6 research outputs found

    Function definitions in term rewriting and applicative programming

    Get PDF
    The frameworks of unconditional and conditional Term Rewriting and Applicative systems are explored with the objective of using them for defining functions. In particular, a new operational semantics, Tue-Reduction, is elaborated for conditional term rewriting systems. For each framework, the concept of evaluation of terms invoking defined functions is formalized. We then discuss how it may be ensured that a function definition in each of these frameworks is meaningful, by defining restrictions that may be imposed to guarantee termination, unambiguity, and completeness of definition. The three frameworks are then compared, studying when a definition may be translated from one formalism to another

    Testing for the ground (co-)reducibility property in term-rewriting systems

    Get PDF
    AbstractGiven a term-rewriting system R, a term t is ground-reducible by R if every ground instance tσ of it is R-reducible. A pair (t, s) of terms is ground-co-reducible by R if every ground instance (tσ, sσ] of it for which tσ and sσ are distinct is R-reducible. Ground (co-)reducibility has been proved to be the fundamental tool for mechanizing inductive proofs, together with the Knuth-Bendix completion procedure presented by Jouannaud and Kounalis (1986, 1989).Jouannaud and Kounalis (1986, 1989) also presented an algorithm for testing ground reducibility which is tractable in practical cases but restricted to left-linear term-rewriting systems. The solution of the ground (co-)reducibility problem, for the general case, turned out to be surprisingly complicated. Decidability of ground reducibility for arbitrary term-rewriting systems has been first proved by Plaisted (1985) and independently by Kapur (1987). However, the algorithms of Plaisted and Kapur amount to intractable computation, even in very simple cases.We present here a new algorithm for the general case which outperforms the algorithms of Plaisted and Kapur and even our previous algorithm in case of left-linear term-rewriting systems. We then show how to adapt it to check for ground co-reducibility

    Strategic Issues, Problems and Challenges in Inductive Theorem Proving

    Get PDF
    Abstract(Automated) Inductive Theorem Proving (ITP) is a challenging field in automated reasoning and theorem proving. Typically, (Automated) Theorem Proving (TP) refers to methods, techniques and tools for automatically proving general (most often first-order) theorems. Nowadays, the field of TP has reached a certain degree of maturity and powerful TP systems are widely available and used. The situation with ITP is strikingly different, in the sense that proving inductive theorems in an essentially automatic way still is a very challenging task, even for the most advanced existing ITP systems. Both in general TP and in ITP, strategies for guiding the proof search process are of fundamental importance, in automated as well as in interactive or mixed settings. In the paper we will analyze and discuss the most important strategic and proof search issues in ITP, compare ITP with TP, and argue why ITP is in a sense much more challenging. More generally, we will systematically isolate, investigate and classify the main problems and challenges in ITP w.r.t. automation, on different levels and from different points of views. Finally, based on this analysis we will present some theses about the state of the art in the field, possible criteria for what could be considered as substantial progress, and promising lines of research for the future, towards (more) automated ITP

    Reducibility of operation symbols in term rewriting systems and its application to behavioral specifications

    Get PDF
    金沢大学理工研究域電子情報学系In this paper, we propose the notion of reducibility of symbols in term rewriting systems (TRSs). For a given algebraic specification, operation symbols can be classified on the basis of their denotations: the operation symbols for functions and those for constructors. In a model, each term constructed by using only constructors should denote an element, and functions are defined on sets formed by these elements. A term rewriting system provides operational semantics to an algebraic specification. Given a TRS, a term is called reducible if some rewrite rule can be applied to it. An irreducible term can be regarded as an answer in a sense. In this paper, we define the reducibility of operation symbols as follows: an operation symbol is reducible if any term containing the operation symbol is reducible. Non-trivial properties of context-sensitive rewriting, which is a simple restriction of rewriting, can be obtained by restricting the terms on the basis of variable occurrences, its sort, etc. We confirm the usefulness of the reducibility of operation symbols by applying them to behavioral specifications for proving the behavioral coherence property. © 2010 Elsevier Ltd. All rights reserved
    corecore