24,123 research outputs found

    Decoding the matrix: Coincident membranes on the plane wave

    Full text link
    At the core of nonperturbative theories of quantum gravity lies the holographic encoding of bulk data in large matrices. At present this mapping is poorly understood. The plane wave matrix model provides a laboratory for isolating aspects of this problem in a controlled setting. At large boosts, configurations of concentric membranes become superselection sectors, whose exact spectra are known. From the bulk point of view one expects product states of individual membranes to be contained within the full spectrum. However, for non-BPS states this inclusion relation is obscured by Gauss law constraints. Its validity rests on nontrivial relations in representation theory, which we identify and verify by explicit computation.Comment: 43 pages, 2 figure

    Quantum models of classical mechanics: maximum entropy packets

    Get PDF
    In a previous paper, a project of constructing quantum models of classical properties has been started. The present paper concludes the project by turning to classical mechanics. The quantum states that maximize entropy for given averages and variances of coordinates and momenta are called ME packets. They generalize the Gaussian wave packets. A non-trivial extension of the partition-function method of probability calculus to quantum mechanics is given. Non-commutativity of quantum variables limits its usefulness. Still, the general form of the state operators of ME packets is obtained with its help. The diagonal representation of the operators is found. A general way of calculating averages that can replace the partition function method is described. Classical mechanics is reinterpreted as a statistical theory. Classical trajectories are replaced by classical ME packets. Quantum states approximate classical ones if the product of the coordinate and momentum variances is much larger than Planck constant. Thus, ME packets with large variances follow their classical counterparts better than Gaussian wave packets.Comment: 26 pages, no figure. Introduction and the section on classical limit are extended, new references added. Definitive version accepted by Found. Phy

    Non-Linear Sigma Model on the Fuzzy Supersphere

    Get PDF
    In this note we develop fuzzy versions of the supersymmetric non-linear sigma model on the supersphere S^(2,2). In hep-th/0212133 Bott projectors have been used to obtain the fuzzy CP^1 model. Our approach utilizes the use of supersymmetric extensions of these projectors. Here we obtain these (super) -projectors and quantize them in a fashion similar to the one given in hep-th/0212133. We discuss the interpretation of the resulting model as a finite dimensional matrix model.Comment: 11 pages, LaTeX, corrected typo

    Supersymmetric Quantum Hall Effect on Fuzzy Supersphere

    Get PDF
    Supersymmetric quantum Hall liquids are constructed on a supersphere in a supermonopole background. We derive a supersymmetric generalization of the Laughlin wavefunction, which is a ground state of a hard-core OSp(12)OSp(1|2) invariant Hamiltonian. We also present excited topological objects, which are fractionally charged deficits made by super Hall currents. Several relations between quantum Hall systems and their supersymmetric extensions are discussed.Comment: Typos corrected, 5 pages, to be published in PR

    Giant Gravitons in Conformal Field Theory

    Full text link
    Giant gravitons in AdS_5 x S^5, and its orbifolds, have a dual field theory representation as states created by chiral primary operators. We argue that these operators are not single-trace operators in the conformal field theory, but rather are determinants and subdeterminants of scalar fields; the stringy exclusion principle applies to these operators. Evidence for this identification comes from three sources: (a) topological considerations in orbifolds, (b) computation of protected correlators using free field theory and (c) a Matrix model argument. The last argument applies to AdS_7 x S^4 and the dual (2,0) theory, where we use algebraic aspects of the fuzzy 4-sphere to compute the expectation value of a giant graviton operator along the Coulomb branch of the theory.Comment: 37 pages, LaTeX, 1 figure. v2: references and acknowledgements added, small correction
    corecore