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Abstract—Large-scale model-driven engineering projects are
carried out collaboratively. Enabling a high degree of concur-
rency is required to make the traditionally rigid development
processes more agile. The increasing number of collaborators
increases the probability of introducing conflicts which need to
be resolved manually by the collaborators. In case of highly
interdependent models, avoiding conflicts by the use of locks
can save valuable time. However, traditional locking techniques
such as fragment-based and object-based strategies may impose
unnecessary restrictions on editing, which can decrease the
efficiency of collaboration.

In this paper, we propose a property-based locking approach
that generalizes traditional locking techniques, and further allows
more fine-grained locks in order to restrict modifications only
when necessary. A lock is considered to be violated if a match
appears or disappears for its associated graph pattern (formula),
which captures the property of the model that the upcoming edit
transaction can be freely executed. An initial evaluation has been
carried out using a case study of the MONDO EU project.

I. INTRODUCTION

Context. Many large-scale software industries, from avion-
ics to automotive or telecommunication domains, are often
faced with the challenge of enabling the high degree of
collaborative and concurrent development required to meet the
aggressive delivery schedules while still maintaining a high
quality of service necessitated by certification standards.

The adoption of model driven engineering (MDE) has been
steadily increasing in the recent years [1] where the primary
development artifacts are models. The use of models intensi-
fies collaboration between geographically distributed engineers
(system engineers, software engineers, hardware engineers,
specialists, etc.) via model repositories to significantly enhance
productivity and reduce time to market.

Effective collaborative development requires the ability to
resolve or prevent interference between collaborators poten-
tially making updates to the same part or fragment of the
system. The interdependence and granularity within a model
makes conflicts easy to introduce and hard to resolve in MDE,
when compared to traditional software development.

Problem statement. Locking is a well-known conflict
prevention technique where users can request that certain
engineering artifacts should be made unmodifiable by all other
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participants for a duration of time. The goal of locking is to
make sure that no concurrent modifications will interfere with
activities carried out within the scope of the lock.

In the following, we review the two main approaches in the
state of the art of locking in MDE:

Fragment-based (FB) locking [2]–[6] requires that models
are partitioned into storage fragments, e.g. files or projects; in
the extreme case the entire model is a single fragment. Entire
fragments can be locked at once, including all contained model
elements and their features. This solution is often provided
by generic file-based collaboration solutions for source code
development (e.g. SVN [2] or Git [5] extended by Gitolite
[6]). However, such fragments are inflexible: restructuring
an existing model into a different set of fragments may
be difficult, thus we may assume that the fragmentation is
essentially fixed. Unfortunately, if fragments are too large, then
locking a fragment prevents concurrent activities that would
otherwise be possible to carry out at the same time. On the
other hand, the model persistence or collaboration framework
might not support arbitrarily fine-grained storage fragments
(e.g. cyclic references between files or projects are frequently
disallowed), and a large model blown up into many small files
or projects would also be difficult to manage.

Object-based (OB) locking [7], [8] solves these problems by
locking individual model objects (including their attributes and
connections). This requires the collaboration framework to be
aware of the structure of the model. The object-based approach
is more fine-grained than the fragment-based solution, but
individual attributes or connections of model elements are
still not independently lockable. Furthermore, locking several
objects will prevent any modification to them, even if the
participant requesting the lock only needs some property of
the model to be preserved while carrying out his activities.

While these strategies have been adopted in several collabo-
rative modeling tools, they may limit the degree of concurrent
development; and as we demonstrate in this paper, they do not
scale well with the increasing number of collaborators.

Goals. In our preliminary work [9], we introduced the
concept of property-based (PB) locking where collaborators
request locks specified as a property of the model which need
to be maintained as long as the lock is active. Hence, other
collaborators are permitted to carry out any modifications that
do not violate the defined property of the lock.

The main objective of this paper is to propose a realization
of PB locking that enables a high degree of collaborative
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Fig. 1. Simplified Metamodel of Wind Turbine Controllers

development. In particular, we aim to address three goals:
G1 Describe Locks as Properties.

The solution shall provide a way to describe complex
properties suitable for specifying locks.

G2 Preserve Property-based Locks.
The solution shall enforce locks described as properties
of the models, and only allow modifications that preserve
the defining properties of active locks.

G3 Support for Existing Locking Strategies.
The solution must provide means to support existing
locking strategies (such as FB and OB).

Contributions and Added Value. In this paper, we propose
an underlying infrastructure realizing a property-based locking
strategy. In our approach, G1 is addressed using graph pat-
terns. To cover G2, we propose an algorithm using a pattern
matcher to notify upon violating a property owned by another
collaborator and undo the executed operations. To address
G3, we present how graph patterns can describe traditional
locks and how our algorithm can enforce them. The proposed
approach is illustrated on a case study of the MONDO EU
project and evaluated by simulation with increasing number of
collaborators concurrently developing models of various size.

Property-based locking can be a core service of a collabora-
tive modeling framework that may provide model refactoring /
editing tools equipped with their own lock definitions; as well
as pre-defined domain-specific properties or a user-friendly
interface to ease the definition of locks (which are out of scope
for the current paper).

II. CASE STUDY

A. Modeling Language

Our property-based locking technique will be illustrated us-
ing a simplified version of a modeling language for developers
of offshore wind turbine controllers, which was one of the case
studies of the MONDO EU FP7 project [10]. The metamodel,
defined in EMF [11] and depicted by Fig. 1, describes how
the system is modeled as Modules providing and consuming
Signals produced at various frequencies. Modules are organized
in a containment hierarchy of Composite modules shipped by
external vendors. They ultimately contain Control unit modules
responsible for a given type of physical device (such as pumps,
heaters or fans) on a certain cycle level (low, medium or high).

Example. A sample instance model containing a hierarchy
of 4 Composite modules and 4 Control units providing 4
Signals altogether is shown on Fig. 2. Boxes represent objects
(with attribute values as entries within the box). Bold arrows
represent the containment edges, while thin arrows represent
cross-references. The model is divided into 4 model fragments
represented by dashed borders surrounding objects.

B. Operations

Several collaborators may work concurrently on wind tur-
bine models to test and fine-tune them. Each collaborator
attempts to a execute maintenance operation (M) to update
certain signals, a testing operation (T) to add debug signals as
outputs to certain control units and input signals to start their
operation, or a replacement operation (R) to replace parts of
specific vendors with new parts.
Operations. Each operation is visualized in Fig. 3 where ++,
-- and ** define creation of new objects, deletion of existing
objects and update of certain attributes, respectively.
(M) changes the frequency f attribute of all signals contained

by control units with a certain cycle c depicted in Fig. 3a.
(T) creates new signals below control units of a certain type t,

updates their cycle attribute from c1 and make the control
unit to consume another signal provided by a control unit
of the same type t depicted in Fig. 3b.

(R) replaces each composite provided by a vendor v con-
taining controls and signals transitively with the same
structure but provided by another vendor v′, see Fig. 3c.

Example. Operation M can double the frequency of o7 and
o9 if c = medium; operation T can create signals below o3
and o11, set their cycle speed to high and create consumes
references between the pairs of ⟨o3, o12⟩ and ⟨o11, o4⟩ if t =
pump; while operation R can delete o2, o3, o4 if v = ”B”
and replace them with new o2′, o3′, o4′ objects where the
vendor of o2′ would be E if v′ = ”E”.

C. Usage Scenario

The wind turbine control model can be hosted on a col-
laboration server [3], [7], [12] where it is stored, versioned
etc. Users can connect to the model to modify the model by
executing operations like the testing operations of the example.

To prevent the execution of conflicting operations, collab-
orators may lock certain properties of the model. If another
collaborator attempts to execute an operation that violates a
lock, the operation will be rejected.

Example. As an example, Alice, Bob and Cecile are col-
laborators developing the example model. Alice attempts to
execute M operation with c = medium and assigns 10 to
the frequency of all selected signals (o7, o8) denoted by
M(medium, 10). Her interest is to prevent modification that
would create or remove pairs of signals and controls where
c = medium.

Bob tries to execute T operation with t = pump, changes



Fig. 2. Sample Wind Turbine Instance Model (stored in separate fragments denoted by dashed border)

(a) Maintenance Opera-
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(b) Testing Operation (T) (c) Replacement Operation (R)

Fig. 3. Sample Operations (++: creation, –: deletion, **: update)

the cycle attribute to medium, creates testing signals under
the controls and makes controls consume a signal denoted by
T(pump,medium). His interest is to lock the controls o3 and
o11 to prevent any modification on these objects.

Finally, Cecile replaces the components of v = B to the
components of provider E denoted by R(B,E). She needs to
prevent any kind of modifications in the fragment whose root
is o2.

To prevent conflicts and preserve their intentions, they
need to lock parts of the model of their interest as they are
visualized with lock icons in Fig. 2.

D. Effectiveness of Locking Strategies.
We discuss how FB and OB locks could be used in case

of operations T, M and R. Unfortunately, traditional locking
strategies will not be effective in all cases.

Operation T: OB locks must be put on each existing control
unit of type t, as all of them have some attributes and
references modified when T is executed.

The FB approach has to lock all fragments containing
control units of type t; this is an example of overlocking, as
the rest of the objects (signals, composite modules) in those
fragments can no longer be modified.

Both approaches suffer from underlocking (i.e. conflicting
edits caused by too few locks) when collaborators can concur-
rently create new control units of type t (in different fragments
in case of FB) which violates the atomicity of T, as the cycle
and signals of these new elements will remain unadjusted.

Operation M: OB has to put locks on all control units and
signals for the given cycle value c. This is overlocking as

nobody can modify these objects, their attributes and refer-
ences, even though many of them (attribute type or reference
consumes) are irrelevant from the viewpoint of M.

The overlocking is more severe when a FB lock is used: each
fragment must be locked if it contains a control unit with cycle
value c, and no other collaborator can modify these fragments
at all (e.g. modifying objects, attributes or references that are
irrelevant from the view of M).

Since other collaborators can concurrently create new in-
stances with the cycle value c, breaking the atomicity of M,
it also results in underlocking.

Operation R: FB locks must be put on each fragments
containing composites provided by vendor v. In case of OB,
it requires to lock all objects in the selected fragments.

While overlocking is not an issue here, underlocking is still
problematic as other collaborators can concurrently create new
fragments containing composites of vendor v.

Example. If Alice requests a FB lock, no other collaborator
can modify the fragment with root o5. In case of an OB
locking strategy, Alice needs to put locks on control units
o6 and o8 to prevent the change of their cycle attributes, and
their signals o7 and o9.

However, these locks are unnecessary as no one can modify
the selected fragment if FB lock is used, and no one can
modify any attributes and references of the selected objects
when OB lock is used.

On the other hand, other collaborators can create new



controls or modify existing ones (in other fragments) and
set their cycle attribute to medium which would violate the
intention of Alice.

In case of operation T, FB is ineffective, while, in case
of operation M, neither of FB and OB locking strategies
are effective. Hence, a more fine-grained approach would be
beneficial to lock only the necessary context of the operations.

We propose to associate an invariant property with each
operation; a PB lock can be requested to prevent the violation
of such a property, ensuring that users other than the lock
owner will not interfere with the execution of the operation.
Invariant Property of M preserves the set of signals pro-

vided by control units with cycle c, and their frequencies.
Invariant Property of T preserves control units of type t,

their attributes and their references.
Invariant Property of R preserves the set of objects transi-

tively contained by composites provided by vendor v and
all attributes and references of these objects.

Example. If a PB lock is granted for Alice to perform
operation M with c = medium, other collaborators can
modify any part of the model as long as they do not
• modify the frequency of a signal contained by a control unit

with medium cycle;
• delete/create/move a signal contained by a control unit with
medium cycle;

• change the cycle attribute of a control unit containing
signals from/to medium.

In our example, operation M is best protected by a fine-
grained PB lock, operation T ideally requires an OB lock
whereas a FB lock is most suitable for operation R.

III. PROPERTY-BASED LOCKS

Once granted to a user, a property-based lock forbids all
other users to modify the model in a way that would violate
the given property of the model. In order to address G1 and
capture exactly which changes violate the property, we adapt
the concepts of a change query [13]. Each lock is associated
with a model query that can be evaluated on different snapshots
of the model. Only those modifications are allowed that do
not change the result set of this query (in case of an invariant
property), or change it only in a given direction (e.g. new
matches may appear, or existing matches may disappear) as
it is depicted in Fig. 4. Sec. III-A introduces our choice for
specifying such model queries, Sec. III-B follows with the
definition of an entire lock. Sec. III-C and Sec. III-D show
how the proposed formalism is a generalization of the FB and
OB approaches.

A. Properties Captured by Graph Patterns

Model queries are formulae over models, declarative de-
scriptions of a read-only computation. In this paper, we have
chosen graph patterns as the query formalism, since we found
them helpful in capturing the structural relationships between
objects. In particular, our prototype implementation uses the

Fig. 4. Behavior of Property-Based Locks (in case of invariant property)

VIATRA QUERY framework [14], due to its expressive power
(first-order formulae with extensions such as transitive clo-
sures) and incremental evaluation capabilities. However, the
concepts are general and technology independent and they are
likely to be adaptable to other model query languages (as well
as the more general case of change queries).

Example. Listing 1 displays a graph pattern in the declarative
VIATRA QUERY [15] syntax, expressing a property of the
wind turbine model. The pattern signals (pattern name after
the pattern keyword) selects triples of ⟨sig, frq, cycle⟩ (pattern
parameters between parentheses) where sig is an instance of
the class Signal with its frequency attribute set to frq (Line 2),
and there is a Control instance ctrl that provides sig (Line 3)
and has its cycle attribute set to cycle (Line 4). This pattern
will be used to express the invariant property of the PB lock
for operation M.

1 pattern signals(sig:Signal, frq, cycle) {
2 Signal.frequency(sig, frq);
3 Control.provides(ctrl, sig);
4 Control.cycle(ctrl, cycle);
5 }

Listing 1. Graph Pattern to Lock Signals

Graph patterns can be composed (find keyword) in order
to reuse common query parts, and also to express disjunction,
negation (neg keyword), and transitive closure (+ symbol).

Patterns can be evaluated as queries over a model where
the match set (MS) denotes the query results. Each match is
an assignment of (free) pattern variables where all constraints
expressed in the pattern are satisfied. The MS of a pattern may
be filtered by binding some parameters (free variables) of the
pattern to values, retaining exactly those matches that assign
the specified value to each bound parameter.

After a modification is applied to the model, the query needs
to be reevaluated. New matches may appear in the match set
or existing matches may disappear from the match set.

Example. The MSsignals of pattern signals (Listing 1) con-
tains the tuples ⟨o4, 6, low⟩, ⟨o7, 4,medium⟩, ⟨o9, 8,medium⟩ and
⟨o12, 8, high⟩. If the cycle attribute is bound to medium, the
match set is reduced to ⟨o7, 4,medium⟩ and ⟨o9, 8,medium⟩.



After Bob executes his operation, the cycle attributes of o3
and o11 are set to medium. Hence, pattern signals has two
new matches: ⟨o4, 6,medium⟩ and ⟨o12, 8,medium⟩. Then, when
Cecile applies her operation which removes objects o3 and
o4, a match of pattern signals disappears: ⟨o4, 6,medium⟩.

B. Definitions of Property-based Locks

A PB lock asserts that no user, except for the lock owner,
is allowed to perform modifications matching a change query.

lock = ⟨owner, changeQuery⟩

We use simple change queries [13] defined as a graph pat-
tern, possibly restricted by parameter bindings to the context
of a specific model elements; and the directions of change
sensitivity, i.e. to forbid disappearance / deletion (d) and/or
appearance / addition (a) of pattern matches:

directions ⊆ {d, a}
changeQuery = ⟨pattern, bindings, directions⟩

Informally, a PB lock guards the MS specified by the
pattern and its parameter bindings. A model modification
violates a lock iff the MS is extended by a new match
with a ∈ directions, or an existing match is removed with
d ∈ directions.

Example. Alice needs to define and put the following lock
on the model using the pattern Listing 1 to prevent certain
modifications described in Sec. II-C:

lock⟨Alice, ⟨signals, {cycle = medium}, {d, a}⟩⟩ (1)

The MSsignals of pattern signals consists of ⟨o7, 4,medium⟩

and ⟨o9, 8,medium⟩.
After Bob executes his operation, the cycle attributes of

o3 and o11 are set to medium. Hence, MSsignals is extended
with new matches: ⟨o3, 6,medium⟩ and ⟨o11, 8,medium⟩ which
violates the lock of Alice. When Cecile applies her operation
which removes o3 and o4 objects, the match of ⟨o4, 6,medium⟩

disappears from the MSsignals which likewise results in lock
violation.

Note that this is an invariant property, since the lock forbids
changes in both directions {d, a}. It is possible to e.g. use only
{d}, in which case the lock would allow the appearance of
new signals of medium-cycled control units, only a removal
would be prevented.

We believe that PB locking provides a flexible architecture
and technical realization of various locking strategies. As such
(to address G3), we describe how traditional locking strategies
can be implemented on top of PB locking.

C. Support for Object-based Locking

Object-based locks prevent the modification of certain ob-
jects in the model including the change of their attributes
and their references. To describe OB locks using PB locks, a
graph pattern needs to be generated to detect when an object
is deleted or created. To detect changes of references and

attributes of an object, additional patterns are required that
separately select the values of each feature.

Example. Bob requires to lock the object o3 and o11. Thus,
a control pattern is generated to observe the deletion and
creation of Control objects in the model while type, cycle,
provides and consumes patterns are generated to observe at-
tribute and reference changes of control objects. These locks
can be used by Bob where the parameter ctrl is bound to o3
and o11.

1 pattern control(ctrl)
2 { Control(ctrl); }
3
4 pattern type(ctrl, val)
5 { Control.type(ctrl,val); }
6
7 pattern cycle(ctrl, val)
8 { Control.cycle(ctrl,val); }
9
10 pattern provides(ctrl, sig)
11 { Control.provides(ctrl,sig); }
12
13 pattern consumes(ctrl, sig)
14 { Control.consumes(ctrl,sig); }

Listing 2. Graph Patterns to Select Controls and Their Feature Values

lock⟨Bob, ⟨control, ctrl = o3, {d, a}⟩⟩ (1)

lock⟨Bob, ⟨control, ctrl = o11, {d, a}⟩⟩ (2)

lock⟨Bob, ⟨type, ctrl = o3, {d, a}⟩⟩ (3)

lock⟨Bob, ⟨type, ctrl = o11, {d, a}⟩⟩ (4)

lock⟨Bob, ⟨cycle, ctrl = o3, {d, a}⟩⟩ (5)

lock⟨Bob, ⟨cycle, ctrl = o11, {d, a}⟩⟩ (6)

lock⟨Bob, ⟨provides, ctrl = o3, {d, a}⟩⟩ (7)

lock⟨Bob, ⟨provides, ctrl = o11, {d, a}⟩⟩ (8)

lock⟨Bob, ⟨consumes, ctrl = o3, {d, a}⟩⟩ (9)

lock⟨Bob, ⟨consumes, ctrl = o11, {d, a}⟩⟩ (10)

(1) The MScontrol of pattern control has one match ⟨o3⟩. If
the object o3 is deleted, MScontrol becomes empty.

(3) The MStype consists of the following tuples: ⟨o3, Pump⟩.
If the attribute type of o3 is changed to Fan, ⟨o3, Pump⟩

disappears from MStype and ⟨o3, Fan⟩ appears.

D. Support for Fragment-based Locking

Fragment-based locks prevent any kind of modifications in
a certain fragment including deletion or creation of objects and
update features of existing objects. To describe FB locks using
PB locks, graph patterns are required to collect all objects in a
fragment and their features. These patterns are extensions of
the patterns generated for OB where the objects of the patterns
are need to be contained by a root of certain fragment.

Example. Cecile requests to lock the fragment whose root
is o2. Listing 3 describes the patterns that are generated for
FB locks. Pattern containedBy is a helper pattern to select
object pairs in parent and child relation using the containment
edges of the modeling language. Pattern fragment queries each
object obj transitively contained by an object root and the
root itself. When o2 is bound to root, all objects contained
by o2 are selected by the pattern which covers the entire
fragment. Pattern cycleInFragment selects the cycle attribute



of each control contained by the root object. Similar patterns
are generated for all features of each class in the modeling
language.

1 pattern containedBy(parent,child) {
2 Module.submodule(parent,child);
3 } or {
4 Module.provides(parent,child); }
5
6 pattern fragment(root, obj) {
7 find containedBy+(root,obj);
8 } or {
9 root == obj }

10
11 pattern cycleInFragment(root, ctrl, val) {
12 find containedBy+(root, ctrl);
13 Control.cycle(ctrl, val); }

Listing 3. Fragment-based Lock Patterns

These patterns need to be used with root = o2 binding for
the definition of Ceclie’s locks.

lock⟨Cecile, ⟨fragment, root = o2, {d, a}⟩⟩ (1)

lock⟨Cecile, ⟨cycleInFragment, root = o2, {d, a}⟩⟩ (2)

...

The MSfragment of pattern fragment has the following matches
⟨o2, Composite⟩, ⟨o3, Control⟩, ⟨o4, Signal⟩. If the signal o4 is
deleted, the match ⟨o4, Signal⟩ disappears. When a new
signal o′ is created under o3, a new match ⟨o′, Signal⟩ appears.

The MScycleInFragment of pattern cycleInFragment consists of
tuples selecting the cycle attribute of the control o3. If the
cycle value of control o3 is changed to high, the match
⟨o3, low⟩ disappears and a new match ⟨o3.high⟩ appears.

IV. ENFORCING PROPERTY-BASED LOCKS

Here we focus on the enforcement of lock-operation com-
patibility (whether an operation is acceptable given the set of
active locks) only; see Sec. V-H for discussion of lock-lock
compatibility (whether a new lock request should be granted
or rejected given the set of active locks).

A. Algorithm to Enforce Locks

When an attempt is made to modify the model, the current
set of active locks needs to be checked; the changes need to be
rejected if a lock is violated. The rejection requires the ability
to revert the model to its original state. Hence, our approach
is built on the well-known concept of transactions where the
operations are wrapped into a single transaction that can be
executed. After the execution it can be rolled back to regain
the unmodified model.

We introduce the function TRANSACTION that takes
operations as input and returns an undoable transaction.
The function EXECUTE attempts to execute the transaction
on a certain model. If it fails due to access control violation
or conflicts, it returns false, otherwise it returns true and
applies the operations in the transaction on the model.
The ROLLBACK function is responsible for undoing a certain
transaction on a given model.

To evaluate the MS of a pattern, a pattern matcher is
required. We define the pattern matcher as a function PM that
takes a graph pattern, parameter bindings of the pattern and

a model. It calculates the MSpattern of pattern restricted by
parameter Bindings on the given model.

Now we present an algorithm depicted in Alg. 1 to enforce
PB locks as it is address by goal G2. The novelty of the algo-
rithm is the decision process to determine when a transaction
needs to be rolled back due to lock violation.

The ENFORCELOCKS function takes a model, a user, a set
of Locks and a sequence of Operations as input where the
user attempts to execute his/her operations on the model but
the locks cannot be violated. If a lock is violated the operations
are rejected and the model remains untouched.

The algorithm consists of 3 main parts:
Phase 1: The algorithm iterates through all the locks and cal-

culates the MSlock of each lock owned by a collaborator
other than the user.

Phase 2: The operations are attempted to be executed as a
transaction to provide the ability of roll back. If the
execution fails, the function terminates.

Phase 3: The MS′lock of each lock is reevaluated and com-
pared to MSlock calculated in Phase 1. The transaction
is rolled back and the function terminates if MSlock is
modified in a direction that is disallowed by the lock.

Algorithm 1 Enforcement of Property-based Locks
function ENFORCELOCKS(model, user, Locks, Operations)

◃ Phase 1: Evaluate match sets of relevant locks
Map⟨lock,MS⟩ relevantMap← ∅
for all lock in Locks do

if lock.owner ̸= user then
cq ← lock.changeQuery
MSlock ← PM(cq.pattern, cq.bindings,model)
relevantMap.put(lock,MSlock)

◃ Phase 2: Operations are wrapped into a transaction
and the transaction is attempted to be executed.

transaction← TRANSACTION(Operations)
if EXECUTE(transaction, model) fails then

◃ The execution can fail if access control rules
◃ are violated or conflicts are introduced
return

◃ Phase 3: Reevaluate the match sets, check violations
and roll back the transaction if it is required

for all ⟨lock,MSlock⟩ in relevantMap do
◃ Reevaluate the match sets of relevant locks
cq ← lock.changeQuery
MS′lock ← PM(cq.pattern, cq.bindings,model)
if MS′lock \MSlock ̸= ∅ and a ∈ ctx.directions or

MSlock \ MS′lock ̸= ∅ and d ∈ ctx.directions
then

ROLLBACK(transaction, model)
return

return

Note that the practical execution of Phase 1 and Phase
2 can be simplified using incremental evaluation techniques
[16]. Additionally, we assume the algorithm is executed by



a collaboration framework (e.g. [12]) on the server side that
ensures any other submission attempt including lock addition
will be rejected while the algorithm is under execution.

B. Correctness Criteria of the Algorithm

We identify 4 correctness criteria of the presented algorithm
and their proofs are sketched in the followings:

Theorem 1 (Termination). Let
−→
Op be an operation sequence

leading the model M
−→
Op−−→M ′ executed by a user u ∈ Users

and let Locks be the currently active locks.

The termination of the algorithm is guaranteed.

Proof. (Sketch) Phase 1 iterates over the finite set of Locks
and we can assume the function PM terminates. Phase 2
executes the ordered and finite number of operations in a
sequence. Hence, the application of the operations terminates.
If conflict or access control violation occurs the algorithm
terminates. Phase 3 iterates over the finite set of Locks and
the algorithm eventually halt after the iteration.

Theorem 2 (Correctness). Let
−→
Op be an operation sequence

evolving the M to M ′ (denoted as M
−→
Op−−→ M ′) executed by

a user u ∈ Users and let Locks′ be the active locks owned
by other collaborators ⊆ (Users \ {u}).

∃l ∈ Locks′ : l is violated, after M
−→
Op−−→M ′

=⇒
−→
Op is rejected

Proof. (Sketch) Phase 3 is responsible for deciding whether
a lock is violated. If a lock is violated, the operations are
rolled back and the algorithm terminates where the termination
ensures that the operations cannot be executed again during the
process.

Theorem 3 (Completeness). Let
−→
Op be an operation sequence

evolving the M to M ′ (denoted as M
−→
Op−−→ M ′) executed

by a user u ∈ Users and let Locks′ be the active locks
owned by other collaborators ⊆ (Users \ {u}). Additionally,
let AC violation be true if an access control rule is violated
by
−→
Op and let Conflict be true, if another

−→
Op′ has already

evolved the M to M ′′.
−→
Op is rejected ∧ ¬Conflict ∧ ¬AC violation

=⇒ ∃l ∈ Locks′ : l is violated, after M
−→
Op−−→M ′

Proof. (Sketch) Phase 2 is responsible for executing the
operations on the model and it checks if conflicts are in-
troduced or access control rules are violated. When none
of them occurs, the algorithm continues with Phase 3. In
Phase 3, the operations are rolled back if a lock is violated
and algorithm terminates. If there is no lock violation, the
algorithm terminates without rollback.

Theorem 4 (Determinism). Let
−→
Op1 and

−→
Op2 be operation

sequences evolving the model M to M ′ (denoted as M
−→
Op1−−→

M ′ and M
−→
Op2−−→M ′, respectively) executed by the same user

u ∈ Users and let Locks′ be the active locks owned by other
collaborators ⊆ (Users \ {u}).

∃l ∈ Locks′ : l is violated, after M
−→
Op1−−→M ′

=⇒ l is violated, after M
−→
Op2−−→M ′

Proof. (Sketch) As l is evaluated, we can assume that
−→
Op1

and
−→
Op2 do not introduce conflicts and do not violate access

control rules (which is discussed in [17] in details, but out of
scope for the current paper). Phase 3 is independent from the
operations when the locks are evaluated as the match sets are
calculated at the two states of the model (M and M ′). Hence,
the lock violation is associated to a state of the model. Thus,
two operation sequences leading a model to the same states
will violate the same locks.

V. EVALUATION

We have carried out an initial evaluation to compare the
effectiveness of three different locking strategies for conflict
prevention with respect to overlocking. Although the FB and
OB locking approaches are widely used in the industry, we
found no systematic comparison to evaluate the effectiveness
of these strategies. Hence, our comparison is an additional
contribution of this paper.

The evaluation is based on stochastic simulation of col-
laborators modeled as a Discrete Event System Specification
(DEVS) [18]. Each collaborator attempts to lock and modify
the same auto-generated semi-synthetic models. The simula-
tion investigates the following research questions:
Q1: How do the success rates of the locking strategies vary

with increasing model size i.e. increasing number and size
of fragments?

Q2: How do the success rates of the locking strategies vary
with increasing number of collaborators?

To answer these questions, we calculate the success rates
SR of locking strategies by counting the number of modifi-
cation attempts accepted by all existing locks and dividing it
with the total number of attempts:

SR =
modification attempts accepted by all locks

all modification attempts

A. Behavior of Collaborators

The behavior of each collaborator is modeled as a state
machine depicted in Fig. 5. At the beginning, each collaborator
is in the WAITING state. Then the collaborator requests to put
his/her lock on the model. Until receiving the result of the lock
request, the collaborator stays in the LOCK REQUESTED state. If
the lock request is rejected, a lock violation event is produced
and the collaborator steps back to WAITING state. Otherwise,
the lock is accepted and the collaborator executes his/her
modifications in the state UNDER EXECUTION. The execution
can terminate successfully (success event) or with failures
(failure event). The latter case means lock violation, thus a
lock violation event is produced. Both cases lead the state



Fig. 5. Behavior of a Collaborator

machine to the EXECUTED state. The last step is to release the
acquired lock and step back to the WAITING state.

During the simulation, our task is to collect the number of
produced lock violation events and subtract it from the number
of all attempts in order to calculate the number of accepted
attempts.

B. Operations of Collaborators

In order to obtain repeatable (cyclic) behavior for stochastic
simulation, the operations introduced in Sec. II-B are repli-
cated with corresponding revert operations that remove the
objects and references inserted by the original operations and
reset the attributes modified by the original operations. Each
collaborator alternately executes an original operation and its
revert operation to preserve the basic structure of the model
while maintaining the context of pattern matches. To compare
the locking strategies with respect to overlocking, locks are
defined for each operation using FB, OB and PB approaches.

C. Model Synthesis

For the simulation, we used the metamodel shown in Fig. 1
with slight modifications: the type and cycle attributes of
control units were abstracted to string values.

The evaluation was performed with synthesized models
of various size. Each model has a root Composite object
containing F model fragments to increase the horizontal
dimension. Each model fragment contains a copy of
the example structure depicted in Fig. 2 consists of 4
Composites, Signals and Control units. Each copy of the
structure contains at most one other copy connected to the
structure’s root o1. Hence, each fragment has D copies of the
structure in the hierarchy to increase depth of the fragments.
Altogether, each model has 1 root + (4 composites +
4 signals+4 controls)×F fragments×D depth objects with
references of (1 submodules from root + 7 submodules +
4 consumes + 4 provides in the structures) × F × D + F ×
D submodules to connect the substructures under each other.

The vendor, type and cycle attributes were limited to Umax
different values chosen with uniform probability where Umax
is the maximal number of collaborators working on the model.

D. Timing of Simulation

We assume that granting, rejecting and releasing a lock can
be processed instantaneously (as an atomic operation), but the
waiting time before requesting a lock and the execution time

TABLE I
MEANS AND RATES OF WAITING AND EXECUTION TIMES

λWAIT EWAIT(x) λEXEC EEXEC(x)

M λR
WAIT =

1

24
24h λR

EXEC =
1

3
3h

T λT
WAIT =

1

12
12h λT

EXEC =
1

2
2h

R λM
WAIT =

1

4
4h λM

EXEC =
1

1
1h

of an operation need to be handled to simulate overlapping
lock requests and executions. Exponential distribution was
used to approximate the behavior of human collaborators to
simulate off-line collaboration scenarios (like SVN or Git).
Hence, each type of operations (R,T,M) has various rates of
waiting time (λR

WAIT, λT
WAIT, λM

WAIT) and execution time (λR
EXEC,

λT
EXEC, λM

EXEC). Table I shows the sample rate values, where
we assume that replacement operations T are executed once
a day, testing operations T are introduced twice a day while
maintenance operations M are scheduled 6 times a day in
average — but the actual execution and waiting times are
random variables with exponential distribution.

E. Coupled DEVS Model

The coupled DEVS model [18] consists of one atomic server
model and N atomic collaborator models (N is the number
of collaborators in simulation). Each collaborator model has
exactly one channel to the server model.

For the collaborator model, the states, the internal and
external transitions are depicted as a state machine in Fig. 5.
The time advances (ta) of Idle and Under Execution states
are parametrized for each type of collaborators (shown in
Table I) while all other ta values are treated as zeros. Our
rationale is to handle the request and release of locks as atomic
operations with negligible execution time.

The server model (not detailed in the paper) has a single
state with several self-loop transitions to react to the collabora-
tor’s requests by providing inputs for the collaborator model.
The ta values in the server are handled as zero. This setup
means that locks are immediately evaluated and placed.

F. Simulation Setup

In the evaluation, we simulated collaborators of U = 9
and U = 27 where U is the number of active collaborators.
Each operation type (R, T, M) were executed by

U

3
number

of users. We assigned a unique operation for each user by
setting unique values to c, t and v parameters to avoid regular
conflicts by ensuring that multiple users cannot modify exactly
the same part of the model. Each simulation ran until (1 R+

2 T + 6 M)× (
U

3
)×Days execution were attempted where

Days = 10. This calculation gives the expected number of
execution attempts after 10 days. Finally, the size of fragments
was increased from F = 3 to F = 9 and the depth of each
fragments was increased from D = 3 (including 36 objects
and 48 references) to D = 9 (including 108 objects and 144



references) to cover small and large number of collaborators,
fragments and sizes of each fragment.

G. Evaluation of Results

We executed the simulations1 10 times for each locking
strategy and the parameter combinations of (U , F and D).
The results visually summarized in Fig. 6 show the median
of success rates: the higher the value, the better the strategy
performs. Each cluster depicts the success rates for all three
locking strategies with a certain parameter setting where the
checkered, solid and dotted columns are associated to the FB,
OB and PB locking strategies, respectively.

Related to research question Q1, we can observe that
• FB locking shows better results when the number of

fragments (F) is increased, but its efficiency decreases
when the sizes of the fragments (D) are growing but the
number of fragments remains — with 73.3% success rate
in best case, 30.2% in worst case.

• OB locking is insensitive to which dimension of the model
increases, larger models increase its efficiency — 97% in
best case, 81% in worst case.

• The same applies to PB locking, but success rates are
consistently better than for OB and FB locking in all
simulated cases — 99.9%: best case, 96.1%: worst case.

As for research question Q2, an increasing number of
collaborators results in a decreased success rate (thus decrease
scalability) both for OB and, especially, for FB strategies where
OB locking shows significantly better results compared to FB.
However, success rate is not compromised by property-based
locking even when the number of collaborators grow.

Therefore, we may conclude that PB locking can success-
fully provide technological foundation for different locking
strategies and it enables to define fine-grained locks that
increase the effectiveness of collaboration.

H. Discussion of Limitations

User Experience. We believe that the proposed approach
of property-based locking (shown in Sec. III-C and Sec. III-D
to be a generalization of OB and FB) can provide a helpful
underlying lock enforcement infrastructure to realize low-
conflict collaboration systems. However, manually defining
complex properties using graph patterns can be a demanding
task. Therefore we expect that modeling tools will have
built-in definitions for such lock properties in case of both
elementary model manipulation commands and more com-
plex domain-specific refactoring actions. Additionally, domain
experts could provide a library of frequently needed lock
properties, from which the collaborators can easily select and
parametrize a lock to request. The detailed evaluation of user
experience is out of scope for the current paper.

Lock-lock Compatibility. As indicated before in Sec. IV,
we have so far only considered lock-operation compatibility.
Unlike the other two approaches, PB locks only impose a

1Raw data and reproduction instructions are at http://tinyurl.com/
models17-locking

restriction on what other users are allowed to do, but reveal
very little information on how the lock owner is intending
to change the model. Therefore, when the lock management
service has to decide between accepting and rejecting a lock
request, it is not possible to tell whether the owners of other
locks would likely attempt any operations in the future that
would violate this lock if granted. Contrast with e.g. FB, where
a lock request on a fragment is rejected if someone else has
already locked that fragment, so that the owner of the earlier
lock can carry on undisturbed.

As a consequence, PB has no general way of rejecting locks
at the time the request is made (the corresponding reject tran-
sition of Fig. 5 is not used), and incompatibility will only be
detected later, when an actual violating operation is performed.
However, as discussed above, PB is seen as a common platform
for enforcing locks in a variety of scenarios; in some of these
special cases (such as when PB lock definitions are mapped
from FB or OB lock requests according to Sec. III-C, we do
have a notion of lock-lock compatibility, which a sufficiently
careful implementation could enforce.

I. Integration into MONDO Collaboration Framework

PB locking approach is successfully implemented and inte-
grated into the MONDO Collaboration Framework [12]. The
framework extends existing version control systems (VCS)
such as SVN [2] to support fine-grained access control rules
[17] and PB locking strategy.

Traditional file-level FB locking behavior of VCSs is broad-
ened with PB locking strategy using hook methods triggered by
repository events e.g. commit. When a collaborator commits
her changes to a certain repository the related hook method is
executed to evaluate the locks and reject the commit if a PB
lock is violated.

VI. RELATED WORK

A. Modeling Environment

Existing collaborative modeling tools either lack of locking
support or implement rigid strategies such as file-based lock-
ing, or locking subtrees or elements of a specific type, which
hinder effective collaboration.

Most of offline collaborative modeling tools, e.g., Model-
CVS [19], AMOR [20], Eclipse Modeling Team Framework
[21] or EMFStore [3], rely on traditional version control
systems using file-based locking with contributors committing
large deltas of work.

Model repositories such as CDO [7], MetaEdit+ [22] and
Morsa [8], support both implicit and explicit locking of
subtrees and sets of elements. These locks can prevent others
from modifying elements to avoid conflicts.

Online collaborative modelling frameworks such as Gen-
MyModel [23], CoolModes [24], SpacEclipse [25], We-
bGME [26] and ATOMPM [27], rely on a short transaction
model: a single, shared instance of the model is concurrently
edited by multiple users, with all changes propagated to all par-
ticipants instantaneously. These approaches use timestamped

http://tinyurl.com/models17-locking
http://tinyurl.com/models17-locking


Fig. 6. Success Rates of the Simulation - Property-based (filled), Object-based (crossed) and Fragment-based (dotted)

operations to resolve conflicts or provide only lightweight lock
mechanisms, e.g., explicit locks to certain elements.

Our property-based approach is general and can be used for
both implicit locking of subtrees and set of elements or explicit
locking of a certain element and its incoming and outgoing
references. In addition it extends these lock types with the
definition of properties to provide less restrictive locking for
the collaborators as highlighted in our experimental evaluation.

B. Computer-supported Co-operative Work

The most general area of collaboration is the field of
computer-supported co-operative work (CSCW) tools that
can help people working together including conference calls,
screen shares, remote desktops etc. to collaboratively develop
artifacts. Beyond implicit and explicit locking several other ap-
proach are exist to manage and prevent conflicts in concurrent
collaboration.

Timestamped-based operation can be used to order the
incoming operation on the server-side [28]. When an operation
arrives with earlier timestamp than the latest one due to a delay
on the network, it will be rejected, even though the delayed
change may not conflicting with the others.

Paul Dourish’ pioneering work [29] argues against the
inflexibility of locking mechanisms based on the syntax of a
collaborative artifact (here, a model). His proposed Prospero
platform employs the promise-guarantee paradigm, where a
user makes a promise concerning the purpose of its changes
(the expected behavior, or usage pattern), and the collaborative
editing system guarantees consistency of the model, provided
that such promise is upheld.

As it is stated in [9], the concept of property-based locking
is inspired by the Dourish’ framework and aims to adapt it to
the field of software/system modeling, where the collaborative
artifact is a graph.

C. Databases

Databases detect write/write and read/write conflicts, where
the former defines modifying the same record concurrently,
while the latter is about reading dirty records.

Both relational [30], [31] and graph-based [32]–[34]
databases use transactions to provide atomicity and ordered
execution. Thus, these systems usually requires explicit locks
before the execution of a transaction.

In database terms, locks can be obtained with a pessimistic
or optimistic strategy. Pessimistic lock prevents the initiation
of any modification on the locked records. Optimistic lock
allows to execute a transaction, but during the execution it can
be aborted when a record became dirty (updated by someone
else) and it needs to be rerun.

Our property-based solution is an optimistic locking strategy
to prevent write/write conflicts, where the collaborators can
introduce any kind of changes until they violate a lock. The
approach cannot handle read/write as we assume they are
handled by the underlying collaboration frameworks (e.g. [2],
[3]) due to the atomic transactional executions of changes.

VII. CONCLUSION AND FUTURE WORK

In this paper, we introduced an underlying infrastructure
to realize a property-based locking strategy as a common
generalization of existing fragment-based and object-based
locking approaches. Our property-based locking approach en-
ables to define fine-grained locks as properties allowing only
modifications that preserve the property.

Complex properties are described as graph patterns to
express structural (and attribute) constraints for a model where
the result set, i.e. the matches of graph pattern, can be
calculated by pattern matchers or query engines. Our locking
strategy prevents modifications that change the result set make
a match of the pattern appear or disappear.

We have carried out an initial evaluation with respect to
overlocking simulating collaborators working on the same
model. The results show that our approach locks fewer number
of elements compared to traditional locking approaches to
further enhance collaboration.

Our locking approach has been integrated into the collabo-
rative tools developed within the MONDO project for off-line
collaboration. As future work, we plan to extend our evaluation
with respect to underlocking and investigate the use of incre-
mental pattern matchers to support on-line collaboration where
the collaborators work with short transactions of modifications
and the response time needs to be immediate.
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and D. Varró, “Property-based methods for collaborative model
development,” in Joint Proc. of the 3rd Int. Workshop on the Glob.
Of Modeling Lang. and the 9th Int, Workshop on Multi-Paradigm
Modeling co-located with ACM/IEEE 18th Int. Conf. on Model Driven
Engineering Languages and Systems, GEMOC+MPM@MoDELS 2015,
Ottawa, Canada, September 28, 2015., 2015, pp. 1–7. [Online].
Available: http://ceur-ws.org/Vol-1511/paper-01.pdf

[10] A. Gmez, X. Mendialdua, G. Bergmann, J. Cabot, C. Debreceni,
A. Garmendia, D. S. Kolovos, J. de Lara, and S. Trujillo, “On the
opportunities of scalable modeling technologies: An experience report
on wind turbines control applications development,” in 13th European
Conference on Modelling Foundations and Applications, Eindhoven, The
Netherlands, In press 2017.

[11] D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro, EMF: Eclipse
Modeling Framework. Pearson Education, 2008.

[12] C. Debreceni, G. Bergmann, M. Búr, I. Ráth, and D. Varró, “The mondo
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access control for secure collaborative modeling using bidirectional
transformations,” in Proceedings of the ACM/IEEE 19th International
Conference on Model Driven Engineering Languages and Systems,
Saint-Malo, France, October 2-7, 2016, 2016, pp. 351–361. [Online].
Available: http://dl.acm.org/citation.cfm?id=2976793

[18] A. I. Concepcion and B. P. Zeigler, “DEVS formalism: A
framework for hierarchical model development,” IEEE Trans. Software
Eng., vol. 14, no. 2, pp. 228–241, 1988. [Online]. Available:
http://dx.doi.org/10.1109/32.4640

[19] G. Kramler, G. Kappel, T. Reiter, E. Kapsammer, W. Retschitzegger, and
W. Schwinger, “Towards a Semantic Infrastructure Supporting Model-
Based Tool Integration,” in Proc. of GaMMa@ICSE’06, 2006.

[20] K. Altmanninger, G. Kappel, A. Kusel, W. Retschitzegger, M. Seidl,
W. Schwinger, and M. Wimmer, “AMOR - towards adaptable model
versioning,” in 1st Int. Workshop on Model Co-Evolution and Consis-
tency Management, 2008.

[21] Eclipse, “Modeling team framework proposal,” 2011, http://www.
eclipse.org/proposals/mtf/.

[22] J. Tolvanen, “Metaedit+ for collaborative language engineering
and language use (tool demo),” in Proceedings of the 2016 ACM
SIGPLAN International Conference on Software Language Engineering,
Amsterdam, The Netherlands, October 31 - November 1, 2016, 2016, pp.
41–45. [Online]. Available: http://dl.acm.org/citation.cfm?id=2997379

[23] M. Dirix, A. Muller, and V. Aranega, “Genmymodel: an online uml case
tool,” in ECOOP, 2013.

[24] N. Pinkwart, “A Plug-In Architecture for Graph Based Collaborative
Modeling Systems,” in Supplementary Proceedings of the 11th Confer-
ence on Artificial Intelligence in Education, Sydney (Australia). Sydney,
Australia: SIT, 2003, pp. 89–94.

[25] J. Gallardo, A. I. Molina, C. Bravo, M. A. Redondo, and
C. A. Collazos, “An ontological conceptualization approach for
awareness in domain-independent collaborative modeling systems:
Application to a model-driven development method,” Expert Syst.
Appl., vol. 38, no. 2, pp. 1099–1118, 2011. [Online]. Available:
http://dx.doi.org/10.1016/j.eswa.2010.05.005
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