
INFORMATION AND CONTROL 71, 186-217 (1986)

Function Definitions in
Term Rewriting and Applicative Programming*

CHILUKURI K . M O H A N AND MANDAYAM K . SRIVAS

Department of Computer Science, State University of New York at Stony Brook,
Stony Brook, New York 11794-4400

The frameworks of unconditional and conditional Term Rewriting and
Applicative systems are explored with the objective of using them for defining
functions. In particular, a new operational semantics, Tue-Reduction, is elaborated
for conditional term rewriting systems. For each framework, the concept of
evaluation of terms invoking defined functions is formalized. We then discuss how it
may be ensured that a function definition in each of these frameworks is
meaningful, by defining restrictions that may be imposed to guarantee termination,
unamb~guity, and completeness of definition. The three frameworks are then com-
pared, studying when a definition may be translated from one formalism to
another. © 1986 Academic Press, Inc.

1. INTRODUCTION

In this paper we study the use of Term Rewriting Systems and Con-
ditional Term Rewriting Systems for defining and evaluating functions. We
formulate sufficient criteria for ensuring that programs written using these
formalisms define functions, and compare such function definitions to those
in an applicative language. We study the transformation of a function
definition expressed in one language to an equivalent one in another.

The formalism of Term Rewriting Systems (TRS) [HuOpS0] has
traditionally been used for theorem proving in equational theories, eg.,
[Hsia82]. Equality axioms have been expressed as systems of rewrite rules,
completed by the use of the Knuth-Bendix procedure [KnBe70], which
has also been applied to several aspects of equational reasoning, eg.,
[Ders83]. Properties of TRS like termination and confluence have been
investigated and several useful sufficient criteria and results obtained
[Ders79, JoLR82, Lesc84]. TRS which satisfy these properties have been
used for solving the word problem: two terms are repeatedly reduced to
their normal forms which must be identical for terms equal within the
equational theory being simulated by the TRS [Huet80].

* Research supported by National Science Foundat ion Grant MCS8401624.

186
0019-9958/86 $3.00
Copyright © 1986 by Academic Press, Inc.
All rights of reproduction in any form reserved.

F U N C T I O N DEFINITIONS FOR TERM R E W R I T I N G 187

Attempts have been made to increase the expressive power of TRS by
incorporating conditions into rewrite rules, and different approaches have
been used to characterize the operational semantics of Conditional Term
Rewriting Systems (CTRS) [BrDJ78, Lank79, BeK182, P1EE82, Kap183,
Remy83]. The T-Unification procedure for finding complete sets of unifiers
for terms with respect to a rewriting system [-Fay79, Hull80] has been
extended to a semidecision procedure for the computation of unifiers for
terms with respect to a CTRS [Kap184]. We propose a mechanism called
Tue-Reduction for evaluations using CTRS containing rewrite rules much
more general than in previous work. In our formalism, the condition and
the right-hand side (rhs) of a rule may contain variables not occurring in
the left-hand side (lhs). Conditions in rules may contain some literals that
are to be satisfied and others that are to be proved unsatisfiable.
Occurrence of equality predicates is treated as the problem of T-un~'cation
of the terms being equated.

Some attempts have been made to formulate a programming language
using a combination of term rewriting and logic programming techniques
[Ders84, DeP185]. The term rewriting formalism is similar to the more
traditional applicative language formalism, eg., LISP [McCa60, Hend80],
in that a computation in both is performed by value rather than by
assignment. But the term rewriting language is more flexible because it
allows nondeterminism, and is also more declarative. This increased
flexibility can be a boon as well as a bane. It makes the language more
expressive, but also makes it harder to ensure program correctness. Hence,
it is useful to formulate sufficient conditions that ensure that a program
correctly defines a function. These conditions should be easy to check as
well as easy to comply with by a programmer.

Term rewriting techniques have been used to specify abstract data types,
and the properties of such specifications have been studied in detail
[-KaMu82, Sriv82, Pada83, KaSr85]. Attempts have been made to charac-
terize the desirable properties of abstract data type specifications, eg., Suf-
ficient Completeness [GuHo78], Full Specification [MussS0], Definition
Principle [HuHu80], Relative Completeness [Remy82]. In this paper, we
use similar techniques to formulate Fully Defined functions in rewrite
systems. We outline methods of verifying termination, unambiguity, and
completeness properties for function definitions in different formalisms. We
generalize the ideas of well-founded orderings for verifying termination of
unconditional systems [Ders85], hierarchical conditional specifications
[ReZh84] and fair conditional systems [Kap184] to pseudo-hierarchies
which allow some degree of circularity in the definitions without sacrificing
termination. The idea of nonoverlapping rewrite systems [HoOd82] is
generalized to enable verification that a defined function maps each con-
structor term argument to a unique result. An inference mechanism is

643/71 ~3-4

188 MOHAN AND SRIVAS

described to verify that a function is totally defined. This is similar to the
methods used in [Thie83, Koun85, JoKo85] for specifications using
unconditional TRS.

In the next section, we present the formalisms of term rewriting,
conditional term rewriting, and a style of applicative programming. We
describe the operational semantics of each of these formalisms, and show
how each can be used to define functions. These formalisms are then
compared, addressing the question of when a function definition may be
translated from one formalism to another. Conclusions of the comparative
study are presented in the last section.

2. DESCRIPTION OF FORMALISMS

In this section, we illustrate the definition of functions in (unconditional)
Term Rewriting Systems (TRS), Conditional Term Rewriting Systems
(CTRS), and Applicative (LISP-like) Systems.

In each formalism, function definitions use certain Primit ive operators,
consisting of constructors, extractors, structure-testers, and error operators.

Primit ive Terms are terms containing primitive operators and variables.

Constructors are a set of functions which are sufficient to denote any
object of the relevant data type. The constructors may include some nullary
constants denoted by the symbols a, b, c,..., possibly subscripted. Construc-

tor terms are terms in which every symbol occurring is a constructor or a
variable.

Extractors are unary functions which return components of the structure
of the argument, and are like inverses of constructor functions. Extractor

terms are terms in which every symbol occurring is an extractor or a
variable.

Structure-Testers are Boolean-valued unary functions which may be used
to check whether the argument has any particular structure, i.e., whether it
has a specific constructor as outermost symbol.

Nullary Error operators yield a distinguished "error" value.

EXAMPLE. The list data structure has constructors NIL and CONS,
extractors CAR and CDR, structure-testers ISNULL and ISCONS, and an
error-operator err. Extractors, structure-testers, and constructors are
related by the following axioms which, along with axioms for the Booleans
(true, false) and operations on them, comprise primitive operations embed-
ded at a lower level of specification in any function definition system using
the list data structure. Here as elsewhere, we implicitly assume that every
defined function invoked on e r r returns err, unless otherwise specified.

FUNCTION DEFINITIONS FOR TERM REWRITING 189

(1) CAR(CONS(x, y)) = x , C A R (N I L) = e r r ,

(2) CDR(CONS(x, y) = y, CDR(NIL) = err,

(3) ISNULL(NIL) = true, ISNULL(CONS(x, y) = false,

(4) ISCONS(NIL) = false, ISCONS(CONS(x, y)) = true.

In any programming formalism, it is desirable (in most cases) that a
function definition satisfies three properties:

(P1) evaluation of terms invoking the defined function on ground
constructor term arguments must terminate;

(P2) the definition must be unambiguous, i.e., every evaluation of the
same term must yield the same result; and

(P3) the definition must be complete, i.e., evaluation must be possible
for every invocation of the defined function on ground constructor term
arguments.

Our goal is to see how these properties are satisfied using the three for-
malisms for function definitions under consideration. First, each formalism
for function definition and the corresponding evaluation technique are
outlined. Restrictions needed to ensure properties (PI), (P2), (P3) are
successively described, and the discussion is summarized, illustrating how
functions may be Fully Defined in each formalism.

2.1. Term Rewriting Definitions

We define Term Rewriting Systems (TRS) and describe their operational
semantics. We show how TRS may be used to define functions, and
describe the restrictions required for function definitions in TRS to be
meaningful, i.e., for the definition to satisfy the properties (P1), (P2), (1°3)

stated earlier.

2.1.1. Reduction using TRS

DEFINITION. A Term Rewriting System is a set of rewrite rules, each rule
consisting of an ordered pair of terms (lhs --* rhs).

When a subterm s of a given term t matches with the lhs of a rewrite rule
under a substitution o (i.e., s = (lhs)a), t may be rewritten to a new term
t[s ~ (rhs)cr] obtained by replacing the occurrence of s in t by the rhs of
the rule, to which the substitution cr has been applied. This is called reduc-
tion of the term t using the rewrite rule lhs ~ rhs.

EXAMPLE. The one-rule term rewriting systems (x + y) + z ~ x + (y + z)

190 MOHAN AND SRIVAS

associates terms to the right. Given the term (a + (b + c)) + d, the following
is a reduction sequence using this TRS

(a + (b + c)) + d ~ a + ((b + c) + d) ~ a + (b + (c +d)).

2.1.2. Defining functions in TRS

A function definition in a TRS contains a set of rewrite rules in each of
which the leading symbol of the lhs term is the function being defined.

DEFINITION. The Term Rewriting Evaluation (TR-evaluation) of a term
is its repeated reduction using the rules of a TRS until the resulting term is
a constructor term or is irreducible.

2.1.2.1. Termination. A rewrite system is said to be Terminating if every
possible sequence of reductions from every term is finite. The problem of
checking whether an arbitrary unconditional TRS is terminating is
undecidable [HuLa78]. Since free variables are arbitrarily instantiable, one
necessary condition to ensure termination is that every variable in the rhs
of a rule must also appear in the lhs.

A necessary and sufficient condition for a TRS to be finitely terminating
is the existence of a well-founded ordering > among ground terms com-
patible with respect to the operations in the language, such that (lhs)o->
(rhs)a in every ground instantiation (lhs ~ rhs)o- of each rule of the TRS.
Termination orderings for TRS have been formulated and extensively
studied in [Plai78a, Plai78b, Ders79, GuKM82, JoLR82, Lesc84, Ders85].
One convenient and practically useful way of ensuring such an ordering,
(allowing recursion to a limited extent), is to organize the function
definitions into a pseudo-hierarchy with different "levels" containing sets of
rules defining distinct functions.

DEFINITION. A term rewriting definition of a function is a pseudo-
hierarchy if every subterm of the rhs of each rule is either

(a) a term with leading symbol denoting a function hierarchically
lower than the function being defined, or

(b) an invocation of a function at the same level (as the function
being defined) on an argument-tuple which is <~ (smaller than) the
argument-tuple of the lhs of the rule, in some well-founded ordering <~.

PROPOSITION. A function defined by a pseudo-hierarchical term rewriting
system terminates for every invocation of the function defined on constructor
terms.

Several examples of well-founded termination orderings can be found in the

FUNCTION DEFINITIONS FOR TERM REWRITING 191

references cited above. The multiset subterm ordering defined below is one
such example:

(i) If t is a proper subterm of s, then t<s.

(ii) Let S and T be the multisets corresponding to the argument-
tuples gt, /-t, respectively (as in a rule f (g l) ~ f(~)). Then T ~ S iff either T
is empty and S is nonempty, or

Vt~T , [[t E S A (T - t ~ S - t)] v 3 s ~ S [t < s]] .

EXAMPLE. Consider the TRS defining Pairs, a function that recursively
yields a list of pairs of members of its argument lists.

Pairs(NIL, z) ~ z

Pairs(CONS(x, y), NIL) ~ CONS(x, y)

Pairs(CONS(x, y), CONS(u, v)) ~ CONS(Pairs(x, u), Pairs(y, v))

The first two rules are clearly terminating since the rhs contains no
recursive invocation of Pairs. For the last rule, we apply twice the method
described above to verify termination:

and

s = {CONS(x, y), CONS(u, v)}

= {x, u} < S,

T2=

Every element in T1, T2 is a subterm of some term in S, and we conclude
that the function definition is finitely terminating.

2.1.2.2. Unambiguity. A term rewriting definition of a function is unam-
biguous if the TR-evaluation of any ground term yields the same term,
irrespective of the reduction sequence used. Thus, if tl and t2 are any two
distinct terms obtained by reducing the same ground term s, then there
must exist rewrite sequences from tl as well as t2 yielding the same term t.
Using the Knuth-Bendix procedure, it is possible to determine whether any
terminating TRS is ground-confluent. We propose a sufficient, simpler
method of checking unambiguity for function definitions with the free con-
structor assumption (cf. the nonoverlapping property [HoOd82]).

If the arguments of lhs's of definition rules are irreducible, a sufficient
condition to ensure unambiguous TR-evaluation is the requirement that
any termf(t-) match with the lhs of at most one rule defining the func t ionf
i.e., for any term f(T) there is a unique rule lhs ~ rhs such that ~ a ' I f (t) =
(lhs)a]. For non-unifiability of lhs's of definition rules with constructor

192 M O H A N A N D S R I V A S

term arguments to be a sufficient criterion for unambiguity, constructors
must be "free": every object must be represented by a unique ground con-
structor term, and there must be no nontrivial equivalences between
ground constructor terms. Hence unambiguity is guaranteed if the lhs's of
no two definition rules are unifiable, and every proper subterm of the lhs in
each definition rule is an irreducible (free) constructor term.

Hence, if the proper subterms of the lhs of a definition rule are reducible,
non-unifiability is no longer a sufficient criterion for unambiguity: more
complex criteria are required.

For example, let the definition of function f contain the rules f (s) ~ r
and f (g(t)) ~ t', where the term g(t) itself reduces to s using the rules defin-
ing g. Although f (s) and f (g (t)) are not unifiable, we cannot conclude
unambiguity unless we are able to show that r and t' have a common
reduct.

Similarly, in integer arithmetic with nonfree constructors 0, succ, pred
related by the rules {succ(pred(x)) --* x, pred(succ(x)) --* x}, if a function is
defined by rules {f(succ(x))--, tl, f(O)--* t2}, the lhs's of the two rules are
non-unifiable, yet the ground termf(succ(pred(O))) can be reduced to tl as
well as t2, depending on which rule is first used for reduction.

2.1.2.3. Completeness. A term rewriting definition of a funct ionf is com-
plete, if every term f(~), where g is a tuple of ground constructor terms, can
be reduced using some definition rule. In the formulation of [JoKo85], the
term f (~) with variable arguments must be quasi-reducible. Completeness
may be verified by using any of the algorithms given in [Thie83, Koun85].
We outline another similar method using an inference mechanism,
analogous to structural induction on the arguments of the function. Com-
pleteness is proved if we are able to infer a tuple containing only distinct
variables from the tuples of arguments in the lhs's of rules defining the
function.

We take pairs of rules and repeatedly infer the union of their domains of
definition by applying the inference rule to proper subterms of the lhs's of
the defining rules. The inference rules depend on the data structure: for
example, for lists, there is just one rule: NIL, CONS(x, y)/z.

When the function has several arguments, the inference system needs to
be applied to each element of the argument-tuple. For some unifying
substitution a, if sia, s~a/ti and V j # i. [~)a = sial , then

t t / t (s l , s2,..., s,,..., s ,) , (s l , s2 si s ,)

~ S 1 0 " , $20-~. . . , ti,..., sna)

EXAMPLE. We attempt to prove the completeness of the OR function as
defined below, using the inference rule true, false/z for booleans.

FUNCTION DEFINITIONS FOR TERM REWRITING 193

OR(y, true) -~ true,

OR(false, false) ~ false,

OR(true, x) ~ true.

From the two-tuples (y , true) and (false, false), using the substitution
a = (y ~- false), we infer (false, z). Using this two-tuple and (true, x)
from the third rule, the completeness of the set of two-tuples of arguments
to OR is then concluded. The inference tree is shown below:

(y , true), (false, false)
(false, z) , (true, x)

(u,v)

2.1.2.4. Fully Definedness. We now condense the preceding discussion
by describing when a function is Fully Defined by rewrite rules, guarantee-
ing that the function definition satisfies the properties of termination,
unambiguity and completeness.

DEnNITION. A function f is Fully Defined by the set of rewrite rules
{f(gl) ~ tl, f(s2) ~ t2 f(~,) ~ t,}, where each si comprises of construc-
tor terms, if

(a) all constructors are free, and there are no rewrite rules in which
the leading symbol of the lhs is a constructor;

(b) whenever i ¢ j, f(si) and f(~j) are not unifiable;

(c) V i. [Vars(ti) ~ Vars(f(~,))];
(d) 2, a tuple of distinct variables, can be inferred from {~, 2:,..., ~,};

and

(e) the definition rules constitute a pseudo-hierarchy under the mul-
tiset subterm ordering, and lower level non-primitive functions used are
Fully Defined.

EXAMPLE. A function of two arguments is defined below to check
whether the first argument is a list which is longer than the second.

(1) Longer(NIL, z) ~ false,
(2) Longer(CONS(x, y), NIL)--+ true,
(3) Longer(CONS(x, y), CONS(u, v)) ~ Longer(y, v).

First, every ground constructor term is its own normal form since there are
no nontrivial equivalences between terms built with CONS and NIL.

Second, the lhs's of no two rules unify. The argument tuple of the first

194 MOHAN AND SRIVAS

rule, (NIL, z), is disjoint from the other two since its first argument NIL
is not unifiable with CONS(x, y) which is the first argument of the other
rules. The argument tuple of the second rule is disjoint from the third since
NIL, the second argument, is not unifiable with the corresponding
argument CONS(u, v) of the third rule.

Third, in each rule, variables of the rhs are all contained in the lhs. The
definition is proved to be complete by inferring a two-tuple of variables
from the arguments of the lhs's of the rewrite rules. From the arguments of
Longer in the rules (2) and (3), we infer

(CONS(x, y), CONS(u; v)), (CONS(x, y), NIL)

(CONS(x, y), z)

We then apply the inference rule to the arguments from rule (1) and the
newly inferred term-tuple,

(NIL, z), (CONS(x, y), z)

(Z', Z)

Last, the definition rules constitute a pseudo-hierarchy since the only
occurrence of Longer in the rhs of a rule occurs in rule (3) on arguments
that are proper subterms of the corresponding arguments of the lhs.
Therefore the rhs is "smaller" than the lhs in the well-founded subterm
ordering, and the function definition satisfies the termination property.

Hence the function Longer is Fully Defined in this formalism.

2.2. Conditional Definitions

In this section, we present a formalism of conditional term rewriting and
its operational semantics. We illustrate how this formalism can be used to
define functions. We then address the issues of termination, unambiguity
and completeness for conditional function definitions, and combine these
ideas to formulate the property of "Fully Definedness" of conditional
definitions.

2.2.1. Tue-Reduction

DEFINITION. A Conditional Term Rewriting System (CTRS) is a set of
conditional rewrite rules. Each conditional rewrite rule consists of a con-
dition and a pair of terms (lhs, rhs) and is written [condition::lhs---, rhs].

The operational semantics of CTRS has earlier been described in several

FUNCTION DEFINITIONS FOR TERM REWRITING 195

different ways. We now define one approach, Reduction T-un~vbTg
equalities, (where T is the given CTRS), abbreviated as Tue-Reduction.

The condition may contain literals with variables not present in the lhs.
In earlier work [-DeP185], such variables have been assumed to be existen-
tially quantified, and an attempt is made to find a substitution for these
variables that satisfies the literals in the condition. We wish to ensure the
specification of "complete" definition systems, in which some rule can
always be used to reduce a term headed by the function being defined. If
some rule is applicable when a particular literal is satisfiable, we also need
some rule to be applicable in the complementary case, when such a literal
is unsatisfiable. Hence, we allow conditions in rules to have literals that
must be proved unsatisfiable.

In our formulation, the condition in each rule will consist of the two
parts sat[pos] and unsat[neg], where pos and neg are sets of literals, some
of which may be equality predicates, that must respectively be proved
satisfiable and unsatisfiable. If 2=[Vars(pos)-Vars(lhs)] and)7=
[Vars(neg)- Vars(lhs)- Vars(pos)], where pos= {P1,..., Pro} and neg=
{N~,..., N~}, then the intended logical meaning of the rule

sat[P~,..., Pro] unsat[N1 N ,] ::lhs --, rhs is

(3 2 [(P ~ A "" APm) A V ~ . (- n N 1 A '-- A 7 N, ,)])~ (lhs=rhs) .

This makes it easy to specify the function for conditions complementary to
the above rule, using rules like

unsat[P 1 ,..., P,~] ::lhs ~ rhsl

and

sat [P1 , . . . , Pm, Nl Nn] ::lhs --* rhs 2.

For convenience, a positive literal whose variables are all contained in
the lhs will be kept in the sat part of the condition, while a negative literal
(-7 P) whose variables are all contained in the lhs will be represented by
keeping the corresponding atom(P) in the unsat part. When empty, the sat

or unsat part of a rule may be omitted.
If a term is to be Tue-Reduced, we must first find a subterm that matches

with the lhs of some rule of the CTRS. The condition of the rule is
then tested, after replacing non-equality literals by equivalent equality
predicates.

An attempt is made to satisfy the equality predicates occurring in
sat[pos] by jointly conditionally T-unifying the two sides of each equality,
using a modified version (cf. [Kap184, Huss85]) of the T-Unification

643/71/3-5

196 MOHAN AND SRIVAS

algorithm described in [Hull80], where T is the given set of conditional
rewrite rules, and only the non-lhs variables in the sat part of the rule are
substituted for. If this attempt succeeds and a joint unifier is found for the
equalities in the sat part of the rule, the equalities in the unsat(neg) part of
the condition must then be proved unsatisfiable for every substitution of
the variables of the given term or the rule. This is done by attempting to
jointly T-unify the sides of each equality, substituting for even the variables
of the term given to be reduced (as illustrated in Example 3).

Tue-Reduction occurs if there is no such T-unifier, for some satisfying
substitution of the sat part of the condition. As a result, the appropriately
instantiated rhs of the rule replaces the subterm in the given term that had
originally matched with the lhs of the rule. A more precise description of
Tue-Reduction follows:

(1) All variables of rules are renamed to avoid name conflicts with
the given term. For uniformity, each predicate A occurring in the condition
of each rule is written [A -- true], while each negative literal ~ A in the
condition is written [A - false].

(2) A rule s a t [P 1,..., Pm] unsat[Nl Nm] ::lhs --* rhs is chosen such
that lhs matches with some subterm t of the given term, i.e., t = (lhs)a0, for
some substitution Go.

(i) If no such rule is found, we conclude that the given term is
irreducible using the set of rules being considered.

(ii) If found, the matching substitution ao is applied to the rest of
the rule.

(3) Now the equality literals in the sat part of the rule are jointly
T-Unified, so that V i, [sia --, *ni, tia --* *ni], where each literal (P~)a o of
the sat part is the equality predicate (s+ - t+), and ni are irreducible, for
some new most general T-unifying substitution a for the variables
[Ui Vars(P+)] in the sat part of the rule. Note that a is not an instance of a
substitution obtained in a previous execution of this step.

(i) If no such T-unifier a is found, we conclude that this rule can-
not be used to Tue-Reduce the given term, and attempt Tue-Reduction
using some other rule, beginning from step (2).

(ii) If found, the T-Unifier a obtained above is applied to the rest
of the rule.

(4) Equality literals in the unsat part of the rule are now jointly
T-Unified, so that V i, [sip ~ *n~, tip ~ *nil, where each literal (N~) aoa of

the unsat part is the equality predicate (si ~ ti), and ni are irreducible, for
some substitution p for the variables in Vars(t)w [Ui. Vars(N~aoa) -
~+ Vars(Pjao)].

FUNCTION DEFINITIONS FOR TERM REWRITING 197

(i) If no such T-Unifier p is found, we conclude that Tue-Reduc-
tion can occur: in the given term, the subterm t may be replaced by
[(rhs) O'oO].

(ii) If any T-unifier p is found, we conclude that for substitution
for variables in the sat part, this rule cannot be used to Tue-Reduce the
given term: we rebegin from step (3) and try to find another suitable a.

We illustrate the above description using three examples. The first shows
how equality predicates are handled in our approach, the second
demonstrates the conditional narrowing of literals, while the third
illustrates the Tue-reduction of a term containing variables.

EXAMPLE l. The term f(CONS(a, CONS(b, CONS(b, w)))) is to be
Tue-Reduced using the conditional rule

sat[z ~ CONS(x, CONS(v, y))] unsat[x L v] ::f(z)

CONS(x, f(CONS(v, y))).

The matching substitution obtained with the lhs of the rule is

a = [z ~ CONS(a, CONS(b, CONS(b, w)))].

This substitution transforms the condition of the rule to

sat[CONS(a, CONS(b, CONS(b, w)))

~- CONS(x, CONS(v, y))] unsat[x "~ v].

The first equality is satisfied using the unifier p l = [x~a, v~b,
y ~ CONS(b, w)] and the condition then changes to sat[] unsat[a ~ b].
Non-unifiability and non-narrowability of the constants a and b imply the
unsatisfiability of (a ~ b). Hence the Tue-Reduction of the given term suc-
ceeds and the resulting term is CONS(a, f(CONS(b, CONS(b, w)))).

We may now attempt to apply the same rule again to this term,
matching the variable z to CONS(b, CONS(b, w)). The substitution al =
[x ~- b, v ~ b, y ~ w] satisfies the equality [CONS(b, CONS(b, w))
CONS(x, CONS(v~,y))], and instantiates the literal in the unsat part to
[b - b]. Since (b -: b) is trivially satisfiable, and every other substitution
satisfying ICONS(b, CONS(b,w)) ~ CONS(x, CONS(v,y))] is an
instance of o 1, the term CONS(a, f(CONS(b, CONS(b, w)))) cannot be
reduced using this rule.

EXAMPLE 2. There are two constructors (constants) a, b, and two lower
level predicates P, Q defined by the conditional rules

198 MOHAN AND SRIVAS

(1)

(2)

(3)

{i.e., P is

(4)
(5)

9 9

s a t [x - a, y - a] ::P(x, y)--* true,
9

s a t [x = b] : : P (x , y) ~ false,
9

s a t [y - b] ::P(x, y) ~ false,

true only when both arguments are a} ,
9 9

s a t [x b, y - b] : : Q (x , y) ~ true,
9

s a t [x - a] ::Q(x, y) ~ false,
9

(6) sa t [y = a]::Q(x, y)- , fa l se ,

{i.e., Q is true only when both arguments are b},

(7) sat[P(y, z)] unsat[Q(x, v)] ::f(x, z) --, a.

We attempt to Tue-Reduce the term f(a , a) using the last rule: on applying
the matching substitution [x ~ a , z,--a], the condition becomes
sat[P(y,a)]unsat[Q(a, v)]. P(y,a) is satisfiable since it can be con-
ditionally narrowed to true using rule (1), with the substitution [y ~ a].
Q(a, v) is unsatisfiable: it Tue-Reduces to false using rule (5), and cannot
be narrowed to true. Hence f (a , a) Tue-reduces to a using rule (7).

Similar Tue-reduction on the te rmf(x ' , a), however, is not possible using
rule (7). The reason is that Q(x', v) is not unsatisfiable: x' is treated as a
variable and not a constant. Q(x', v) can be narrowed to true using rule
(4), but cannot be reduced to f a l s e .

EXAMPLE 3. We define a function Filter which reports an error when
given as argument any list containing a non-empty list as the first element.

9

(1) s a t [x -- CONS(CONS(u, v), z)] ::Filter(x) ~ err,

(2) u n s a t [x - CONS(CONS(u, v), z)] ::Filter(x) ~ x.

The nonground term Filter(CONS(w, NIL)) is itself not reducible using
either rule, although narrowable. For example, to reduce this term using
either rule, substituting CONS(w, NIL) for the variable x, we need to
prove that ICONS(w, NIL) = CONS(CONS(u, v), z)] is either satisfiable
or unsatisfiable.

(i) To prove satisfiability, w must be treated as a constant:
it is not unifiable with CONS(u,v), hence sat[CONS(w, NIL) ?
CONS(CONS(u, v), z)] is unprovable and rule (1) is inapplicable.

(ii) For checking unsatisfiability, w must be treated like any other
variable, and we have to disprove the unifiability of CONS(w, NIL) and
CONS(CONS(u, v), z). However, unification is indeed possible using the
substitution [w , - CONS(u, v), z ~ NIL] , hence we fail to prove
unsat [x ~ CONS(CONS(u, v), z)] and the given term cannot be reduced
using rule (2).

FUNCTION DEFINITIONS FOR TERM REWRITING 199

2.2.2. Conditional Function Definitions

The definition of a function f in a CTRS contains a set of conditional
rules {C~::f(~.)~si}. The Tue-Evaluation of a term f(T) is its repeated
Tue-Reduction using the rules in the definition o f f until the resultant term
is a constructor term or is irreducible.

EXAMPLE. The following CTRS defines a function Longer which verifies
whether its first argument is a list longer than the second.

(1) unsat[x L CONS(u, v)] ::Longer(x, y) ~ false,

(2) sat[x ~ CONS(u, v)] unsat[y L CONS(w, z)] ::Longer(x, y)
true

(3) sa t [Ix ~ CONS(u, x')], Ey L CONS(v, y'))]::Longer(x, y) ~
Longer(x', y').

We now illustrate the Tue-Evaluation of the ground term
Longer(CONS(a, CONS(b, NIL)), CONS(c, NIL)) using this function
definition. With [-x ~ CONS(a, CONS(b, NIL)), y ~- CONS(c, NIL)] as
the matching substitution, the given term matches with the lhs in each of
rules (1), (2), and (3). However, ICONS(a, CONS(b, N I L)) L
CONS(u, v)] and ECONS(c, NIL) '=" CONS(w, z)], the literals in the unsat
parts of the conditions of rules (1) and (2), are satisfiable. Hence rules (1)
and (2) cannot be used for Tue-Reduction.

Evaluating the condition in rule (3), satisfying the first equality
ICONS(a, CONS(b, NIL)) ~ CONS(u, x')] with the unifying substitution
p~ = J u r a , x ' ~ C O N S (b , NIL)], and satisfying the second equality
ICONS(c, NIL) - CONS(v, y ')] with P2 = Iv ~ c, y' ~ NIL], we con-
clude that rule (3) can be used to Tue-Reduce the given term to
Longer(CONS(b, NIL), NIL).

This term may again be Tue-Reduced: rule (2) is now applicable with
the substitution [x~-CONS(b, NIL), y ~ N I L] , since the literal
CONS(b, N I L) ~ CONS(u, v) is satisfiable and NIL ~ CONS(w,z) is
unsatisfiable. The rhs of rule (2) is the irreducible term true, and hence
we conclude that the given term Longer(CONS(a, CONS(b, NIL)),
CONS(c, NIL)) Tue-Evaluates to true.

2.2.2.1. Termination. To avoid infinite chains of reductions in the
evaluation of the condition in a rule, [Remy83] uses hierarchical
specifications in which the subterms of the condition of every rule are all
defined by rewrite rules at a lower level. However, this is restrictive since it
does not allow recursion in the conditions of definition rules. EKap184]
defines Fair CTRS in which all the subterms in the condition and the rhs of
every rule have to be smaller than the lhs in some well-founded ordering.

200 MOHAN AND SRIVAS

We attempt to give clearer guidelines to a programmer to help define
functions using terminating rewrite rules. We modify the above ideas for
the specific situations when the CTRS is a function definition, with rules
that have lhs's comprising the defined function invoked on constructor
term arguments. As we have done for unconditional systems, we require
that conditional function definitions be specified as pseudo-hierarchies. We
allow several layers of rules, each layer containing mutually recursive
function definitions.

DEFINITION. A conditional function definition is a pseudo-hierarchy if
every subterm of the condition and the rhs of each rule is either

(a) a term with leading symbol denoting a function hierarchically
lower than the function being defined, or

(b) an invocation of a function at the same level (as the function
being defined) on an argument-tuple which is ~ (smaller than) the
argument-tuple of the lhs of the rule, in some well-founded ordering
(e.g., the multiset subterm ordering given in Sect. 2.1.2.1).

PROPOSITION. A pseudo-hierarchical conditional function definition ter-
minates for every invocation of the defined function on constructor terms.

2.2.2.2. Unambiguity. A conditional function definition is unambiguous
if Tue-evaluation of any ground term yields a unique result, irrespective of
the reduction sequence used. In general, no semidecision procedure can be
outlined to check the ground confluence of arbitrary CTRS, but in some
restricted cases an extension of the Knuth-Bendix procedure may be used
[ReZh85]. We propose a sufficient, simpler method to check unambiguity
of conditional definitions, extending the technique outlined earlier
(Sect. 2.1.2.2) for checking unambiguity of unconditional term rewriting
definitions.

As in Section 2.1.2.2, we assume that in defining a function f :

(i) i f f i s the leading symbol of the lhs of a rule, all proper subterms
of the lhs are constructor terms; and

(ii) distinct constructor terms are not equivalent and cannot be
reduced to one another.

We may allow a term to unify with the lhs's of different rules, if it can be
ascertained that the conditions of these rules do not simultaneously hold.
This is ensured if, under the substitution unifying the lhs's of two rules, the
satisfaction of some literal in the sat part of one rule implies that some
literal in the unsat part of the other rule must also be satisfied. In other
words, the function definition is unambiguous if for every pair of rules

FUNCTION DEFINITIONS FOR TERM REWRITING 201

whose lhs's unify using a substitution 0, we have (pO~ (qO)a) for some
substitution a, where p is in the sat part of one rule and q is in the unsat
part of the other rule.

Tue-evaluation of any term using a given rule must lead to a unique
result. Hence, unambiguity requires that the terms which may be sub-
stituted for variables Yi ~ [Vars(rhs)- Vars(lhs)] must be unique. This is
ensured if every Yi occurs in an equality predicate [yi L g(ff)] in the sat
part of the rule where ~ ~ Vars(lhs) and g is any function, effectively ren-
dering Yi redundant since its occurrences in the rhs may as well be replaced
by g(Y).

2.2.2.3. Completeness. A conditional function definition of f is complete
if the term f(~) can be Tue-reduced using some definition rule, for every
tuple of ground constructor terms ~. Analogous to the inference rules for
functions defined using unconditional TRS (given earlier in Sect. 2.1.2.3),
the basic technique is the use of structural induction over terms with con-
structors and variables. In addition, we infer that a term is reducible under
the disjunction of conditions of different rules, locating identical literals in
the sat and unsat parts of different rules.

First, we obtain the Guarded tuple starter (sat[pos] unsatEneg] ::~) from
each conditional rule sat[pos] unsat[neg] ::f(~) ~ t. Multiple occurrences
of the same variable in the lhs of any rule are replaced by new variables,
and equality predicates (equating the new variables) are introduced in the
sat part of the guarded tuple starter obtained from the rule. This enables us
to check that a different rule has a complementary condition: for example,
from the (unconditional) non-linear rule

U(CONS(x, CONS(x, y))) --. f (CONS(x, y))

we obtain the guarded tuple starter (sat[x --- z] ::CONS(x, CONS(z, y)))
which is complementary to the starter obtained from the rule

9

unsat [x -- z] : :f(CONS(x, CONS(z, y))) ~ CONS(x, f(CONS(z, y))).

Similarly, every occurrence of a non-variable subterm in the lhs may be
replaced by a new variable and a corresponding equality predicate
introduced in the sat part of the corresponding starter. This would be
needed to infer completeness from complementary rules like

q

f (t) ~ rl (giving the starter sat[x = t] ::x); and
9

unsat [x - t] : : f (x) ~ r2.

From these starters, the inference system then derives new Guarded tuples,
each of which is a 3-tuple denoted (sat[pos] unsatEneg]::termtuple) (cf.

202 MOHAN AND SRIVAS

contextual terms [ReZh85]). The function definition is complete if we suc-
ceed in using the inference rules for the relevant data types to derive the
guarded tuple (sat[] unsat[] ::£), i.e., a tuple of variables with empty
conditions, or something trivially equivalent. For example, note that

9 ?

(sat[y - z] unsat[w --+ w]::x) may be considered equivalent to
(sat[] unsat[]::x). Inferences can be made for subterms as well as
instantiations of any of the components of a guarded tuple.

For example, using the inference system for list structures, we may make
the inferences

(sat[P] unsat[N] ::CONS(u, NIL)), 1
(sat[P] unsat[N] ::CONS(u, CONS(x, y)))]

(sat[P] unsat[N] ::CONS(u, z))
sat[(t ~ NIL), P] unsat[N] ::%),]

(sat[(t - CONS(y, z)), P] unsat[N] ::g)J

(sat[(t :-' x, P] unsat[N] ::%)

If the same term P occurs in the sat part of one rule and the unsat part of
another (otherwise identical) rule, then the guarded tuples of these rules
may be merged, eliminating P. This gives us another inference scheme,
which take identical terms from the sat and unsat parts of otherwise
identical guarded tuples and cancel them:

(sat[P, Q] unsat[N] ::s), (sat[Q] unsat[P, N] ::s)
(sat[Q] unsat[N] ::s)

Like other inferences (cf. Sect. 2.1.2.3), this inference scheme also extends to
subterms and instances of guarded tuples.

In a strict sense, a function definition may be completely defined
although we may not reach this conclusion using this inference technique:
for example, we are unable to infer that f(x) is always Tue-reducible using
the definition below:

g(x) ~ false

unsat[g(x)] ::f(x) ~ rhs(x)

However, we do enable the task of checking completeness of specification
using simple syntactic criteria, without attempting to perform actual reduc-
tion of terms using function definitions. The specification method related to
our inference technique is also modular: other functions may be indepen-
dently defined and altered, without changing the completeness property

FUNCTION DEFINITIONS FOR TERM REWRITING 203

of the function in consideration (whose definition has been verified to be
complete using the inference mechanism).

PROPOSITION. If the conditional definition of a function f is complete for
every possible definition of other fully defined functions (used in defining f),
then, using the inference mechanism outlined above, the guarded tuple
sat[] unsat[] ::Y can be inferred from the guarded tuple starters obtained
from the rules defining f

2.2.2.4. Fully Definedness. We now summarize the above discussion
and list a set of veriable criteria to ensure that a conditional definition is
terminating, unambiguous, and complete.

DEFINITION. Let the set of all conditional rewrite rules whose lhs is
headed by f be

{ sa t [P ,] unsat[Ni] : : f (~) -~ t, ,..., sat[P,,] unsat[N,~] :: f (g , ,) --* t,, },

where gi are tuples of constructor terms. The function f is Fully Defined in
the conditional term rewriting formalism if

(a) all constructors are free, and there are no rewrite rules in which
the leading symbol of the lhs is a constructor;

(b) if the lhs's of two rules are unifiable using substitution a, then
there exists a literal P in the sat part of one rule, a literal Q in the unsat
part of the other rule, and a substitution p such that (P~ ~ (Qa)p);

(c) every variable y~ [Vars(rhs)- Vars(lhs)] occurs in the condition
of the rule in an equality predicate of the form y ~' g(~) where
ff ~_ Vars(lhs);

(d) a tuple of distinct variables (equivalently, the guarded tuple
sat[] unsat[]::£) can be inferred from the guarded tuple starters
obtained from the definition rules; and

(e) the definition rules constitute a pseudo-hierarchy, in which lower
level functions used are Fully Defined.

EXAMPLE. We define a unary function Del on lists which returns a list
obtained by deleting consecutive repetitions of members of the argument of
Del.

(1) Del(NIL) ~ NIL,

(2) Del(CONS(x, NIL)) ~ CONS(x, NIL),

(3) Del(CONS(x, CONS(x, y))) ~ Oel(CONS(x, y)),
(4) unsat[x _Z v]::Del(CONS(x, CONS(v, y)))

CONS(x, DeI(CONS(v, y))).
First, all constructor terms are irreducible.

204 M O H A N A N D SRIVAS

Second, the only rules with unifiable lhs's are (3) and (4), and the
application of their unifier Iv ,-- x] transforms the condition of rule (4) to
the trivially false unsat[x ~ x]. Hence (4) is inapplicable whenever (3) is
applicable.

Third, in each rule, the rhs does not contain any variables other than
those of the lhs.

Completeness: We transform rule (3) into a conditional rule with linear
lhs, from which we obtain the guarded starter sat[x--? z]::CONS(x,
CONS(z, y)). Using the guarded starters obtained from rules (3) and (4)
with variables appropriately renamed, we infer:

sat[x L z] ::CONS(x, CONS(z, y)), unsat[x L z] ::CONS(x, CONS(z, y))

CONS(x, CONS(z, y))

From this inferred term and the starter obtained from the second rule, we
infer:

CONS(x, NIL), CONS(x, CONS(z, y))

CONS(x, w)

Using the starter obtained from the first rule, we then infer:

NIL, CONS(x, w)

Z

The term thus obtained is a variable, unaccompanied by any condition.
Hence, we conclude that the definition is complete.

Termination: The only defined function invoked in the rules is Del
itself. The conditions in the rules do not involve any recursion. In rule (3),
the argument of Del in the rhs is CONS(x, y) which is a subterm of the
argument CONS(x, CONS(x, y)) in the lhs. Similarly, in rule (4), the
argument CONS(v,y) in the rhs is a subterm of the argument
CONS(x, CONS(v, y)) in the lhs. Thus, the only recursive invocations of
Del in the rhs terms have arguments which are strictly smaller than the
arguments in the lhs, under the subterm ordering, which is well founded.
Hence this is a terminating conditional definition of the function Del.

All five criteria being satisfied, we conclude that function Del is Fully
Defined by the above set of rules.

2.3. Applicative Function Definitions

An Applicative Function Definition (cf. [McCa60, Hend80]), consists of a
function-name, a list of variables (if), and a conditional expression which
contains no variables other than those in ~. A conditional expression,

FUNCTION DEFINITIONS FOR TERM REWRITING 2 0 5

headed by a special function COND, is a list of pairs [c i --. ri] of con-
ditions and (resultant) terms. Thus, each definition is of the form

[f (x~ ,..., xm) C O N D ([c l ~ r,][c2 ~ r2]"" [c,~ -~ rn])] .

The Applicative definition of a function f may be used for the
Ap-evaluation of a term f ({) as follows, using the normal order semantics.
The variables that follow the function-name in the Applicative definition
are bound to the terms that are the top-level arguments of the given term,
and occurrences of each such variable in the definition are replaced by the
terms thus bound to them. The conditions ci in the pairs [ci ~ r~] in the
conditional expression are sequentially Ap-evaluated until some CJ
Ap-evaluates to true. The Ap-evaluation of the given term f ({) is the same
as the Ap-evaluation of the corresponding resultant term rJ (the latter part
of the pair). If none of the conditions ci in the conditional expression
Ap-evaluates to true, or if the leading symbol of a term does not have an
Applicative definition, (e.g., a constructor term), we may assume that
Ap-evaluation leaves the term unaltered.

Termination of applicative definitions is ensured by the termination of
the Ap-evaluation of c~ as well as ri for every [c~ ~ r~] in the conditional
expression. As in the case of conditional definitions, pseudo-hierarchical
restrictions may be imposed to guarantee termination: subterms of the con-
ditional expression are allowed to invoke only (a) functions being defined
at the same level of specification, invoked on 'smaller' arguments; and (b)
other functions defined at lower levels.

The former contraint is difficult to check: it is nontrivial to decide when
we may consider some arguments to be smaller than others. In the
Applicative definition If(x1,. . . , x,~) C O N D ([c 1 ~ rl][c2 ~ r2] "'"
[c,, --* r,,])J, if either ci or r~ contains a subtermf(s l s,,), then we require
that I-s1 Sm] ~ IX1 Xm], in some ordering ~ among tuples, where the
unknown variables are treated as constants. Following the common
programming practice of defining functions using recursive invocations on
extractor terms, we allow for nonsubterm orderings: we assume that for
any term t and for any function g which is either an extractor or a struc-
ture-tester, we have [g(t) ~ t].

Occurrence of equality and inequality literals in conditions can help
refine the above criterion. If c~ contains an equality]-xj = ti] then we need
to verify that [-s~,..., Sm] ~ tXl tj,..., X,~]. If Ci contains an inequality
X/¢ 0, where 0 is a constructor term, we may assume that every condition
Ck that follows c~ (i.e., whenever k > i) includes the equality XJ = t/.

Sequential evaluation of the conditions ensures that each condition ck is
tested only if the preceding conditions cl Ck_~ have not evaluated to
true. This guarantees unambiguity of Ap-evaluation.

Completeness may be ensured by having true as the condition in the last

206 MOHAN AND SRIVAS

pair of the conditional expression. When Ap-evaluating a given term, if
none of the previous conditions Ap-evaluates to true, then the last con-
dition always succeeds, and Ap-evaluation of the corresponding (last)
resultant term ensues.

EXAMPLE.

[Del(z) COND([(z = NIL) ~ NIL]

[(CDR(z) = NIL) -* z]

[(CAR(z) = CAR(CDR(z))) --* Del(CDR(z))]

[true -* CONS(CAR(z), Del(CDR(z)))])].

The function defined above eliminates duplicate adjacent occurrences of
elements of a list: Ap-evaluation of the term

Del(CONS(NIL, CONS(CONS(NIL, NIL),
CONS(CONS(NIL, NIL), NIL))))

yields

CONS(NIL, DeI(CONS(CONS(NIL, NIL),
CONS(CONS(NIL, NIL), NIL)))),

using the last part of the conditional expression. The Ap-evaluation of this
term yields CONS(NIL, DeI(CONS(CONS(NIL, NIL), NIL))), which
finally yields CONS(NIL, CONS(CONS(NIL, NIL), NIL)), a list in which
no two consecutive elements are the same.

The function Del has been Fully Defined above. Termination is assured
because recursive invocations of Del take CDR(z) as argument, which is
smaller than z in the ordering we assume for lists, since CDR is an extrac-
tor function. Unambiguity is guaranteed for all Applicative function
definitions. Completeness is given by the predicate true in the last part of
the conditional expression.

3. TRANSFORMATIONS BETWEEN FORMALISMS

In this section, we outline the methods that may be adopted to translate
function definitions from one formalism to another. We also indicate
restrictions in the definitions required to ensure translatability.

3.1. Unconditional to Conditional Rewrite Rule Formalism

Translation from an unconditional term rewriting definition to a con-

FUNCTION DEFINITIONS FOR TERM REWRITING 207

ditional term rewriting definition is straightforward. Each rule of the
definition is prefixed by the condition sate]unsat[].

EXAMPLE. The rule (f (s)~ t) translates to (sat[]unsat[] : : f (s) ~ t).

3.2. Unconditional Rules to Allicative Formalism

A first attempt to accomplish the translation of a function definition
from the unconditional term rewriting formalism to the Applicative for-
malism involves the introduction of equalities between variables and
arguments of the lhs's of rules into the conditional expression. For example,
the set of rules {f(s l) --~ tl, f(s2) ---* t2,...,f(sn) ~ tn } might be translated to
If(x) C O N D ([(x = S l) ~ t l] , . . . , ~(X=Sn)~ t n])] .

However, the result may not adhere to the applicative style since the
terms si may contain variables other than those that immediately follow the
function-name. This must be avoided in Applicative definitions. We now
describe a more elaborate algorithm for the translation of rewrite rules in
which all proper subterms of the lhs are constructor terms. Each definition
rule corresponds to one of the I-ci-~ ri] pairs in the conditional expression,
constructed as follows.

First, new variables are introduced as the arguments of the function
defined. Each occurrence of a variable in the lhs of the rule is replaced by
an extractor term over the new variables, depending on its position in the
lhs of the given rewrite rule. We obtain ri from the rhs of the rule, replacing
variables by the extractor terms obtained above. When proper subterms of
the lhs are constructor terms, the use of structure-tester functions in the
applicative definition achieves a purpose analogous to matching a given
term agains the lhs of the rewrite rule.

EXAMPLE. We illustrate the translation of the term rewriting definition
for Longer that was given in section 2.1.2.4.

Term Rewriting Definition:

(1) Longer (NIL, z) -* false,

(2) Longer (CONS(x, y), NIL)-~ true,
(3) Longer (CONS(x, y), CONS(u, v)) --* Longer(y, v).

Applicative Definition:

[Longer(x, y) COND([ISNULL(x) --* false]

[(ISCONS(x) A ISNULL(y)) -~ true]

[(ISCONS(x) A ISCONS(y)) - , Longer(CDR(x), CDR(y))])] .

208 MOHAN AND SRIVAS

If a rule contains multiple occurrences of a variable, the corresponding
condition ci in the Applicative definition must also contain a conjunction of
equality predicates equating the extractor terms corresponding to each
occurrence.

EXAMPLE. We translate the rewrite rule (halve(CONS(x, x)) ~ x) into
the Applicative (partial) function definition

[halve(z) COND([(CAR(z) = CDR(z)) ~ CAR(z)])].

3,3. Conditional to Unconditional Rewrite Rule Formalism

When the condition of a conditional rule contains variables not occur-
ring in the lhs, their quantification cannot in general be handled by uncon-
ditional rewrite systems. Translation from conditional to unconditional
rewriting definition rules is possible only in restricted cases, which we now
consider.

Restriction 3.3.1.

The first restriction is that the conditions of rules contain only a sat part
which contains only structure-tester terms and equality predicates on
primitive terms. Each such equation is "solved," i.e., each equality is trans-
formed into the form zi ~- ti where zi is a variable and t~ is a primitive term
not containing occurrences of z~. This transformation occurs by

(i) inverting every extractor function, introducing new variables
as required (e.g., [CAR(x) L CDR(y)] becomes [x L CONS(z, w), y "
CONS(u, z)]);

(ii) replacing structure-testers and variables by corresponding con-
structor terms (e.g., [ISCONS(x)] becomes [x --? CONS(y, z)]); and

(iii) splitting equalities between unifiable constructor terms into
subterm equalities (e.g., [CONS(u, v) L CONS(s, CONS(t, w))] becomes
[u L s, v ~ CONS(t, w)]).

The equality predicates can then be eliminated: the translated uncon-
ditional rule is then obtained by replacing (for each equality predicate
zi ~ t~) every occurrence of z~ in the rest of the rule by the corresponding
term ti. In the above process, if any equality between non-unifiable
constructor terms is obtained (e.g., [CONS(x,y) L NIL] , or
[x---* CONS(x, y)]) , the rule may be discarded.

EXAMPLE. The conditional rule sat[x ~ CAR(y), z ~ CONS(x, y)] ::
f (z)--*f(y) may be first transformed to

FUNCTION DEFINITIONS FOR TERM REWRITING 209

sat[y '--- CONS(x, v), z ~- CONS(x, y)] ::f(z) --+f(y) and then to satFz
CONS(x, CONS(x, v))]:: f (z) ~ f (C O N S (x , v)). This rule may then be
translated to the unconditional rule f(CONS(x, CONS(x, v)))-~
f(CONS(x, v)).

Restriction 3.3.2.

In the other restricted case of conditional definition rules considered, the
condition contains only variables contained in the lhs. Then, the
elimination of a condition from a rewrite rule is possible by introducing
dummy function symbols (cf. [DeP185]). For example, we may translate
the conditional rule sat[P(~)]unsat[Q(~)] : : f(2)-~ r(2) into the following
TRS:

(1) f (£) ~f ' (P(£) , Q(X), £),
(2) f'(true, false,)~) -~ r(~).

This has the effect of forcing condition evaluation before the rhs of the
corresponding conditional rule is evaluated. It is also necessary to provide
else clauses, of the form

f'(faise, false, £) -~ sl (£),

f'(false, true, if) ~ s2 (if),

f'(true, true, ~) -~ s3 (~),

which should be generated by translating other conditional rules if the
original conditional definition is complete. When the condition P({) does
not hold, (or when Q({) holds), the conditional rule cannot be used for
reduction, while the translated rule (1) can be used to reduce f([) to
f'(P({),/-), a term originally absent from the language.

EXAMPLE. Two of the rules of the conditional function definition Del in
section 2.2.2.4 are translated together to unconditional rules:

Conditional Rules:

(i) DeI(CONS(x, CONS(x, y))) ~ Oel(CONS(x, y)),

(ii) unsatEx L v] ::Del(CONS(x, CONS(v, y)))
CONS(x, Del(CONS(v, y))).

Unconditional Rules:

(1) Oel(CONS(x, CONS(z, y))) ~f'(eq(x, z), x, z, y),
(2) f'(true, x, z, y) --+ Del(CONS(z, y)),
(3) f'(false, x, z, y) ~ CONS(x, Del(CONS(z, y))).

210 MOHAN AND SRIVAS

Note. Rules (I), (2), (3) are together equivalent to

DeI(CONS(x, CONS(z, y))) ~ if eq(x, z) then DeI(CONS(z, y))

else CONS(x, Del(CONS(z, y)))

The definition for the underlying eq predicate is:

(4) eq(NIL, NIL)-~ true,

(5) eq(CONS(x,y), NIL) ~ false,

(6) eq(NIL, CONS(x, y))--+ false,

(7) eq(CONS(x, y), CONS(u, v)) ~ and([eq(x, u)], [eq(y, v)]).

3.4. Conditional Rules to Applicative Formalism

In the general case in which the conditions in the conditional rules con-
tain new variables not occurring in the lhs, no straightforward translation
to the applicative formalism is possible, since satisfiability and
unsatisfiability of arbitrary literals cannot be handled in the latter. Again,
we consider restricted cases.

Restriction 3.4.1.

When all the variables used in a conditional rule have occurrences in the
lhs, translation from a conditional definition to an applicative definition
may be carried out in a manner very similar to the translation from uncon-
ditional rules described in Section 3.2. The unsat part may be eliminated by
negating all the literals in it and moving them to the sat part of the con-
dition. New variables are introduced as arguments of the function,
occurrences of other variables are replaced by extractor terms, and equality
predicates are obtained by equating the extractor terms corresponding to
multiple occurrences of the same variable. Each condition in the con-
ditional expression of the applicative definition is obtained by taking the
conjunction of these equalities and the literals in the condition of the given
rewrite rule.

Restriction 3.4.2.

Another restricted case is when variables not in the lhs occur only in
equality literals of the forms [Co()7) L g(~)] or [c~ (~) L c2(-~)] in the sat
part of a rule, where ci are primitive terms,)7n Vars(lhs)=~, and
y c~ x = ~ . Each such equation is "solved," variables)7 are eliminated, and
the conditional rules translated into unconditional definition rules in which

FUNCTION DEFINITIONS FOR TERM REWRITING 211

proper subterms of the lhs are constructor terms, as illustrated earlier in
Restriction 3.3.1 (Sect. 3.3). Using the technique outlined in Section 3.2,
these unconditional rules are translated into an applicative definition.

EXAMPLE. Given below is the conditional definition of a function that
flattens a given list, so that no element of the resulting list is a CONS term.
Other than NIL, constants a, b, c,..., could be in the argument list of the
defined function.

unsat[z L CONS(u, v)] ::Flat(z) ~ z,

unsat[x L CONS(u, v)] ::Flat(CONS(x, y)) -~ CONS(x, Flat(y)),

sat[x ~ CONS(u, v)] ::Flat(CONS(x, y)) ~ Flat(CONS(u, CONS(v, y))).

This conditional definition may be translated to the following Applicative
definition:

[Flat(x) COND([not ISCONS(x) --* x]

[ISCONS(x) A not ISCONS(CAR(x))

--* CONS(CAR(x), Flat(CDR(x)))]

[ISCONS(x) A ISCONS(CAR(x))

-~ Flat(CONS(CAR(CAR(x)), CONS(CDR(CAR(x)), CDR(x)))])].

3.5. Applicative to Conditional Rewrite Rule Formalism

Transformation of functions from an applicative definition to a con-
ditional definition is straightforward, as illustrated below: each rule
corresponds to one of the [Ck ~ tk] pairs of the conditional expression.
The condition in each (kth) rule also contains negations of the conditions
in each preceding pair [C k _ i ~ t k _ i] of the conditional expression.
However, such a translation does not in general lead to a Fully Defined
CTRS: the well-founded term ordering required for termination of the
CTRS cannot be obtained when (as in most Applicative definitions),
extractor terms are to be deemed "smaller" than their subterms (e.g.,
CAR(x) <~ x).

EXAMPLE. The applicative definition [f (2) COND([C1 --* tl],...,
[Cn ~ tn])] may be translated to the conditional rewrite rules

643/71/3-6

212 MOHAN AND SRIVAS

sat[C1] ::f(ff) ~ t 1

sat[C2] unsat[C1] : :f(~) --, t2

sa t [C ,] unsat[C1, C2,..., C,_ 1] ::f(37) ~ t,.

3.6. Applicative to Unconditional Rewrite Rule Formalism

The transformation of functions from the applicative definition to an
unconditional rewrite rule definition can be done in two phases: first, to the
conditional rule formalism, and second from the conditional to the uncon-
ditional formalism. Both of these phases have been described in earlier sec-
tions (3.5 and 3.3). Since the only variables of an applicative definition are
those that occur as "arguments" to the function being defined, both phases
of translation are possible. However, considerable control structure is
embedded in the resulting TRS, disallowing the nondeterminism normally
inherent in term rewriting reductions.

4. COMPARISON OF THE FORMALISMS

When new variables not occurring in the lhs are allowed in the condition
of a conditional definition rule, the CTRS formalism is more expressive
than the other formalisms, and spans a larger subset of first order logic for-
mulas than the others. We focus the following discussion on the more com-
parable case, wherein no new variables are allowed in the condition of a
rule. We examine how the three formalisms described above differ in the
amount of control information embedded in their operational semantics,

It may appear to be possible to incorporate conditional rewriting into
unconditional TRS by using a 3-ary if_then_else (or a 2-ary if_then)
function with the rules:

i f then_else(true, x, y) - - x,

if_then_else(false, x, y) ---, y.

However, these rules may lead to nonterminating rewrite sequences since
the nondeterminism in the choice of the subterm to be rewritten allows
undesirable and unnecessary rewriting.

EXAMPLE. Consider the TRS with the rule

Fact (y) ~ i f then_else((y <~ 0), 1, y x Fac t (y - l)).

FUNCTION DEFINITIONS FOR TERM REWRITING 213

When this rule is invoked by attempting to rewrite Fact(l) , one of the
reduction sequences obtainable is

Fact (1) ~ if_then_else((1 ~< 0), 1, 1 x Fact (1 - 1))

-~ if_then_else((1 ~< 0), 1, 1 x if_then_else(((1 - 1) ~< 0), 1, (1 - 1)

x Fact((1 - 1) - 1))

To obtain the desired result, it is necessary to impose the restriction that
the if part be evaluated first, before rewriting the then and else parts of the
term. Such a restriction is foreign to the range of non-determinism allowed
by TRS, and conforms more to the operational semantics of CTRS. Thus,
although there exists an unconditional rewrite sequence achieving the same
effect as every conditional rewrite sequence, this TRS allows several other
rewrite sequences (disallowed by the corresponding CTRS), some of which
may be nonterminating.

Using the method proposed in [DeP185] (discussed in Sect. 3.3), trans-
lation from conditional rules to unconditional TRS can be carried out
whenever constructor terms denote distinct objects. However, this trans-
lation also involves considerably restricting the order in which rules are to
be applied, into a compound if_then else structure with more control
embedded than even that of the corresponding CTRS rules, and hence
resembling an applicative definition rather than a TRS. Translation
avoiding the deterministic structure causes the problems of either non-ter-
mination (as in the Fact example above) or reduction to an irreducible
term with a new function-symbol.

A greater amount of control information is embedded in an applicative
definition than in a CTRS definition: applicative definitions imply a strict
sequencing in the evaluation of conditions. As discussed in Section 3.5, any
applicative definition may be translated into a conditional definition in
which each rule is of the form sat[Ci]unsat[C1, C 2 C i _ l] : :f(2) ~ ti.
The operational semantics of Tue-Rednction allows any of the subterms Cj
(where j~< i) to be evaluated first. For some k, the Tue-Reduction of Ck
may not terminate, whereas Tue-Reducing a different subterm of the
condition may obviate the need to Tue-Reduce Ck. An effective and
terminating evaluation may hence be possible only if a control strategy
enforces some order of evaluation among conditions.

EXAMPLE. We consider the translation to a CTRS of the following
applicative definition of a function f generating the sequence
1, 2, 5, 10, 21,..., for integer arguments 0, l, 2, 3, 4,..., respectively:

214 MOHAN AND SRIVAS

I f (z) COND([(z ~< 0)--* 1]

[odd(f (z- 1))--, 2 , / (z - 1)3

[true--+ 1 + 2 , f (z - 1)])]

where odd, <~, + , - , • are functions assumed to be defined at a lower
level. The corresponding conditional definition rules obtained by trans-
lation are:

(1) s a t [z < . O] : : f (z) - + 1,

(2) s a t [o d d (f (z - 1))] unsat[z ~< 0] ::f(z) o 2 , f (z - 1),

(3) unsat[(z~<0), o d d (f (z - 1))] : : f (z) o 1 + 2 , f (z - 1).

In this conditional definition, the attempt to Tue-Reduce f (- 1) will
succeed only if rule (1) is used for reduction. Attempting to reduce
f (- 1) using conditional rule (2) entails checking the condition
s a t [o d d (f (- 2))] unsat[-1<~0] which means f (- 2) will first have to be
evaluated, which in turn means f (- 3) has to be evaluated, and so on in a
non-terminating sequence.

We thus identify the degree of non-determinism in execution strategy as
the factor important in distinguishing between definitions for the same
function in the TRS, CTRS and applicative formalisms.

5. CONCLUSIONS

We have presented three formalisms of function definition in this paper.
Issues of unambiguity, completeness and termination of functions upon
invocation on constructor terms have been addressed. Syntactic criteria
have been drawn up to enable verification of these properties for function
definitions. The formalisms of TRS, CTRS, and Applicative systems have
been compared, particularly with respect to interconvertibility of
definitions among the formalisms investigated.

We have defined an operational semantics for conditional term rewriting
systems that is more general than several other formulations. Conditions in
the rules may contain variables not in the lhs, and literals (including
equalities) that are to be proved satisfiable or unsatisfiable. Variables
absent from the lhs (allowed in the condition and the rhs of a rule) serve as
intermediate objects during computation and also allow the testing of syn-
tactic structure of normal forms of terms. However, Tue-reducibility as for-
mulated in this paper is inefficient as well as undecidable, and practical
considerations necessitate restrictions on the degree of generality allowed.
We have given restrictions that allow the definition of functions in a way
that satisfies the desirable properties of unambiguity, completeness and ter-

FUNCTION DEFINITIONS FOR TERM REWRITING 215

mination. The multilevel pseudo-hierarchy allows for recursive function
invocations in the conditions of a rule.

We find that it is easiest to translate unconditional term rewriting
definitions to other formalisms. Correspondingly, translation from con-
ditional term rewriting systems to other systems seems hardest. The
expressive power of each system appears to be directly related to the degree
of nondeterminism allowed by the formalism.

In summary, we have explored function definition mechanisms with
varied expressive power, ease of computation, and degrees of nondeter-
minism, formulating syntactically verifiable restrictions to ensure
provability of termination, unambiguity, and completeness. We feel that
this work would assist the tasks of program design and verification in
declarative languages.

ACKNOWLEDGMENTS

This research has been supported by National Science Foundation Grant MCS8401624. We
are grateful to Jean Luc Remy (CRIN, Nancy) for several valuable suggestions and fruitful
discussions. We thank Deepak Kapur (GE, Schenectady), Jieh Hsiang (SUNY, Stony Brook)
and the referees for many useful comments.

RECEIVED January 9, 1985; ACCEPTED December 2, 1985

[BaRe83]

[BeK182]

[BrDJ78]

[DeP185]

[Ders79]

[Ders83]

[Ders84]

[Ders85]

[Fay79]

REFERENCES

BARROS, A. L., AND REMY, J. L. (1983), Ecologiste: A system to make complete
and consistent specifications easier, in "Proc. Workshop on Rewrite Rule Lab.,
Res. Rep.," GE Corporate R&D, Schenectady, New York.
BERGSTRA, J. A., AND KLOP, J. W. (1982), "Conditional Rewrite Rules: Con-
fluency and Termination," Research Report IW 198/82, Mathematical Centre,
Amsterdam.
BRAND, D., DARRINGER, J. A., AND JOYNER, W.H. (1978), "Completeness of
Conditional Reductions," IBM Research Report, No. RC7404.
DERSHOWITZ, N., AND PLAISTED, D. (1985), Logic programming eum applicative
programming, in "Proc. 1985 Syrup. on Logic Programming," Boston.
DERSHOWITZ, N. (1979), Orderings for term rewriting systems, in "Proc. of 20th
Symp. on Foundations of Computer Science," pp. 123-131.
DERSHOWITZ, N. (1983), "Applications of the Knuth-Bendix Procedure," Report
No. ATR 83(8478)-2, Aerospace Corp., E1 Segundo, California, May.
DERSHOWITZ, N. (1984), Equations as programming language, in "IEEE 1984
Proc. 14th Jerusalem Conf. Info. Tech. (JCIT)."
DERSHOWlTZ, N. (1985), Termination of rewriting, in "Proc. First Intl. Conf. on
Rewriting Techniques and Applications, Dijon, France."
FAY, M. (1979), Fist order unification in an equational theory, in "Proc. 4th
Workshop on Automated Deduction, Texas."

216 MOHAN AND SRIVAS

I-GuHo78]

[GuKM82]

[HendS0]
[HoOd82]

[Hsia83]

[Huet80]

[HuHu80]

[HuLa78]

[Hull80]

[HuOp80]

[Huss85]

[JoKo85]

[JoLR82]

[KaMu82]

[Kapl83]

[Kap184]

[-KaSr85]

[Kirc84]

[KnBe70]

[Koun85]

[Lank79]

GUTTAG, J. V., AND HORNING, J. J. (1978), The algebraic specification of
abstract data types, Acta Inform. 10, 2752.
GUTTAG, J. V., KAPUR, D., AND MUSSER, D. R. (1982), On proving uniform ter-
mination and restricted termination of rewriting systems, in "Proc. 9th ICALP,
Aarhus, Denmark.
HENDERSON, P. (1980), "Functional Programming," Prentice-Hall, London.
HOFFMAN, C. M., AND O'DONNELL, M. J.(1982), "Programming with
Equations," ACM TOPLAS, Vol. 4, No. 1, pp. 83-112, January.
HSIANG, J. (1983), "Topics in Automated Theorem Proving and Program
Generation," Ph.D. thesis, Univ. of Illinois, Urbana-Champaign.
HUET, G. (1980), Confluent reductions: Abstract properties and applications to
term rewriting systems, J. Assoc. Comput. Mach. 27, 797-821.
HUET, G., AND HULLOT, J. M. (1980), Proofs by induction in equational
theories with constructors, in "Proc. 21st IEEE Symp. on Foundations of Com-
puter Science," pp. 96-107.
HUET, G., AND LANKFORD, D. S. (1978), "On the Uniform Halting Problem for
Term Rewriting Systems," Report 283, INRIA, Le Chesnay, France.
HULLOT, J. M. (1980), "Canonical Forms and Unification," Tech. Rep. CSL-114,
SRI Intl., Calif., April.
HUET, G., AND OPPEN, D. S. (1980), "Equations and Rewrite Rules: A Survey,"
Tech. Rep. CSL-111, SRI Int'l, Calif., January.
HUSSMAN, H. (1985), Unification in conditional-equational theories, Vol. 2, in

"Proc. EUROCAL '85, Linz, Austria," Lecture Notes in Computer Science,
Vol. 204, Berlin.
JOUANNAUD, J. P., AND KOUNALIS, E.(1985), "Proofs by Induction in
Equational Theories without Constructors," CRIN, Nancy, France.
JOUANNAUD, J. P., LESCANNE, P., AND REIN1G, F. (1982), Recursive decom-
position ordering, in "Formal Description of Programming Concepts 2" (D. Bor-
jner, Ed.), North-Holland, Amsterdam.
KAPUR, D. K., AND MUSSER, D. R. (1982), Rewrite rule theory and abstract
data type analysis, in "Computer Algebra, EUROSAM 1982," Lecture Notes in
Computer Science, Vol. 144, pp. 263-297, (Calmet, Ed.), Springer-Verlag,
Berlin, April.
KAPLAN, S.(1983), "Conditional Rewrite Rules," Rapport de Recherche,
No. 150, Universite de Paris-Sud, Orsay, France, December.
KAPLAN, S. (1984), "Fair Conditional Term Rewriting Systems: Unification,
Termination and Confluence," Rapport de Recherche, No. 194, Universite de
Paris-Sud, Orsay, France, November.
KAPUR, D., AND SRIVAS, M. K. (1985), A rewrite rule based approach for syn-
thesizing abstract data types, in "Proc. 1985 ICALP Conf.," April.
KIRCHNER, H. (1984), A general inductive completion algorithm and application
to abstract data types, in "Proc. 7th CADE," Lecture Notes in Computer
Science, Vol. 170, pp. 282-302, Springer-Verlag, Berlin/Heidelberg/New York/
Tokyo.
KNUTH, O., AND BENDIX, P. (1970), Simple word problems in universal algebras,
in "Computational Problems in Abstract Algebra," (J. Leech, Ed.), pp. 263-297,
Pergamon, Elmsford, N. Y.
KOUNALIS, E. (1985), Completeness in date type specification, in "Proc.
EUROCAL Conf. at Linz, Austria," April.
LANKFORD, D. S.(1979), "Some New Approaches to the Theory and
Applications of Conditional Term Rewriting Systems," Research Report MTP-6,
Univ. of Louisiana, Ruston.

FUNCTION DEFINITIONS FOR TERM REWRITING 217

[Lesc84]

[McCa60]

[Muss80]

[Pada83]

[Plai78a]

[Plai78b]

[PIEE82]

[Remy82]

[Remy83]

[ReZh84]

[ReZh85]

[Sriv82]

[Thie83]

[Wald85]

LESCANNE, P. (1984), Uniform termination of term rewriting systems--Recursive
decomposition ordering with status, in "Proc. 9th CAAP Conf., Bordeaux,
France,"
McCARTHY, J. (1960), Recursive functions of symbolic expressions and their
computation by machine, Part I, Comm. A C M 3 (4), April.
MUSSER, D. R. (1980), On proving inductive properties of abstract data types, in

"Proc. 7th POPL Conf., Las Vegas,"
PADAWITZ, P. (1983), "Correctness, Completenes& Consistency of Equational
Data Type Specifications," TU Berlin Bericht, No. 83-15.
PLMSTED, D. A. (1978), "Well-Founded Orderings for Proving Termination
of Systems of Rewrite Rules," Report R-78-932, Univ. of Illinois, Urbana-
Champaign.
PLAISTED, D. A. (1978), "A Recursively Defined Ordering for Proving Ter-
mination of Term Rewriting Systems," Report No. R-78-943, Univ. of Illinois,
Urbana-Champaign.
PLETAT, U., ENGELS, G., AND EHR1CH, H. D. (1982), "Operational Semantics of
algebraic specifications with Conditional Equations," 7eme C.A.A.P., Lille,
France.
REMV, J. L.(1982), "Etude des systemes de reecriture conditionnels et
application aux specifications algebriques de types abstraits," Doctoral thesis,
INPL, Nancy, France.
REMY, J. L. (1983), Proving conditional identities by equational case reasoning,
rewriting and normalization, in "Proc. of 1982-83 Research Seminar, LITP,
Paris, France; Theoriqae de Paris, Paris, 1983, Aussi: Rapport CRIN 82 R-085,
Nancy, France, 1982.
REMY, J. L., AND ZHAN6, H. (1984), REVE4: A system for validating con-
ditional algebraic specifications of paremeterized abstract data types, in "Proc. of
6th ECAI Conf., Pisa, Italy,"
REMV, J. L., AND ZHAY~, H. (1985), REVEUR4: A system to proceed
Experiments on Conditional Term Rewriting Systems," CRIN, Nancy, France.
SRIVAS, M. K. (1982), "Automatic Synthesis of Implementations for Abstract
Date Types from Algebraic Specifications," MIT/LCS/TR-276, M.I.T., Boston,
June.
TH1EL, J. J. (1983), Stop losing sleep over incomplete data type specifications, in

"Proc. 1 lth POPL Conf.," Assoc. Comput. Mach., New York.
WALDMANN, B.(1985), "Reducing Conditional Term Rewriting Systems,"
Research Report, CRIN, Nancy, France.

