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Supersymmetric quantum-Hall liquids are constructed on a supersphere in a supermonopole back-
ground. We derive a supersymmetric generalization of the Laughlin wave function, which is a ground state
of a hard-core OSp�1j2� invariant Hamiltonian. We also present excited topological objects, which are
fractionally charged deficits made by super Hall currents. Several relations between quantum-Hall
systems and their supersymmetric extensions are discussed.
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Quantum-Hall systems contain noncommutative struc-
tures, such as Matrix theories and D-brane physics [1].
They are perhaps the simplest known physical setup of
noncommutative geometry and exhibit many of its exotic
properties [2]. Therefore, quantum-Hall systems, which
can be readily investigated in the laboratory, represent a
practical alternative to the physics which string theory
attempts to describe, which is still far beyond our realm
of experimental capability. This is one reason that
quantum-Hall systems are very fascinating. It is expected
that ideas developed by investigating quantum-Hall sys-
tems will help in furthering our understanding of the high
energy physics [3].

Originally, quantum-Hall phenomena were realized in
the two-dimensional flat space under strong magnetic field.
Laughlin derived a wave function that well describes quan-
tum incompressible liquids [4]. His wave function is rota-
tionally symmetric but not translationally symmetric on the
plane. Hence, it does not possess all the symmetries in a
plane and is not suited for computer simulations. Haldane
overcame this problem by constructing quantum-Hall sys-
tems on two-spheres in a Dirac magnetic monopole back-
ground [5]. He constructed a Laughlin-like wave function,
which we call the Laughlin-Haldane wave function, on the
sphere that possesses all the rotational symmetries of the
two-sphere. The sphere used in by Haldane’s analysis is
simply a fuzzy two-sphere. Recently, Zhang and Hu have
succeeded in constructing four-dimensional quantum-Hall
systems in a SU�2� Yang monopole background [6]. The
systems they consider are quantum-Hall liquids on fuzzy
four-spheres and, intriguingly, possess branelike excita-
tions. Because Matrix theories can be used to describe
higher-dimensional spaces and possess extended objects,
their quantum-Hall systems are the first discovered ‘‘physi-
cal’’ systems that exhibit behavior similar to that described
by Matrix models. Their theory has attracted much atten-
tion and has been developed by many authors [7]. In
particular, on the basis of fuzzy complex projective mani-
folds, Karabali and Nair have generalized them into even
higher-dimensional quantum-Hall systems [8]. Hasebe and
Kimura, based on higher-dimensional fuzzy spheres, have
found another way to generalize them for an arbitrary even

number of dimensions in colored monopole backgrounds
[9]. In fact, such developments in the study of quantum-
Hall systems have provided information that may be im-
portant in obtaining an understanding of D-brane physics.
In particular, it has been reported that, with use of the
Dirac-Born-Infeld action, the higher-dimensional fuzzy
spheres in Matrix models can be identified with dielectric
D-branes in colored monopole backgrounds [10].

Recently, it was found that nonanticommutative (NAC)
field theory is naturally realized on D-branes in R-R field or
graviphoton backgrounds [11]. Also, it has been shown
that, in supermatrix models, fuzzy superspheres arise as
classical solutions, and their fluctuations yield NAC field
theories [12]. Some interesting relations between lowest
Landau level (LLL) physics and NAC geometry have also
been reported [13]. With these recent developments, it
would be worthwhile to extend the theory of quantum-
Hall systems to a supersymmetric framework. Indeed, the
supersymmetric quantum-Hall systems might be the sim-
plest physical setup of NAC geometry. Further, encouraged
by previous success in the investigation of higher-
dimensional quantum-Hall systems, we may hope that
such systems not only possess exotic properties in the
NAC world but also reveal yet unknown aspects of super-
matrix models.

A supersphere is a geometrical object taking the form of
a coset manifold given by S2j2 � OSp�1j2�=U�1�: By con-
struction, a supersphere manifestly possesses the exact
N � 1 supersymmetry, which is generated by the
OSp�1j2� super Lie group. The fact that the supersymme-
try remains exact is an advantage of using the coset mani-
folds of super Lie groups. The number of degrees of
freedom of the supersphere is given by dim S2j2 �
dimOSp�1j2� � dimU�1� � 5� 1 � 4. Two of these de-
grees of freedom correspond to the Grassmann even coor-
dinates, and the other two correspond to the Grassmann
odd coordinates on the supersphere. The supersphere is
embedded in a flat superspace whose coordinates are
xa�a � 1; 2; 3�, which are Grassmann even, and ���� �
1; 2�, which are Grassmann odd. The radius of the super-

sphere is given by R �
�������������������������������
x2a � C������

q
, where C�� is an

antisymmetric tensor with C12 � 1. At the center of the
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supersphere, we place a supermonopole whose magnetic
charge is I=2 when I is an integer. The magnetic field of the
supermonopole is given by B � 2�I=4�R2 � I=2R2, and
the magnetic length is defined as ‘B � 1=

����
B

p
� R

��������
2=I

p
.

The thermodynamic limit corresponds to R; I ! 1, with
‘B fixed to a finite value. For simplicity, in the following
we set R � 1, which makes all quantities dimensionless.

We now briefly discuss the one-particle state on the
supersphere in the supermonopole background. A detailed
analysis is found in Ref. [14]. The one-particle
Hamiltonian is given by

H �
1

2M
�	2

a � C��	�	��;

where 	a and 	� are the OSp�1j2� covariant particle
angular momenta, 	a � �i�abcxbDb �

1
2����a���D�

and 	� � 1
2 �C�a���xaD� � 1

2����a���Da. The covariant
derivatives are given by Da � @a � iAa and D� � @� �

iA�, where Aa � � I
2 �ab3

xb
1�x3

�1� 2�x3
2�1�x3�

�C�� and A� �

� I
2 i��aC���xa��. The supermonopole field strengths are

given by Ba � � I
2 xa and B� � � I

2��. The commutation
relations for the covariant angular momenta of the particle
are obtained as �	a;	b�� i�abc�	c�Bc�, �	a;	���

1
2

��a����	��B��, and f	�;	�g �
1
2 �C�a����	a � Ba�.

Thus, they do not satisfy the OSp�1j2� commutation rela-
tions exactly, due to the presence of the supermagnetic
field. The total OSp�1j2� angular momenta are constructed
as La � 	a � Ba and L� � 	� � B�. The operators L�
play the role of the supercharge in the system. The covari-
ance under OSp�1j2� transformations is expressed as
�La;Xb�� i�abcXc;�La;X���

1
2��a���X� and fL�; X�g �

1
2 �C�a���Xa, where Xa represents La, 	a, and Ba, and
X� represents L�, 	�, and B�.

The OSp�1j2� Casimir operator for the total OSp�1j2�
angular momenta La and L� are L2

a�C��L�L�� j�j� 1
2�,

where j � I
2 � n. Here, n � 0; 1; 2; . . . indicates the

Landau level. The supermonopole field is perpendicular
to the surface of the supersphere, while the particle moves
on the supersphere. Therefore, the particle angular mo-
menta are orthogonal to the supermonopole field: 	aBa �
C��	�B� � Ba	a � C��B�	� � 0. Observing these
relations, we find the energy eigenvalues to be En �

1
2M 

�n�n� 1
2� � I�n� 1

4��. Thus, in the LLL, the energy be-
comes ELLL � 1

4!, where ! � B=M is the cyclotron
frequency.

The number of unit cells, each occupying an area 2�‘2B
on the supersphere, is N � 4�=2�‘2B � I. It is conve-
nient to define the filling fraction as $ � N=N. We now
give a comment. From the OSp�1j2� representation theory,
the dimension of the irreducible representation j � I=2 is
D � �2j� 1� � �2j�jj�I=2 � 2I � 1. Therefore, the num-
ber of states in the LLL is twice as large as the number of
magnetic cells in the large I limit. This implies that in each
magnetic cell, there are two degenerate states due to the
supersymmetry. Hence, in this system, the value of the

filling fraction N=N is twice as large as that in the
ordinary definition N=D.

The supercoherent state  is defined as the state that is
aligned in the direction of the supermagnetic flux,
�Ba; B�� / �xa; ���; that is, we have la � xa � C��l� �

�� � 1
2 , where la and l� constitute the fundamental

representation of the OSp�1j2� generators. Explicitly,
these are

la�
1

2

�a 0
0 0

� �
; l�1 �

1

2

0 '1
't2 0

� �
; l�2 �

1

2

0 '2
�'t1 0

� �
;

where the quantities f�ag are the Pauli matrices, while
'1 � �1; 0�t and '2 � �0; 1�t. Up to a U�1� phase factor,
the explicit form of the supercoherent state is found to be
 � �u;v;+�t � f

����������������������
�1� x3�=2

p
�1� 1

4�1�x3�
�C��; x1�ix2�������������

2�1�x3�
p 

�1� 1
4�1�x3�

�C��; 1�������������
2�1�x3�

p ��1� x3��1� �x1� ix2��2�gt. This

is identical to the super Hopf spinor, which satisfies the
relations  zla � 1

2 xa and  zl� � 1
2��, where z de-

notes the superadjoint, defined as  z � �u�; v�;�+��,
and � denotes pseudoconjugation, which acts on a
Grassmann odd number , as ,�� � �,; �,1,2�

� � ,�1,
�
2.

The coordinates fxa; ��g are superreal, in the sense that we
have �x�a; ���� � �xa; C�����.

The supercoherent state in a supermonopole background
can be obtained similarly. The supercoherent state, directed
to the point ��a;���, should satisfy the equation
��a�-�La�C�����-�L�� 

�I�
- �u;v;+� �� I

2 
�I�
- �u;v;+�,

where - is a constant super Hopf spinor given by - �
�a; b; ,�t, which is mapped to the point ��a;��� on the
supersphere by �a�-� � 2-zla- and ���-� � 2-zl�-.
The supercoherent state is found to be  �I�

- �u; v; +� �
�-z �I � �a�u� b�v� +�,�I.

Supermonopole harmonics um1;m2
and +n1;n2 are intro-

duced on the supersphere. They form a basis for the LLL
and are eigenstates of Lz with the eigenvalues m2�m1

2 and
n2�n1

2 , respectively. Their explicit forms are um1;m2
�����������������������

I!=m1!m2!
p

um1vm2 and +n1;n2 �
��������������������
I!=n1!n2!

p
un1vn1+,

wherem1 �m2 � I and n1 � n2 � I � 1. The degeneracy
of um1;m2

is �I � 1�, while that of +n1;n2 is �I�. Thus, the
total degeneracy is �2I � 1�, which is exactly the dimen-
sion of the Hilbert space of the LLL. Thus, without includ-
ing any complex variables fu�; v�; +�g, the functions in the
LLL are constructed from the variables fu; v; +g. For this
reason, the OSp�1j2� operators are effectively represented
as La �  t~la

@
@ and L� �  t~l�

@
@ , where @

@ �

� @@u ;
@
@v ;

@
@+�

t and f~la; ~l�g forms a complex representation

of OSp�1j2� with ~la � �l�a and ~l� � C��l�. The complex
representation in OSp�1j2� is related to the original by the
unitary transformation, ~la � RtlaR; ~l� � Rtl�R, where
R is given by
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R �

0 1 0
�1 0 0
0 0 1

0
@

1
A:

Thus, the representation of OSp�1j2� is pseudoreal. The
properties of R are as follows: Rt � Ry � Rz � R�1

and R2 � �Rt�2 � diag��1;�1; 1�. Using the matrix R,
the complex spinor is given by ~ � R� z�t �
�v�;�u�; +��t. Then, without including the complex spinor
 z, the OSp�1j2� singlet can be constructed from  and  0

alone: ~ z 0 �  tRz 0 � � 0�tR .
We next study the two-particle state. The total angular

momenta of OSp�1j2� are given by Ltot
a � La�1� � La�2�

and Ltot
� � L��1� � L��2�, where La�i� and L��i� are the

OSp�1j2� generators of the ith particle. The two-particle
supercoherent state located at the point ��a;��� satisfies
the equation ��a�-�L

tot
a �C�����-�L

tot
� � �I;J�

- �

�J �I;J�
- . The solution is written as

 �I;J�
- � �u1v2 � v1u2 � +1+2�

I�J

�  �J�
- �u1; v1; +1� 

�J�
- �u2; v2; +2�;

where the first component on the right-hand side is an
OSp�1j2� singlet that determines the distance between
two particles. Thus, the two-particle state  �I�J�

- represents
an extended object whose spin is J, whose center-of-mass
is located at ��a�-�;���-��, and whose size is propor-
tional to �I � J�.

In the LLL, this system reduces to a fuzzy super-
sphere [14]. Hence, the two-body interaction is re-
duced to that on a fuzzy supersphere, which is expressed
as a supersymmetric extension of Haldane’s pseudo-
potential [5], �IV��a�1��a�2��C�����1����2���I�P
J�0;1=2;...;IV

�I�
J PJ�La�1�La�2��C��L��1�L��2��, where

PJ is the projection operator to the Hilbert space spanned
by the states that form an irreducible representation of
OSp�1j2� spin J. It is noted that the OSp�1j2� spin J takes
not only integer values but also half-integer values.
Physically, this implies that fermionic particles, as well
as bosonic particles, appear as two-particle states in super-
symmetric quantum-Hall systems.

In Haldane’s work [5], the Laughlin-Haldane wave func-
tion is constructed from the SU�2� singlet state, which is
apparently invariant under any rotations of the two-sphere.
Therefore, it is natural to use an OSp�1j2� singlet wave
function as the supersymmetric extension of the Laughlin-
Haldane wave function. Explicitly, it is given by

��m� �
YN
i<j

�� tjR i�m �
YN
i<j

�uivj � viuj � +i+j�m:

When the product is expanded, it can easily be seen that the
sum of the powers of ui and vi is m�N � 1�. Also, the LLL
constraint m1 �m2 � N for the monopole harmonics
um1;m2

should be satisfied. Hence, the number of particles
and the number of magnetic cells are related as m�N �

1� � N. Thus, ��m� describes a supersymmetric
quantum-Hall liquid at $ � 1=m in the thermodynamic
limit. The supercoherent state for ��m�, whose center
is located at ��a�-�;���-��, is given by ��m�

- �QN
i �a

�ui � b�vi � ,�+i�I��m�. In fact, this wave function
satisfies the supercoherent equation, ��a�-�La �

C�����-�L���
�m�
- � � I

2N�
�m�
- .

The supersphere contains an ordinary two-sphere as its
‘‘body.’’ The coordinates on this body sphere are denoted
fyag. These satisfy y2a � 1 and are related to fxag as ya �
�1� 1

2�C��xa. Physical interpretations are easily formu-
lated for phenomena on the body sphere, and some calcu-
lations are reduced to the ones on the body sphere [14]. For
instance, the supermagnetic flux integral on the super-
sphere is reduced to the ordinary magnetic flux integral
for the Dirac monopole on the body sphere. Thus, the body
sphere ‘‘inside’’ the supersphere has a Dirac monopole at
its center and becomes a fuzzy sphere in the LLL. Then, it
is conjectured that Haldane’s original quantum-Hall sys-
tems are realized on such a fuzzy body sphere. The super
Hopf spinor is rewritten �u;v;+�� �1� 1

4�C���5;$;5�1�

$�2�, where �5; $� � �
����������������������
�1� y3�=2

p
; y1�iy2�������������

2�1�y3�
p � is a Hopf

spinor on the body sphere [14]. By inserting this form
into ��m�, the supersymmetric extension of the Laughlin-
Haldane wave function can be expressed in terms of the
body coordinates fyag and soul coordinates f��g as

��m� �
YN
i

�
1�

m�N � 1�

4
�C�

�
i


Y
i<j

�
1�m

�5�1 � $�2�i�5�1 � $�2�j
5i$j � $i5j

�
�m�;

where �m� is the ordinary Laughlin-Haldane wave func-
tion on the body sphere: �m� �

Q
i<j�5i$j � $i5j�

m. The
second term on the right-hand side yields nontrivial con-
nections between the body sphere and the soul space.
Apparently, ��m� is a singlet with respect to SU�2� trans-
formations generated by fLag, because it is a subgroup of
OSp�1j2�. However, it is noted that, due to the second
term, ��m� does not possess the SU�2� rotational symmetry
of the body sphere, which is generated by f�5$��� 1

2�
�
a�

� @@5
@
@$�

tg.

Because, in ��m�, two particles �i; j� have a power
at least m, no two particles can become so close that we
have I �m< Jij. Therefore, just as in the Laughlin-
Haldane case [5], ��m� is the exact ground state of
the hard-core interaction Hamiltonian, �IH

int
m �I �P

i<j
P
I�m<J VJPJ�La�i�La�j� � C��L��i�L��j��, with

energy 0, where VJ > 0. This Hamiltonian is a direct
generalization of Haldan’s Hamiltonian, with the
OSp�1j2� Casimir operator replacing the SU�2� one.

Because of the noncommutative algebra on the fuzzy
supersphere, the super Hall currents Ia �

d
dt xa and
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I� � d
dt �� can be expressed as

Ia � �i�xa; V� � ��abcxbEc � i�
1

2
��aC�����E�;

I� � �i���; V�

� �i�
1

2
xa��a���E� � i�

1

2
����a���Ea;

where � � 2=I, the superelectric fields Ea and E� are
defined as Ea � �@aV and E� � �C��@�V, and we
have used the fact that the Hamiltonian is reduced to the
potential term V in the LLL. It can easily be seen that the
super Hall currents satisfy the equation EaIa �
C��E�I� � 0, which expresses the orthogonality of the
Hall currents and the electric fields in the supersymmetric
sense. When we pierce (eliminate) the supermagnetic flux
at some point on the supersphere adiabatically, superelec-
tric fields are induced and circle the supermagnetic flux, as
described by the super Faraday law. Because of the Hall
orthogonality discussed above, super Hall currents flow
radially from the point at which the supermagnetic flux is
pierced (eliminated). As a consequence, a charged deficit
(excess), which we call a quasihole (quasiparticle), is
generated at this point. The corresponding operators at
the point ��a�-�;���-�� are given by

Az�-� �
YN
i

 tiR
t-�quasihole�;

A�-� �
YN
i

-zR
@
@ i

�quasiparticle�:

The quasihole operator satisfies the commutation relation
��a�-�La � C�����-�L�; Az�-�� � N

2 A
z�-�. Thus,

when a quasihole (quasiparticle) is created, the angular
momentum in the direction of the point ��a;��� increases
(decreases) by 1

2N. The statistics of the quasiparticles are
bosonic, i.e., �Az�-�; Az�-0�� � �A�-�; A�-0�� � 0 and
�A�-�; Az�-�� � 1: For $ � 1=m, the number of particles
and the number of supermagnetic fluxes are related as
N � m�N � 1�, whose variation reads 8N � 1

m8N.
Because each quasiparticle corresponds to a supermagnetic
flux, this relation implies that the charge of a quasiparticle
is fractional, namely, e� � 1=m, as in the original case.
However, it is noted that in the present case the charge
deficit is made by both the bosonic current Ia and the
fermionic current I� on the supersphere.

On the body sphere, the supersymmetric quantum-Hall
liquid reduces to an ordinary quantum-Hall liquid and the
Haldane-Halperin hierarchy is realized. Because the be-
havior on the supersphere is mapped to that on the body
sphere, it is natural to conjecture that the supersymmetric
extension of the Haldane-Halperin hierarchy is realized on
the supersphere, where the superquasiparticles repeatedly
condense to form a hierarchy of supersymmetric quantum-
Hall liquids.

To summarize, we have constructed a low-dimensional
supersymmetric quantum-Hall system and investigated its
basic properties. Similar to the original quantum-Hall sys-
tems, this system raises many interesting questions, for
instance, those regarding edge excitations, anyonic objects,
effective field theory, and the relation of the present system
to integrable models. In a planar limit, this system reduces
to a supersymmetric harmonic oscillator system [15],
which is related to the Pauli Hamiltonian for a spin-1=2
particle with a gyromagnetic factor of 2 or the Jaynes-
Cummings model without interaction terms used in quan-
tum optics. There are many real systems which show
supersymmetric properties [16]. It would be worthwhile
to investigate the realization of the supersymmetric holon-
omy, such as the Wilczek-Zee nonabelian holonomy
(which generally appears in the presence of degenerate
energy levels) and possible relevance to the supersymmet-
ric quantum-Hall effects, in real systems. With regard to
high energy physics, one of the most important task is to
develop a higher-dimensional generalization based on
supersymmetric second and third Hopf maps. Once these
are constructed, we should proceed to the investigation of
their relation to D-brane systems and super Twistor
models.
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