use All Visible feature. This implies that the

presence of all users working concurrently is known. One implementation would be to

highlight the mouse cursor of all users (e.g., Google Docs) or highlight the graphical

element actively used by each user. Nevertheless, a large number of users may cause

confusion on the canvas. This introduces the use of a Distinction Mechanism that adds

special attributes to differentiate users. It may only differentiate local user from all oth-

ers (e.g., using two colors), or differentiate each user (e.g., one color per user). Using

a distinction mechanism for each user can also lead to information overload. We can

add additional information by using an Identification Mechanism to identify the opera-

tion/focus of each user distinctly. This is used by GenMyModel, which lists all current

collaborators for a model.

3.1.7.4 Undo / Redo

Undo / Redo is a fundamental feature of professional software. The common and

expected behavior of undo is to revert the last action performed with further invocations

of undo reverting prior action in reverse order of original application. The standard

behavior considers only a single user, providing User-Specific Undo / Redo. Common

patterns are known for implementing this feature (i.e., Command pattern [25]). Though

this pattern works well for a single-user environment, additional complexities must be

handled in collaborative systems. We need to take into account not only the current user

changes but also other user changes. Using a local undo stack is not sufficient: reverting

a command in a collaborative environment must consider all commands. Otherwise,



34

unexpected behaviors might appear since our previous state has been altered by others.

Consider the following scenario. Alice adds the attribute name in an empty element.

Bob adds the attribute age. Let us assume our undo implementation resets the element

to its exact previous state. If Alice undoes her change, the element ends up being empty

again. The age attribute has also disappeared because the implementation neglected

modifications from other users. A real-time API must implement a more complex stack

system for its undo / redo management that takes into account the sequence of operations

and resulting interdependencies introduced by concurrent collaboration. An example

Undo / Redo in a collaborative environment is discussed in detail by Cheng et al. [11].

Another way to handle Undo / Redo is to use Global Undo / Redo. The stack is shared

across all collaborators. GenMyModel can handle both alternatives: a user undo / redo

is present, while history features allow global undo / redo using the general stack of

changes.

3.1.7.5 Push Notification

This is the mechanism by which user modifications are automatically propagated

to others collaborating on the same model(s). Whenever an operation is executed, all

users must be aware of it and their local data model updated. We distinguish between

two kinds of Push Notifications. Any Modification is a continuous notification scheme.

Every operation generates a push out to every user. This ensures the server is up to date

and all users see what others are doing in real-time (with some tolerance for network

latency delays). This technique is used by OBEO, GenMyModel, and WebGME.

Alternatively, Bulk Notification regroups changes and sends them only when specific

conditions are reached. Bulk notifications may be sent manually in an Event-Driven

approach (e.g., on a save action), in a Periodic approach (e.g., each 2 minutes), or in

a Change Threshold approach. MetaEdit+ chooses the event-driven option and sends

changes only when the user saves. This gives several advantages over Any Modifica-

tion notification. Network load is notably reduced and users can hide from others the

temporary broken or intermediate state of the data model. Working on models often

requires moving a set of elements, temporarily destroying links, and other temporary
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or intermediate states. Though the goal of one’s action may be acceptable, others may

be disturbed by this temporary/intermediate state. Other users are only interested in the

result. However, the Sandbox feature can be provided to handle similar scenarios.

3.1.7.6 Communication

Communication tools are used to contact other collaborators, ask them questions,

add comments on elements, or discuss conflicts detected and merges. Communication

tools are closely related to User Presence Awareness that allows identifying who is work-

ing concurrently, and then communication tools enable contacting them without using

external tools. Real-time tools allow for direct communication. The users must commu-

nicate in real-time. This is the case of video call, audio call, and instantaneous chat. On

the other hand, Asynchronous communication allows delayed communication with other

users (e.g., chat box, comment, or annotations on components). A complete taxonomy

of communication tools in MDE collaborative tools is provided by Davide Di Ruscio in

his systematic mapping of collaborative model-driven software engineering [15].

3.1.8 Client Type

Figure 3.8: Client Type Features

The end-user typically works on model(s) through a graphical representation. Mod-

eling tools often make heavy use of mouse cursor. Therefore, Desktop (MetaEdit+,

OBEO) and Browser (AToMPM, WebGME) applications are common choices. On the

other hand, very few Mobile application are utilized for modeling(e.g., FlexiSketch [67]).

Browser clients have an advantage in portability. Collaboration involves multiple users

that often use different operating system. Supporting a cross platform desktop applica-

tion introduces additional complexity and in modern systems in-browser environments
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seem to be preferred. In-browser environments also eliminate the need for installation

and dependency management for end-users. However, a system may be provided with-

out an explicit client type being specified, but an appropriate API must be provided to

enable access to the system.

3.1.9 Execution

Figure 3.9: Execution features

A special attention should be given to executable models in a collaborative context.

Let it be model transformation or model simulation, Executing Models can be done lo-

cally or have an impact on the remaining users’ experience. Many issues arise, such as

whether the transformation should happen in batch or every step is visible to all users.

The latter is supported by AToMPM. Similarly, Debugging executable models is often

done in a different mode than when editing. This may raise conflict where the state of a

model element is modified by the execution while another user is modifying it. Note that

supporting execution within a realtime environment imposes additional constraints (in-

cluded in Figure 3.1). The constraints address the need to support users working concur-

rently by preventing or mitigating the impact of conflicting operations on the workflow

of a given user.

3.2 Examples and instantiation

We present four tools, among those we examined, chosen because of specific variants

of the features they use and because there was enough documentation to support the

claims.

An instantiation of the feature diagram will include all mandatory features as well as

specifying those features with alternative sub-features or any optional features included.
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The following discussion assumes all mandatory features are included. In our feature

diagram, the top level mandatory features are Collaboration Scenario Support, Concur-

rency, Data Storage, Network Architecture, and Conflict Management. Without one of

them, a collaboration environment wouldn’t be possible. On the other hand, Mutli-User,

Client Type, and Execution are not mandatory. Though feature such as Multi-User are

important, some cases may not need it. This is for instance the case of API for MDE

collaboration without a provided client.

3.2.1 Obeo Designer

OBEO is an MDE collaborative modeling tool in Eclipse based on CDO with Cen-

tralized server and continuous integration. Concurrency in OBEO uses Pessimistic Lock-

ing with both Data Lock and Dependency Lock. Any modification on a model locks the

whole model for this user (Data Lock) restricting the ability for two users to work on

the same model concurrently. However, they can work on separate models, even with

strong dependencies, using Dependency Lock. Whenever a model is locked, its depen-

dencies are also locked. This is fine grained locking allowing users to work concurrently

without conflict. OBEO uses four Easy-To-Customize representations, diagrams, ta-

bles, matrices and trees. Collaborators may use any of these representations to work on

the same data model, therefore, both scenarios Multi-User Single-View and Multi-View

Single-Model are supported.

3.2.2 WebGME

WebGME is an open source project that implements collaborative modeling with a

Centralized server. Concurrency is integrated with a Custom Versioning System that also

handles Multi Branching. Several users may work on different branches and then merge

together, using the integrated merging tool. Each modification automatically creates a

commit. Offline modification is supported: the working branch is automatically merged

with the synchronized version at the next connection. Concurrency is resolved by an in-

teresting Optimistic Locking mechanism such that no actual locks are required. In most
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cases, conflicts are resolved automatically using, for example, a first-win rule. However,

some conflicts require manual intervention. In that case, a conflict is automatically re-

solved by creating a new branch for the user in conflict. His changes are then local to its

branch and a manual merge to the trunk is required. WebGME supports the Single-View

Multi-Users scenario.

3.2.3 GenMyModel

GenMyModel is a browser-based modeling tool that supports collaboration. Gen-

MyModel introduces a complex sharing system similar to that provided by GitLab and

Github; i.e., Data-Based Access Control with an Ownership System. A user is the owner

of his project and has all rights on it. Collaborators may then be added to the project

with specific rights. An Operation-Based Access Control is introduced with the public

or private state of a project. In public projects, any user has read-only access, whereas

private projects are visible and accessible only by their owner and collaborators. GenMy-

Model provides Live Collaboration, implementing a Centralized Network Architecture.

Data can be accessed from anywhere and is not cloned on the client side. History is

implemented without an external VCS. All changes made by users are saved creating a

modification timeline. Users can therefore browse the change and go back to a previous

version. GenMyModel allows several collaborators to work on the same model with the

same view. This is the first scenario Multi-User Single-View that is supported. Moreover,

it also adds possibility to have a view that project several models, therefore Single-View

Multi-Model scenario is also supported.

3.2.4 MetaEdit+

The collaborative infrastructure of MetaEdit+ is similar to OBEO. It uses a Central-

ized server with continuous integration and applies Pessimistic Lock with a fine gran-

ularity and distinguishes dependencies. Therefore, only a minimal set of elements is

locked and only when needed [32]. It integrates a Version Control System using an Ex-

ternal VCS. The VCS working directory is managed as a separate repository and uses
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the MetaEdit+ API to process the requests. In that sense, MetaEdit+ implements a full

support of existing VCS to version control models. Single-View Multi-Users scenario is

supported by MetaEdit+.

3.3 Discussion

3.3.1 Locking and dependencies

Locking a model may seem safe, since only one user can apply modifications on

it. However, dependencies must be taken into account. The current model Alice is

modifying (and locked to her) is safe from Bob’s updates. But this model may have

dependencies with another model that is not currently locked. If Bob modifies this other

model, we would have altered Alice’s model, even if it was locked. For instance, Alice

can divide a UML diagram into several subsets linked together. Changes that affect

another subset should spread. Therefore, when an element is modified, other affected

elements must be locked as well. However, dependencies are common in models and

even small fragments might end up locking a huge set of elements. Dependencies should

be taken into account, but supporting transitive links may be too restrictive. Maroti et

al. emphasize how simple operations, such as copy or delete, may end up locking a

significant portion of a model [40].

3.3.2 Versioning for Models

Version control systems are widely used for source code projects. The syntactic

nature of source code works efficiently with the text based nature of this diff & merge.

The VCS detects modifications in the files and create a new version by merging both

changes. EMF Compare is a good example of an MDE tool using text-based comparison

for models. A recent article shows a way to use EMF Compare with EGit on Eclipse

in order to integrate MDE versioning [48]. However, only diff & merge is often not

the most relevant for MDE because of the semantic nature of models. This issue of

integration with VCS is explained in details by MetaEdit+ [31].
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3.3.3 GUI for Conflict Awareness

We have explained the importance of having a User Conflict Awareness mechanism.

Here, we discuss concerns relevant to GUIs. The following examples emphasize the

importance of User Conflict Awareness in a GUI. Assume that Alice drags and drops

an element from a model. Bob tries to drag and drop the same element at the exact

same time, but to a different location. Alice releases the element before Bob. If the

conflict management system is optimistic, the last to drop is retained. Therefore, Bob’s

final action prevails, and the element is placed according to his action. From Alice’s

point of view, the element disappears or shifts when she releases it. This is confusing

and unexpected behavior. Alice may even see this as a bug. In such situations, a GUI

warning may be displayed. One solution is to blink the element on Alice’s GUI and play

an animation that moves the element to the final position (from Bob’s action). This way,

Alice understands that her change was immediately followed by Bob’s. OBEO applies

this solution by annotating with a lock icon at the bottom of any locked element. Google

Drive, places a special red cross icon on a deleted element. The cross lasts long enough

for the user to see the element being deleted before it disappears.

3.3.4 Why should we use User Presence Awareness

Knowing who is currently working on the same document has several advantages.

For a communication purpose, this warns of others currently working on the same project.

This eases the general knowledge of the team work and who to contact if an element

needs to be discussed. For instance, if a fast feed-back is required for a modification, it

is easy to request others. Moreover, it has an impact on the learning process: users are

able to help each other. If Bob makes use of an action unknown to Alice, asking him is

easy and fast via the communication mechanism in place.

3.3.5 Note about Push Notification

We discussed in the Push Notification feature that user modifications are sent either

continuously (Any Modification), or regrouped and sent manually or periodically (Bulk
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Notification). In practice, it is often a mix of both. For example, in GoogleDoc, mod-

ifications are sent at upon saving the document, which is triggered automatically. The

frequency of saves usually starts after a significant change is made in the document.

This result in an almost continuous Push Notification and releases the network load at

the same time.



CHAPTER 4

CONCURRENCY CONTROL ALGORITHM

We propose a variation of the CRDT algorithm. In this chapter, we present our CRDT

implementation used by our CollabServer framework.

4.1 CollabServer CRDT algorithm implementation

We introduced the CRDT algorithm in Section 2.3.2.5. In this section, we discuss the

details of implementation and the choices we made for our CRDT algorithm integration

in CollabServer. Although CollabServer framework uses a central server that users may

connect to collaborate with each others, our algorithm is designed for client / server as

well as peer-to-peer architecture.

4.1.1 Operation-based CRDT

Figure 4.1: CmRDT operations commutativity

We choose the operation-based approach of CRDT (i.e., CmRDT). This approach

requires less network bandwidth since only the minimal representation of an operation is

to be sent over the network. Moreover, the concept of operation is convenient to use with

external components, such as a database or a GUI (e.g., components that directly use the

CRDT to display or save it). As an example, each operation on a CRDT set (e.g., add,
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remove in Figure 4.1) is easily translated into a SQL database statement (e.g., INSERT

B, DELETE B). The case of GUI is similar and may use an observer pattern to notify

received operations. Operation-based CRDT is formally defined in Section 2.3.2.5 as

the tuple 〈S, s0, q, t, u, P 〉. Our variation of the original CRDT description comes from

P , which is a reliable causally-ordered broadcast communication protocol. CmRDT

requires that concurrent operations (not causaly related) are commutative. Idempotent

and causal-order are formally ensured by P . In our implementation, we decided to

make all operations commutative and idempotent, regardless of their causal-order. This

removes the need of P and gives the possibility to apply operations in a totally arbitrary

order. Moreover, upon reception by a replica, operations are applied immediately. This

removes any need for synchronization or complex delay mechanism. In Figure 4.1, Alice

applies add B at t1, then remove B at t2. These two operations are causally-ordered.

Formally, CmRDT requires that P delivers these operations with the same causal order at

all replicas (in contrast with concurrent operations that must commute). Bob receives the

remove operation before add, which is valid in our implementation since all operations

are commutative. Upon add B reception by Bob (with timestamp t1), our algorithm

detects that vertex B has already been deleted at t2.

Figure 4.2: Example of fine-grained timestamps in CmRDT Graph with attributes
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4.1.2 Last-Writer-Wins (LWW) and timestamps

LWW stands for Last-Writer-Wins, meaning that timestamps are used to choose the

prevailing operation in case of conflicts. A fine-grained use of timestamps is required to

support complex components with internal attributes as described in Figure 4.2. A graph

vertex B has two attributes x and z, with an integer value. Each attribute is an atomic

entity with its own timestamps so that, updates on one attribute will not affect the others.

One may use a global timestamps for the whole vertex. However, this would lead to a

misleading behavior, since vertex B would end up with x = 0 and z = 6 for Bob has

the latest timestamp. To avoid this, we use fine-grained timestamps: each attribute has

its very own timestamp.

Figure 4.3: Timstamps requirements in case of identical operations

Another important requirement when using timestamps with CRDT is to update

timestamps values even in case of identical operations on the same element. One may

think as an optimisation to first check if two operations on the same element are identical

(e.g., add B) and possibly bypass this operation. This, however, may lead to an inconsis-

tent state. In Figure 4.3, Alice adds a vertex B at t1. Bob decides to delete this vertex a

t2, and then re-adds it later at t3. Because of unexpected broadcast system (e.g., network

issue), Alice receives Bob’s add B first. Although B already exists at Alice’s replicas,

we update its timestamp from t1 to t3. Thanks to this, the late received rem B at t2 is
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not applied since t3 is newer. Without this timestamp update, vertex B at Alice’s replicas

would be deleted and leads to an inconsistent state.

4.1.3 CRDT tombstone metadata: isRemoved

Figure 4.4: CRDT tombstone metadata isRemoved illustrated

CRDT is known as an monotonically increasing only data structure in terms of mem-

ory space: elements are never deleted but only flagged as removed. This is formally

named the tombstones. In our implementation, it is integrated as a boolean metadata

named isRemoved. A value of true means that this elements is flagged as deleted. As an

example, in Figure 4.4, Bob is the first to create vertex B at t1. Because of unexpected

broadcast system (e.g., slow network), Alice receives Bob’s add B operation after she

applied add B and rem B. Thanks to the timestamp and the tombstone, our algorithm

detects that this add B attempt is older than rem B and B remains deleted at all replicas

(isRemoved = true as seen on the figure). A naive implementation without tombstones

would remove B when Alice applies rem B at t3. Upon reception of add B at t1 from

Bob, there would be no possibility to know if this operation was older than the already

applied rem B operation and B would be re-added, which leads to inconsistency. There-

fore, tombstone is mandatory and integrated in our CRDT algorithm.
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4.1.4 Return value for CmRDT update method

Figure 4.5: Boolean return type for CmRDT update methods

Operation-based CRDT is formally defined in Section 2.3.2.5 as the tuple 〈S, s0, q, t, u, P 〉.
This chapter focus on the update method u(...), which is responsible for applying an op-

eration. Update method has a boolean return value to notify the user about completion

of the operation. In the Figure 4.5, it is illustrated by {true} and {false} marks. Al-

though operations are always applied internally, a user may not see it. Figure 4.5 is an

example where Alice applies add B, then remove B. Both methods return true. The

third application remove B is technically valid from the CRDT point-of-view since all

our operations are idempotent. However, B is already marked as deleted, therefore false

is returned so that Alice does not see that operation as applied. Another example to illus-

trate the use of a return value is the case of delete statement in a SQL database. Without

this return value, one would call DELETE statement a second time, which is not the

expected behavior. Bob receives remove B, then add B. Since add B is earlier than

remove B, both methods return false and Bob does not see vertex B until he receives

the last add B with timestamp t4 where true is returned.



47

4.1.5 CRDT internal representation, iterators and special query methods

We saw in Section 4.1.3 that CRDT works with a tombstone metadata that we im-

plemented as a boolean we named isRemoved. In practice, this means that any CRDT

element requires at least two slots in actual memory: one for the element and another

for its CRDT metadata: timestamp and tombstone. This introduces the need for two

versions of the query methods and iterators. In the first version, the query method re-

turns the element only if it is marked as alive (i.e., isRemoved is false), and an iterator

iterates over all the alive elements. We refer to these methods as the "normal" version of

queries and iterator. Another version returns the internal CRDT metadata along with the

requested element, even in case of element marked as deleted. We refer to these methods

as the "CRDT" version. In our listings, CRDT version of query methods and iterators

have the suffix "CRDT" (e.g., queryCRDT(...)).

4.2 CollabServer CRDT Primitives

CollabServer implements a set of CRDTs called built-in CRDT primitives. They all

use Last-Writer-Wins paradigm as described in Section 4.1.2. The concrete implementa-

tion in CollabServer framework is in C++ 2011 standard. We use C++ templates to hold

the final developer data type. However, this chapter explains our algorithm in a common

manner without focus for any specific language. All the algorithm listings are in pseudo

code.

4.2.1 LWWRegister

Algorithm 1: lwwregister_update(value, timestamp)
1 if timestamp > current_timestamp then
2 current_value = value
3 current_timestamp = timestamp
4 return true
5 else
6 return false
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Figure 4.6: LWWRegister: example of collaboration with the update method

This is the simplest CRDT primitive we implemented in CollabServer. It holds one

atomic value along with its CRDT metadata (timestamp and isRemoved booean). The

update method changes the content of the register as a whole, as presented in the algo-

rithm in Listing 1. The query method returns the content of the register.

4.2.2 LWWSet

The CollabData LWWSet is a monotonically increasing set data structure that keeps

any key added along with its CRDT metadata. Technically, we store our set in a hashmap.

The user keys are stored as the hashmap keys whereas the hashmap values hold the

CRDT metadata as a couple 〈timestamp, isRemoved〉. In our algorithm listings, for

an element recovered by element = hashmap[x] we assume that element.key is the

hashmap key and element.value the CRDT couple.

4.2.2.1 LWWSet query method

Algorithm 2: lwwset_query(key)
1 element = hashmap[key]
2 if element is not None AND is not element.value.isRemoved then
3 return element.key
4 else
5 return None

Query returns the key only if it exists in the internal hashmap and it is not marked
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as deleted (i.e., isRemoved = false), as described line two of the algorithm in Listing 2.

4.2.2.2 LWWSet clear method

Figure 4.7: LWWSet: example of collaboration where clear call is earlier than add times-
tamp

Figure 4.8: LWWSet: example of collaboration where clear call is older than add times-
tamp

The method clear deletes all the elements from the set (i.e., marks elements as

deleted). However, clear may be concurrent with other add operations, therefore we

cannot simply apply a conventional clear. We distinct two scenarios: one scenario where

clear is older than add, as illustrated in Figure 4.7, and a second where clear is newer
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Algorithm 3: lwwset_clear(timestamp)
1 if timestamp > lastclear_timestamp then
2 last_clear = timestamp
3 for element in hashmap do
4 if timestamp > element.value.timestamp then
5 element.value.timstamp = timestamp
6 element.value.isRemoved = true

7 return true
8 else
9 return false

than add, as illustrated in Figure 4.8. In the first scenario, Alice clears the set at t1. At t2,

Bob adds an element y before he receives the Alice’s reset. Upon reception of this reset

at Bob’s replicas, our algorithm detects that y is not to be deleted since its timestamp t2

is newer than the timestamp t1 associated with clear. In the second scenario however,

Bob applies add y at t1, whereas Alice applies reset later, at t2. Upon reception

of Bob’s operation add y at Alice’s replicas, our algorithm detects that this add y is

actually older than Bob’s clear, therefore y has to be delete, to account the effect

of clear. In our algorithm, we keep the timestamp of the last effective clear. This is

described at the second line of the algorithm in Listing 3. We consider a clear has

being successfully applied if it is newer than the last applied clear and true is returned,

regardless the actual deletion of an element in the set.



51

4.2.2.3 LWWSet add method

Figure 4.9: LWWSet: example of collaboration with concurrent add || add calls

Figure 4.10: LWWSet: example of collaboration with concurrent add || remove calls

The method add inserts an element in the set. In a collaborative context, two sce-

narios may arise: either two add operations or one add and one remove operations

are to be applied concurrently. In the former case, only timestamps are updated and we

return false, meaning the key was not added. This situation is illustrated in Figure 4.9

where Bob applies add x at t3, then receives another add x with t1 from Alice, there-

fore timestamp stays unchanged. The second scenario is illustrated in Figure 4.10: Alice
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Algorithm 4: lwwset_add(key, timestamp)
1 element = hashmap[key]
2 if element is not None then
3 if timestamp > element.value.timestamp then
4 element.value.timestamp = timestamp
5 if element.value.isRemoved then
6 element.value.isRemoved = false
7 return true

8 return false
9 else

10 element = {key, {timestamp, false}}
11 hashmap.add[element]
12 if element.value.timestamp <= lastclear_timestamp then
13 element.value.timestamp = lastclear_timestamp
14 element.value.isRemoved = true
15 return false
16 else
17 return true

adds x at t2, then removes x at t3. Concurrently, Bob added element x at t1, but Alice re-

ceives this operation later at t4. Upon add x reception at Alice’s replicas, our algorithm

detects that a previous remove x is more recent than this add x, therefore, nothing is

to be done and x remains deleted with its timestamp set to t3. Our add algorithm is

described in Listing 4.
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4.2.2.4 LWWSet remove method

Figure 4.11: LWWSet: example of collaboration with remove received before add

Algorithm 5: lwwset_remove(key, timestamp)

1 element = hashmap[key]

2 if element is not None then

3 if timestamp > element.value.timestamp then

4 element.value.timestamp = timestamp

5 if not element.value.isRemoved then

6 element.value.isRemoved = true

7 return true

8 return false

9 else

10 element = {key, {timestamp, true}}

11 hashmap.add[element]

12 return false

The method remove marks element as deleted if the remove timestamp is higher

than the current one. In case this element is already deleted, remove simply updates the

timestamp and returns false since, from a user point of view, the element was already

deleted. If the requested element is not yet present in the set, it is added first, then
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remove is applied. This case is illustrated in Figure 4.11 where Bob receives remove

x, whereas x is not yet in the local set. All operations are commutative and removed is

applied. When Bob receives add x with an older timestamp t1, our algorithm detects

that a newer remove x has already been applied. This is described in details in Listing 5.

4.2.3 LWWMap

A map is a data structure that defines mappings in the form of a set of key-value

pairs. We designed LWWMap as a LWWSet of keys, where each key is mapped to

a value. LWWMap follows the exact same algorithm as LWWSet, therefore, only the

key is a CRDT. This allows for any value type. If the developer wishes to make values

CRDTs as well, he may encode them as LWWRegister, other CRDT primitives available,

or create his own CRDT primitive.

4.2.4 LWWGraph

Graph is the most complex CRDT we implemented in the CollabServer framework.

It is a directed graph that uses an adjacency list representation: vertices are stored in

one hashmap, which is integrated as a LWWMap. The hashmap keys are for the ver-

tices IDs and the hashmap values hold the vertices. ID may be any data type that works

with the actual hashmap implementation (e.g., we use C++ templates as key for an un-

ordered_map). Vertex is described as the couple 〈content, edges〉 where content is the

content of the vertex and edges is a LWWSet of all the edges going from this vertex.

Each LWWSet key is the ID of the destination vertex. The vertex content type is de-

fined by the developer, which allows for any value type. If the developer wishes to make

the content CRDTs as well, he may encode it as LWWRegister, other CRDT primitives

available, or create his own CRDT primitive. The most important operations are query-

ing, removing and clearing vertices. Most operations on vertices have an edge operation

counterpart (e.g., adding, removing, and counting edges). In our LWWGraph algorithm

listings, we refer to the adjacency list by adj.
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4.2.4.1 LWWGraph queryVertex method

Algorithm 6: lwwgraph_queryVertex(vertexID)
/* adj refers to the LWWMap adjacency list */

1 return adj.query(vertexID)

The queryVertex method calls the query method on the LWWMap adjacency list

of vertices and returns the vertex if exists. Vertices marked as deleted are not returned.

Listing Listing 6 shows the logic of the queryVertex operation.

4.2.4.2 LWWGraph addVertex method

The addVertex method calls the add method on the LWWMap adjacency list.

4.2.4.3 LWWGraph removeVertex method

Algorithm 7: lwwgraph_removeVertex(vertexID, timestamp)
1 removed = adj.remove(vertexID, timestamp)

2 vertex = adj.queryCRDT(vertexID)
3 vertex.edges.clear(timestamp)

4 for vertex in adj.iteratorCRDT do
5 if vertex.edges.has(vertedID) then
6 vertex.edges.remove(vertexID, timestamp)

7 return removed

The removeVertex method removes a vertex from the graph as well as all edges

adjacent to it. If the vertex does not exist yet, it is added in the LWWMap adjacency list,

then remove is applied. This is important in case remove may be received before add is

called (all operations are commutative). The case when addEdge and removeVertex oc-

cur concurrently is handled in the addEdge operation that follows. The removeVertex

algorithm is described in the listing Listing 7.
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4.2.4.4 LWWGraph addEdge method

Figure 4.12: LWWGraph: example of addEdge with a simple case of already existing
vertices. Vertices timestamps are updated

Figure 4.13: LWWGraph: example of addEdge with addEdge received before addVer-
tex. Method addEdge re-add the vertices source and destination
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Figure 4.14: LWWGraph: example of concurrent addEdge and removeVertex. Illustrate
why addEdge also re-add the vertices source and destination

Figure 4.15: LWWGraph: example of concurrent addEdge and removeVertex. Method
addEdge may delete the newly created edge if one of its vertices are marked as deleted
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Algorithm 8: lwwgraph_addEdge(source, dest, timestamp)

1 info = {’srcAdded’: false, ’destAdded’: false, ’edgeAdded’: false}

2 info[’srcAdded’] = adj.add(source, timestamp)

3 info[’destAdded’] = adj.add(dest, timestamp)

4 vertexSrc = adj.queryCRDT(source)

5 info[’edgeAdded’] = vertexSrc.edges.add(dest, timestamp)

6 if not vertexSrc.edges.queryCRDT(dest).isRemoved then

7 vertexDest = adj.queryCRDT(dest)

8 if vertexSrc.isRemoved OR vertexDest.isRemoved then

9 t = max(vertexSrc.timestamp, vertexDest.timestamp)

10 vertexSrc.edges.remove(dest, t)

11 info.edgeAdded = false

12 return info

13 return info

The addEdge method creates a new edge going from a source vertex to a destination

vertex. We differentiate three scenarios. The simplest one applies addEdge on two exist-

ing and alive vertices (i.e., not marked as removed). In this case, the edge is added and, if

it already exists, the timestamp is updated as illustrated in Figure 4.12. Another scenario

appears when one or both vertices are missing. This means that operation(s) addVertex

has not been received yet. Because of the commutativity requirement, we must consider

this possibility. We decided that addEdge also applies addVertex on source and desti-

nation vertices. Missing vertices are then simply added along with the edge. Receiving

a later addVertex operation will simply update the timestamps (see Listing Listing 8

[add]). This scenario is illustrated in Figure 4.13 where Bob receives addEdge e from

A to B before addVertex B. Since addEdge also re-add vertices, both A and B are

added with timestamp t2 along with edge e, so that Bob applies addEdge e without

any delay or synchronization. The last scenario is when we receive addEdge with the

source and/or the destination vertex already deleted. The case where removeVertex is
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older than addEdge is trivial since addEdge also applies addVertex as seen earlier.

This is illustrated in Figure 4.14. However, the opposite case (removeVertex older

than addEdge) requires some extra steps. We first naively create the edge as shown in

Listing 8. Then, we check if the newly created edge is dangling (i.e., with one or no

vertex) and remove it if it is as illustrated in Figure 4.15. With this design, addEdge is

commutative. Note that, as shown in Listing 8, this operation returns more information

since additional actions can be performed on the edge or the vertices.

4.2.4.5 LWWGraph removeEdge method

Figure 4.16: LWWGraph: example of removedEdge operation received before addVer-
tex and addEdge

The removeEdge method removes an edge from the graph. Removing an edge that

has already been re-added will not do anything and returns false (see LWWSet remove

method in Section 4.2.2). However, this operation may encounter a tricky situation

where the source vertex does not exist yet in the graph. This is illustrated in Figure 4.16

where Bob receives the operation removeEdge e at the very beginning. All operations
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Algorithm 9: lwwgraph_removeEdge(source, dest, timestamp)
/* Timestamp.MIN gives the minimal timestamp */

1 adj.remove(source, Timestamp.MIN)
2 if source ! = dest then
3 adj.remove(dest, Timestamp.MIN)

4 vertex = adj.queryCRDT(source)
5 return vertex.edges.remove(dest, timestamp)

have to be commutative, therefore, the source vertex is created with the smallest times-

tamp and the deleted flag set to true so that such operation is hidden from the user, as

depicted in Listing 9. This makes removeEdge commutative in any situation.

4.2.4.6 LWWGraph clearVertices method

Figure 4.17: LWWGraph: example of clearVertices operation

The clearVertices method removes all vertices and their edges from the graph.

As seen in clear method from LWWSet (Section 4.2.2), clear removes only elements

that have smaller timestamps. Vertices with higher timestamps were semantically added

after clear call and shall not be marked as deleted as illustrated in Figure 4.17. It is not
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Algorithm 10: lwwgraph_clearVertices(timestamp)
1 for vertex in adj.iteratorCRDT do
2 vertex.edges.clear(timestamp)

3 return adj.clear(timestamp)

enough to call clear on the adjacency list, LWWSet of edges must be cleared as well

for each vertex (by calling LWWSet clear method on each vertex). This returns true if

clear has actually been done, otherwise, it means that a more recent clearVertices

has already been called. Method clearVertexEdges is a variation that clears only

the edges of a given vertex. This simply calls clear on the vertex LWWSet of edges.

Listing Listing 10 shows the algorithm for clearVertices.

4.3 Summary

In this section, we summarize the design choices of our CRDT algorithm variation

and list the CRDTs available in CollabServer. All the methods presented in Table 4.II

are designed to have the CRDT properties. As explained in Section 2.3.2.5, CRDT

operations have to be commutative, associative, and idempotent. Commutativity requires

that a received operation is always valid and applicable on the local replicas without any

need of synchronization. This is problematic when an operation is causally related with

an oldest operation which is not received yet at the local replica (e.g., receive remove

before add in a LWWSet). To address this issue, our general rule is to create the missing

elements set with the default CRDT metadata (presented in Section 4.1.5), such as the

minimal timestamp possible and the tombstone set to deleted. This guaranties that our

methods are commutative in all situations. To have our operations associative, we order

them by their timestamp. The state of a data structure upon application of two operations

is the result of the newest operation (e.g., the LWWRegister content is set with the

value of the newest update). Therefore, the order in which operations are applied

does not change the final result. Idempotent is guaranteed using the timestamp value.

Our timestamp are required to be strictly unique. Two operations with the exact same

timestamp are, by design, le same operation, therefore the operation is not applied again.
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Design choices Short description
Operation-based CRDT Changes are propagated as atomic opera-

tions.
Last-Writer-Wins (LWW) Timestamps are used to choose the pre-

vailing operation in case of conflicts.
CRDT tombstone metadata Deleted elements are only flagged as

deleted.
CRDT update method return value Update method has a boolean return value

to notify the user about completion of the
operation.

CRDT internal representation Any CRDT element requires at least two
slots in actual memory: one for the el-
ement and another for its CRDT meta-
data: timestamp and tombstone. This in-
troduces the need for two versions of the
query methods and iterators.

Table 4.I: Summarize the CollabServer CRDT algorithm design choices

CRDT Data Structure Methods
LWWRegister query()

update(value, timestamp)

LWWSet query(key)

clear(timestamp)

add(key, timestamp)

remove(key, timestamp)

LWWMap query(key)

clear(timestamp)

add(key, value, timestamp)

remove(key, timestamp)

LWWGraph queryVertex(vertexID)

addVertex(vertexID, timestamp)

removeVertex(vertexID, timestamp)

addEdge(source, destination, timestamp)

removeEdge(source, destination, timestamp)

clearVertices(timestamp)

Table 4.II: Summarize the CollabServer CRDTs
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COLLABSERVER FRAMEWORK

Our variation of CRDT algorithm is presented in chapter 4 and describes how con-

current editing is resolved using optimistic concurrency control and guarantees Strong

Eventual Consistency. As seen in Section 2.3.2.5, CRDT is difficult to implement for

more complex data types, such as graph. Its complexity makes hard to design and

implement new data types from scratch. In this chapter, we present the CollabServer

framework which gives tools to build new collaborative data types and setup a real-time

collaboration with Strong Eventual Consistency. We describe its architecture and usage,

illustrated by our example of graph editor.

5.1 Overview

CollabServer is a framework for real-time collaboration on extensive data types. It

supports theoretically any kind of data structure that fulfills the requirements described

in this section. It is designed to help users create a collaborative environment for their

specific data structure with minimizing the effort needed. The whole system is imple-

mented in C++ 2011 Standard and available online1.

5.1.1 Requirements

On a local setup, only one user works on his data, which is often located on the same

physical system. Operations are applied sequentially by this unique user, which removes

possibility of conflicts altogether. This is not the case for distributed data since several

remote users may apply operations concurrently. There is no longer a unique sequential

order of operations, therefore operations may conflict with each others. Remote users

are located on multiple distant nodes and operations are sent over the network. This

requires a system that is resilient to high latency network as well as user disconnection

1https://github.com/geodes-sms/CollabServer/

https://github.com/geodes-sms/CollabServer/
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// reconnection. In a collaborative environment, local users must receive changes from

each other so that data eventually converge to the same state.

5.2 CollabServer framework architecture

Figure 5.1: UML Package diagram of the CollabServer framework showing dependen-
cies. Packages in red are part of CollabServer.

We have designed the CollabServer framework using good object-oriented design

principles, such as GRASP [38], SOLID [51], and design patterns [24]. The Collab-

Server framework is divided into several packages, each of them with a precise and

specific task to complete to maximizing their cohesion. Dependencies between them

are ensured through interfaces to minimize coupling. The collab-data-crdts package

defines concurrent data structures and hides its complexity from the rest of the system

through simple interfaces. The collab-server package is only responsible for multi-user

collaboration on one or several data structure. The collab-client-interface package is the

developer interface to connect with a collab-server. The collab-common package is an

internal component used by both collab-server and collab-client-interface, mostly re-

sponsible of the networking and messaging system. Figure 5.1 shows the dependencies

between packages. We rely on two external libraries, ZeroMQ2 (for network commu-

nication) and MsgPack3 (for message bit-packing). The collab-grapheditor package is
2https://zeromq.org/
3https://msgpack.org/
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our example of CollabServer framework and is not part of the framework. SimpleGraph

is an example of end-user graph data structure used by our collab-grapheditor. Is is

integrated in the framework as a built-in example.

5.2.1 Data Structures: collab-data-crdts

Data structures for CollabServer framework are isolated in this distinct and inde-

pendent package called collab-data-crdts. It is in charge of concurrency control and

data structure operations. Real-time collaboration involves several users working on the

same data structure, but collab-data-crdts only deals with concurrent editing and con-

flicts resolution. This is were our algorithm described in Chapter 4 is implemented and

all its complexity is hidden from the rest of the system. It supports the following entities:

CollabData, Operation, OperationHandler, OperationObserver, LWWGraph, LWWMap,

LWWSet, and LWWRegister.

Figure 5.2: UML Diagram for CollabData abstract class

CollabData is an abstraction of collaborative data usable in our framework and pre-

sented in Figure 5.2. Any data that implements this abstract class is recognized by both

collab-server and collab-client-interface. As an example, collab-client-interface expects

to register a CollabData and does not know about its concrete developer implementation.

These components only deal with abstraction. CollabData is a CRDT, applying the same

set of methods on two replicas in any arbitrary order will converge to the exact same

state. To guarantee CRDT, one may implement CollabData. A concrete CollabData

has a set of operations (defined by developer) which describes all possible modifications

(e.g., add, remove value in a set).

Operation is an interface. It describes an atomic change (e.g., add element in map).

Any concrete CollabData has a user-defined set of operations that represents all possible
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modifications. Each of them implements the Operation interface so that it is usable in

our framework.

OperationObserver is an interface. CollabData uses the observer pattern [24, 58] to

inform about changes. A modification on CollabData generates an Operation to describe

this change. It then notifies all its registered OperationObserver with the newly applied

Operation. A common usage is to update a GUI, or a database. Thanks to the design of

CollabData, notified operations are always valid with respect to causality order (e.g., add

must have been applied before remove). This behavior is explained in further details in

Section 5.3.1.

OperationHandler is an interface that helps setting up an OperationObserver using a

visitor pattern [24, 59]. When an Operation is notified, the exact concrete Operation must

be recovered. A simple solution uses a switch-case statement on the operation unique ID

(IDs are defined by the developer). This strategy has the advantage that some developer

may be interested only in a subset of operations but may be hard to maintain. On the

other hand, OperationHandler gives a faster, and safer way to deal with all possible

operations whenever notified. It is a variation of the visitor pattern.

LWWGraph, LWWMap, LWWSet, and LWWRegister are CRDTs. In our Col-

labServer framework, these built-in CRDTs are called CRDT primitives and are de-

scribed in Chapter 4. The complexity of CRDT algorithm is hidden inside these primi-

tives so that the developer is able to create his own data structure on top of these primi-

tives. The developer has to build his end-user data on top of these primitives.

5.2.2 Client: collab-client-interface

This package provides a set of methods to easily communicate and work with a

collab-server. It allows developer to connect and disconnect with a running collab-

server instance. In case of temporary network failure, disconnect // reconnect is sup-

ported. Upon successful connection, developer may start a collaboration for one data

artifact or join an existing one. Existing collaboration is selected using its unique ID

generated at creation time. One may leave a joined collaboration at any time. It is only

possible to join one collaboration at the same time. Thanks to the CollabData interface
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abstraction described in Section 5.2.1, the CollabServer framework does not need to

know about exact developer data structure implementation and collaborative complexity

is hidden from the developer.

5.2.3 Server: collab-server

The collab-server package enables end-users to load and work on the same data to-

gether in real-time. Multiple data may be loaded simultaneously by collab-server. They

are not restricted to a specific concrete implementation since collab-server only knows

about the CollabData and Operation abstractions. On the server side, an ongoing col-

laboration is called a room of collaboration which is composed of one CollabData and

several users. A user registered in a room receives operations that others apply and

collab-server ensures that all operations are received by all users at least once. In case

of slow network or disconnected user, messages are asynchronously queued until the

connection is back online. This strategy is also implemented in the Yjs collaboration

framework [44]. This way, users with network failure do not affect the global collabora-

tion speed. Technically, a room keeps a log of all applied operations to provide new user

joining the room with all previous operations and converge its data to the latest state.

5.2.4 Network: collab-common

Several components are used by both collab-server and collab-client-interface such

as networking and messaging system. To avoid code clone and ease maintenance, they

are regrouped into a unique package hidden to the developer. The whole messaging sys-

tem is implemented here and defines all possibles messages. To be sent over the network,

messages are bitpacked using the open source library msgpack. Interface abstraction of

the network allows the rest of the system to uses the messaging system without any

knowledge about concrete network specificities and implementation. The ZeroMQ li-

brary is used for networking, but is wrapped into an interface. All these components are

internally used by collab-server and collab-client-interface and never required by the

developer. Technically, collab-common is compiled as a C++ object library and placed
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directly inside collab-server and collab-client-interface source code so that no external

linkage is required.

5.3 CollabServer framework integration

In this section, we describe how a developer would integrate the CollabServer frame-

work in a new or existing project to add collaborative features. This may be separated

into several sub tasks as follow:

1. Create timestamp with total-order

2. Build custom CollabData

3. Add OperationObserver in end-user application

5.3.1 Understanding CollabData Operation notification system

5.3.1.1 Notification system overview and purpose

CollabData uses a notification mechanism to separate "CRDT world" from "non-

CRDT world". In the former, operations may be received in any arbitrary order thanks

to CRDT properties (commutativity, associativity, idempotent). On the other hand, "non-

CRDT world" respects causally related order of operations: one cannot apply remove

before the add in database or GUI update. To achieve this during collaboration, Oper-

ationObserver only notifies valid operations from a "non-CRDT" point of view so that

the developer may simply process it as a valid sequential operation. This allows to use

the CollabServer framework with databases without the need to change its internal struc-

ture. This is because permanent storage does not save CRDT internal metadata (such as

deleted items) and only valid operations from OperationObserver are applied. CRDTs

are known to grow without bound [39]. Restarting new collaboration removes all CRDT

metadata, which reduce this issue. This however would make offline collaboration hard

to integrate, therefore our current implementation of CollabServer only integrates real-

time collaboration.



69

5.3.1.2 Notification system details

Figure 5.3: CollabData Operations notification system

Technically, all operations are internally applied immediately in CollabData regard-

less their original source (SEC property in Section 2.1.6). This is described in Figure 5.3:

local methods (e.g., add / remove element in set) generate the related operation, which

is both broadcasted to others and applied locally, whereas received operations from re-

mote users (i.e., external operation) are only applied locally. Upon application, CRDT

primitives are able to detect whether an operation has been successfully applied from a

"non-CRDT" point of view, as explained in Section 4.1.4. This is depicted in the figure

where user is notified only if operation was applied from a "non-CRDT" point of view.

As an example, receiving remove X, then add X in a LWWSet is internally valid and

applied, but each method returns false as if the operation was not applied (the Opera-

tionObserver is not notified). This is because remove X delete X which does not exists

on this replica yet. Then, LWWSet detects that add X does not need to be applied, by

comparing the timestamps of remove and add. As a result, "non-CRDT" will not see any

of these operation.

5.3.2 Create timestamp with total-order

As explained in Section 5.2.1, our built-in CRDTs primitives use Last-Writer-Wins

paradigm for conflict resolution. These CRDTs use timestamps with total-order so that

all operations are ordered in the same exact sequence on all replicas. Because two times-
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tamps may be equals (e.g., concurrent update at exact same time), another metadata

should be mixed with time, for instance a unique user ID. Such cases may be rare, but

have to be resolved with total-order. Total-order is important to ensure that, ultimately,

all data converge to the exact same state. CRDT primitives from collab-data-crdts use

C++ templates for timestamps so that the developer can implement his very own4. As

an example, Timetstamp is a fully working example implemented for our SimpleGraph.

(See Section 5.4.1 for its description). Another example would be to use the C++ chrono

time mixed with the user MAC address.

Although these CRDT primitives are meant to be used with LWW semantic, the

developer may technically create timestamp with another paradigm, as far as a total-

order exists. For instance, a simple operation counter mixed with user ID. The YATA

algorithm [44] from Yjs introduces a fully working example of variation using position

metadata of an operation in a list. By applying the same rule on all replicas, the list of

elements ultimately converges.

5.3.3 Build custom CollabData

The CollabServer framework works with extensive data type, meaning that develop-

ers are not limited to a restrictive set of data structures. This may range from already im-

plemented and ready to use SimpleGraph to user specific data (e.g., Todolist, XML. . . ).

To be used in the system, data must fulfill the following requirements:

1. Extend, Define CollabData (described in Figure 5.2)

2. Defines a set of Operations

3. Edits have CRDT properties (associativity, commutativity, idempotent)

4. Optional: provide with an OperationHandler

Custom data is built using the collab-data-crdts package described in Section 5.2.1. The

developer has to extend CollabData to be usable in our framework. This abstract class
4One has to overload C++ operators operator> and operator< as explained in the technical

code documentation online
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gives ready to use methods to add observers and be notified about operations as ex-

plained in Section 5.3.1. Then, the developer has to define a set of all possible operations

on his data. Next task is to design internal data content on top of our built-in CRDT

primitives. Custom abstract data-types can be constructed by combining the available

CRDT primitives. As an example, a CRDT LWWMap<int,string> may be built from

LWWMap<string, LWWRegister>. LWWRegister itself being set with string as con-

tent type (C++ template). However, it is possible that a required primitive is missing

from our implemented set (e.g. LWWTree). In such case, it must be added in collab-

data-crdts, which is a complex task and requires extensive knowledge about the CRDT

algorithm [39, 50, 57]. Fortunately, it is often possible to create custom data from our

built-in CRDT primitives.

5.3.4 Integrate collab-client-interface

Figure 5.4: Example of collab-client-interface integration by several end-user clients
with different roles

As explained in 5.2.2, collab-client-interface provides all the required methods to

collaborate on one CollabData. Developers must integrate collab-client-interface and

collab-data-crdts in their software. CollabServer does not differentiate between clients.

Each of them is seen as a simple user (component that implements collab-client-interface)

regardless its actual end-user role (e.g., database, editor). Figure 5.4 presents an exam-

ple of a possible configuration where several clients work on a data, each with a specific
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goal. User 1 applies modifications and keeps a local copy of the data, whereas user 2

only works on a live instance, which is lost at the end of the collaboration (e.g., gives

temporary help to the user 1). Users 3 is a database that saves changes in a permanent

storage. The last user integrates a login system that keeps trace of each operation applied

during the ongoing collaboration. The common element with these four clients is that

they all integrate collab-client-interface. It is only a matter of how operations received

from OperationObserver are interpreted. A user may updates his GUI and saves the data

in a file (user 1) whereas others only update their GUI (user 2). It is also possible to

process operations and save the data to a local storage (user 3). As an example, to sup-

port a SQL database, one may translates the received operations into SQL statements.

(e.g., add X in a LWWSet may be translated into an SQL INSERT statement).

5.4 A complete working example: GraphEditor

In this section, we present GraphEditor, a command line tool for graph editing that

supports real-time collaboration using the CollabServer framework. It relies on collab-

client-interface to connect with a running collab-server instance and implements Collab-

Data (from collab-data-crdts) to create the SimpleGraph data structure. The GraphEdi-

tor package is named collab-grapheditor.

5.4.1 Timestamp

Algorithm 11: operator<(current, other)
1 if if(current.time == other.time) then
2 return current.id < other.id;

3 return current.time < other.time;

GraphEditor has its specific implementation of timestamps called Timestamp. It uses

the C++ chrono library mixed with a unique user ID (collab-server gives unique ID for

each user and may be recovered by client). In most of the cases, only the chrono value

is enough to create a total-order of timestamps. (at the milliseconds). However, in case
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of several users working in real-time, two users may end up with the exact same chrono

value. In such cases, the ID is used to select a winner to ensure timestamps have a

total-order. Although this situation is rare, users would end up with divergent data if not

supported. The selection of the ID is deterministic to ensure repeatable behavior (this

is mandatory for CRDT properties). As an example, the Listing 11 shows the method

operator< that returns true if current Timestamp is smaller than the other Timestamp.

5.4.2 SimpleGraph

SimpleGraph is an example of fully working CollabData built from collab-data-crdts

as explained in Section 5.3.3. It is a graph data structure that uses our CRDT primitives

to deal with concurrent editing. Each vertex has a name (C++ string) and a map of key-

value (keys and values are both C++ strings). Internally, it is made of one LWWGraph.

Each vertex is a LWWMap of (key:string, value:LWWRegister), register being itself of

type string. All of them use Timestamp. Timestamps are explained in Section 5.3.2.

5.4.3 Integration with CollabServer

The GraphEditor uses a command pattern to expose a set of commands. A user calls

them to start or enter a room of collaboration and edits a SimpleGraph. Changes are

updated in the GUI thanks to our observer pattern described in Sections 5.3.1 and 5.2.1.

At that point, SimpleGraph may be seen as a normal local data. Each command on

SimpleGraph is merely a call to the right method in SimpleGraph. All the collaboration

(e.g., broadcast operation, receive operation) is taken care of behind the scenes.

5.4.4 Support with Modelverse database

The Modelverse [64, 65] is a database for Model-Driven Engineering. The Model-

verse considers all artifacts as models. They can be manipulated with typical CRUD

operations. It runs as a standalone Python code on a server and may be accesses through

its REST API. From CollabServer point of view, our Modelverse database is yet another

client that implements collab-client-interface as explained in Section 5.3.4. Figure 5.5
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Figure 5.5: GraphEditor collaboration scenario using CollabServer framework and Mod-
elverse database

shows that GraphEditor and Modelverse clients are connected to the collab-server and

both run an instance of SimpleGraph. Upon reception, a SimpleGraph Operation noti-

fied by the OperationObserver is translated into the Modelverse semantic and sent to the

Modelverse database. To have a SimpleGraph saved in the Modelverse during a collabo-

ration, a user has to start a Modelverse client first, then, he has to create the collaboration

from the Modelverse client before joining it.



CHAPTER 6

EVALUATION

In this chapter, we evaluate our CollabServer framework to answer the following

questions:

“Does CollabServer framework successfully help building collaborative envi-

ronments?”. To answer this question, we created a fully functional example of collab-

orative software called GraphEditor and described in Section 5.4. We then evaluated the

modularity of CollabServer.

“Is CollabServer reliable and conforming to the technical requirements for col-

laboration?”. To answer this question, we designed unit tests covering a maximum

range of possible scenarios. Moreover, we discuss threats to validity and possible im-

provements.

6.1 CollabServer framework analysis

In Chapter 5, we saw that our CollabServer framework is divided into several distinct

packages, each with a specific purpose. In this section, we present a study analysis of our

framework to validate this design choices using several software design metrics, such as

abstractness, and instability. We present our measures and discuss their relations and

implications in our design such as coupling and cohesion of our packages.

6.1.1 Packages metrics description

In Software Engineering and Object-Oriented Programming (OOP), a set of classes

may be regrouped in a so called package. We distinguish four domains of classes for

packages: foundation, architecture, business, and application. Foundation domain re-

groups classes with lowest dependencies such as primitive types, data structures, and

generic components (e.g., Boolean, Integer, Stack, Tree, Date, Time. . . ). They me be

used by all the other domains and do not depend on other packages. The architecture
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domain regroups classes that are more specific to a kind of component such as net-

work library (e.g., port, socket), database (e.g., transaction, backup), or user interface

(e.g., window, button, widget). The business domain is specific for one kind of busi-

ness such as classes with unique role (e.g., account, car. . . ). These classes may still be

used in several applications. The last domain of classes is called application domain and

regroups classes that are unique to one specific application.

In our CollabServer analysis, we are interested by three metrics: abstractness, insta-

bility and distance. Abstractness is defined as follow

A = Na/Nc (6.1)

with Na the number of abstract classes in the package and Nc the total number of classes

in the package. Instability is defined by

I = Ce/(Ca+ Ce) (6.2)

where Ce represents the efferent couplings (outward dependencies) and Ca the afferent

couplings (inward dependencies). I = 0 means that the package is very stable (it de-

pends on no other package) whereas I = 0 is for really dependent packages. Distance is

calculated from A and I as follow:

D = |A+ I − 1| (6.3)

It is ideally equals to zero. All these metrics ranges are 0 to 1.

6.1.2 Packages metrics analysis

The diagram of dependencies between packages is presented by Figure 5.1, we are

only interested in the CollabServer components (marked in red on the figure). Since

collab-grapheditor is an example of end-user application, we omit it in this study. Our

measurements are placed in the Table 6.I. Figure 6.1 presents the resulting AI graph.

There is no critically abnormal values (value far from "The Main Sequence", which is
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Packages Abstractness Instability Distance
collab-data-crdts 0.40 0.00 0.60
collab-common 0.67 0.25 0.08

collab-client-interface 0.00 1.00 0.00
collab-server 0.17 1.00 0.17

Table 6.I: CollabServer framework packages: table of metrics for abstractness, instabil-
ity, and distance

Figure 6.1: AI Graph of the CollabServer packages

a line from (0,1) to (1,0) positions). Only one value at (0,0.40), which is for the

collab-data-crdts package, has an unexpected results.

The package collab-data-crdts is a business domain package and is designed to be

independent and reusable. It is not limited to a specific application. In our analysis,

we measured the following values for abstractness, instability and distance: A = 0.40,

I = 0, and D = 0.60. Instability result indicates that collab-data-crdts is very stable,

which is the expected value since it is designed to be reusable and depends on no other

packages. However, the distance of 0.60 is far from 0 which warns about a possible

incoherency due to its low value of abstractness A = 0.40. This is an unexpected value

since stable packages tries to be more abstract. Technically, our defined primitives are

not abstract classes but, instead, use C++ templates to deal with the user specificity
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content type. Therefore, they are not counted as abstract in the formula. For that reason,

this package appear less abstract, although this is not an actual issue in practice.

The package collab-common is a library internally used by the CollabServer frame-

work and is described in Section 5.2.4. In our analysis, we measured the following

values: A = 0.67, I = 0.25, and D = 0.08. This package has an high abstraction

A = 0.67. This is explained by the collab-common purpose, which is to provides Col-

labServer components with the common classes to avoid duplicates. It is meant to be

reused by our framework and has a fairly low value of instability I = 0.25. Its only

dependency with collab-data-crdts is achieved through an interface.

The package collab-client-interface is a business domain package, it is meant to

be used by the applications that use CollabServer. It is described in further details in

Section 5.2.2. It has A = 0.00, I = 1.00, and D = 0.00. Although this measurements

appears to be optimum, they have to be taken with care, since this package only has

one class. This explains the apparently perfect values. One may expect to have higher

abstract value since it is reused by several applications. This low abstraction and high

instability are due to the fact that the measurements only focus on the CollabServer

packages, in which collab-client-interface is the less stable. The same measurement

with the end-user application would lead to better results. We designed collab-client-

interface as one unique user interface, similar to a facade design pattern, which explains

one concrete class used be several applications.

collab-server is an application domain package. It is a standalone server code and is

not meant to be reused. This is emphasized by our measurements A = 0.17, I = 1.00,

and D = 0.17 where collab-server is very stable and not abstract.

6.2 Usability

We evaluated the usability of our framework through a fully working example of end-

user application called collab-grapheditor. We distinguish three components to build:

a collaborative graph called SimpleGraph, a graph editor, and a database proxy. The

features and technical details of this example are already described in Section 5.4. The
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editor and the database proxy have been implemented by two developers with no prece-

dent knowledge about CollabServer and collaborative environments. In the following

section, we are interested to understand their feedback and the effort it took them to

understand and integrate CollabServer. We only provided them with the official Collab-

Server and SimpleGraph documentation to evaluate its usability. However, we developed

the SimpleGraph as explained in Section 5.4.2.

CollabServer framework makes collaboration complexity transparent to the develop-

ers. They should not care about the technical aspect of collaboration and simply use their

data as a common local data. For this goal, the concept of Operation described in Sec-

tion 5.3.1 is critical to understand. Thanks to our exhaustive documentation, it has been

easily understood by the two developers. The implementation of collab-grapheditor ran

out without issues and the two developers where able to successfully conclude their tasks

without requesting help. We used this external feedback to analyse our framework de-

sign and orchestrate the possible changes, although no refactoring was actually required.

This however pointed out several minor issues such as misleading methods name or

imprecise documentations. As an example, the accept methods for Operation was pre-

viously named handle, which confused the developers during the OperationHandler

component integration.

6.3 Correctness

6.3.1 Tests covering

We built unit tests for each individual CollabServer packages. The package collab-

data-crdts has the highest number of unit tests to ensure that CRDT properties are sat-

isfied, which is the most critical part in our framework to guarantee Strong Eventual

Convergence. Although collaboration software make heavy use of network, our CRDT

implementation can be entirely isolated locally on one single thread and fully tested

against all the possible collaboration scenario without network. This removes the danger

of unexpected network behaviors and network failures (e.g., receive message queue full,

dropped message). This allows to fully dissociate network code from collaboration al-
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gorithm code, which ease error detection and algorithm validation. Although in practice,

many users may generate concurrent operations, they are applied in a sequential order

at each replica (this order however may change). Knowing this, any concrete scenario

of collaboration may be isolated and tested locally by applying operation in a specific

order. Package collab-data-crdts has 250 tests which are all successfully passing. Each

test covers a scenario and tests the data integrity. The most common tested scenarios are

the following (with simplified example of pseudo code):

• Idempotent (e.g., duplicate calls)

set.add("e1", T1)

set.add("e1", T1)

TEST(set.query("e1").timestamp = T1)

TEST(set.query("e1").deleted = False)

TEST(set.size() = 1)

• Commutative (e.g., remove before add)

set.remove("e1", T2)

set.add("e1", T1)

TEST(set.query("e1").timestamp = T2)

TEST(set.query("e1").deleted = True)

TEST(set.size() = 0)

• Duplicate add (or remove) with different timestamps

set.add("e1", T1)

set.add("e1", T3)

set.add("e1", T2)

TEST(set.query("e1").timestamp = T3)

TEST(set.query("e1").deleted = False)

TEST(set.size() = 1)

• Concurrent operations (e.g., add || remove)

// User1: normal order
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setU1.add("e1", 1);

setU1.add("e2", 3);

setU1.remove("ve", 4);

// User2: remove before add

setU2.remove("e1", 4);

setU2.add("e2", 3);

setU2.add("e1", 1);

TEST((setU1 == setU2) = True)

In terms of software maintenance and upgrade, they play an important role to ensure

that our algorithm remains validated after any modification. Each commit automatically

generates the whole set of tests, using Travis Continues Integration and Github. As

an example, one may try to upgrade our CRDT algorithm to get better size or speed

performances. Running our tests allows to know whether the algorithm correctness is

preserved.

6.3.2 GoogleRealtimeAPI, Yjs, and CollabServer comparison

GoogleRealtimeAPI and Yjs are both javascript frameworks for real-time collabora-

tion. In this part, we make a simple comparison between our CollabServer framework

Data type CollabServer Yjs GoogleRealtimeAPI
register Yes No No

set Yes No No
map Yes Yes Yes

graph Yes No No
array No Yes No
xml No Yes No
text No Yes Yes

richtext No Yes No

Table 6.II: Comparative table of the supported data types in CollabServer, Yjs, and
GoogleRealtimeAPI



82

and these two frameworks. Figure 6.3.2 lists a set of primitives with their support status

by each framework.

6.3.2.1 GoogleRealtimeAPI

GoogleRealtimeAPI and CollabServer have both a client/server network architec-

ture. GoogleRealtimeAPI is a web-only API that provides the possibility to collaborate

on data that is located in the Google Drive cloud storage. It does not allow the developer

to work with his own database or permanent storage whereas CollabServer introduces

this possibility. GoogleRealtimeAPI uses Operational Transformations (OT) to achieve

collaboration. It has well support for linear data types such as text and list, as seen in

Figure 6.3.2. GoogleRealtimeAPI is now deprecated since January 2019 and is no longer

in development.

6.3.2.2 Yjs

CollabServer has a client/server network architecture whereas Yjs supports clien-

t/server architecture as well as peer-to-peer. Both frameworks use the operation-based

version of CRDT to achieve real-time collaboration. The variation of the CRDT algo-

rithm implemented in Yjs is called YATA (Yet Another Transformation Approach). It is

based on the list data structure. Each element in the list holds several metadata, such as

a unique element ID, the ID of the original left element (i.e., element at the left at the

moment of insertion), the ID of the current left element, and the ID of the current right

element. The insert operation follows a strict set a rules, and uses these metadata to de-

termine the actual position in the list for this insertion. This is explained in further details

in the literature [44]. All replicas apply the same rules so that the insertion method has a

deterministic outcome, therefore all replicas ultimately converge. Since this is not based

on timestamps (e.g., LWW used in CollabServer), this gives the possibility to fully sup-

port offline collaboration out-of-the-box while still supporting real-time collaboration.

CollabServer, on the other hand, only works with real-time collaboration. Although its

core algorithm is based on the list data structure, it is possible to integrate any data type
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on top of this list. Yjs has built-in support for several linear data types, such as text and

array as well as more complex structured data types, such as XML. However, it has not

integrated graph yet. CollabData has built-in support for graph using CRDT algorithm

which is a major contribution since only a theoretical graph implementation was intro-

duced in the literature [57]. Yjs is open source and available online1, moreover, it has

an extensive documentation with several hands-on tutorials2. As for CollabServer, it is

divided into several packages, each with their specific purpose (e.g., Yjs core, xml data,

array).

6.4 Potential improvements

6.4.1 Garbage collector

As explained in Chapter 4, CRDT algorithm uses tombstones to mark deleted items.

This is a powerful strategy to achieve Strong Eventual Consistency, but also known as

its main drawback since the memory usage only grows[28]. To avoid such issue, some

systems try to implement a garbage collector. As an example, Yjs introduces a garbage

collector [44] to remove items that are marked as deleted at all replicas. This however re-

quires a temporary synchronization. Treedoc is another example that presents a garbage

collector [39]. It removes deleted items on "cold" regions of the document. We did not

implement such mechanism in our solution and objects with important amount of add /

remove operations may become large in terms of memory size. Our data structure size is

always at least equal to the size of all the items (alive and deleted). However, our Collab-

Server framework keeps CRDT metadata (such as deleted items. . . ) only during the time

of a collaboration. Thanks to our OperationObserver and notification system (as seen in

Section 5.3.1), permanent storage does not know about CRDT and works without these

CRDT metadata. Therefore only actual living items are saved in permanent storage. A

new collaboration reload the data from permanent storage with new CRDT metadata,

therefore our implementation is a specially good solution for occasional collaborations.

1https://github.com/y-js/yjs
2https://y-js.org/

https://github.com/y-js/yjs
https://y-js.org/
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6.4.2 LWW and offline collaboration

Our CollabServer framework uses the Last Writer Wins rules. This often reduces the

amount of metadata and tries to avoid permanently deleted items. As a comparison, Yjs

keeps a growing only linked list where deleted items are never reused [44]. In case of

doing add B between A and C, then remove B, and then add B again, the resulting

linked list is a 4 items length list {ABBC}, where one B is marked as deleted. Col-

labServer, in the other hand, reuse existing elements by only changing the timestamps

along with its deleted status. As an example, for the same previous scenario, we end

up with {ABC}, with B marked as alive again with timestamp of the last add oper-

ation. Another illustration is our LWWRegister implementation (which contains one

unique atomic value, as seen in Section 4.2.1). Only the last value is saved along with its

timestamps. Applying several delete and add operations reuse the same register, with the

timestamp and deleted flag updated. Although no garbage collector is implemented, this

allows CollabServer to avoid overwhelm of deleted items. Last Writer Wins however,

is not adapted for offline collaboration since the last working user would always be the

winner of any conflict. In case of such offline setup, the exact edit time may not be the

most appropriated solution. Algorithms such as three-way merge 2.3.2.2 or Differential

Synchronization 2.3.2.3 are often more appropriated for offline collaboration. Yjs has

good result in case of offline collaboration thanks to its monotonic linearization function

which is not based on timestamp but relies on a total order of operations. Another solu-

tion called Observed-Remove is presented in the original CRDT technical report [57].

6.4.3 Server optimization

As seen in our framework architecture Section 5, a running CollabServer server does

not know about any concrete implementation of CollabData, instead, it only keeps the

raw operations. This makes the server code totally independent from the clients and may

run as a service for several unrelated clients. This however, goes at the cost of loosing

several possible optimizations on the server side. In Section 5.3.1, we described the

operation mechanism that allows database to receive only the valid operations (from a
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non-CRDT viewpoint). This may be used at server side as well to reduce the amount of

operations sent over the network by only broadcasting whose that are actually applied.

For instance, at T1, add X is received, then at T4, remove X is received. Any add /

remove operation on X with T inferior to T4 will not do anything since X is already

removed at T4. Because of slow network, such operations may be received anyway.

With an actual CollabData implementation running on the server side, such operations

may be detected as "deprecated" and not broadcasted to others. In the current state,

server naively stacks the operation in their raw serialization format (which uses small

amount of memory) but it broadcast all received operations to the room of collaboration,

regardless its content.

6.4.4 Security

CollabServer does not integrate any security. As an example, messages are bit packed

for performance purpose but not encrypted. One may edit a message on the fly and

change its content (e.g., netcat) so that an invalid operation is received (e.g., wrong own-

ership, bad values. . . ). On message reception, there is currently no authentication check

and the running CRDT simply tries to unserialize and apply the received operations.

Such attack may leads to divergent state at some replicas. In practice, this issue would

not brake our system but only introduces unexpected diverging state at some replicas.

This is because, in case of invalid operation (e.g., operation which does not exist for the

requested concrete CRDT), the serialization process fails and simply bypass this opera-

tion. The content of a CollabData remains valid from CRDT and data point of view.

6.4.5 Extensive Data Type

We designed CollabServer to work with extensive data types. We hide the complex-

ity of CRDT behind a set of primitives so that the users are able to create their own

data type easily, on top of these primitives, as explained in Section 5.3.3. Our current

implementation integrates built-in Graph, Map, Set and Register data types. Although

such primitives are enough to build the end-user data type for a wide range of use cases,
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one may require another primitive such as Array, or List. In this case, the primitive itself

has to be built, which is an hard task and requires actual knowledge about CRDT. In all

situations, building a new CollabData remains a fairly complex process. The developer

has to understand our notification system presented in Section 5.3.1.

6.4.6 Timestamps with different timezones

Collaborative systems may have users from several locations with different local

time. For that reason, distributed systems cannot rely on local time for operations that

use a unique time value for the whole system. As an example, if Alice is in Montreal

and Bob is in Berlin, they both have a different local time. Two operations applied con-

currently would have several hours of difference in practice, if only the local time was

used. One possibility to fix this issue is to use the same time referent at all replicas

(e.g., UTC). In our CollabServer, the developer is in charge of providing its own times-

tamp implementation, as explained in Section 5.3.2. However, our example of timestamp

implementation presented in Section 5.4 (used by our GraphEditor example) uses the lo-

cal time. This restraints the use of our Grapheditor example in one timezone only.



CHAPTER 7

CONCLUSION

We conclude by summarizing the contributions of this thesis outlining future work.

The work presented in this thesis makes several contributions to the fields of Software

Engineering and Distributed Systems.

7.1 Summary

Distributed Systems and collaborative software require that the same data may be

accessed and modified by several users geographically distant. Concurrent editing and

consistency are an issue to take into consideration to achieve collaboration and conflicts

resolution. It is important that all replicas eventually converge to the same state. We saw

that several algorithms have been developed to achieve this goal such as Operational

Transformation (OT) and Differential Synchronization, as seen in Section 2.3.2.4, and

Section 2.3.2.3.

In our work, we first studied all the features required to build a collaborative envi-

ronment (Chapter 3). This lead us to a complete feature model for collaborative envi-

ronments that we used to select the most appropriate components for our CollabServer

framework. As an example, the network architecture and conflict management are some

key points and must be chosen with care. We hope this feature model may help devel-

opers to make decisions when designing collaborative software.

We described the implementation of our algorithm used by CollabServer for concur-

rency control in Chapter 4. It uses the CRDT principles so that no consensus, locking

or synchronization is required to achieve SEC. The conflict resolution is done locally at

each replica, by following a strict set of rules, which guarantee that all replicas eventu-

ally converge. Although the CRDT algorithm has a really powerful design that ensures

SEC, it may be hard to design new and complex data. We presented our implementation

for Register, Set, Map and Graph.
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Building collaborative environments is a difficult task, specially when the collabora-

tive data with concurrency control algorithm has to be built from scratch. We presented

our CollabServer framework (in Chapter 5) that helps developers in this task. It has a

modular architecture that separates the technical tasks according to the developers ex-

pertises. We provide the developer with a set of CRDT primitives, usable to create his

own data type without having to understand the complexity of CRDT.

At last, we evaluated our framework to validate its usability and correctness in Chap-

ter 6. Through the practical work of several developers, we evaluated their experience

using CollabServer. The overall appreciation was rather positive and the integration of

CollabServer has been achieved without major issues. The correctness of our algorithm

has been validated by 250 unit tests that cover the most relevant collaborative scenarios.

7.2 Outlook

Currently, only four CRDT primitives are implemented: Register, Set, Map, Graph.

Potential extensions are to integrate more implementations such as Tree, Array and, List.

Moreover, although these primitives aim to ease creation of end-user data types, some

knowledge of CRDT are still required. We implemented one example of end-user graph

data called SimpleGraph. Another potential extensions are to integrate more common

data such as plain text or XML document. Since CollabServer is designed for real-time

collaboration, we also plan to make a performance benchmarking such as global speed,

number of concurrent operations supported etc. Another possible improvement is to

support offline collaboration using another paradigm than our current Last Writer Wins

implementations.
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