
Reducibility of operation symbols in term
rewriting systems and its application to
behavioral specifications

著者 Nakamura Masaki, Ogata Kazuhiro, Futatsugi
Kokichi

journal or
publication title

Journal of Symbolic Computation

volume 45
number 5
page range 551-573
year 2010-01-01
URL http://hdl.handle.net/2297/22582

doi: 10.1016/j.jsc.2010.01.008

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kanazawa University Repository for Academic Resources

https://core.ac.uk/display/196708665?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Reducibility of operation symbols in term

rewriting systems and its application to

behavioral specifications

Masaki Nakamura

Kanazawa University, Kakuma, Kanazawa, 920-1192, Japan

Kazuhiro Ogata and Kokichi Futatsugi

Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292,
Japan

Abstract

In this paper, we propose the notion of reducibility of symbols in term rewriting systems (TRSs).
For a given algebraic specification, operation symbols can be classified on the basis of their
denotations: the operation symbols for functions and those for constructors. In a model, each
term constructed by using only constructors should denote an element, and functions are defined
on sets formed by these elements. A term rewriting system provides operational semantics to
an algebraic specification. Given a TRS, a term is called reducible if some rewrite rule can be
applied to it. An irreducible term can be regarded as an answer in a sense. In this paper, we
define the reducibility of operation symbols as follows: an operation symbol is reducible if any
term containing the operation symbol is reducible. Non trivial properties on context-sensitive
rewriting, which is a simple restriction of rewriting, can be obtained by restricting the terms
on the basis of variable occurrences, its sort, etc. We confirm the usefulness of the reducibility
of operation symbols by applying them to behavioral specifications for proving the behavioral
coherence property.

Key words: Term rewriting system, Algebraic specification, Behavioral specification,
Behavioral coherence, Observational transition system.

1. Introduction

A term rewriting system (TRS) is a set of rewrite rules. A term is constructed by using
operation symbols and variables. For a given TRS R, a term is said to be an R-normal

⋆ A preliminary version of a part of this article has appeared in (Nakamura et al., 2005) (in Japanese).

Preprint submitted to Elsevier 10 October 2009

form if no rewrite rule applies to the term. A non-(R-)normal form is said to be reducible
(w.r.t. R). In a model, operation symbols are partitioned into constructor and defined
symbols. For example, in a TRS for natural numbers, 0 and s are operation symbols
for constructing natural numbers (constructor symbols) and + and * are those for
functions on natural numbers (defined symbols). Defined symbols are expected to be
defined for all terms constructed by using only constructor symbols. In other words,
any defined symbol is not expected to be included in any normal form. In this paper,
we propose the notion of reducibility of operation symbols. An operation symbol f is
reducible if any term containing f is reducible, i.e., is not a normal form. Without any
restriction, the reducibility of an operation symbol f is not useful since in such a case, the
following properties become equivalent: (1) f is reducible, and (2) there exists a rewrite
rule f(x⃗) → r in the TRS such that xi is a variable that is distinct from any other xj

1 .
Each term containing f can be rewritten by f(x⃗) → r (1 ⇐ 2). If f is reducible, then
f(y⃗) should be reducible, and only the rewrite rule whose left-hand side is f(x⃗) can be
applied to such a term (1 ⇒ 2).

By restricting the variable occurrences in input terms, sorts of input terms, etc, we
propose different kinds of reducible operation symbols and provide some nontrivial prop-
erties pertaining to restrictions of rewriting to obtain efficient reduction. Our results can
be applied to algebraic specification languages such as CafeOBJ and Maude 2 . Consider
the following CafeOBJ specification ZERO:
mod! ZERO{
pr(NAT+)
op zero : Nat -> Bool
vars M N : Nat
eq zero(0) = true . eq zero(s N) = false .
eq zero(M + N) = zero(M) and-also zero(N) .

}
where the function zero is defined for natural numbers. The function zero checks whether
an input natural number is zero or not. More explanations of this specification can be
found in Example 2 in Section 2.2. Let t = zero(t0 + t1 + t2) where t0, t1, and t2 are
very large natural numbers such as s s · · · 0. In the innermost strategy, the argument
subterm t0 + t1 + t2 is first reduced to s s s · · · 0 by many rewrite steps, and then
zero(s s s · · · 0) is rewritten to false by using the equation zero(s N) = false.
However, when we assume that only Boolean terms, i.e., zero(t), are to be reduced, we
can restrict the reduction of the argument of zero for obtaining a normal form. CafeOBJ
supports the E-strategy (Futatsugi et al., 1985), in which we can flexibly restrict the
rewriting of arguments of operation symbols. When restricting the argument of zero,
the term zero(t0 + t1 + t2) is first reduced to zero(t0) and-also zero(t1) and-also
zero(t2) by the last equation in ZERO. Next, the term is reduced to false and-also
false and-also false by the equation zero(s N) = false, and then it is reduced to
false. without the evaluation of t0 + t1 + t2.

It is well known that context-sensitive rewriting (CSR) (Lucas, 1998) is a useful
method to formalize a restriction of rewriting. The E-strategy can be regarded as an

1 a⃗ is an abbreviation of a1, . . . , an for some n.
2 CafeOBJ official home page: http://www.ldl.jaist.ac.jp/cafeobj/
The Maude system: http://maude.cs.uiuc.edu/

2

implementation of CSR. In CSR, the rewriting of some arguments is restricted by a re-
placement map µ. In general, owing to the restriction, CSR provides a more efficient
and terminating rewrite relation than the ordinary rewrite relation. However, a reducible
term, i.e., a term containing a redex, may not be rewritten by CSR; that is, CSR may
return a reducible term as a normal form of CSR called the µ-normal form. One of the
motivation to conduct this study was to obtain sufficient conditions under which each
µ-normal form is also an R-normal form. We term the property as µ-correctness. In other
words, when CSR satisfies µ-correctness, the CSR does not return a reducible term as
its normal form. The existing results for µ-normal forms deal with general terms (with
no restrictions as described above), restrict a given TRS to a left-linear TRS, and guar-
antee that all µ-normal forms are head-normal forms, which are considered to be weaker
conditions than R-normal forms. When applying these results to algebraic specifications,
the algebraic specifications need to be left-linear TRSs and an output of the E-strategy
reduction may not be in the R-normal form. We provide a solution to this problem. Our
results restrict the input terms but do not restrict a given TRS and guarantee that any
µ-normal form is an R-normal form. When reducing a term, we can select a suitable
replacement map µ by analyzing the input term according to our results of µ-correctness
and reduce the term under the replacement map µ. There are no restrictions on the input
TRSs, and it is guaranteed that each output of the E-strategy reduction is an R-normal
form.

The main contributions of this study are as follows:
Context-sensitive rewriting and µ-correctness: We propose the notion of µ-ground
reducibility of operation symbols, which is defined as follows: any term containing µ-
ground reducible operation symbols is reducible if an input term to be reduced satisfies
the restriction that no variable appears in the path of particular arguments of particular
operation symbols. We obtain a sufficient condition of µ-correctness under the above
restriction of input terms. We also propose the notion of sort reducibility of operation
symbols. For a set of sorts S′, any term containing S′-sort reducible operation symbols is
reducible if the sort of an input term is that of S′. We also obtain a sufficient condition
of µ-correctness under the above restriction of input terms. Moreover, we give the notion
of µ-ground S′-sort reducibility of operation symbols and obtain a sufficient condition of
µ-correctness.
Sufficient completeness: We obtain a novel sufficient condition under which a given
TRS is sufficiently complete by applying the notion of reducibility of operation symbols.
Sufficient completeness is one of the most important properties of algebraic specifications
(Guttag, 1975; Guttag and Horning, 1978). Let C be a set of constructor symbols. A
TRS is sufficiently complete if each ground term can be reduced to a term constructed
by using only constructor symbols. Roughly speaking, sufficient completeness guarantees
that defined symbols are completely defined. Although sufficient completeness is generally
undecidable, some restricted cases have been proposed in which sufficient completeness
is decidable. The notion of ground reducibility is considered to be useful to obtain the
decidability results (Jouannaud and Kounalis, 1986; Kapur et al., 1987). Our reducibility
of operation symbols provides a generalization of ground reducibility. By combining the
termination results of CSR, we obtain a new sufficient condition under which a given
TRS is sufficiently complete.
Behavioral specification and behavioral coherence: As another application of
the reducibility of operation symbols, we obtain a sufficient condition for behavioral

3

coherence in behavioral specifications. Behavioral coherence is one of the most important
properties of behavioral specifications (Diaconescu and Futatsugi, 1998, 2000). We obtain
the sufficient condition by analyzing sorts that are declared as tight and protected and
by restricting the form of terms in the arguments belonging to the sorts 3 . Our result
can be applied to more specifications than the existing sufficient condition for behavioral
coherence (Bidoit and Hennicker, 1999) implemented in CafeOBJ.

In Section 2, we introduce the syntax and semantics of the algebraic specification lan-
guage CafeOBJ and fundamentals of TRSs. In Section 3, we propose a method to achieve
the reducibility of operation symbols and describe some properties of CSR. In Section
4, we confirm that the reducibility of operation symbols is useful to prove behavioral
coherence in behavioral specifications. In Section 5, we discuss some related studies and
conclude the paper Section 6.

2. Preliminaries

We assume the reader is familiar with algebraic specifications and term rewriting
systems (Diaconescu and Futatsugi, 1998; Ohlebusch, 2002; Terese, 2003).

2.1. Order-sorted Algebraic specification

The set of all natural numbers is denoted by N . The set of all finite sequences over a set
A is denoted by A∗. We may write an element of A∗ like a1a2a3 or a1.a2.a3 where ai ∈ A
(i = 0, 1, 2). For a set S, an S-sorted set A is a family {As | s ∈ S} of sets sorted by S. For
S-sorted sets A and B, an S-sorted map m : A → B is a family {ms : As → Bs | s ∈ S}
of maps sorted by S. We may omit the subscript s of As if no confusion arises, e.g. a ∈ A
instead of a ∈ As. A triple (S,≤,Σ) of a set S, an order ≤ on S and S∗ × S-sorted set
Σ is called a signature. An element of S is called a sort and an element of Σw,s is called
an operation symbol. For an operation symbol f ∈ Σw,s, the sequence w ∈ S∗ is called
its arity and the sort s ∈ S is called its co-arity. If n = 0, we write f ∈ Σs and call f a
constant. We may abbreviate (S,≤, Σ) to Σ.

Let V be an S-sorted set which is distinct from Σ, i.e., Σs ∩ Vs′ = ∅ for each s, s′ ∈ S.
An S-sorted set T (Σ, V) (abbr. T) of terms is defined as the smallest set satisfying the
following: Vs ⊆ Ts, Ts′ ⊆ Ts if s′ ≤ s, and f (⃗t) ∈ Ts if f ∈ Σs⃗,s and ti ∈ Tsi for each
si. If t belongs to a sort s, i.e., t ∈ Ts, we call t an s-sorted term. For a subset S′ ⊆ S
of sorts, if there exists s ∈ S′ such that t is a s-sorted term, we call t an S′-sorted
term. The set of all S′-sorted terms is denoted by TS′ . Hereafter, we often use s as an
arbitrary sort, w as a sequence of sorts, f, g, h as operation symbols, x, y, z as variables,
and t, u, l, r as terms. It is similar for a variety of them, like s′, si, s⃗. A position of a term
is indicated by a sequence of positive integers. N+ denotes N \{0}. For a term t ∈ T , the
set Pos(t) ⊆ N ∗

+ of positions of t is defined as the smallest set satisfying the following:
Pos(t) = {ε} if t ∈ V and Pos(t) = {ε} ∪ {i.p ∈ N ∗

+ | 1 ≤ i ≤ ar(f), p ∈ Pos(ti)} if
t = f (⃗t) and f ∈ Σs⃗,s, where ε is the empty sequence, and ar(f) is the number of the
arguments of f , i.e., ar(f) = n if the arity of f is s1s2 · · · sn. When p = q.q′ for some q′,
we write p ≥ q. When p ≥ q and p ̸= q, we write p > q. For example, 1.2.3.4 > 1.2. A

3 We say that a sort is tight and protected if it is declared in a tight specification and the specification
is imported with the protect mode. Roughly speaking, a tight specification denotes the initial model,
and a protected import preserves the model of sorts declared in the imported specification.

4

symbol of a term t at position p is denoted by t(p), defined as x(ε) = x, (f (⃗t))(ε) = f
and (f(t1, . . . , ti, . . . , tn))(i.p) = ti(p). The position ε is called the root position. The set
of all variables included in t is denoted by V (t). We say that t contains an operation
symbol f when t(p) = f for some p ∈ Pos(t). The set of all terms which contain f ∈ Σ
is denoted by Tf = {t ∈ T | ∃p ∈ Pos(t).(t(p) = f)}. A subterm t|p of t at position
p is defined as t|ε = t and f (⃗t)|i.p = ti|p. The set of all subterms of t is denoted by
Sub(t) = {u ∈ T | p ∈ Pos(t), u = t|p}. The result of replacing subterm t|p of t with
u, denoted by t[u]p, is defined as t[u]ε = u and (f (⃗t))[u]i.p = f(. . . , ti−1, ti[u]p, ti+1, . . .).
The replacement is naturally generalized as t[s⃗]p⃗ when the positions p⃗ are disjoint, that
is, pi ̸≥ pj if i ̸= j. We may omit the subscript p or p⃗ if no confusion arises. A term C[z]p
with a marked variable z occurring only once in C[z]p is called a context. We often write
C or C[z] instead of C[z]p. Hereafter, we use the variable z only for the marked variable
of a context. An S-sorted map θ : V → T is called a substitution. The result of replacing
all variables x in t with θ(x) is denoted by tθ. When t = uθ for some θ, we call t an
instance of u. A term constructed by a constant symbol only is called a constant term or
just a constant and denoted by c instead of c(). A variable-free term is called a ground
term. The set T (Σ, ∅) of ground terms is abbreviated to TΣ.

An equation (∀X)l = r consists of an S-sorted set X of variables and terms l, r ∈
T (Σ, X)s belonging to a same sort s. When we omit the variable part and write l = r, it
is an abbreviation of (∀X)l = r where X = V (l)∪V (r). An algebraic specification consists
of a signature (S,≤,Σ) and a set E of equations constructed from Σ. For a specification
SP , the signature and the set of the equations are denoted by (SSP ,≤SP , ΣSP) and
ESP respectively. The congruence relation =E derived from equations in E is defined
as the smallest equivalence relation (reflexive, symmetric and transitive relation) on T
satisfying the substitutive law: lθ = rθ for each l = r ∈ E and θ, and the congruence
law: t0 = t′0, . . . , tn = t′n implies f (⃗t) = f(t⃗′) for each t⃗, t⃗′ ∈ T and f ∈ Σ. We may omit
the subscript E of =E if no confusion arises.

2.2. CafeOBJ specification

CafeOBJ is an algebraic specification language (Diaconescu and Futatsugi, 1998). In
this paper, we deal with a part of CafeOBJ order-sorted equational specifications (in
this section and Section 3) and behavioral specifications (in Section 4), do not deal with
conditional equations, rewriting logic specifications, and so on. CafeOBJ specifications
are built from modules. CafeOBJ modules are classified into those with tight denotation
(mod! MOD {· · ·}) and those with loose denotation (mod* MOD {· · ·}). Each module
consists of an import part, a signature part and an equation part. We regard a module
as a specification which consists of all sorts, operation symbols and equations declared
in the module and all modules imported by the module.

A basic module is a module with no imports.

Example 1. The following is an example of CafeOBJ basic module:
mod! NAT+{
[Zero NzNat < Nat]
op 0 : -> Zero
op s_ : Nat -> NzNat
op _+_ : Nat Nat -> Nat
vars M N : Nat

5

eq 0 + N = N .
eq (s M) + N = s(M + N) .

}
The name of the module is NAT+. Sorts are declared between the square brackets [].
SNAT+ = {Zero, NzNat, Nat}. The order ≤NAT+ on SNAT+ is defined as the reflexive and
transitive closure of the declared relation. Since Zero < Nat and NzNat < Nat are de-
clared, ≤NAT+ is {(Zero, Zero), (Zero, Nat), (NzNat, NzNat), (NzNat, Nat), (Nat, Nat)}. Op-
eration symbols are declared with the keyword op. The signature ΣNAT+ is defined as
(ΣNAT+)Zero = {0}, (ΣNAT+)Nat,NzNat = {s } and (ΣNAT+)Nat,Nat,Nat = { + }. Note that
the underlines in operation symbols indicate the positions of the arguments in their
term expressions. For example, we can use the expression (t + t′) + t′′ instead of the
expression + (+ (t, t′), t′′). Equations are declared with eq where the variables used
in an equation are declared before the declaration of the equation with var or vars.
ENAT+ = {(∀{N})0 + N = N, (∀{M, N})(s M) + N = s(M + N)}. The equation s s 0 +
s 0 = s 0 + s s 0 can be derived from ENAT+ since s s 0 + s 0 = s (s 0 + s 0) =
s s (0 + s 0) = s s s 0 = s (0 + s s 0) = s 0 + s s 0. Each step can be derived
by the substitutive law, the congruence law and the symmetric law.

A module can import other modules. There are three import modes: protecting, ex-
tending and using imports, denoted by pr, ex and us. Roughly speaking, a protecting
import preserves the model of the imported module, an extending import can add an
element to the model, and a using import can compress the model. For example, when
declared ex(NAT+), the sort Nat can be interpreted into the set of integers, etc. When
declared us(NAT+), the sort Nat can be interpreted into the quotient set {[0], [1], [2]} of
natural numbers modulo 3, where 1, 4, 7 . . . are compressed into [1].

There is a special built-in module BOOL in CafeOBJ. BOOL is a module with tight
denotation whose elements are the sort Bool, the constants true and false, the operation
symbols not , and , or , . . . , and the equations defining those operation symbols, for
example, eq not false = true. The reason why BOOL is special is because all CafeOBJ
modules implicitly import BOOL with the protect mode 4 .

Example 2. The following is an example of CafeOBJ module with imports:
mod! ZERO{
pr(NAT+)
op zero : Nat -> Bool
vars M N : Nat
eq zero(0) = true .
eq zero(s N) = false .
eq zero(M + N) = zero(M) and-also zero(N) .

}
ZERO imports NAT+ with the protect mode. Each element in NAT+ is also an element
of the specification ZERO, for example, (ΣNAT+)w,s ⊆ (ΣZERO)w,s. The operation symbol
and-also denotes the logical conjunction 5 .

4 Thus, strictly speaking, there is no basic module. We regard a module as a basic module if any element
of BOOL is not used in the module (and in its execution).
5 Although the denotations of and and and-also are same, they behave differently when executing
specifications. When evaluating t0 and-also t1, the second argument t1 may not be evaluated (lazy
evaluation) unlike the case of evaluating t0 and t1 where both arguments are evaluated eagerly.

6

2.3. Semantics of CafeOBJ specification

A model of an algebraic specification is an algebra. For a signature (S,≤, Σ), a (S,≤
,Σ)-algebra M consists of (1) carrier sets Ms for all s ∈ S which satisfy that s ≤ s′

implies Ms ⊆ Ms′ and (2) functions Mf : Mw → Ms for all operation symbols f ∈ Σw,s,
where Ms1s2···sn stands for Ms1 ×Ms2 ×· · ·×Msn . We use M as an arbitrary Σ-algebra.
For a Σ-algebra M and an S-sorted set V of variables, an S-sorted map a : V → M is
called an assignment, and is naturally extended to an S-sorted map a : T (Σ, V) → M

with a(f(t1, . . . , tn)) = Mf (a(t1), . . . , a(tn)). A Σ-algebra M satisfies an equation t = t′

if a(t) = a(t′) for any assignment a : V → M . A term t ∈ T (Σ, V)s is interpreted into a
function Mt : Ms⃗ → Ms where V (t) = {x1, x2, . . . , xn} and xi ∈ Vsi for each xi. Notice
that a ground term t ∈ Ts is interpreted into an element Mt ∈ Ms. For a specification
SP , an SP -algebra is defined as a ΣSP -algebra M satisfying all equations in ESP . For
Σ-algebras M and M ′, a Σ-morphism h : M → M ′ is an S-sorted map from the carrier
sets of M to those of M ′ which satisfies that hs(Mf (⃗a)) = M ′

f (hs1(a1), . . . , hsn(an)) for
each f ∈ Σs⃗,s and ai ∈ Msi (i = 1, . . . , n). An initial (SP -)algebra is an SP -algebra I

satisfying that for any SP -algebra M there exists a unique Σ-morphism h : I → M . All
initial algebras I satisfy the following conditions: For any e ∈ Is, there exists t ∈ (TΣ)s

such that It = e (no junk). For any t, t′ ∈ TΣ, if t ̸=E t′ then It ̸= It′ (no confusion). The
term algebra T is an initial algebra, which defined as follows: Let (Σ, E) a specification.
Ts = (TΣ)s/=E

and Tf (
−→
[t]) = [f (⃗t)] 6 . The notation for the denotation of a CafeOBJ basic

module MOD is [MOD], defined as follows: [MOD] is the set of all MOD-algebras if
MOD is loose (mod*) and [MOD] is the set of all initial MOD-algebras if MOD is tight
(mod!).

Example 3. Let N , N ′, B, Z be ΣNAT+-algebras defined as follows:
• NZero = {0}, NNzNat = N \{0}, NNat = N , N0 = 0, Ns(x) = x+1, and N+(x, y) = x+y.
• N ′ is same with N except N ′

+(x, y) = x × y.
• Z is same with N except ZNat is the set of all integers.
• BZero = {false}, BNzNat = {true}, BNat = {true, false}, B0 = false, Bs(x) = true,

and B+(x, y) = x ∨ y.
All algebras except N ′ are NAT+-algebras, i.e., they satisfy all equations in ENAT+. The Σ-
algebra N satisfies (s M) + N = s(M + N) as follows: a((s M) + N) = N+(Ns(a(M)), a(N))
= (a(M) + 1) + a(N) = (a(M) + a(N)) + 1 = Ns(N+(a(M), a(N))) = a(s(M + N)) for any
assignment a : V → N . The Σ-algebra B satisfies 0 + N = N as follows: a′(0 + N) =
B+(B0, a

′(N)) = false ∨ a′(N) = a′(N) for any a′ : V → B. The Σ-algebra N ′ does not
satisfy 0 + N = N for the assignment a′′ : V → N ′ such that a′′(N) = 1: a′′(0 + N)
= N ′

+(N ′
0, a

′′(N)) = 0 × 1 = 0 ̸= a′′(N). Only N is an initial algebra. For any n ∈ N ,
there exists sn(0) ∈ TΣ (no junk). If t ̸= t′ for given t, t′ ∈ TΣ, they should satisfy that
t = sn(0), t′ = sm(0) and n ̸= m (no confusion). Z has a junk since there is no term
t such that Zt = −1. B confuses s s 0 and s 0 since Bs s 0 = true = Bs 0. Thus,
N ∈ [NAT+] and Z,B ̸∈ [NAT+].

6 TΣ/= is the quotient set of TΣ by =, [t] denotes the equivalence class including t. Since [t] is the
equivalence class, the function Tf is well-defined.

7

A CafeOBJ module MOD with imports denotes MOD-algebras which satisfy the im-
port modes. Denotation for CafeOBJ modules with imports can be found in (Diaconescu
and Futatsugi, 1998). We only introduce the properties related to our study. SP ′ is a
sub specification of SP if SSP ′ ⊆ SSP , ≤SP ′⊆≤SP , ΣSP ′ ⊆ ΣSP and ESP ′ ⊆ ESP . For
an SP -algebra M , the restricted algebra that ignores sorts and operation symbols not
included in a sub specification SP ′ is denoted by M ↑SP ′ . For a module MOD with
imports, [MOD] satisfies the following import conditions: if MOD imports MOD′ with
the protect mode, i.e., pr(MOD′), then for any M ∈ [MOD] and s ∈ SMOD′ , there ex-
ists M ′ ∈ [MOD′] such that M ′ = M ↑MOD′ . If ex(MOD′) then for any M ∈ [MOD]
and s ∈ SMOD′ , there exists a Σ-morphism h : M ′ → M ↑MOD′ such that h is inclusive,
i.e., M ′ is a sub algebra of M ↑MOD′ . If us(MOD′) then for any M ∈ [MOD] and
s ∈ SMOD′ , there exists an arbitrary Σ-morphism h : M ′ → M ↑MOD′ .

Example 4. Let N and B be ΣNAT+-algebra and ΣBOOL-algebra defined as follows:
• NNat = N , N0 = 0, Ns(x) = x + 1, and N+(x, y) = x + y.
• BBool = {true, false}, Bfalse = false, Btrue = true, Band-also(x, y) = x ∧ y,
Then, N ∈ [NAT+] and B ∈ [BOOL]. The following ΣZERO-algebra M is included in [ZERO]:
• Ms = Ns for all s ∈ SNAT+,
• Ms = Bs for all s ∈ SBOOL,
• Mf = Nf for all f ∈ ΣNAT+,
• Mf = Bf for all f ∈ ΣBOOL and
• if x = 0 then Mzero(x) = true, otherwise Mzero(x) = false.

2.4. Term rewriting systems

A term rewriting system (TRS) gives us a powerful method for equational reasoning.
In TRS, bidirectional equations l = r are regarded as directional rewrite rules l → r. A
term is reduced by applying the rewrite rules repeatedly. An equation t =E u is proved
by checking whether the terms t′ and u′ reduced from both sides are identical or not. A
TRS (Σ, R) consists of a signature and a set of rewrite rules. R corresponds to the set E
of equations. A rewrite rule l → r is a pair of terms (l, r) which satisfy that l ̸∈ V and
V (r) ⊆ V (l). In this paper, we regard a specification SP as a TRS where all equations in
SP are regarded as left-to-right rewrite rules. We assume that each specification satisfies
the above TRS conditions. We may write R as a TRS instead of (Σ, R) if Σ is the set of
all operation symbols in R. For a TRS R and a position p, the rewrite relations →p and
→R are defined as follows:

t →p u
def⇐⇒ ∃l → r ∈ R, θ : V → T. (t|p = lθ, u = t[rθ]p) ,

t →R u
def⇐⇒ ∃p ∈ Pos(t). (t →p u) .

For a binary relation →, the reflexive and transitive closure is denoted by →∗. If
there is no u such that t → u, we call t a →-normal form. We may omit “→-” if no
confusion arises. We say a term t is reduced to u by → if there exists n ∈ N such that
t = t0, u = tn and ti → ti+1 for any i ∈ {0..n − 1} 7 . A →R-normal form is called an

7 We denote the set {m, m+1, m+2, . . . , n−2, n− 1, n} of sequential numbers from m to n by {m..n}.
If m ≥ n, {m..n} = ∅.

8

R-normal form. The set of all R-normal forms is denoted by NFR. An instance lθ of the
left-hand side of a rewrite rule l → r is called a redex. The followings are equivalent: (1)
t has a redex, (2) t is reducible and (3) t ̸∈ NFR. The set of all redexes is denoted by
Red(R) = {lθ ∈ T | l → r ∈ R, θ ∈ V → T}.

Example 5. Consider the TRS NAT+. By the first rewrite rule with the substitution
θ(N) = s(0), the term 0 + (s 0) is a redex, and thus t = (s s 0) + ((s 0) + 0) →2

(s s 0) + s 0 holds. The term t can be reduced to the normal form s s s 0 as follows:
t →2 (s s 0) + s (0 + 0) →2.1 (s s 0) + s 0 →ε s ((s 0) + s 0) →1 s s (0 +
s 0) →1.1 s s s 0. This reduction can be regarded as a proof of 2 + (1 + 0) = 3.

The CafeOBJ system supports a rewriting engine based on TRSs. The following is the
experimental result of applying the CafeOBJ reduction command to the term (s s 0)
+ ((s 0) + 0):
-- reduce in NAT+ : ((s (s 0)) + ((s 0) + 0)):Nat
(s (s (s 0))):NzNat
As we expected in Example 5, the CafeOBJ system reduces it into s s s 0.

3. Reducible operation symbols

The notion of reducibility of operation symbols is defined as follows: an operation
symbol f is reducible if any term t which contains f , i.e., t ∈ Tf , is reducible. As we
discussed in Section 1, the following statements are equivalent: (1) f is reducible and
(2) there exists f(x⃗) → r ∈ R. The arguments of reducible operation symbols are not
needed to be rewritten. Let R = {id(x) → x}. Then, id is reducible. The term id(id(0))
can be reduced to 0 by the innermost strategy (Ohlebusch, 2002; Terese, 2003) like
id(id(0)) →R id(0) →R 0, where the underlined subterms are rewritten redexes. Even if
we restrict the rewriting of arguments of id, we can also obtain the normal form 0 as
follows: id(id(0)) →R id(0) →R 0. Such a restriction of arguments can be formalized by
context-sensitive rewriting (Lucas, 1998).

3.1. Context-sensitive rewriting

Context-sensitive rewriting (CSR) is a restriction of rewriting formalized by a re-
placement map on operation symbols (Lucas, 1998). A replacement map is a map µ :
Σ → P(N+) which satisfies that ∀f ∈ Σ. (µ(f) ⊆ {1..ar(f)}). Intuitively, in CSR,
an argument ti of f (⃗t) can be rewritten only if i ∈ µ(f). We say µ(f) is trivial if
µ(f) = {1..ar(f)}. The set Posµ(t) of replacement positions of a term t is recursively
defined as follows: Posµ(t) = {ε} if t ∈ V and Posµ(t) = {ε} ∪ {i.p ∈ N ∗

+ | i ∈
µ(f), p ∈ Posµ(ti)} if t = f (⃗t). The CSR relation (or µ-rewrite relation) →µ is defined

as follows: t →µ u
def⇐⇒ ∃p ∈ Posµ(t), t →p u. We call a →µ-normal form a µ-normal

form. The set of all µ-normal forms is denoted by NFµ. Trivially, Posµ(t) ⊆ Pos(t)
and any R-normal form is a µ-normal form, i.e., NFR ⊆ NFµ. Hereafter, when we
define a replacement map for a subset {f1, f2, . . . , fn} ⊆ Σ of operation symbols like
µ(f1) = L1, µ(f2) = L2, . . . , µ(fn) = Ln, we implicitly assume that µ(f) is trivial for the
other operation symbols, i.e., µ(f) = {1..ar(f)} for each f ∈ Σ \ {f1, f2, . . . , fn}.

9

Example 6. Consider NAT+ again. Let µ be a replacement map such that µ(+) = {1}.
Then, Posµ((s 0) + (0 + 0)) = {ε, 1, 1.1}. Thus, (s 0) + (0 + 0) →µ s (0 + (0 +
0)) but (s 0) + (0 + 0) ̸→µ (s 0) + 0.

The CafeOBJ reduction command reduces terms according to the E-strategy (Fu-
tatsugi et al., 1985) which supports a restriction of rewriting. For each operation sym-
bol f , we can give a local strategy like strat: (3 1 0), which means that for a term
f(t1, t2, t3), the third t3 is reduced first, the first t1 is reduced next, and then rewrite
rules are tried to be applied to the root position. The second argument t2 is not to be
reduced while under f . Thus, if we give a local strategy of f as strat: (i1 i2 · · · in
0), then the reduction command reduces terms according to the µ-rewrite relation →µ

defined as µ(f) = {i1, i2, . . . , in}. The following experimental result shows the trace of
applying the CafeOBJ reduction command to the term (s s 0) + ((s 0) + 0) with
the local strategy (1 0) for + :
-- reduce in NAT+ : ((s (s 0)) + ((s 0) + 0)):Nat
[1]: ((s (s 0)) + ((s 0) + 0)) ---> (s ((s 0) + ((s 0) + 0)))
[2]: (s ((s 0) + ((s 0) + 0))) ---> (s (s (0 + ((s 0) + 0))))
[3]: (s (s (0 + ((s 0) + 0)))) ---> (s (s ((s 0) + 0)))
[4]: (s (s ((s 0) + 0))) ---> (s (s (s (0 + 0))))
[5]: (s (s (s (0 + 0)))) ---> (s (s (s 0)))
(s (s (s 0))):NzNat
The subterm (s 0) + 0 of the input term is not rewritten in [1], [2] and [3] since
it is under the second argument of +. In [4] and [5], the subterm is reduced to s 0
since it is under s. Thanks to the restriction, a µ-normal form may not be an R-normal
form, i.e., NFR ̸= NFµ in general. For example, the reducible term (0 + 0) + 0 is a
µ-normal form when µ(+) = ∅. Besides the termination and confluence properties, the
properties with respect to the µ-normal forms are important in CSR. In this paper, we
call a replacement map correct if NFµ = NFR, and give sufficient conditions for several
kinds of correctness. The correctness is useful when the µ-rewrite relation is terminating
since it guarantees the existence of a normal form for each term. See Section 5.2 for more
discussion.

3.2. Reducible operation symbols

It is trivial that µ is correct when µ(f) is trivial for each f ∈ Σ. One of our purposes
is to give sufficient conditions under which µ is correct even if µ(f) is not trivial for some
f ∈ Σ. The following properties hold trivially.

Proposition 7. Let µ be a replacement map. If for each operation symbol f ∈ Σ we have
that f is reducible or µ(f) is trivial, then no µ-normal form contains reducible operation
symbols.

Proof. Assume that t ∈ NFµ contains a reducible operation symbol, and the position
p is the smallest position such that the operation symbol t(p) is reducible, i.e., t(q) is
not reducible for each q < p. Let f = t(p). As we discussed in Section 1, there exists
f(x⃗) → r ∈ R, and t|p is a redex. Since µ(g) is trivial for non-reducible operation symbols
g, we have that p ∈ Posµ(t). It contradicts t ∈ NFµ. 2

10

If µ(f) is trivial for all operation symbols in a µ-normal form t, the term t is also an
R-normal form since all position p ∈ Pos(t) can be replaced, i.e., p ∈ Posµ(t). Therefore,
if f is reducible or µ(f) is trivial for each operation symbol f ∈ Σ, µ is correct.

Example 8. A TRS is called a recursive program scheme (RPS) if each left-hand sides
forms f(x⃗). From the above discussion, every replacement map µ can be correct for a
given RPS R.

The reducibility of operation symbols for general terms is not so useful since it is
equivalent to the existence of f(x⃗) → r ∈ R. In the following sections, by restricting
the form of terms to be reduced, we give more useful definitions of reducible operation
symbols.

3.3. Ground reducible operation symbols

A term t is ground reducible if any ground instance of t is reducible (Jouannaud and
Kounalis, 1986). Reducible terms are trivially ground reducible. For NAT+ in Example 1
and variables x, y, the term x + y is not reducible but is ground reducible. Let the notion
of ground reducibility of operation symbols define as follows: f is ground reducible if
any term t ∈ Tf is ground reducible, that is, any ground term t ∈ Tf ∩ TΣ is reducible.
Then, + is ground reducible. We can relax the restriction of ground terms. Consider a
substitution which makes x + y is reducible again. In order to obtain a reducible term,
it is enough to instantiate a variable x by a ground term. Variable y does not need
any instantiation. In the other word, the term t + t′ is reducible if t is a ground term.
Moreover, t is not needed to be ground. For example, t + t′ is reducible even if t = s 0
+ x′ where x′ ∈ V . We formalize a notion of µ-ground terms.

Definition 9. Let µ be a replacement map. The S-sorted set GTµ of µ-ground terms is
the smallest set satisfying the following conditions: a constant is µ-ground, i.e., Σs ⊆ GTµ

s

and a term f (⃗t) is µ-ground if ti is µ-ground for each i ∈ µ(f).

The term (0 + x) + y is not ground but is µ-ground for µ(+) = {1}. We define the
notion of µ-ground reducibility which is a generalization of the above definition of ground
reducibility.

Definition 10. Let µ be a replacement map and f ∈ Σ. We say that f is µ-ground
reducible if every term t ∈ Tf ∩ GTµ is reducible.

The following theorem makes it easier to prove the µ-ground reducibility of an oper-
ation symbol.

Theorem 11. Let f ∈ Σ. The following statements are equivalent:
(1) f is µ-ground reducible.
(2) f (⃗t) is a redex if ti is a µ-ground µ-normal form for each i ∈ µ(f).

Proof. (1 ⇒ 2) Assume ti ∈ GTµ ∩ NFµ for each i ∈ µ(f). From (1), f (⃗t) is reducible.
From the definition of the replacement map, if ti ∈ NFµ for each i ∈ µ(f), f (⃗t) is a
redex.
(1 ⇐ 2) We prove that t ∈ Tf ∩ GTµ is reducible. From the definition of Tf and GTµ,
there exists p ∈ Pos(t) such that t|p = f (⃗t) and ti is µ-ground for each i ∈ µ(f). If there

11

exists i ∈ µ(f) such that ti is not a µ-normal form, then t is reducible. Otherwise, f (⃗t)
is a redex from the assumption (2), and t is reducible. 2

By the notion of µ-ground reducibility, we give a non-trivial sufficient condition under
which any µ-ground µ-normal form is an R-normal form. The property is called µ-ground
correctness.

Definition 12. A replacement map µ is µ-ground correct if NFµ ∩ GTµ ⊆ NFR.

Lemma 13. Let µ be a replacement map. If for each operation symbol f ∈ Σ we have
that f is µ-ground reducible or µ(f) is trivial, then no µ-ground µ-normal form contains
any µ-ground reducible operation symbol.

Proof. We prove the claim with proof by contradiction. Assume that t ∈ NFµ ∩ GTµ

contains a µ-ground reducible operation symbol f and let p be one of the smallest position
such that the operation symbol t(p) is µ-ground reducible, i.e., t(q) is not µ-ground
reducible for each q < p. Let t|p = f (⃗t). p ∈ Posµ(t) holds since µ(t(q)) is trivial for
each q < p. Let i ∈ µ(f). From the definition of the replacement map and the µ-rewrite
relation, p.i ∈ Posµ(t) and ti is a µ-normal form since t is a µ-normal form. By Theorem
11, f (⃗t) is a redex. Since p ∈ Posµ(t), this contradicts that t ∈ NFµ. 2

Theorem 14. Let µ be a replacement map. If for each operation symbol f ∈ Σ we have
that f is µ-ground reducible or µ(f) is trivial, then µ is µ-ground correct.

Proof. From Lemma 13. 2

Example 15. Consider NAT+ again. Let µ(+) = {1}. Any µ-ground µ-normal form is in
the form of sn(0). Any pattern sn(0) + t is a redex. From Theorem 11, the operation
symbol + is a µ-ground reducible. From Theorem 14, µ is µ-ground correct.

3.4. Sort reducible operation symbols

In this section, we propose the notion of reducibility of operation symbols for terms
of sort s ∈ S′ for a given set S′ ⊆ S of sorts. Consider ZERO in Example 2. The operation
symbol zero is reducible for ground terms, i.e., ground reducible, since it is defined for
all patterns constructed from 0, s and + . On the other hand, the operation symbols
0, s and + can be regarded as reducible when we consider terms of the sort Bool.
Although 0, s(x) and x + y are not redexes themselves, they should be a part of a redex
in a Bool-sorted term like zero(0), zero(s(t)) and zero(t + t′) respectively. Thus, for
a replacement map µ satisfying that µ(0) = µ(s) = µ(+) = ∅, any Bool-sorted µ-normal
form is an R-normal form.

Definition 16. Let S′ ⊆ S be a set of sorts. An operation symbol f is S′-sort reducible
if t ∈ TS′ ∩ Tf is reducible.

We introduce the cut function cutµ for a replacement map µ, which replaces all maxi-
mal non-µ-replacing subterms of a given term with distinct fresh variables. The function
cut′µ in the following definition is same with the maximal replacing context defined in
the literature (Lucas, 2002).

12

Definition 17. (Lucas, 2002) The auxiliary function cut′µ is defined as follows: cut′µ(x) =
x for each x ∈ V and cut′µ(f (⃗t)) = f(t⃗′) where t′i = cut′µ(ti) for each i ∈ µ(f) and ti = 2

for each i ̸∈ µ(f) where 2 is a special constant. The function cutµ(t) is defined as the
result of replacing all occurrences of 2 in cut′µ(t) with distinct fresh variables.

Let t = (s 0 + 0) + (0 + s 0) and µ(+) = {1}, for example. Then, cut′µ(t) = (s 0 +
2) + 2 and cutµ(t) = (s 0 + x) + y.

Lemma 18. If t is a µ-normal form, cutµ(t) is an R-normal form.

Proof. Assume t′ = cutµ(t) is not an R-normal form. Since the cut ends are distinct
fresh variables, there exists a substitution θ such that t′θ = t. Let p ∈ Pos(t′) be a redex
position, i.e., t′|p = lθ′ for a substitution θ′ and l → r ∈ R. Since all non-replaceable
positions are replaced with variables and each variable is not a redex, the position p is
replaceable, i.e., p ∈ Posµ(t′). Since t(q) = t′(q) for any q < p, p ∈ Posµ(t′) implies
p ∈ Posµ(t). The following equation holds: t|p = t′θ|p = (t′|p)θ = (lθ′)θ = l(θ; θ′).
Therefore, t is not a µ-normal form. 2

By using the cut function, we show that a replacement map can be correct for S′-
sorted terms even if the rewriting of arguments of S′-sort reducible operation symbols is
restricted.

Lemma 19. Let µ be a replacement map. If for each operation symbol f ∈ Σ we have
that f is S′-sort reducible or µ(f) is trivial then no S′-sorted µ-normal form contains
any S′-sort reducible operation symbol.

Proof. Assume that t ∈ NFµ ∩ TS′ contains a S′-sort reducible operation symbol, and
a position p is one of the smallest position such that t(p) = f is S′-sort reducible.
p ∈ Posµ(t) holds since µ(t(q)) is trivial for each q < p. From Definition 17, cutµ(t)
contains f and is in TS′ . From Definition 16, cutµ(t) is reducible. It contradicts t ∈ NFµ

and Lemma 18. 2

Definition 20. Let S′ ⊆ S be a set of sorts. A replacement map µ is correct on S′ if
NFµ ∩ TS′ ⊆ NFR.

Theorem 21. Let µ be a replacement map. If for each operation symbol f ∈ Σ we have
that f is S′-sort reducible or µ(f) is trivial, then µ is correct on S′.

Proof. From Lemma 19. 2

Example 22. Consider ZERO. The operation symbols 0, s, + are {Bool}-sort reducible.
Even if µ(0) = µ(s) = µ(+) = ∅, the replacement map µ is correct on {Bool} from
Theorem 21. Moreover, zero, and-also are µ-ground reducible. Therefore, no Bool-
sorted ground µ-normal form contains those operation symbols, that is, it should be
true or false. The following is the experimental result of reducing the term t = zero(s
s s s s 0 + (s s s s 0 + (s s s 0 + (s s 0 + (s 0))))) in a normal strategy,
that is, µ(f) is trivial for each f ∈ ΣZERO:

-- reduce in ZERO : (zero(((s (s (s (s (s 0))))) + ...))):Bool
(false):Bool
(0.000 sec for parse, 19 rewrites(0.000 sec), 34 matches)

13

CafeOBJ system reports, in the third line, that nineteen rewrite steps are needed to
reduce t into the normal form false. When we give the local strategy {strat: (0)} to
the operation symbols 0, s and + in NAT+, which corresponds to µ(0) = µ(s) = µ(+) =
∅, t is reduced to false by only two rewrite steps.

-- reduce in ZERO : (zero(((s (s (s (s (s 0))))) + ...))):Bool
(false):Bool
(0.000 sec for parse, 2 rewrites(0.000 sec), 4 matches)

Example 23. Consider the following specification of lists:

mod* LIST{
pr(NAT+)
[List]
op _;_ : Nat List -> List {strat: (0)}
op hd_ : List -> Nat
op tl_ : List -> List
op from : Nat -> List
var N : Nat
var L : List
eq hd(N ; L) = N .
eq tl(N ; L) = L .
eq from(N) = N ; from(s N) .

}

The operation symbol ; denotes the list constructor, hd and tl take a list and return the
head element and the remaining list respectively. from makes an infinite list. The term
from(0) denotes the infinite list 0 ; 1 ; 2 ; 3 ; 4 ; · · ·. The operation symbol ; is {Nat}-sort
reducible and µ is correct on {Nat} when µ(cons) = ∅ from Theorem 21. LIST is one of
the typical examples to show the usefulness of CSR since for this replacement map µ,
it is known that the TRS LIST is µ-terminating, that is, there is no infinite µ-rewrite
sequence t1 →µ t2 →µ · · · (Lucas, 1998). Thus, it guarantees that we can compute an
R-normal form of any given Nat-term in finite time. If 2 ∈ µ(;), reduction may fall into
an infinite loop.

3.5. Ground sort reducible operation symbols

By combining the µ-ground reducibility and the S′-sort reducibility, we define the
notion of µ-ground S′-sort reducibility of operation symbols.

Definition 24. Let µ be a replacement map, f ∈ Σ and S′ ⊆ S. f is µ-ground S′-sort
reducible if any t ∈ Tf ∩ GTµ ∩ TS′ is reducible.

Definition 25. Let S′ ⊆ S be a set of sorts. A replacement map µ is µ-ground correct
on S′ if NFµ ∩ GTµ ∩ TS′ ⊆ NFR.

Lemma 26. Let µ be a replacement map. If for each operation symbol f ∈ Σ we have that
f is µ-ground S′-sort reducible or µ(f) is trivial, then no µ-ground S′-sorted µ-normal
form contains any µ-ground S′-sort reducible operation symbol.

14

Proof. Similar to the proofs of Lemma 13 and 19. 2

Theorem 27. Let µ be a replacement map. If for each operation symbol f ∈ Σ we have
that f is µ-ground S′-sort reducible or µ(f) is trivial, then µ is µ-ground correct on S′.

Proof. From Lemma 26. 2

Example 28. Consider the following specification of a cell:

mod* CELL{
pr(NAT+)
[Cell]
op empty : -> Cell
op put : Nat Cell -> Cell
op zero : Cell -> Bool
var N : Nat
var C : Cell
eq zero(empty) = false .
eq zero(put(0, C)) = true .
eq zero(put(s N, C)) = false .

}

The element of Cell denotes a cell which stores a natural number. The constant empty
is the initial empty cell. The operation symbol put overwrites the cell, i.e., put(n,c)
denotes the result of putting the natural number n on the cell c. The operation symbol
zero checks whether the stored number is zero or not. Although the operation symbol
put is neither µ-ground reducible nor {Bool}-sort reducible for any µ, it is µ-ground
{Bool}-sort reducible if µ(put) = {1}. The replacement map µ is µ-ground correct on
{Bool} from Theorem 27.

4. Reducible operation symbols for behavioral specifications

In this section, we show the usefulness of reducibility of operation symbols by giving
a sufficient condition for behavioral coherence in behavioral specifications.

4.1. Behavioral specification

Behavioral specifications are CafeOBJ specifications (modules) which contain a special
sort, called a hidden sort, and special operation symbols, called behavioral operation
symbols (Diaconescu and Futatsugi, 1998, 2000). A behavioral specification describes a
behavior of a system. A hidden sort denotes the state space of a system to be described,
and the system can be observed and modified through only behavioral operation symbols.
We call a term of a hidden sort a state. Non-hidden sorts are called visible. The set of all
hidden sorts and visible sorts are denoted by H and V respectively. A term t ∈ TH is called
a hidden term. A term t ∈ TV is called a visible term. Any behavioral operation symbol
should have exactly one hidden sort in its arity, i.e., if f ∈ Σs⃗,s is behavioral, then ∃!i ∈
N .si ∈ H. The converse is not always true. The set of all behavioral operation symbols is
denoted by Σb (⊆ Σ). Behavioral operation symbols are separated into observations and
actions. Let f ∈ Σb

w,s be a behavioral operation symbol. If its co-arity s is visible, then

15

f is called an observation (or an attribute). If its co-arity s is hidden, then f is called
an action (or a method). An operation symbol is called hidden if it has a hidden sort
in its arity. A tuple (H,V, Σ, Σb) is called a CHA (coherent hidden algebra) signature
(Diaconescu and Futatsugi, 2000), where H∩V = ∅ and Σb ⊆ Σ. We may write Σ instead
of (H,V, Σ, Σb) if there is no confusion. A hidden but non-behavioral operation symbol
is called a hidden constructor, and the set of all hidden constructors is denoted by HC.

4.1.1. Behavioral equivalence
A central concept of the behavioral specification is behavioral equivalence, which is

a weaker relation than the ordinary equality. In a denotational model of a behavioral
specification, elements are called behaviorally equivalent if they are not distinguished by
any behavioral operation symbol. Behavioral equivalence is defined by the notion of a
behavioral context. A behavioral context is a context C[z]p in which all operation symbols
above z are behavioral, i.e., C(q) ∈ Σb for any q < p. The set of all behavioral contexts
is denoted by BC, and the set of all visible behavioral contexts is denoted by BCV .

Definition 29. (Diaconescu and Futatsugi, 2000) Let Σ be a CHA signature, and M
be a Σ-algebra. Elements a, a′ ∈ Ms are behaviorally equivalent, denoted by a ∼ a′, if
MC(a) = MC(a′) for any visible behavioral context C[z] ∈ BCV

8 .

Note that visible elements are behaviorally equivalent if and only if they are equivalent
in the ordinary sense, since z itself is a behavioral context. In CafeOBJ, a hidden sort
H, a behavioral operation symbol f ∈ Σb

w,s and a behavioral equation t ∼ t′ are written
like *[H]*, bop f : w -> s and beq t = t′, respectively.

Example 30. We give the behavioral specification BCELL by modifying CELL in Example
28 as follows: [Cell], op put and op zero are changed into *[Cell]*, bop put and bop
zero respectively. Then, put is an action and zero is an observation.

4.1.2. Behavioral coherence
We introduce another important property called behavioral coherence.

Definition 31. (Diaconescu and Futatsugi, 2000) An operation symbol f ∈ Σw,s−Σb is
called behaviorally coherent for M ∈ [MOD] if it preserves the behavioral equivalence,
i.e., a⃗ ∼w b⃗ implies Mf (⃗a) ∼s Mf (⃗b) 9

When f is behaviorally coherent for any M ∈ [MOD], we say f is behaviorally
coherent. It is trivial that each behavioral operation symbol is behaviorally coherent, and
each non-hidden operation symbol, i.e., it has only visible sorts in its arity, is behaviorally
coherent. Only hidden constructors can be a target to be proved behaviorally coherent.
For a signature (S,≤, Σ) and a Σ-algebra M , an S-sorted relation ≡ on M , i.e., ≡s⊆
Ms × Ms, is called a Σ-congruence if the relation ≡ is an equivalence relation and is
preserved by applying operation symbols f ∈ Σ, i.e., a⃗ ≡s⃗ b⃗ ⇒ Mf (⃗a) ≡s Mf (⃗b) for any
f ∈ Σs⃗,s. From Definition 29, the behaviorally equivalence relation ∼ is Σb-congruence,
however, is not Σ-congruence. The rewrite relation →R is not sound for ∼ in general, i.e.,

8 This equality means an equality between functions Mw1w2 → Ms′ where MC : Mw1sw2 → Ms′ .

MC(e) : Mw1w2 → Ms′ is obtained by applying MC to e at the position of z of the context C[z].
9 For S-sorted relation ≡, a⃗ ≡s⃗ b⃗ is an abbreviation of (a1 ≡s1 b1) ∧ (a2 ≡s2 b2) ∧ · · · ∧ (an ≡sn bn).

16

t →R t′ does not imply Mt ∼ Mt′ . If all hidden constructors f ∈ HC are behaviorally
coherent, then ∼ is a Σ-congruence.

Example 32. Consider adding the operation symbol op merge : Cell Cell -> Cell
on the behavioral specification BCELL, which takes two cells and returns the merged cell,
where we do not give any equation which defines what “merge” means. Since merge has
more than one hidden sort Cell in its arity, it cannot be a behavioral operation symbol.
Assume the constants a and b are behaviorally equivalent, i.e., beq a = b. Although
merge(a,a) =E merge(b,b), it does not guarantee that ∀M ∈ [BCELL].(Mmerge(a,a) ∼
Mmerge(b,b)).

4.1.3. Behavioral rewriting
We introduce a rewrite relation for behavioral specifications, denoted by ↪→R, which

is sound for ∼. When C[lθ] → C[rθ], we call C the rewrite context. We give the defini-
tion of rewrite contexts for behavioral rewrite relation ↪→R, called behaviorally coherent
contexts.

Definition 33. (Diaconescu and Futatsugi, 1998, 2000) For a Σ-algebra M , a behav-
iorally coherent context for M is defined as a context C[z]p such that all operation
symbols above z are behaviorally coherent for M .

To define behavioral rewrite relation ↪→R, we prepare ΣBC as a set of operation sym-
bols which are assumed to be proved behaviorally coherent. Note that all operation sym-
bols except hidden constructors are included in ΣBC since they are behaviorally coherent
for any Σ-algebra. The set BCC of behaviorally coherent contexts for ΣBC is defined as
follows: BCC[z]p ∈ BCC if BCC(q) ∈ ΣBC for each q < p. The behavioral rewrite relation
↪→R is defined as follows: t ↪→R t′ if ∃p, q ∈ Pos(t).∃BC ∈ BC.(t →p t′∧t|q = BC[t|p]) 10 .
The set of all ↪→R-normal forms is denoted by BNFR. The equivalence relation =b

R is
defined as the reflexive, symmetric and transitive closure of ↪→R.

Proposition 34. (Diaconescu and Futatsugi, 2000) Let MOD be a behavioral specifica-
tion and M ∈ [MOD]. Assume Mf is behaviorally coherent for each f ∈ ΣBC . If t ↪→R t′

(or t =b
R t′) then Mt ∼ Mt′ .

4.2. Reducibility of behavioral operation symbols

In a behavioral specification, elements are compared through visible behavioral con-
texts. Thus, in reasoning by TRS, terms to be reduced can be assumed to be visible, and
the V-sort reducibility is suitable for behavioral specifications. A term containing a fresh
hidden constant h is often used for verification, in which h is considered as an arbitrary
element. Thus, the µ-ground reducibility is suitable for behavioral specifications where
i ∈ µ(f) implies si ̸∈ H for each f ∈ Σs⃗,s. We consider the µH-ground V-sort reducibility
as a candidate of behavioral reducibility, where µH is defined as µH(g) = {i ∈ N | si ̸∈ H}
for each g ∈ Σs⃗,s. Consider the following example.

10The behavioral rewrite relation is implemented in CafeOBJ. ΣBC is defined as the set of all behavioral

operation symbols, non-hidden operation symbols and hidden constructors which declared with the
attribute {cohere}. In CafeOBJ, each hidden constructor is declared without {cohere} first, and after
proving it to be behaviorally coherent, it is declared again with {cohere}.

17

Example 35. We give a behavioral specification of an array whose indexes and values
are both natural numbers. First we give a specification NAT= of the equality predicate on
natural numbers.

mod! NAT={
pr(NAT+)
op _=_ : Nat Nat -> Bool
vars M N : Nat
eq (0 = 0) = true .
eq (s M = 0) = false .
eq (0 = s N) = false .
eq (s M = s N) = (M = N) .

}

Next, we give a behavioral specification ARRAY of an array by importing NAT=.

mod* ARRAY{
pr(NAT=)
[Array]
bop val : Nat Array -> Nat
bop put : Nat Nat Array -> Array
vars M N X : Nat
var A : Array
eq val(N, put(M, X, A)) = if (N = M) then X else val(N, A) fi .

}

where the operation symbol if then else fi is defined in BOOL as follows: for each sort
s ∈ S, it belongs to ΣBool s s,s and the equations eq if true then X else Y fi = X and eq
if false then X else Y fi = Y are declared where X and Y are variables of s. Array is a
hidden sort. val and put are an observation and an action respectively. For an array A,
val(n, A) denotes the value assigned to n of A. put(n, x, A) denotes the result of updating
A by assigning x to n. Note that states are not defined directly but are defined through
the observation in the equation. The meaning of the action put is defined by the equation
which describes the values of the post-state put(M,X,A) is defined by the values of the
pre-state A.

In this example, if the arguments of the hidden sort of put is restricted, i.e., µ(put) =
{1, 2}, then put is µH(f)-ground V-sort reducible. Thus, from Lemma 26, no µH-ground
visible µH-normal form contains put. The µH(f)-ground V-sort reducibility seems to
work well as behavioral reducibility of the example of ARRAY, however, it does not work
well for the following example.

Example 36. Consider the following behavioral specification of an array with the ad-
dition function:

mod* ARRAY-ADD{
pr(ARRAY)
op add : Nat Nat Array -> Array
vars M N X : Nat
var A : Array

18

eq val(N, add(M, 0, A)) = val(N, A) .
eq val(N, add(M, s X, A)) = if (N = M) then s val(N, add(M, X, A))

else val(N, A) fi .
}

The term add(n, x, A) denotes updating A by adding x to the value assigned to n. Note
that add is a hidden constructor since it is not declared with bop.

The hidden constructor add is not µH-ground V-sort reducible since, for example,
val(0,add(0,val(0,x),y)) is visible and µ-ground, but is not reducible. The reason
why val(0,add(0,val(0,x),y)) is not reducible is because add has val(0,x) in its
argument. The operation symbol add seems to be completely defined for all natural
numbers at the second argument, since it defined for all pattern sn(0), and is expected
to be removed in normal forms. Since NAT+ is imported by ARRAY-ADD with the protect
mode 11 , for any element e ∈ MNat, there exists t =sn(0) such that Mt = e for any
M ∈ [ARRAY-ADD]. We call such a sort like Nat in ARRAY-ADD a tightly protected sort.

Definition 37. In a module MOD, we call a sort s ∈ SMOD tightly protected if it is
declared in a tight and basic module MOD′ imported by MOD with the protect mode.
The set of all tightly protected sorts w.r.t. MOD is denoted by TPMOD (or TP).

The sort Nat is tightly protected in ARRAY-ADD since it is declared in NAT+ which is a
tight and basic module and is imported with the protect mode. If s ∈ TPMOD and s is
declared in MOD′, the following property holds: for any M ∈ [MOD] and any element
e ∈ Ms, there exists a ground term t ∈ (TΣMOD′)s such that Mt = e. Since a behavioral
specification describes the behavior of a system and denotes all models (implementations)
satisfying the behavior, the hidden sort should not be tightly protected, i.e., TP ⊆ V.
We give a suitable restriction of terms for behavioral specifications.

Definition 38. Let MOD be a behavioral specification. A term t ∈ T is a TP-ground
term if for any subterm f (⃗t) ∈ Sub(t) where f ∈ Σb

s⃗,s ∪ HC s⃗,s is a hidden operation
symbol, for any si ∈ TP , the term ti is constructed from the operation symbols declared
in MOD′ in which si is declared, i.e., ti ∈ (TΣMOD′)si . The set of all TP-ground terms
is denoted by GTTP .

Let TP = TPARRAY-ADD. The term val(0,add(0,val(0,x),y)) is not TP-ground
since val(0,x) is not in TΣNAT+

. The term val(0,add(s 0, 0 + s 0,y)) is TP-ground
since 0, s 0, 0 + s 0 are in TΣNAT+

. We define the notion of reducibility of behavioral
operation symbols.

Definition 39. Let MOD be a behavioral specification. A behavioral operation symbol
f ∈ Σs⃗,s is behaviorally reducible if any t ∈ Tf ∩ GTTP ∩ TV is reducible.

The behavioral CSR relation ↪→µ is defined as follows: t ↪→µ t′
def⇐⇒ t ↪→R t′ ∧ t →µ t′.

The set of all ↪→µ-normal forms is denoted by BNFµ. The correctness of replacement
maps for behavioral specifications is defined as follows.

11Note that the protect import is transitive, i.e., since NAT= has the declaration of pr(NAT+), ARRAY has
pr(NAT=) and ARRAY-ADD has pr(ARRAY), then NAT+ is imported by ARRAY-ADD with the protect mode.

19

Definition 40. Let MOD be a behavioral specification. A replacement map µ is behav-
iorally correct if BNFµ ∩ GTTP ∩ TV ⊆ BNFR.

For a behavioral specification MOD and ΣBC , we define the replacement map µBC

as follows: µBC(g) is trivial for each g ∈ ΣBC and µBC(f) = {i ∈ N | si ∈ TPMOD} for
each f ∈ Σs⃗,s − ΣBC . We give a sufficient condition for behavioral correctness.

Lemma 41. Let MOD be a behavioral specification. Let µ = µBC . If each f ∈ Σ−ΣBC

is behaviorally reducible, no TP-ground visible ↪→µ-normal form contains behaviorally
reducible operation symbols.

Proof. Similar to the proofs of Lemma 13 and 19. Notice that in the proofs of Lemma
13 and 19, we consider the occurrence at the smallest position of reducible operation
symbols f . Since µ(f) is trivial for all operation symbols f ∈ ΣBC , the considered
operation symbol f ∈ Σ−ΣBC is under a behavioral coherent context. Thus, the proofs
can be applied to the case of ↪→R and ↪→µ. 2

Theorem 42. Let MOD be a behavioral specification. If each f ∈ Σ−ΣBC is behaviorally
reducible, then µBC is behaviorally correct.

Proof. From Lemma 41. 2

Example 43. In ARRAY-ADD, the hidden constructor add is behaviorally reducible. From
Lemma 41 and Theorem 42, no TP-ground visible ↪→µ-normal form contains add and is
a ↪→R-normal form.

4.3. A sufficient condition for behavioral coherence

In order to give a sufficient condition for behavioral coherence by the behavioral re-
ducibility, we introduce the notion of weakly normalizing and TP condition. The relation
→⊆ T × T is weakly normalizing if for any t ∈ T , there exists a →-normal form u
such that t →∗ u (Ohlebusch, 2002; Terese, 2003). In general, a mathematical function
should associate an element in its range to each element in its domain. Roughly speaking,
the reducibility guarantees the part of “each element in its domain” and the weak nor-
malization guarantees the existence of “an element in its range”. We give a restriction of
equations in specifications for preserving TP-ground terms. The TP condition guarantees
that any term reduced from a TP-ground term is also TP-ground.

Definition 44. A behavioral specification MOD satisfies the TP condition if for each
equation l = r in MOD and all imported modules, each occurrence f(r⃗) ∈ Sub(r)
of a hidden operation symbol f ∈ Σb

s⃗,s ∪ HC s⃗,s in r, and each tightly protected sort
si ∈ TPMOD, the term ri is constructed from operation symbols in ΣMODi and variables
in V (li) for some f (⃗l) ∈ Sub(l), where MODi is the module in which si is declared.

Lemma 45. Let MOD be a behavioral specification satisfying the TP condition. If t ∈
GTTP and t →∗

MOD t′, then t′ ∈ GTTP .

Proof. Assume that t ∈ GTTP and t = C[lθ] →MOD C[rθ] = t′. It suffices to show
rθ is TP-ground since if u and u′ are TP-ground then u[u′]p is also TP-ground from
Definition 38. Let rθ|p = f(u⃗) ∈ Sub(rθ) where f ∈ Σb

s⃗,s ∪ HC s⃗,s. Let MODi be the

20

module in which si is declared. Let si ∈ TP be an arbitrary tightly protected sort in
{s⃗}. Then, rθ is TP-ground if ui is constructed from ΣMODi . (a) Consider the case of
r(p) ̸∈ Σ. There exists x ∈ V (r) such that f(u⃗) ∈ Sub(θ(x)). Since each TRS satisfies
V (r) ⊆ V (l), f(u⃗) is a subterm of lθ and is TP-ground. From the definition of TP-ground
terms, ui is constructed from ΣMODi . (b) Consider the case of r(p) ∈ Σ. There exists
f(r⃗) ∈ Sub(r) such that f(u⃗) = f(r⃗)θ and ui = riθ for each i. From Definition 44,
ri is constructed from ΣMODi and V (li) for some f (⃗l) ∈ Sub(l). Since t ∈ GTTP and
lθ ∈ GTTP , liθ is constructed from ΣMODi and so is θ(x) for each x ∈ V (li). Since
ui = riθ and V (ri) ⊆ V (li), ui is constructed from ΣMODi . 2

To prove f to be behaviorally coherent, we assume a⃗ ∼ b⃗ and prove Mf (⃗a) ∼ Mf (⃗b).
To prove Mf (⃗a) ∼ Mf (⃗b), we prove MC [Mf (⃗a)] = MC [Mf (⃗b)] for all visible behavioral
contexts C ∈ BCV . We show that only TP-ground contexts are enough to show behavioral
equivalence.

Lemma 46. Let MOD be a behavioral specification, M ∈ [MOD] and a, b ∈ Ms. If
MC(a) = MC(b) for each visible TP-ground behavioral context C ∈ BCV ∩GTTP , then a
and b are behaviorally equivalent, i.e., a ∼ b.

Proof. It suffices to show that MC′(a) = MC′(b) for each visible behavioral context
C ′[z]p ∈ BCV . Let s′ ∈ V be the sort of context C ′ ∈ Ts′ . Note that MC′ is a function
whose domain is the product of the corresponding carrier sets of variables V (C ′). We
define the set TPA of all tightly protected arguments in C ′ as TPA = {ti ∈ T | f (⃗t) ∈
Sub(C ′), ti ∈ Tsi , si ∈ TP}. The set of all variables in TPA is denoted by VTPA =∪

t∈TPA V (t). Then, the set V (C ′) of variables in C ′ can be written as {z, x⃗, y⃗} where
z is the marked variable for the context, {x⃗} = VTPA, and {y⃗} is the set of other
variables. We assume MC′ is a function of Ms × Πm

i=1X × Πn
i=1Y → Ms′ where z ∈ Vs,

xi ∈ Vsi , yi ∈ Vs′
i
, Xi = Msi and Yi = Ms′

i
. Let e⃗ ∈ X⃗ be arbitrary elements in X⃗

(fixed). Then, MC′(e⃗) is a function of Ms × Πn
i=1Y → Ms. We construct a visible TP-

ground behavioral context C ∈ BCV ∩ GTTP such that MC = MC′(e⃗) as follows: For
each t ∈ TPA, it holds that V (t) ⊆ {x⃗}. Thus, Mt can be regarded as the function of
Πm

i=1X → Ms′′ , and Mt(e⃗) is an element of Ms′′ where t ∈ Ts′′ and s′′ ∈ TP . Since
s′′ ∈ TP , there exists a ground term t′ ∈ T (ΣMOD′) such that Mt(e⃗) = Mt′ where
MOD′ is the basic tight module where s′′ is declared. Let C be the context obtained
by replacing all occurrences of t ∈ TPA in C ′ with t′ ∈ T (ΣMOD′) which is obtained
as above. Then C is a visible TP-ground behavioral context satisfying MC = MC′(e⃗).
From the assumption, MC(a) = MC(b) holds, i.e., MC(a)(e⃗′) = MC(b)(e⃗′) for all e⃗′ ∈ Y⃗ .
Therefore, we conclude that MC′(a) = MC′(b) since MC′(a)(e⃗, e⃗′) = M′c(b)(e⃗, e⃗′) for all
e⃗ ∈ X⃗ and e⃗′ ∈ Y⃗ . 2

We give a sufficient condition for behavioral coherence. In a standard methodology for
proving behavioral coherence in CafeOBJ, the proof is done as follows: we declare beq
a = b for fresh hidden constants a and b, and prove f(a,. . .) ∼ f(b,. . .) by checking
if both C[f(a, . . .)] and C[f(b, . . .)] are reduced to a same term or not for each C ∈ BC
(Diaconescu and Futatsugi, 1998, 2000). The proof of the following theorem is according
to the methodology.

Theorem 47. Let MOD be a behavioral specification satisfying the TP condition. Let
µ be the replacement map µBC . If ↪→µ is weakly normalizing and all hidden constructors
are behaviorally reducible, then all hidden constructors are behaviorally coherent.

21

Proof. Let ΣBC = Σ − HC. We prove f ∈ HC behaviorally coherent. Without loss of
generality, we assume the hidden constructor f is in Σw,s such that w = s⃗s⃗′s⃗′′, s⃗ ∈ H,
s⃗′ ∈ TP and s⃗′′ are neither hidden nor tightly protected. Our goal is to prove Mf (⃗a, e⃗, e⃗′)
∼ Mf (⃗b, e⃗, e⃗′) for all elements a⃗, b⃗, e⃗ and e⃗′ satisfying a⃗ ∼s⃗ b⃗ for all M ∈ [MOD]. From
Theorem of Constants (Goguen and Malcolm, 1996), the fresh constants e⃗′ can be used
as arbitrary elements e⃗′, and the fresh hidden constants a⃗ and b⃗ with the behavioral
equations beq ai = bi can be used as arbitrary elements a⃗ and b⃗ satisfying a⃗ ∼s⃗ b⃗. An
arbitrary element ei ∈ Ms′

i
of the tightly protected sort s′i, there exists ti ∈ T (ΣMODi)s′

i

such that Mti = ei where s′i is declared in MODi. Let ti ∈ T (ΣMODi)s′
i

be arbitrary
ground terms. From Proposition 34 and Lemma 46, it suffices to show that C[t1] =b

MOD

C[t2] for all visible TP-ground behavioral context C ∈ BCV ∩GTTP where t1 = f(⃗a, t⃗, e⃗′)
and t2 = f(⃗b, t⃗, e⃗′). Let t = f(x⃗, t⃗, e⃗′) where x⃗ are fresh distinct variables. Note that t, t1
and t2 are TP-ground. Let θ1 and θ2 such that θ1(xi) = ai and θ2(xi) = bi for each i.
Then, t1 = tθ1 and t2 = tθ2. Since C and t are TP-ground, C[t] is also TP-ground. From
the weak normalization of ↪→MOD, there exists u ∈ BNFµ such that C[t] ↪→∗

MOD u.
From Lemma 45, u is also TP-ground. Note that ↪→R⊆→R. u is visible since C is visible.
Therefore, from Lemma 41, u contains no behavioral reducible operation symbol. From
the assumption, u contains no hidden constructor. Consider the occurrences of x⃗ in u.
Let p⃗ ∈ Pos(u) such that u(pi) = xi, that is, u = u[x⃗]p⃗. Since u contains no hidden
constructor, x⃗ are under behaviorally coherent contexts. Thus, uθ1 = u[⃗a]p⃗ ↪→∗

MOD

u[⃗b]p⃗ = uθ2. Therefore, we conclude that C[t1] = C[tθ1] =b
MOD uθ1 =b

MOD uθ2 =b
MOD

C[tθ2] = C[t2]. 2

Example 48. We give a module for the hidden constructor merge in Example 32.

mod* BCELL-M{
pr(BCELL)
[Cell]
op merge : Cell Cell -> Cell
vars C C’ : Cell
eq zero(merge(C, C’)) = zero(C) and zero(C’) .

}

Consider a term t which is visible TP-ground and contains merge. Take the smallest po-
sition p such that t(p) = merge. Then, t = BCC[merge(t, t′)] for some BCC ∈ BCC. Be-
haviorally coherent contexts BCC for BCELL-M can be written as C[zero(put(t1, put(t2,
. . . put(tn, z) · · ·)))] for ground terms ti ∈ T (ΣNAT+) and a visible context C. Consider
the case of k = 0, that is, there is no put between zero and z. Since zero(merge(t, t′))
is a redex, BCC[merge(t, t′)] = C[zero(merge(t, t′))] is reducible. Consider the case of
k > 0, that is, there are at least one put between zero and z. Then, zero(put(t1, · · ·)) is
reducible since (1) if t1 contains + then t1 is reducible, otherwise t1 = sn(0) for some
n ∈ N and zero(put(sn(0), · · ·)) is a redex. Thus, merge is behaviorally reducible. For
BCELL-M, we can prove →R is terminating by the recursive path order (Terese, 2003)
with the precedence zero > + > s > and > true > false, and thus ↪→µ is also termi-
nating 12 . Termination implies weak normalization. Therefore, from Theorem 47, merge
is behaviorally coherent.

12 In the built-in module BOOL, the operation symbol and is declared with the following equations: eq
false and A = false, eq true and A = A and eq A and A = A.

22

Example 49. The hidden constructor add in ARRAY-ADD in Example 36 can be proved
behaviorally coherent. Consider the hidden constructor op shift : Array -> Array
which shifts all elements to the next cell. One may describe a module which contains
only the following equation for this purpose: eq val(s N, shift(A)) = val(N, A),
which denotes that the n + 1-th element of the shifted array is the n-th element of the
original array. Then, shift is not behaviorally coherent since slide(0, A) is indeter-
minate. If we add eq shift(0, A) = 0, then shift is behaviorally reducible. We can
prove →R is terminating by the recursive path order with the precedence val > = >
s > if then else fi > true > false, and thus ↪→µ is also terminating. Since ↪→µ is
terminating, shift is behaviorally coherent.

Like the above example of shift, a lack of equations defining a hidden constructor
may cause a behavioral specification with non-behaviorally coherent hidden constructors.
The behavioral reducibility may be useful for detecting such a mistake.

5. Related studies

5.1. Canonical replacement map in CSR

In (Lucas, 2002, 1998), the notion of a canonical replacement map has been proposed
and some theorems on µ-normal forms have been proved. The canonical replacement
map, denoted by µcan

R , is defined as follows: ∀f ∈ Σ, i ∈ {1..ar(f)},

i ∈ µcan
R (f) ⇔ ∃l → r ∈ R, p ∈ PosΣ(l), (l(p) = f ∧ p.i ∈ PosΣ(l))

where PosΣ(t) = {p ∈ Pos(t) | t(p) ∈ Σ}. For an operation symbol f and an argument
i, if the i-th argument of f is a variable for any occurrence of f (⃗l) ∈ Sub(l) in the
left-hand side of any rewrite rule l → r ∈ R, the argument is restricted in the canonical
replacement map. On the other hand, the reducibility of an operation symbol f is defined
in terms of the reducibility of the terms containing the operation symbol f ; that is, the
reducibility of an operation symbol depends on whether there exists a rewrite rule that can
be applied to the terms. We present an example that shows the difference between the two
notions. Consider NAT+. The canonical replacement map µcan

NAT+ for NAT+ is represented as
µcan
NAT+(+) = {1}. It coincides with the replacement map µ where + is µ-ground reducible.

Consider the following NAT++:

mod! NAT++{
pr(NAT+)
vars M N : Nat
eq M + 0 = M .
eq M + s N = s(M + N) .

}

It should be noted that in NAT+, + is defined inductively on the first argument, whereas
in NAT++, it is defined inductively on the second argument. Since NAT++ imports NAT+, the
module NAT++ includes four equations. Then, the canonical replacement map µcan

NAT++ for
NAT++ is represented as the trivial replacement map, i.e., µcan

NAT++(+) = {1, 2}, since there
exist M + 0 = M and 0 + N = N such that the first and second arguments of + are not

23

variable, respectively. On the other hand, + is µ-ground reducible for both µ(+) = {1}
and µ(+) = {2}.

The following property with respect to the canonical replacement map and µ-normal
forms has been proved.

Proposition 50. (Lucas, 1998, Theorem 8) Let R be a left-linear TRS and µ a replace-
ment map such that µcan

R ⊆ µ. Every µ-normal form is a head-normal form.

Here, µ ⊆ µ′ is defined as µ(f) ⊆ µ′(f) for all f ∈ Σ. A term t is a head-normal form
(or a root-stable term) if there exists no redex u such that t →∗

R u. Every R-normal form
is a head-normal form. As is the case with our results, Proposition 50 can be applied to
all terms, though our theorems restrict the term to S′-sorted µ-ground terms (or visible
TP-ground terms). On the other hand, Proposition 50 assumes the left linearity of TRSs,
whereas our theorems hold true for all TRSs (or TRSs satisfying the TP condition in
the case of behavioral specifications). Moreover, Proposition 50 guarantees that every
µ-normal form is a head-normal form, whereas our theorems guarantee that every S′-
sorted µ-ground µ-normal form (or visible TP-ground ↪→µ-normal form) is an R-normal
form.

5.2. Ground reducibility and sufficient completeness

Our µ-ground reducibility can be regarded as a generalization of ground reducibility.
If all non-constructor operation symbols Σ − C are µ-ground reducible, µ(f) is trivial
for each f ∈ C, and →µ is weakly normalizing, the TRS can be proved to be sufficiently
complete by using Theorem 14. In behavioral specifications (or specifications with loose
modules), the original definition of the sufficient completeness is too strong, since for a
hidden sort s (or a sort declared in a loose module), there may not exist a corresponding
ground term t ∈ TΣ for an element e ∈ Ms such that Mt = e for M ∈ [MOD]. TP-ground
terms are considered suitable for behavioral specifications rather than ground terms.

In (Hendrix and Meseguer, 2007), the correctness property of CSR for ground terms,
called µ-canonical completeness, has been proposed. For a replacement map and a left-
linear TRS, an algorithm for constructing a tree automaton that can be used to check
whether the replacement map is correct for ground terms has been proposed and im-
plemented in the algebraic specification language Maude. Our correctness property for
µ-ground and/or S′-sorted terms is a generalization of the correctness property for ground
terms described above. As shown in Example 23, LIST (or a similar example INF-LIST
mentioned in (Hendrix and Meseguer, 2007)) is a typical example that proves the useful-
ness of CSR. Although any replacement map µ is not correct for ground terms of LIST,
µ is correct for Nat-sorted terms, as previously proved.

Let D = {f ∈ Σ | f (⃗l) → r ∈ R} and C = Σ −D. For a left-linear TRS, we show that
it is decidable whether all f ∈ D are µ-ground reducible.

Proposition 51. Let (Σ, R) be a left-linear TRS. Then, it is decidable whether all f ∈ D
are µ-ground reducible.

Proof. We first define the following set FT of terms:

FT =
{
f (⃗t) ∈ T (Σ, V) | f ∈ D, ∀i ∈ µ(f).ti ∈ GTµ ∩ T (C, V)

}

24

Let |R| be the maximal height of the left-hand sides of all rewrite rules in a given TRS R,
i.e., |R| = max{|l| ∈ N | l → r ∈ R} and |t| = max{|p| ∈ N | p ∈ Pos(t)} where |p| is
the length of the position p. We define a subset FT ′ of FT where the height of each term
is less than |R| + 2 as follows: FT ′ = cut|R|+1(FT) where cuti is defined as cut0(t) = 3

and cuti+1(f (⃗t)) = f(cuti(t1), . . . cuti(tn)), where 3 is a special fresh constant. Then,
FT ′ is finite and computable. The following statements are equivalent:

(1) Each f ∈ D is µ-ground reducible.
(2) Each f (⃗t) ∈ FT ′ is a redex.

(1 ⇒ 2) Let f (⃗t) ∈ FT ′. Since C does not contain any root symbol of left-hand sides of
rewrite rules, for each i ∈ µ(f) the term ti ∈ T (C ∪ {3}, V) is an R-normal form, and
thus is a µ-normal form. From Theorem 11, f (⃗t) is a redex.
(2 ⇒ 1) Let t ∈ GTµ. It suffices to show that t is reducible if t contains some f ∈ D. We
take p ∈ Pos(t) such that t(p) ∈ D and t(q) ∈ C for each q < p. Let f (⃗t) = t|p. Then,
ti ∈ GTµ ∩ T (C, V) for each i ∈ {1..ar(f)} and f (⃗t) ∈ FT from the definition of FT .
From the assumption (2), cut|R|+1(f (⃗t)) is a redex. There exists l → r ∈ R such that
cut|R|+1(f (⃗t)) is an instance of l. Since the length of the position of each 3 is longer
than |R| and l is linear, f (⃗t) is also an instance of l. Thus, f (⃗t) is a redex, and t is
reducible. 2

For a non-left-linear case, techniques described in the literature (Comon and Jacque-
mard, 2003) may be useful; here, some decidability results for ground reducibility have
been proposed. In order to extend Proposition 51 for S′-sort reducibility, we may require
another set of operation symbols D. In the future, we intend to clarify the decidabil-
ity of µ-ground S′-sort reducibility and develop a behavioral coherent checker based on
reducibility.

5.3. Checking behavioral coherence

There are two approaches to prove behavioral coherence: an interactive proof with
behavioral rewriting and an automatic proof with observer complete definitions (OCDs).

In an interactive proof, we show that a given operation symbol whose behavioral
coherence is to be proved directly preserves the behavioral equivalence according to
Definition 31 by using the CafeOBJ system in which behavioral rewriting is implemented.
In order to prove a ∼ b ⇒ f(a) ∼ f(b), we first declare fresh operation symbols ops a b
: -> Elt as arbitrary elements and a behavioral equation beq a = b. Then, we check
whether f(a) is equivalent to f(b) by reducing both the terms by using the CafeOBJ
reduction command. If they are reduced to a same term, f is behaviorally coherent. If
they are reduced to different terms, we try to use different techniques to prove their
joinability, such as case splitting, induction, and finding a suitable lemma. More details
and examples can be found in the literatures (Diaconescu and Futatsugi, 1998, 2000).

As an automatic proof method for behavioral coherence, the notion of OCDs has been
proposed (Bidoit and Hennicker, 1999). An OCD for an operation symbol f is a set
{C1[f(x⃗)] = r1, C2[f(x⃗)] = r2, . . . , Ck[f(x⃗)] = rk} of equations satisfying the conditions
that (a) {C1, . . . , Ck} are behaviorally complete contexts 13 , (b) all x⃗ are distinct vari-
ables that do not occur in each Ci, (c) all operation symbols containing hidden sorts
in rj are either f or observations, and (d) there exists a monotonic well-founded order

13CC are behaviorally complete contexts if ∀BC ∈ BC. ∃Ci ∈ CC. (BC[z] = C[Ci[z]]).

25

> on contexts such that Ci > C for any C[f(−→t)] ∈ Sub(ri) 14 . It has been shown that
if a behavioral specification has an OCD for f , f is behaviorally coherent (Bidoit and
Hennicker, 1999).

CafeOBJ implements a behavioral coherence checker based on the OCDs. If there exists
an OCD for f in the input behavioral specification, f can be declared as behaviorally
coherent by using the CafeOBJ system as follows:

CafeOBJ> mod* BCELL-M{

pr(BCELL)

[Cell]

op merge : Cell Cell -> Cell

vars C C’ : Cell

eq zero(merge(C, C’)) = zero(C) and-also zero(C’) .
}

-- defining module* BCELL-M...._.*

** system found the operator

merge : Cell Cell -> Cell
can be declared as coherent. done.

The (singleton set of) equation zero(merge(C,C’)) = zero(C) and-also zero(C’) is
an OCD for merge. However, the CafeOBJ system cannot prove that add and shift

are behaviorally coherent in ARRAY-ADD. Compared to our results, the conditions (a)
and (b) correspond to behavioral reducibility and the conditions (c) and (d) corre-
spond to the weak normalization of ↪→µ. A remarkable difference from our results is
that in OCDs, all arguments should be variables and the form of right-hand sides are
syntactically restricted. The equations eq val(N, add(M, 0, A)) = val(N, A) and eq

val(s N, shift(A)) = val(N, A) cannot be a part of an OCD since the arguments
of add and shift include non variable terms. Next, consider the hidden constructor
op addOneAtZero : Array -> Array and the equation eq addOneAtZero(A) = add(0,

s 0, A). The hidden constructor addOneAtZero is regarded as being defined by using
other hidden constructor add. The condition (c) does not allow such equations. The weak
normalization of ↪→µ in Theorem 47 essentially includes the conditions (c) and (d) 15 .
Thus, the OCD can be considered as a special case of our sufficient condition for be-
havioral coherence. By checking the behavioral reducibility on the basis of our theorem
with µ-termination checkers, for example, by using AProVE (Alarcón et al., 2008) and
MU-TERM (Lucas, 2004) 16 , we can obtain an automatic behavioral coherence checker
that can be applied to add and shift in ARRAY-ADD.

14> is monotonic if C1 > C2 implies C[C1] > C[C2]. > is well-founded if there exists no infinite
decreasing sequence C0 > C1 > C2 > · · ·.
15Strictly speaking, an OCD may accept non weakly normalizing TRSs since the condition (d) of the
OCDs depends on only the behavioral contexts. Our theorems can easily be improved for including the
condition (d).
16AProVE: http://aprove.informatik.rwth-aachen.de/
MU-TERM: http://www.dsic.upv.es/~slucas/csr/termination/muterm/

26

5.4. Observational transition system

Let us assume there exists a set Υ for a universal state space and sets D⃗ of data.
An observational transition system (OTS) consists of the set O = {oi : Υ → Di} of
observations, set I ⊆ Υ of initial states, and set T = {τi : Υ → Υ} of transitions, where
each τ ∈ T preserves the observational equivalence; that is, for all u, u′ ∈ Υ, u =O u′

implies that τ(u) =O τ(u′). The observational equivalence with respect to O, denoted
by =O, is defined as follows: u =O u′ if ∀o ∈ O.(o(u) = o(u′)). The OTS is known to
be useful for describing transition systems with infinitely many states. There are sev-
eral case studies, for example, mutual exclusion algorithms (Ogata and Futatsugi, 2001,
2002), security protocols (Ogata and Futatsugi, 2003), etc, in which important properties
for those systems are verified formally. The OTS specifications can be described as be-
havioral specifications. An OTS/CafeOBJ specification is a behavioral specification that
has only observations as behavioral operation symbols and all other operation symbols
are behaviorally coherent. For example, the behavioral specification ARRAY becomes an
OTS/CafeOBJ specification if the action bop put is declared as a hidden constructor op
put. Since put is behaviorally reducible and ARRAY is terminating, put is behaviorally
coherent from Theorem 47. In addition, ARRAY-ADD with shift in Example 49 is an
OTS/CafeOBJ specification. By combining our theorem with µ-termination checkers,
we can obtain an OTS/CafeOBJ checker that checks whether a CafeOBJ behavioral
specification is an OTS/CafeOBJ specification.

6. Conclusion

We proposed the notion of reducibility of operation symbols. In order to restrict the
terms to be reduced, we obtained useful properties (Theorem 27 and 42) with respect to
the normal forms between the ordinary rewrite relation and CSR relation; these proper-
ties allow us to reduce terms by the CSR relation instead of the ordinary rewrite relation.
In general, the advantage of CSR is its efficiency of reduction (See Example 22) and ter-
mination (See Example 23). As an application of reducibility of operation symbols, we
obtained a sufficient condition for behavioral coherence in behavioral specifications (The-
orem 47); we also obtained a sufficient condition under which a behavioral specification
is an OTS/CafeOBJ specification.

We identified several useful properties by restricting the input terms to µ-ground,
S′-sorted, and/or TP-ground terms. We intend to find other interesting restrictions in
a future study. Algebraic specifications deal with conditional equations, which are used
in many practical case studies. We also intend to extend the reducibility of conditional
equations or conditional TRSs in the future.

Acknowledgements

This research was partially supported by Grant-in-Aid for Young Scientists (B) No.
18700024 from the Ministry of Education, Culture, Sports, Science and Technology
(MEXT), Japan, and Kayamori Foundation of Informational Science Advancement.

27

References

Alarcón, B., Emmes, F., Fuhs, C., J., G., Gutiérrez, R., Lucas, S., Schneider-Kamp, P.,
Thiemann, R., 2008. Improving Context-Sensitive Dependency Pairs. In: Cervesato,
I., Veith, H., Voronkov, A. (Eds.), Proceedings of the XV International Conference on
Logic for Programming, Artificial Intelligence and Reasoning, LPAR’08. Vol. to appear
of Lecture Notes in Computer Science. Springer-Verlag, Doha, Qatar, p. to appear.

Bidoit, M., Hennicker, R., 1999. Observer complete definitions are behaviorally coherent.
In: Proceedings of OBJ/CafeOBJ/Maude Workshop at Formal Methods’99. pp. 83–94.

Comon, H., Jacquemard, F., 2003. Ground reducibility is EXPTIME-complete. Inf. Com-
put. 187 (1), 123–153.

Diaconescu, R., Futatsugi, K., 1998. CafeOBJ Report. World Scientific.
Diaconescu, R., Futatsugi, K., 2000. Behavioural coherence in object-oriented algebraic

specification. Journal of Universal Computer Science 6 (1), 74–96.
Futatsugi, K., Goguen, J. A., Jouannaud, J.-P., Meseguer, J., 1985. Principles of obj2. In:

Proceedings of the 12th ACM Symposium on Principles of Programming Languages,
POPL. pp. 52–66.

Goguen, J. A., Malcolm, G., 1996. Algebraic Semantics of Imperative Programs. MIT
Press, Cambridge, MA, USA.

Guttag, J. V., 1975. The specification and application to programming of abstract data
types. Ph.D. thesis, University of Toronto, Toronto, Ont., Canada, Canada.

Guttag, J. V., Horning, J. J., 1978. The algebraic specification of abstract data types.
Acta Inf. 10, 27–52.

Hendrix, J., Meseguer, J., 2007. On the completeness of context-sensitive order-sorted
specifications. In: Baader, F. (Ed.), RTA. Vol. 4533 of Lecture Notes in Computer
Science. Springer, pp. 229–245.

Jouannaud, J.-P., Kounalis, E., June 1986. Automatic proofs by induction in equational
theories without constructors. In: Meyer, A. (Ed.), Proceedings of the First Annual
IEEE Symp. on Logic in Computer Science, LICS 1986. IEEE Computer Society Press,
pp. 358–366.

Kapur, D., Narendran, P., Zhang, H., 1987. On sufficient-completeness and related prop-
erties of term rewriting systems. Acta Inf. 24 (4), 395–415.

Lucas, S., January 1998. Context-sensitive computations in functional and functional
logic programs. Journal of Functional and Logic Programming 1998 (1).

Lucas, S., 2002. Context-sensitive rewriting strategies. Information and Computation
178 (1), 294–343.

Lucas, S., 2004. Mu-term: A tool for proving termination of context-sensitive rewriting.
In: van Oostrom, V. (Ed.), RTA. Vol. 3091 of Lecture Notes in Computer Science.
Springer, pp. 200–209.

Nakamura, M., Ogata, K., Futatsugi, K., 2005. Reducible operation symbols for the term
rewriting system and their applications. IPSJ Transactions on Programming 46 (SIG
6 (PRO25)), 47–59.

Ogata, K., Futatsugi, K., 2001. Formally modeling and verifying ricart&agrawala dis-
tributed mutual exclusion algorithm. In: APAQS. IEEE Computer Society, pp. 357–
366.

Ogata, K., Futatsugi, K., 2002. Formal analysis of suzuki & kasami distributed mutual
exclusion algorithm. In: Jacobs, B., Rensink, A. (Eds.), FMOODS. Vol. 209 of IFIP
Conference Proceedings. Kluwer, pp. 181–195.

28

Ogata, K., Futatsugi, K., 2003. Flaw and modification of the ikp electronic payment
protocols. Inf. Process. Lett. 86 (2), 57–62.

Ohlebusch, E., 2002. Advanced topics in term rewriting. Springer.
Terese, 2003. Term Rewriting Systems. Vol. 55 of Cambridge Tracts in Theoretical Com-

puter Science. Cambridge University Press.

29

