36,462 research outputs found

    The Santa Fe Light Cone Simulation Project: II. The Prospects for Direct Detection of the WHIM with SZE Surveys

    Full text link
    Detection of the Warm-Hot Intergalactic Medium (WHIM) using Sunyaev-Zeldovich effect (SZE) surveys is an intriguing possibility, and one that may allow observers to quantify the amount of "missing baryons" in the WHIM phase. We estimate the necessary sensitivity for detecting low density WHIM gas with the South Pole Telescope (SPT) and Planck Surveyor for a synthetic 100 square degree sky survey. This survey is generated from a very large, high dynamic range adaptive mesh refinement cosmological simulation performed with the Enzo code. We find that for a modest increase in the SPT survey sensitivity (a factor of 2-4), the WHIM gas makes a detectable contribution to the integrated sky signal. For a Planck-like satellite, similar detections are possible with a more significant increase in sensitivity (a factor of 8-10). We point out that for the WHIM gas, the kinematic SZE signal can sometimes dominate the thermal SZE where the thermal SZE decrement is maximal (150 GHz), and that using the combination of the two increases the chance of WHIM detection using SZE surveys. However, we find no evidence of unique features in the thermal SZE angular power spectrum that may aid in its detection. Interestingly, there are differences in the power spectrum of the kinematic SZE, which may not allow us to detect the WHIM directly, but could be an important contaminant in cosmological analyses of the kSZE-derived velocity field. Corrections derived from numerical simulations may be necessary to account for this contamination.Comment: 9 pages, submitted to Astrophysical Journa

    Euclidean distance geometry and applications

    Full text link
    Euclidean distance geometry is the study of Euclidean geometry based on the concept of distance. This is useful in several applications where the input data consists of an incomplete set of distances, and the output is a set of points in Euclidean space that realizes the given distances. We survey some of the theory of Euclidean distance geometry and some of the most important applications: molecular conformation, localization of sensor networks and statics.Comment: 64 pages, 21 figure

    Morphology of Mock SDSS Catalogues

    Full text link
    We measure the geometry, topology and morphology of the superclusters in mock SDSS catalogues prepared by Cole et al.(1998). The mock catalogues refer to τ\tauCDM and \LCDM {\em flat} cosmological models and are populated by galaxies so that these act as biased tracers of mass, conforming with the correlation function measured using APM catalogue. We compute the Minkowski Functionals (MFs) for the cosmic density fields using SURFGEN (Sheth et al.2003) and use the available 10 realizations of τ\tauCDM to study the effect of cosmic variance in estimation of MFs and Shapefinders, which we find to be extremely well constrained statistics. Although all the mock catalogues of galaxies have the same two-point correlation function and similar clustering amplitude, the global MFs due to τ\tauCDM show systematically lower amplitude compared to those due to \LCDM; an indirect, but detectable effect due to nonzero, higher order correlation functions. The characteristic thickness (T), breadth (B) and length (L) of the superclusters are measured using the available 10 realizations of τ\tauCDM. While T≤\leB and T, B∈\in[1,17] h−1^{-1}Mpc, we find the top 10 superclusters to be as long as 90 h−1^{-1}Mpc, with the longest superclusters identified at percolation to be rare objects with their length as large as 150 h−1^{-1}Mpc. The τ\tauCDM superclusters are found to be significantly longer than those in \LCDM. Thickness (T), breadth (B), planarity (P) and mass/volume−-weighted planarity and filamentarity of the superclusters are found to be useful to compare the two models (abridged).Comment: 23 Pages, 12 Figures, MNRAS Style. Minor modifications to the text. New references adde

    Using the filaments in the LCRS to test the LambdaCDM model

    Full text link
    It has recently been established that the filaments seen in the Las Campanas Redshift Survey (LCRS) are statistically significant at scales as large as 70 to 80 Mpc/h in the −3∘-3^{\circ} slice, and 50 to 70 Mpc/h in the five other LCRS slices. The ability to produce such filamentary features is an important test of any model for structure formation. We have tested the LCDM model with a featureless, scale invariant primordial power spectrum by quantitatively comparing the filamentarity in simulated LCRS slices with the actual data. The filamentarity in an unbiased LCDM model, we find, is less than the LCRS. Introducing a bias b=1.15, the model is in rough consistency with the data, though in two of the slices the filamentarity falls below the data at a low level of statistical significance. The filamentarity is very sensitive to the bias parameter and a high value b=1.5, which enhances filamentarity at small scales and suppresses it at large scales, is ruled out. A bump in the power spectrum at k~0.05 Mpc/h is found to have no noticeable effect on the filamentarity.Comment: 16 pages, 3 figures; Minor Changes, Accepted to Ap

    Precision of Hubble constant derived using black hole binary absolute distances and statistical redshift information

    Full text link
    Measured gravitational waveforms from black hole binary inspiral events directly determine absolute luminosity distances. To use these data for cosmology, it is necessary to independently obtain redshifts for the events, which may be difficult for those without electromagnetic counterparts. Here it is demonstrated that certainly in principle, and possibly in practice, clustering of galaxies allows extraction of the redshift information from a sample statistically for the purpose of estimating mean cosmological parameters, without identification of host galaxies for individual events. We extract mock galaxy samples from the 6th Data Release of the Sloan Digital Sky Survey resembling those that would be associated with inspiral events of stellar mass black holes falling into massive black holes at redshift z ~ 0.1 to 0.5. A simple statistical procedure is described to estimate a likelihood function for the Hubble constant H_0: each galaxy in a LISA error volume contributes linearly to the log likelihood for the source redshift, and the log likelihood for each source contributes linearly to that of H_0. This procedure is shown to provide an accurate and unbiased estimator of H_0. It is estimated that a precision better than one percent in H_0 may be possible if the rate of such events is sufficiently high, on the order of 20 to z = 0.5.Comment: 9 pages, 4 figures, submitted to Phys. Rev. D; new references adde

    Passive discrete-time systems with a Pontryagin state space

    Get PDF
    Passive discrete-time systems with Hilbert spaces as an incoming and outgoing space and a Pontryagin space as a state space are investigated. A geometric characterization when the index of the transfer function coincides with the negative index of the state space is given. In this case, an isometric (co-isometric) system has a product representation corresponding to the left (right) Krein-Langer factorization of the transfer function. A new criterion, based on the inclusion of reproducing kernel spaces, when a product of two isometric (co-isometric) systems preserves controllability (observability), is obtained. The concept of the defect function is expanded for generalized Schur functions, and realizations of generalized Schur functions with zero defect functions are studied
    • …
    corecore