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The frameworks of unconditional and conditional Term Rewriting and 
Applicative systems are explored with the objective of using them for defining 
functions. In particular, a new operational semantics, Tue-Reduction, is elaborated 
for conditional term rewriting systems. For each framework, the concept of 
evaluation of terms invoking defined functions is formalized. We then discuss how it 
may be ensured that a function definition in each of these frameworks is 
meaningful, by defining restrictions that may be imposed to guarantee termination, 
unamb~guity, and completeness of definition. The three frameworks are then com- 
pared, studying when a definition may be translated from one formalism to 
another. © 1986 Academic Press, Inc. 

1. INTRODUCTION 

In this paper we study the use of Term Rewriting Systems and Con- 
ditional Term Rewriting Systems for defining and evaluating functions. We 
formulate sufficient criteria for ensuring that programs written using these 
formalisms define functions, and compare such function definitions to those 
in an applicative language. We study the transformation of a function 
definition expressed in one language to an equivalent one in another. 

The formalism of Term Rewriting Systems (TRS) [HuOpS0] has 
traditionally been used for theorem proving in equational theories, eg., 
[Hsia82]. Equality axioms have been expressed as systems of rewrite rules, 
completed by the use of the Knuth-Bendix procedure [KnBe70], which 
has also been applied to several aspects of equational reasoning, eg., 
[Ders83]. Properties of TRS like termination and confluence have been 
investigated and several useful sufficient criteria and results obtained 
[Ders79, JoLR82, Lesc84]. TRS which satisfy these properties have been 
used for solving the word problem: two terms are repeatedly reduced to 
their normal forms which must be identical for terms equal within the 
equational theory being simulated by the TRS [Huet80]. 
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Attempts have been made to increase the expressive power of TRS by 
incorporating conditions into rewrite rules, and different approaches have 
been used to characterize the operational semantics of Conditional Term 
Rewriting Systems (CTRS) [BrDJ78, Lank79, BeK182, P1EE82, Kap183, 
Remy83 ]. The T-Unification procedure for finding complete sets of unifiers 
for terms with respect to a rewriting system [-Fay79, Hull80] has been 
extended to a semidecision procedure for the computation of unifiers for 
terms with respect to a CTRS [Kap184]. We propose a mechanism called 
Tue-Reduction for evaluations using CTRS containing rewrite rules much 
more general than in previous work. In our formalism, the condition and 
the right-hand side (rhs) of a rule may contain variables not occurring in 
the left-hand side (lhs). Conditions in rules may contain some literals that 
are to be satisfied and others that are to be proved unsatisfiable. 
Occurrence of equality predicates is treated as the problem of T-un~'cation 
of the terms being equated. 

Some attempts have been made to formulate a programming language 
using a combination of term rewriting and logic programming techniques 
[Ders84, DeP185]. The term rewriting formalism is similar to the more 
traditional applicative language formalism, eg., LISP [McCa60, Hend80], 
in that a computation in both is performed by value rather than by 
assignment. But the term rewriting language is more flexible because it 
allows nondeterminism, and is also more declarative. This increased 
flexibility can be a boon as well as a bane. It makes the language more 
expressive, but also makes it harder to ensure program correctness. Hence, 
it is useful to formulate sufficient conditions that ensure that a program 
correctly defines a function. These conditions should be easy to check as 
well as easy to comply with by a programmer. 

Term rewriting techniques have been used to specify abstract data types, 
and the properties of such specifications have been studied in detail 
[-KaMu82, Sriv82, Pada83, KaSr85]. Attempts have been made to charac- 
terize the desirable properties of abstract data type specifications, eg., Suf- 
ficient Completeness [GuHo78], Full Specification [MussS0], Definition 
Principle [HuHu80], Relative Completeness [Remy82]. In this paper, we 
use similar techniques to formulate Fully Defined functions in rewrite 
systems. We outline methods of verifying termination, unambiguity, and 
completeness properties for function definitions in different formalisms. We 
generalize the ideas of well-founded orderings for verifying termination of 
unconditional systems [Ders85], hierarchical conditional specifications 
[ReZh84] and fair conditional systems [Kap184] to pseudo-hierarchies 
which allow some degree of circularity in the definitions without sacrificing 
termination. The idea of nonoverlapping rewrite systems [HoOd82] is 
generalized to enable verification that a defined function maps each con- 
structor term argument to a unique result. An inference mechanism is 
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described to verify that a function is totally defined. This is similar to the 
methods used in [Thie83, Koun85, JoKo85] for specifications using 
unconditional TRS. 

In the next section, we present the formalisms of term rewriting, 
conditional term rewriting, and a style of applicative programming. We 
describe the operational semantics of each of these formalisms, and show 
how each can be used to define functions. These formalisms are then 
compared, addressing the question of when a function definition may be 
translated from one formalism to another. Conclusions of the comparative 
study are presented in the last section. 

2. DESCRIPTION OF FORMALISMS 

In this section, we illustrate the definition of functions in (unconditional) 
Term Rewriting Systems (TRS), Conditional Term Rewriting Systems 
(CTRS), and Applicative (LISP-like) Systems. 

In each formalism, function definitions use certain Primit ive operators, 
consisting of constructors, extractors,  structure-testers,  and error operators. 

Primit ive Terms are terms containing primitive operators and variables. 

Constructors are a set of functions which are sufficient to denote any 
object of the relevant data type. The constructors may include some nullary 
constants denoted by the symbols a, b, c,..., possibly subscripted. Construc- 

tor terms are terms in which every symbol occurring is a constructor or a 
variable. 

Extractors  are unary functions which return components of the structure 
of the argument, and are like inverses of constructor functions. Extractor  

terms are terms in which every symbol occurring is an extractor or a 
variable. 

Structure-Testers  are Boolean-valued unary functions which may be used 
to check whether the argument has any particular structure, i.e., whether it 
has a specific constructor as outermost symbol. 

Nullary Error operators yield a distinguished "error" value. 

EXAMPLE. The list data structure has constructors NIL and CONS, 
extractors CAR and CDR, structure-testers ISNULL and ISCONS, and an 
error-operator err. Extractors, structure-testers, and constructors are 
related by the following axioms which, along with axioms for the Booleans 
(true, false) and operations on them, comprise primitive operations embed- 
ded at a lower level of specification in any function definition system using 
the list data structure. Here as elsewhere, we implicitly assume that every 
defined function invoked on e r r  returns err, unless otherwise specified. 
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(1) CAR(CONS(x,  y ) ) = x ,  C A R ( N I L ) = e r r ,  

(2) CDR(CONS(x,  y) = y, CDR(NIL)  = err, 

(3) ISNULL(NIL)  = true, ISNULL(CONS(x, y) = false, 

(4) ISCONS(NIL)  = false, ISCONS(CONS(x,  y)) = true. 

In any programming formalism, it is desirable (in most cases) that a 
function definition satisfies three properties: 

(P1) evaluation of terms invoking the defined function on ground 
constructor term arguments must terminate; 

(P2) the definition must be unambiguous, i.e., every evaluation of the 
same term must yield the same result; and 

(P3) the definition must be complete, i.e., evaluation must be possible 
for every invocation of the defined function on ground constructor term 
arguments. 

Our goal is to see how these properties are satisfied using the three for- 
malisms for function definitions under consideration. First, each formalism 
for function definition and the corresponding evaluation technique are 
outlined. Restrictions needed to ensure properties (PI), (P2), (P3) are 
successively described, and the discussion is summarized, illustrating how 
functions may be Fully Defined in each formalism. 

2.1. Term Rewriting Definitions 

We define Term Rewriting Systems (TRS) and describe their operational 
semantics. We show how TRS may be used to define functions, and 
describe the restrictions required for function definitions in TRS to be 
meaningful, i.e., for the definition to satisfy the properties (P1), (P2), (1°3) 

stated earlier. 

2.1.1. Reduction using TRS 

DEFINITION. A Term Rewriting System is a set of rewrite rules, each rule 
consisting of an ordered pair of terms (lhs --* rhs). 

When a subterm s of a given term t matches with the lhs of a rewrite rule 
under a substitution o (i.e., s =  (lhs)a), t may be rewritten to a new term 
t[s ~ (rhs)cr] obtained by replacing the occurrence of s in t by the rhs of 
the rule, to which the substitution cr has been applied. This is called reduc- 
tion of the term t using the rewrite rule lhs ~ rhs. 

EXAMPLE. The one-rule term rewriting systems (x + y) + z ~ x + (y + z) 
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associates terms to the right. Given the term (a + (b + c)) + d, the following 
is a reduction sequence using this TRS 

( a + ( b + c ) ) + d ~ a + ( ( b + c ) + d ) ~ a + ( b + ( c  +d)). 

2.1.2. Defining functions in TRS 

A function definition in a TRS contains a set of rewrite rules in each of 
which the leading symbol of the lhs term is the function being defined. 

DEFINITION. The Term Rewriting Evaluation (TR-evaluation) of a term 
is its repeated reduction using the rules of a TRS until the resulting term is 
a constructor term or is irreducible. 

2.1.2.1. Termination. A rewrite system is said to be Terminating if every 
possible sequence of reductions from every term is finite. The problem of 
checking whether an arbitrary unconditional TRS is terminating is 
undecidable [HuLa78].  Since free variables are arbitrarily instantiable, one 
necessary condition to ensure termination is that every variable in the rhs 
of a rule must also appear in the lhs. 

A necessary and sufficient condition for a TRS to be finitely terminating 
is the existence of a well-founded ordering > among ground terms com- 
patible with respect to the operations in the language, such that (lhs)o-> 
(rhs)a in every ground instantiation (lhs ~ rhs)o- of each rule of the TRS. 
Termination orderings for TRS have been formulated and extensively 
studied in [Plai78a, Plai78b, Ders79, GuKM82, JoLR82, Lesc84, Ders85]. 
One convenient and practically useful way of ensuring such an ordering, 
(allowing recursion to a limited extent), is to organize the function 
definitions into a pseudo-hierarchy with different "levels" containing sets of 
rules defining distinct functions. 

DEFINITION. A term rewriting definition of a function is a pseudo- 
hierarchy if every subterm of the rhs of each rule is either 

(a) a term with leading symbol denoting a function hierarchically 
lower than the function being defined, or 

(b) an invocation of a function at the same level (as the function 
being defined) on an argument-tuple which is <~ (smaller than) the 
argument-tuple of the lhs of the rule, in some well-founded ordering <~. 

PROPOSITION. A function defined by a pseudo-hierarchical term rewriting 
system terminates for every invocation of the function defined on constructor 
terms. 

Several examples of well-founded termination orderings can be found in the 
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references cited above. The multiset subterm ordering defined below is one 
such example: 

(i) If t is a proper subterm of s, then t<s. 

(ii) Let S and T be the multisets corresponding to the argument- 
tuples gt, /-t, respectively (as in a rule f ( g l ) ~  f(~)).  Then T ~  S iff either T 
is empty and S is nonempty, or 

Vt~T ,  [ [ t E S A ( T - t ~ S - t ) ]  v 3 s ~ S [ t < s ] ] .  

EXAMPLE. Consider the TRS defining Pairs, a function that recursively 
yields a list of pairs of members of its argument lists. 

Pairs(NIL, z) ~ z 

Pairs(CONS(x, y), NIL) ~ CONS(x, y) 

Pairs(CONS(x, y), CONS(u, v)) ~ CONS(Pairs(x, u), Pairs(y, v)) 

The first two rules are clearly terminating since the rhs contains no 
recursive invocation of Pairs. For the last rule, we apply twice the method 
described above to verify termination: 

and 

s =  {CONS(x, y), CONS(u, v)} 

= {x, u} < S, 

T2= 

Every element in T1, T2 is a subterm of some term in S, and we conclude 
that the function definition is finitely terminating. 

2.1.2.2. Unambiguity. A term rewriting definition of a function is unam- 
biguous if the TR-evaluation of any ground term yields the same term, 
irrespective of the reduction sequence used. Thus, if tl and t2 are any two 
distinct terms obtained by reducing the same ground term s, then there 
must exist rewrite sequences from tl as well as t2 yielding the same term t. 
Using the Knuth-Bendix procedure, it is possible to determine whether any 
terminating TRS is ground-confluent. We propose a sufficient, simpler 
method of checking unambiguity for function definitions with the free con- 
structor assumption (cf. the nonoverlapping property [HoOd82]).  

If the arguments of lhs's of definition rules are irreducible, a sufficient 
condition to ensure unambiguous TR-evaluation is the requirement that 
any termf(t-) match with the lhs of at most one rule defining the func t ionf  
i.e., for any term f(T) there is a unique rule lhs ~ rhs such that ~ a '  I f ( t )  = 
(lhs)a]. For non-unifiability of lhs's of definition rules with constructor 
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term arguments to be a sufficient criterion for unambiguity, constructors 
must be "free": every object must be represented by a unique ground con- 
structor term, and there must be no nontrivial equivalences between 
ground constructor terms. Hence unambiguity is guaranteed if the lhs's of 
no two definition rules are unifiable, and every proper subterm of the lhs in 
each definition rule is an irreducible (free) constructor term. 

Hence, if the proper subterms of the lhs of a definition rule are reducible, 
non-unifiability is no longer a sufficient criterion for unambiguity: more 
complex criteria are required. 

For example, let the definition of function f contain the rules f (s )  ~ r 
and f (g( t ) )  ~ t', where the term g(t) itself reduces to s using the rules defin- 
ing g. Although f ( s )  and f (g ( t ) )  are not unifiable, we cannot conclude 
unambiguity unless we are able to show that r and t' have a common 
reduct. 

Similarly, in integer arithmetic with nonfree constructors 0, succ, pred 
related by the rules {succ(pred(x)) --* x, pred(succ(x)) --* x}, if a function is 
defined by rules {f(succ(x))--, tl, f(O)--* t2}, the lhs's of the two rules are 
non-unifiable, yet the ground termf(succ(pred(O))) can be reduced to tl as 
well as t2, depending on which rule is first used for reduction. 

2.1.2.3. Completeness. A term rewriting definition of a funct ionf is  com- 
plete, if every term f(~), where g is a tuple of ground constructor terms, can 
be reduced using some definition rule. In the formulation of [JoKo85], the 
term f (~)  with variable arguments must be quasi-reducible. Completeness 
may be verified by using any of the algorithms given in [Thie83, Koun85]. 
We outline another similar method using an inference mechanism, 
analogous to structural induction on the arguments of the function. Com- 
pleteness is proved if we are able to infer a tuple containing only distinct 
variables from the tuples of arguments in the lhs's of rules defining the 
function. 

We take pairs of rules and repeatedly infer the union of their domains of 
definition by applying the inference rule to proper subterms of the lhs's of 
the defining rules. The inference rules depend on the data structure: for 
example, for lists, there is just one rule: NIL, CONS(x, y)/z. 

When the function has several arguments, the inference system needs to 
be applied to each element of the argument-tuple. For some unifying 
substitution a, if sia, s~a/ti and V j # i. [~)a = sial ,  then 

t t / t ( s l ,  s2,..., s,,..., s , ) ,  ( s l ,  s2 ..... si ..... s , )  

~ S 1 0 " ,  $20-~. . . ,  ti,..., sna )  

EXAMPLE. We attempt to prove the completeness of the OR function as 
defined below, using the inference rule true, false/z for booleans. 
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OR(y, true) -~ true, 

OR(false, false) ~ false, 

OR(true, x) ~ true. 

From the two-tuples (y ,  true) and (false, false), using the substitution 
a = (y ~- false), we infer (false, z).  Using this two-tuple and (true, x )  
from the third rule, the completeness of the set of two-tuples of arguments 
to OR is then concluded. The inference tree is shown below: 

(y ,  true), (false, false) 
(false, z ) ,  (true, x )  

(u,v) 

2.1.2.4. Fully Definedness. We now condense the preceding discussion 
by describing when a function is Fully Defined by rewrite rules, guarantee- 
ing that the function definition satisfies the properties of termination, 
unambiguity and completeness. 

DEnNITION. A function f is Fully Defined by the set of rewrite rules 
{f(gl) ~ tl, f(s2) ~ t2 ..... f(~,)  ~ t,}, where each si comprises of construc- 
tor terms, if 

(a) all constructors are free, and there are no rewrite rules in which 
the leading symbol of the lhs is a constructor; 

(b) whenever i ¢  j, f(si) and f(~j) are not unifiable; 

(c) V i. [Vars(ti) ~ Vars(f(~,))]; 
(d) 2, a tuple of distinct variables, can be inferred from {~,  2:,..., ~,}; 

and 

(e) the definition rules constitute a pseudo-hierarchy under the mul- 
tiset subterm ordering, and lower level non-primitive functions used are 
Fully Defined. 

EXAMPLE. A function of two arguments is defined below to check 
whether the first argument is a list which is longer than the second. 

(1) Longer(NIL, z) ~ false, 
(2) Longer(CONS(x, y), NIL)--+ true, 
(3) Longer(CONS(x, y), CONS(u, v)) ~ Longer(y, v). 

First, every ground constructor term is its own normal form since there are 
no nontrivial equivalences between terms built with CONS and NIL. 

Second, the lhs's of no two rules unify. The argument tuple of the first 
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rule, (NIL, z),  is disjoint from the other two since its first argument NIL 
is not unifiable with CONS(x, y) which is the first argument of the other 
rules. The argument tuple of the second rule is disjoint from the third since 
NIL, the second argument, is not unifiable with the corresponding 
argument CONS(u, v) of the third rule. 

Third, in each rule, variables of the rhs are all contained in the lhs. The 
definition is proved to be complete by inferring a two-tuple of variables 
from the arguments of the lhs's of the rewrite rules. From the arguments of 
Longer in the rules (2) and (3), we infer 

(CONS(x, y), CONS(u; v)), (CONS(x, y), NIL)  

(CONS(x, y), z) 

We then apply the inference rule to the arguments from rule (1) and the 
newly inferred term-tuple, 

(NIL, z),  (CONS(x, y), z)  

(Z', Z )  

Last, the definition rules constitute a pseudo-hierarchy since the only 
occurrence of Longer in the rhs of a rule occurs in rule (3) on arguments 
that are proper subterms of the corresponding arguments of the lhs. 
Therefore the rhs is "smaller" than the lhs in the well-founded subterm 
ordering, and the function definition satisfies the termination property. 

Hence the function Longer is Fully Defined in this formalism. 

2.2. Conditional Definitions 

In this section, we present a formalism of conditional term rewriting and 
its operational semantics. We illustrate how this formalism can be used to 
define functions. We then address the issues of termination, unambiguity 
and completeness for conditional function definitions, and combine these 
ideas to formulate the property of "Fully Definedness" of conditional 
definitions. 

2.2.1. Tue-Reduction 

DEFINITION. A Conditional Term Rewriting System (CTRS) is a set of 
conditional rewrite rules. Each conditional rewrite rule consists of a con- 
dition and a pair of terms (lhs, rhs) and is written [condition::lhs---, rhs]. 

The operational semantics of CTRS has earlier been described in several 
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different ways. We now define one approach, Reduction T-un~vbTg 
equalities, (where T is the given CTRS), abbreviated as Tue-Reduction. 

The condition may contain literals with variables not present in the lhs. 
In earlier work [-DeP185], such variables have been assumed to be existen- 
tially quantified, and an attempt is made to find a substitution for these 
variables that satisfies the literals in the condition. We wish to ensure the 
specification of "complete" definition systems, in which some rule can 
always be used to reduce a term headed by the function being defined. If 
some rule is applicable when a particular literal is satisfiable, we also need 
some rule to be applicable in the complementary case, when such a literal 
is unsatisfiable. Hence, we allow conditions in rules to have literals that 
must be proved unsatisfiable. 

In our formulation, the condition in each rule will consist of the two 
parts sat[pos] and unsat[neg], where pos and neg are sets of literals, some 
of which may be equality predicates, that must respectively be proved 
satisfiable and unsatisfiable. If 2=[Vars(pos)-Vars(lhs)] and )7= 
[Vars(neg)- Vars(lhs)- Vars(pos)], where pos= {P1,..., Pro} and neg= 
{N~,..., N~}, then the intended logical meaning of the rule 

sat[P~,..., Pro] unsat[N1 ..... N , ]  ::lhs --, rhs is 

( 3 2 [ ( P ~  A "" APm) A V ~ . ( - n N  1 A '-- A 7 N, , ) ] )~ ( lhs=rhs ) .  

This makes it easy to specify the function for conditions complementary to 
the above rule, using rules like 

unsat[P 1 ,..., P,~] ::lhs ~ rhsl 

and 

sat [P1 , . . . ,  Pm, Nl ..... Nn] ::lhs --* rhs 2. 

For convenience, a positive literal whose variables are all contained in 
the lhs will be kept in the sat part of the condition, while a negative literal 
(-7 P) whose variables are all contained in the lhs will be represented by 
keeping the corresponding atom(P) in the unsat part. When empty, the sat 

or unsat part of a rule may be omitted. 
If a term is to be Tue-Reduced, we must first find a subterm that matches 

with the lhs of some rule of the CTRS. The condition of the rule is 
then tested, after replacing non-equality literals by equivalent equality 
predicates. 

An attempt is made to satisfy the equality predicates occurring in 
sat[pos] by jointly conditionally T-unifying the two sides of each equality, 
using a modified version (cf. [Kap184, Huss85]) of the T-Unification 
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algorithm described in [Hull80], where T is the given set of conditional 
rewrite rules, and only the non-lhs variables in the sat part of the rule are 
substituted for. If this attempt succeeds and a joint unifier is found for the 
equalities in the sat part of the rule, the equalities in the unsat(neg) part of 
the condition must then be proved unsatisfiable for every substitution of 
the variables of the given term or the rule. This is done by attempting to 
jointly T-unify the sides of each equality, substituting for even the variables 
of the term given to be reduced (as illustrated in Example 3). 

Tue-Reduction occurs if there is no such T-unifier, for some satisfying 
substitution of the sat part of the condition. As a result, the appropriately 
instantiated rhs of the rule replaces the subterm in the given term that had 
originally matched with the lhs of the rule. A more precise description of 
Tue-Reduction follows: 

(1) All variables of rules are renamed to avoid name conflicts with 
the given term. For uniformity, each predicate A occurring in the condition 
of each rule is written [A -- true], while each negative literal ~ A in the 
condition is written [A - false]. 

(2) A rule s a t [ P  1,..., Pm] unsat[Nl ..... Nm] ::lhs --* rhs is chosen such 
that lhs matches with some subterm t of the given term, i.e., t = (lhs)a0, for 
some substitution Go. 

(i) If no such rule is found, we conclude that the given term is 
irreducible using the set of rules being considered. 

(ii) If found, the matching substitution ao is applied to the rest of 
the rule. 

(3) Now the equality literals in the sat part of the rule are jointly 
T-Unified, so that V i, [sia --, *ni, tia --* *ni], where each literal (P~)a o of 
the sat part is the equality predicate (s+ - t+), and ni are irreducible, for 
some new most general T-unifying substitution a for the variables 
[Ui Vars(P+)] in the sat part of the rule. Note that a is not an instance of a 
substitution obtained in a previous execution of this step. 

(i) If no such T-unifier a is found, we conclude that this rule can- 
not be used to Tue-Reduce the given term, and attempt Tue-Reduction 
using some other rule, beginning from step (2). 

(ii) If found, the T-Unifier a obtained above is applied to the rest 
of the rule. 

(4) Equality literals in the unsat part of the rule are now jointly 
T-Unified, so that V i, [sip ~ *n~, tip ~ *nil, where each literal (N~) aoa of 

the unsat part is the equality predicate (si ~ ti), and ni are irreducible, for 
some substitution p for the variables in Vars(t)w [Ui. Vars(N~aoa ) -  
~+ Vars(Pjao)]. 
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(i) If no such T-Unifier p is found, we conclude that Tue-Reduc- 
tion can occur: in the given term, the subterm t may be replaced by 
[(rhs) O'oO ]. 

(ii) If any T-unifier p is found, we conclude that for substitution 
for variables in the sat part, this rule cannot be used to Tue-Reduce the 
given term: we rebegin from step (3) and try to find another suitable a. 

We illustrate the above description using three examples. The first shows 
how equality predicates are handled in our approach, the second 
demonstrates the conditional narrowing of literals, while the third 
illustrates the Tue-reduction of a term containing variables. 

EXAMPLE l. The term f(CONS(a, CONS(b, CONS(b, w)))) is to be 
Tue-Reduced using the conditional rule 

sat[z ~ CONS(x, CONS(v, y))] unsat[x L v] ::f(z) 

CONS(x, f(CONS(v, y))). 

The matching substitution obtained with the lhs of the rule is 

a = [z ~ CONS(a, CONS(b, CONS(b, w)))]. 

This substitution transforms the condition of the rule to 

sat[CONS(a, CONS(b, CONS(b, w))) 

~- CONS(x, CONS(v, y))] unsat[x "~ v]. 

The first equality is satisfied using the unifier p l = [x~a, v~b, 
y ~ CONS(b, w)] and the condition then changes to sat[ ] unsat[a ~ b]. 
Non-unifiability and non-narrowability of the constants a and b imply the 
unsatisfiability of (a ~ b). Hence the Tue-Reduction of the given term suc- 
ceeds and the resulting term is CONS(a, f(CONS(b, CONS(b, w)))). 

We may now attempt to apply the same rule again to this term, 
matching the variable z to CONS(b, CONS(b, w)). The substitution al = 
[x ~- b, v ~ b, y ~ w] satisfies the equality [CONS(b, CONS(b, w)) 
CONS(x, CONS(v~,y))], and instantiates the literal in the unsat part to 
[b - b]. Since (b -: b) is trivially satisfiable, and every other substitution 
satisfying ICONS(b, CONS(b,w)) ~ CONS(x, CONS(v,y))] is an 
instance of o 1, the term CONS(a, f(CONS(b, CONS(b, w)))) cannot be 
reduced using this rule. 

EXAMPLE 2. There are two constructors (constants) a, b, and two lower 
level predicates P, Q defined by the conditional rules 
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(1) 

(2) 

(3) 

{i.e., P is 

(4) 
(5) 

9 9 

s a t [ x  - a, y - a ]  ::P(x, y)--* true, 
9 

s a t [ x  = b ] : : P ( x ,  y)  ~ false, 
9 

s a t [ y  - b]  ::P(x, y)  ~ false, 

true only  when  both  arguments  are a} ,  
9 9 

s a t [ x  b, y - b ] : : Q ( x ,  y)  ~ true, 
9 

s a t [ x  - a ]  ::Q(x, y )  ~ false, 
9 

(6) sa t [y  = a]::Q(x, y)- , fa l se ,  

{i.e., Q is true only when both arguments are b}, 

(7) sat[P(y,  z)] unsat[Q(x, v)] ::f(x, z) --, a. 

We attempt to Tue-Reduce the term f(a ,  a) using the last rule: on applying 
the matching substitution [ x ~ a ,  z,--a], the condition becomes 
sat[P(y,a)]unsat[Q(a, v)]. P(y,a) is satisfiable since it can be con- 
ditionally narrowed to true using rule (1), with the substitution [y  ~ a]. 
Q(a, v) is unsatisfiable: it Tue-Reduces to false using rule (5), and cannot 
be narrowed to true. Hence f (a ,  a) Tue-reduces to a using rule (7). 

Similar Tue-reduction on the te rmf(x ' ,  a), however, is not possible using 
rule (7). The reason is that Q(x', v) is not unsatisfiable: x' is treated as a 
variable and not a constant. Q(x', v) can be narrowed to true using rule 
(4), but cannot be reduced to f a l s e .  

EXAMPLE 3. We define a function Filter which reports an error when 
given as argument any list containing a non-empty list as the first element. 

9 

(1) s a t [ x  -- CONS(CONS(u, v), z)] ::Filter(x) ~ err, 

(2) u n s a t [ x  - CONS(CONS(u, v), z)] ::Filter(x) ~ x. 

The nonground term Filter(CONS(w, NIL)) is itself not reducible using 
either rule, although narrowable. For example, to reduce this term using 
either rule, substituting CONS(w, NIL) for the variable x, we need to 
prove that ICONS(w, NIL) = CONS(CONS(u, v), z)] is either satisfiable 
or unsatisfiable. 

(i) To prove satisfiability, w must be treated as a constant: 
it is not unifiable with CONS(u,v), hence sat[CONS(w, NIL) ? 
CONS(CONS(u, v), z)] is unprovable and rule (1) is inapplicable. 

(ii) For checking unsatisfiability, w must be treated like any other 
variable, and we have to disprove the unifiability of CONS(w, NIL) and 
CONS(CONS(u, v), z). However, unification is indeed possible using the 
substitution [w , -  CONS(u, v), z ~ NIL] ,  hence we fail to prove 
unsat [x  ~ CONS(CONS(u, v), z)] and the given term cannot be reduced 
using rule (2). 
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2.2.2. Conditional Function Definitions 

The definition of a function f in a CTRS contains a set of conditional 
rules {C~::f(~.)~si}. The Tue-Evaluation of a term f(T) is its repeated 
Tue-Reduction using the rules in the definition o f f  until the resultant term 
is a constructor term or is irreducible. 

EXAMPLE. The following CTRS defines a function Longer which verifies 
whether its first argument is a list longer than the second. 

(1) unsat[x L CONS(u, v)] ::Longer(x, y) ~ false, 

(2) sat[x ~ CONS(u, v)] unsat[y L CONS(w, z)] ::Longer(x, y) 
true 

(3) sa t [ Ix  ~ CONS(u, x')], Ey L CONS(v, y'))]::Longer(x, y ) ~  
Longer(x', y'). 

We now illustrate the Tue-Evaluation of the ground term 
Longer(CONS(a, CONS(b, NIL)), CONS(c, NIL)) using this function 
definition. With [-x ~ CONS(a, CONS(b, NIL)), y ~- CONS(c, NIL)] as 
the matching substitution, the given term matches with the lhs in each of 
rules (1), (2), and (3). However, ICONS(a, CONS(b, N I L ) ) L  
CONS(u, v)] and ECONS(c, NIL) '=" CONS(w, z)], the literals in the unsat 
parts of the conditions of rules (1) and (2), are satisfiable. Hence rules (1) 
and (2) cannot be used for Tue-Reduction. 

Evaluating the condition in rule (3), satisfying the first equality 
ICONS(a, CONS(b, NIL)) ~ CONS(u, x')] with the unifying substitution 
p~ = J u r a ,  x ' ~ C O N S ( b ,  NIL)], and satisfying the second equality 
ICONS(c, NIL) - CONS(v, y ')]  with P2 = Iv ~ c, y' ~ NIL], we con- 
clude that rule (3) can be used to Tue-Reduce the given term to 
Longer(CONS(b, NIL), NIL). 

This term may again be Tue-Reduced: rule (2) is now applicable with 
the substitution [x~-CONS(b,  NIL), y ~ N I L ] ,  since the literal 
CONS(b, N I L ) ~  CONS(u, v) is satisfiable and NIL ~ CONS(w,z) is 
unsatisfiable. The rhs of rule (2) is the irreducible term true, and hence 
we conclude that the given term Longer(CONS(a, CONS(b, NIL)), 
CONS(c, NIL)) Tue-Evaluates to true. 

2.2.2.1. Termination. To avoid infinite chains of reductions in the 
evaluation of the condition in a rule, [Remy83] uses hierarchical 
specifications in which the subterms of the condition of every rule are all 
defined by rewrite rules at a lower level. However, this is restrictive since it 
does not allow recursion in the conditions of definition rules. EKap184] 
defines Fair CTRS in which all the subterms in the condition and the rhs of 
every rule have to be smaller than the lhs in some well-founded ordering. 
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We attempt to give clearer guidelines to a programmer to help define 
functions using terminating rewrite rules. We modify the above ideas for 
the specific situations when the CTRS is a function definition, with rules 
that have lhs's comprising the defined function invoked on constructor 
term arguments. As we have done for unconditional systems, we require 
that conditional function definitions be specified as pseudo-hierarchies. We 
allow several layers of rules, each layer containing mutually recursive 
function definitions. 

DEFINITION. A conditional function definition is a pseudo-hierarchy if 
every subterm of the condition and the rhs of each rule is either 

(a) a term with leading symbol denoting a function hierarchically 
lower than the function being defined, or 

(b) an invocation of a function at the same level (as the function 
being defined) on an argument-tuple which is ~ (smaller than) the 
argument-tuple of the lhs of the rule, in some well-founded ordering 
(e.g., the multiset subterm ordering given in Sect. 2.1.2.1). 

PROPOSITION. A pseudo-hierarchical conditional function definition ter- 
minates for every invocation of the defined function on constructor terms. 

2.2.2.2. Unambiguity. A conditional function definition is unambiguous 
if Tue-evaluation of any ground term yields a unique result, irrespective of 
the reduction sequence used. In general, no semidecision procedure can be 
outlined to check the ground confluence of arbitrary CTRS, but in some 
restricted cases an extension of the Knuth-Bendix procedure may be used 
[ReZh85]. We propose a sufficient, simpler method to check unambiguity 
of conditional definitions, extending the technique outlined earlier 
(Sect. 2.1.2.2) for checking unambiguity of unconditional term rewriting 
definitions. 

As in Section 2.1.2.2, we assume that in defining a function f :  

(i) i f f i s  the leading symbol of the lhs of a rule, all proper subterms 
of the lhs are constructor terms; and 

(ii) distinct constructor terms are not equivalent and cannot be 
reduced to one another. 

We may allow a term to unify with the lhs's of different rules, if it can be 
ascertained that the conditions of these rules do not simultaneously hold. 
This is ensured if, under the substitution unifying the lhs's of two rules, the 
satisfaction of some literal in the sat part of one rule implies that some 
literal in the unsat part of the other rule must also be satisfied. In other 
words, the function definition is unambiguous if for every pair of rules 
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whose lhs's unify using a substitution 0, we have (pO~ (qO)a) for some 
substitution a, where p is in the sat part of one rule and q is in the unsat 
part of the other rule. 

Tue-evaluation of any term using a given rule must lead to a unique 
result. Hence, unambiguity requires that the terms which may be sub- 
stituted for variables Yi ~ [ Vars(rhs)- Vars(lhs)] must be unique. This is 
ensured if every Yi occurs in an equality predicate [yi  L g(ff)] in the sat 
part of the rule where ~ ~ Vars(lhs) and g is any function, effectively ren- 
dering Yi redundant since its occurrences in the rhs may as well be replaced 
by g(Y). 

2.2.2.3. Completeness. A conditional function definition of f is complete 
if the term f(~) can be Tue-reduced using some definition rule, for every 
tuple of ground constructor terms ~. Analogous to the inference rules for 
functions defined using unconditional TRS (given earlier in Sect. 2.1.2.3), 
the basic technique is the use of structural induction over terms with con- 
structors and variables. In addition, we infer that a term is reducible under 
the disjunction of conditions of different rules, locating identical literals in 
the sat and unsat parts of different rules. 

First, we obtain the Guarded tuple starter (sat[pos] unsatEneg] ::~) from 
each conditional rule sat[pos] unsat[neg] ::f(~) ~ t. Multiple occurrences 
of the same variable in the lhs of any rule are replaced by new variables, 
and equality predicates (equating the new variables) are introduced in the 
sat part of the guarded tuple starter obtained from the rule. This enables us 
to check that a different rule has a complementary condition: for example, 
from the (unconditional) non-linear rule 

U(CONS(x, CONS(x, y))) --. f (CONS(x,  y)) 

we obtain the guarded tuple starter (sat[x --- z] ::CONS(x, CONS(z, y))) 
which is complementary to the starter obtained from the rule 

9 

unsat [x  -- z] : :f(CONS(x, CONS(z, y))) ~ CONS(x, f(CONS(z,  y))). 

Similarly, every occurrence of a non-variable subterm in the lhs may be 
replaced by a new variable and a corresponding equality predicate 
introduced in the sat part of the corresponding starter. This would be 
needed to infer completeness from complementary rules like 

q 

f ( t)  ~ rl (giving the starter sat[x = t] ::x); and 
9 

unsat [x  - t]  : : f (x )  ~ r2. 

From these starters, the inference system then derives new Guarded tuples, 
each of which is a 3-tuple denoted (sat[pos] unsatEneg]::termtuple) (cf. 
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contextual terms [ReZh85]). The function definition is complete if we suc- 
ceed in using the inference rules for the relevant data types to derive the 
guarded tuple (sat[ ] unsat[ ] ::£), i.e., a tuple of variables with empty 
conditions, or something trivially equivalent. For example, note that 

9 ? 

(sat[y - z] unsat[w --+ w]::x) may be considered equivalent to 
(sat[ ] unsat[ ]::x). Inferences can be made for subterms as well as 
instantiations of any of the components of a guarded tuple. 

For example, using the inference system for list structures, we may make 
the inferences 

(sat[P] unsat[N] ::CONS(u, NIL)), 1 
(sat[P] unsat[N] ::CONS(u, CONS(x, y)))]  

(sat[P] unsat[N] ::CONS(u, z)) 
sat[(t ~ NIL), P] unsat[N] ::%), ] 

(sat[(t - CONS(y, z)), P] unsat[N] ::g)J 

(sat[(t :-' x, P] unsat[N] ::%) 

If the same term P occurs in the sat part of one rule and the unsat part of 
another (otherwise identical) rule, then the guarded tuples of these rules 
may be merged, eliminating P. This gives us another inference scheme, 
which take identical terms from the sat and unsat parts of otherwise 
identical guarded tuples and cancel them: 

(sat[P, Q] unsat[N] ::s), (sat[Q] unsat[P, N] ::s) 
(sat[Q] unsat[N] ::s) 

Like other inferences (cf. Sect. 2.1.2.3), this inference scheme also extends to 
subterms and instances of guarded tuples. 

In a strict sense, a function definition may be completely defined 
although we may not reach this conclusion using this inference technique: 
for example, we are unable to infer that f(x) is always Tue-reducible using 
the definition below: 

g(x)  ~ false 

unsat[g(x)] ::f(x) ~ rhs(x) 

However, we do enable the task of checking completeness of specification 
using simple syntactic criteria, without attempting to perform actual reduc- 
tion of terms using function definitions. The specification method related to 
our inference technique is also modular: other functions may be indepen- 
dently defined and altered, without changing the completeness property 
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of the function in consideration (whose definition has been verified to be 
complete using the inference mechanism). 

PROPOSITION. If  the conditional definition of a function f is complete for 
every possible definition of other fully defined functions (used in defining f),  
then, using the inference mechanism outlined above, the guarded tuple 
sat[ ] unsat[ ] ::Y can be inferred from the guarded tuple starters obtained 
from the rules defining f 

2.2.2.4. Fully Definedness. We now summarize the above discussion 
and list a set of veriable criteria to ensure that a conditional definition is 
terminating, unambiguous, and complete. 

DEFINITION. Let the set of all conditional rewrite rules whose lhs is 
headed by f be 

{ sa t [P , ]  unsat[Ni]  : : f (~ )  -~ t, ,..., sat[P,,]  unsat[N,~] :: f ( g , , )  --* t,, }, 

where gi are tuples of constructor terms. The function f is Fully Defined in 
the conditional term rewriting formalism if 

(a) all constructors are free, and there are no rewrite rules in which 
the leading symbol of the lhs is a constructor; 

(b) if the lhs's of two rules are unifiable using substitution a, then 
there exists a literal P in the sat part of one rule, a literal Q in the unsat 
part of the other rule, and a substitution p such that (P~ ~ (Qa)p); 

(c) every variable y~ [Vars(rhs)- Vars(lhs)] occurs in the condition 
of the rule in an equality predicate of the form y ~' g(~) where 
ff ~_ Vars(lhs); 

(d) a tuple of distinct variables (equivalently, the guarded tuple 
sat[ ] unsat[ ]::£) can be inferred from the guarded tuple starters 
obtained from the definition rules; and 

(e) the definition rules constitute a pseudo-hierarchy, in which lower 
level functions used are Fully Defined. 

EXAMPLE. We define a unary function Del on lists which returns a list 
obtained by deleting consecutive repetitions of members of the argument of 
Del. 

(1) Del(NIL ) ~ NIL, 

(2) Del(CONS(x, NIL)) ~ CONS(x, NIL), 

(3) Del(CONS(x, CONS(x, y ) ) ) ~  Oel(CONS(x, y)), 
(4) unsat[x _Z v]::Del(CONS(x, CONS(v, y))) 

CONS(x, DeI(CONS(v, y))). 
First, all constructor terms are irreducible. 
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Second, the only rules with unifiable lhs's are (3) and (4), and the 
application of their unifier Iv ,-- x] transforms the condition of rule (4) to 
the trivially false unsat[x ~ x]. Hence (4) is inapplicable whenever (3) is 
applicable. 

Third, in each rule, the rhs does not contain any variables other than 
those of the lhs. 

Completeness: We transform rule (3) into a conditional rule with linear 
lhs, from which we obtain the guarded starter sat[x--? z]::CONS(x, 
CONS(z, y)). Using the guarded starters obtained from rules (3) and (4) 
with variables appropriately renamed, we infer: 

sat[x L z] ::CONS(x, CONS(z, y)), unsat[x L z] ::CONS(x, CONS(z, y)) 

CONS(x, CONS(z, y)) 

From this inferred term and the starter obtained from the second rule, we 
infer: 

CONS(x, NIL), CONS(x, CONS(z, y)) 

CONS(x, w) 

Using the starter obtained from the first rule, we then infer: 

NIL, CONS(x, w) 

Z 

The term thus obtained is a variable, unaccompanied by any condition. 
Hence, we conclude that the definition is complete. 

Termination: The only defined function invoked in the rules is Del 
itself. The conditions in the rules do not involve any recursion. In rule (3), 
the argument of Del in the rhs is CONS(x, y) which is a subterm of the 
argument CONS(x, CONS(x, y)) in the lhs. Similarly, in rule (4), the 
argument CONS(v,y)  in the rhs is a subterm of the argument 
CONS(x, CONS(v, y)) in the lhs. Thus, the only recursive invocations of 
Del in the rhs terms have arguments which are strictly smaller than the 
arguments in the lhs, under the subterm ordering, which is well founded. 
Hence this is a terminating conditional definition of the function Del. 

All five criteria being satisfied, we conclude that function Del is Fully 
Defined by the above set of rules. 

2.3. Applicative Function Definitions 

An Applicative Function Definition (cf. [McCa60, Hend80]), consists of a 
function-name, a list of variables (if), and a conditional expression which 
contains no variables other than those in ~. A conditional expression, 
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headed by a special function COND, is a list of pairs [c i --. ri] of con- 
ditions and (resultant) terms. Thus, each definition is of the form 

[ f (x~  ,..., xm) C O N D ( [ c l  ~ r,][c2 ~ r2]""  [c,~ -~ rn])] .  

The Applicative definition of a function f may be used for the 
Ap-evaluation of a term f ( { )  as follows, using the normal order semantics. 
The variables that follow the function-name in the Applicative definition 
are bound to the terms that are the top-level arguments of the given term, 
and occurrences of each such variable in the definition are replaced by the 
terms thus bound to them. The conditions ci in the pairs [ci ~ r~] in the 
conditional expression are sequentially Ap-evaluated until some CJ 
Ap-evaluates to true. The Ap-evaluation of the given term f ( { )  is the same 
as the Ap-evaluation of the corresponding resultant term rJ (the latter part 
of the pair). If none of the conditions ci in the conditional expression 
Ap-evaluates to true, or if the leading symbol of a term does not have an 
Applicative definition, (e.g., a constructor term), we may assume that 
Ap-evaluation leaves the term unaltered. 

Termination of applicative definitions is ensured by the termination of 
the Ap-evaluation of c~ as well as ri for every [c~ ~ r~] in the conditional 
expression. As in the case of conditional definitions, pseudo-hierarchical 
restrictions may be imposed to guarantee termination: subterms of the con- 
ditional expression are allowed to invoke only (a) functions being defined 
at the same level of specification, invoked on 'smaller' arguments; and (b) 
other functions defined at lower levels. 

The former contraint is difficult to check: it is nontrivial to decide when 
we may consider some arguments to be smaller than others. In the 
Applicative definition If(x1,. . . ,  x,~) C O N D ( [ c  1 ~ rl][c2 ~ r2] "'" 
[c,, --* r,,])J, if either ci or r~ contains a subtermf(s l  ..... s,,), then we require 
that I-s1 ..... Sm] ~ IX1 ..... Xm], in some ordering ~ among tuples, where the 
unknown variables are treated as constants. Following the common 
programming practice of defining functions using recursive invocations on 
extractor terms, we allow for nonsubterm orderings: we assume that for 
any term t and for any function g which is either an extractor or a struc- 
ture-tester, we have [g( t )  ~ t]. 

Occurrence of equality and inequality literals in conditions can help 
refine the above criterion. If c~ contains an equality ]-xj = ti] then we need 
to verify that [-s~,..., Sm] ~ tXl ..... tj,..., X,~]. If Ci contains an inequality 
X/¢ 0, where 0 is a constructor term, we may assume that every condition 
Ck that follows c~ (i.e., whenever k > i) includes the equality XJ = t/. 

Sequential evaluation of the conditions ensures that each condition ck is 
tested only if the preceding conditions cl ..... Ck_~ have not evaluated to 
true. This guarantees unambiguity of Ap-evaluation. 

Completeness may be ensured by having true as the condition in the last 
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pair of the conditional expression. When Ap-evaluating a given term, if 
none of the previous conditions Ap-evaluates to true, then the last con- 
dition always succeeds, and Ap-evaluation of the corresponding (last) 
resultant term ensues. 

EXAMPLE. 

[Del(z) COND([(z  = NIL) ~ NIL]  

[(CDR(z) = NIL) -* z] 

[(CAR(z) = CAR(CDR(z))) --* Del(CDR(z))] 

[true -* CONS(CAR(z), Del(CDR(z)))] )]. 

The function defined above eliminates duplicate adjacent occurrences of 
elements of a list: Ap-evaluation of the term 

Del(CONS(NIL, CONS(CONS(NIL, NIL), 
CONS(CONS(NIL, NIL), NIL)))) 

yields 

CONS(NIL, DeI(CONS(CONS(NIL, NIL), 
CONS(CONS(NIL, NIL), NIL)))), 

using the last part of the conditional expression. The Ap-evaluation of this 
term yields CONS(NIL, DeI(CONS(CONS(NIL, NIL), NIL))), which 
finally yields CONS(NIL, CONS(CONS(NIL, NIL), NIL)), a list in which 
no two consecutive elements are the same. 

The function Del has been Fully Defined above. Termination is assured 
because recursive invocations of Del take CDR(z) as argument, which is 
smaller than z in the ordering we assume for lists, since CDR is an extrac- 
tor function. Unambiguity is guaranteed for all Applicative function 
definitions. Completeness is given by the predicate true in the last part of 
the conditional expression. 

3. TRANSFORMATIONS BETWEEN FORMALISMS 

In this section, we outline the methods that may be adopted to translate 
function definitions from one formalism to another. We also indicate 
restrictions in the definitions required to ensure translatability. 

3.1. Unconditional to Conditional Rewrite Rule Formalism 

Translation from an unconditional term rewriting definition to a con- 
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ditional term rewriting definition is straightforward. Each rule of the 
definition is prefixed by the condition sate ]unsat[ ]. 

EXAMPLE. The rule ( f ( s )~  t) translates to (sat[ ]unsat[ ] : : f ( s ) ~  t). 

3.2. Unconditional Rules to Allicative Formalism 

A first attempt to accomplish the translation of a function definition 
from the unconditional term rewriting formalism to the Applicative for- 
malism involves the introduction of equalities between variables and 
arguments of the lhs's of rules into the conditional expression. For example, 
the set of rules {f(s l)  --~ tl, f(s2) ---* t2,...,f(sn) ~ tn } might be translated to 
If(x) C O N D ( [ ( x  = S l ) ~  t l ] , . . .  , ~(X=Sn)~ t n ] ) ] .  

However, the result may not adhere to the applicative style since the 
terms si may contain variables other than those that immediately follow the 
function-name. This must be avoided in Applicative definitions. We now 
describe a more elaborate algorithm for the translation of rewrite rules in 
which all proper subterms of the lhs are constructor terms. Each definition 
rule corresponds to one of the I-ci-~ ri] pairs in the conditional expression, 
constructed as follows. 

First, new variables are introduced as the arguments of the function 
defined. Each occurrence of a variable in the lhs of the rule is replaced by 
an extractor term over the new variables, depending on its position in the 
lhs of the given rewrite rule. We obtain ri from the rhs of the rule, replacing 
variables by the extractor terms obtained above. When proper subterms of 
the lhs are constructor terms, the use of structure-tester functions in the 
applicative definition achieves a purpose analogous to matching a given 
term agains the lhs of the rewrite rule. 

EXAMPLE. We illustrate the translation of the term rewriting definition 
for Longer that was given in section 2.1.2.4. 

Term Rewriting Definition: 

(1) Longer (NIL, z) -* false, 

(2) Longer (CONS(x, y), NIL)-~ true, 
(3) Longer (CONS(x, y), CONS(u, v)) --* Longer(y, v). 

Applicative Definition: 

[Longer(x, y) COND([ISNULL(x)  --* false] 

[(ISCONS(x) A ISNULL(y))  -~ true] 

[(ISCONS(x) A ISCONS(y))  - ,  Longer(CDR(x), CDR(y)) ] ) ] .  
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If a rule contains multiple occurrences of a variable, the corresponding 
condition ci in the Applicative definition must also contain a conjunction of 
equality predicates equating the extractor terms corresponding to each 
occurrence. 

EXAMPLE. We translate the rewrite rule (halve(CONS(x, x ) ) ~  x) into 
the Applicative (partial) function definition 

[halve(z) COND([(CAR(z)  = CDR(z)) ~ CAR(z)])].  

3,3. Conditional to Unconditional Rewrite Rule Formalism 

When the condition of a conditional rule contains variables not occur- 
ring in the lhs, their quantification cannot in general be handled by uncon- 
ditional rewrite systems. Translation from conditional to unconditional 
rewriting definition rules is possible only in restricted cases, which we now 
consider. 

Restriction 3.3.1. 

The first restriction is that the conditions of rules contain only a sat part 
which contains only structure-tester terms and equality predicates on 
primitive terms. Each such equation is "solved," i.e., each equality is trans- 
formed into the form zi ~- ti where zi is a variable and t~ is a primitive term 
not containing occurrences of z~. This transformation occurs by 

(i) inverting every extractor function, introducing new variables 
as required (e.g., [CAR(x) L CDR(y) ]  becomes [x L CONS(z, w), y " 
CONS(u, z)]); 

(ii) replacing structure-testers and variables by corresponding con- 
structor terms (e.g., [ISCONS(x)]  becomes [x --? CONS(y,  z)]); and 

(iii) splitting equalities between unifiable constructor terms into 
subterm equalities (e.g., [CONS(u, v) L CONS(s, CONS(t, w))] becomes 
[u L s, v ~ CONS(t, w)]). 

The equality predicates can then be eliminated: the translated uncon- 
ditional rule is then obtained by replacing (for each equality predicate 
zi ~ t~) every occurrence of z~ in the rest of the rule by the corresponding 
term ti. In the above process, if any equality between non-unifiable 
constructor terms is obtained (e.g., [CONS(x,y)  L NIL] ,  or 
[x---* CONS(x, y)]) ,  the rule may be discarded. 

EXAMPLE. The conditional rule sat[x ~ CAR(y), z ~ CONS(x, y)]  :: 
f (z)--*f(y)  may be first transformed to 
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sat[y  '--- CONS(x, v), z ~- CONS(x, y)]  ::f(z) --+f(y) and then to satFz 
CONS(x, CONS(x, v))]:: f ( z ) ~ f ( C O N S ( x ,  v)). This rule may then be 
translated to the unconditional rule f(CONS(x,  CONS(x, v)))-~ 
f(CONS(x,  v)). 

Restriction 3.3.2. 

In the other restricted case of conditional definition rules considered, the 
condition contains only variables contained in the lhs. Then, the 
elimination of a condition from a rewrite rule is possible by introducing 
dummy function symbols (cf. [DeP185]). For example, we may translate 
the conditional rule sat[P(~)]unsat[Q(~)] : : f(2)-~ r(2) into the following 
TRS: 

(1) f (£)  ~f ' (P(£) ,  Q(X), £), 
(2) f'(true, false, )~) -~ r(~). 

This has the effect of forcing condition evaluation before the rhs of the 
corresponding conditional rule is evaluated. It is also necessary to provide 
else clauses, of the form 

f'(faise, false, £) -~ sl (£), 

f'(false, true, if) ~ s2 (if), 

f'(true, true, ~) -~ s3 (~), 

which should be generated by translating other conditional rules if the 
original conditional definition is complete. When the condition P({) does 
not hold, (or when Q({) holds), the conditional rule cannot be used for 
reduction, while the translated rule (1) can be used to reduce f([) to 
f'(P({),/-), a term originally absent from the language. 

EXAMPLE. Two of the rules of the conditional function definition Del in 
section 2.2.2.4 are translated together to unconditional rules: 

Conditional Rules: 

(i) DeI(CONS(x, CONS(x, y))) ~ Oel(CONS(x, y)), 

(ii) unsatEx L v] ::Del(CONS(x, CONS(v, y))) 
CONS(x, Del(CONS(v, y) ) ). 

Unconditional Rules: 

(1) Oel(CONS(x, CONS(z, y))) ~f'(eq(x,  z), x, z, y), 
(2) f'(true, x, z, y) --+ Del(CONS(z, y)), 
(3) f'(false, x, z, y) ~ CONS(x, Del(CONS(z, y))). 
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Note. Rules (I), (2), (3) are together equivalent to 

DeI(CONS(x, CONS(z, y))) ~ if eq(x, z) then DeI(CONS(z, y) ) 

else CONS(x, Del(CONS(z, y) ) ) 

The definition for the underlying eq predicate is: 

(4) eq(NIL, NIL)-~ true, 

(5) eq(CONS(x,y), NIL) ~ false, 

(6) eq(NIL, CONS(x, y))--+ false, 

(7) eq(CONS(x, y), CONS(u, v ) ) ~  and([eq(x, u)], [eq(y, v)]). 

3.4. Conditional Rules to Applicative Formalism 

In the general case in which the conditions in the conditional rules con- 
tain new variables not occurring in the lhs, no straightforward translation 
to the applicative formalism is possible, since satisfiability and 
unsatisfiability of arbitrary literals cannot be handled in the latter. Again, 
we consider restricted cases. 

Restriction 3.4.1. 

When all the variables used in a conditional rule have occurrences in the 
lhs, translation from a conditional definition to an applicative definition 
may be carried out in a manner very similar to the translation from uncon- 
ditional rules described in Section 3.2. The unsat part may be eliminated by 
negating all the literals in it and moving them to the sat part of the con- 
dition. New variables are introduced as arguments of the function, 
occurrences of other variables are replaced by extractor terms, and equality 
predicates are obtained by equating the extractor terms corresponding to 
multiple occurrences of the same variable. Each condition in the con- 
ditional expression of the applicative definition is obtained by taking the 
conjunction of these equalities and the literals in the condition of the given 
rewrite rule. 

Restriction 3.4.2. 

Another restricted case is when variables not in the lhs occur only in 
equality literals of the forms [Co()7 ) L g(~)] or [c~ (~) L c2(-~)] in the sat 
part of a rule, where ci are primitive terms, )7n Vars(lhs)=~, and 
y c~ x = ~ .  Each such equation is "solved," variables )7 are eliminated, and 
the conditional rules translated into unconditional definition rules in which 
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proper subterms of the lhs are constructor terms, as illustrated earlier in 
Restriction 3.3.1 (Sect. 3.3). Using the technique outlined in Section 3.2, 
these unconditional rules are translated into an applicative definition. 

EXAMPLE. Given below is the conditional definition of a function that 
flattens a given list, so that no element of the resulting list is a CONS term. 
Other than NIL, constants a, b, c,..., could be in the argument list of the 
defined function. 

unsat[z L CONS(u, v)] ::Flat(z) ~ z, 

unsat[x L CONS(u, v)] ::Flat(CONS(x, y)) -~ CONS(x, Flat(y)), 

sat[x ~ CONS(u, v)] ::Flat(CONS(x, y)) ~ Flat(CONS(u, CONS(v, y))). 

This conditional definition may be translated to the following Applicative 
definition: 

[Flat(x) COND( [not ISCONS(x) --* x] 

[ISCONS(x) A not ISCONS(CAR(x)) 

--* CONS(CAR(x), Flat(CDR(x)))] 

[ISCONS(x) A ISCONS(CAR(x)) 

-~ Flat(CONS(CAR(CAR(x)),  CONS(CDR(CAR(x)), CDR(x)))] )]. 

3.5. Applicative to Conditional Rewrite Rule Formalism 

Transformation of functions from an applicative definition to a con- 
ditional definition is straightforward, as illustrated below: each rule 
corresponds to one of the [Ck ~ tk] pairs of the conditional expression. 
The condition in each (kth) rule also contains negations of the conditions 
in each preceding pair [ C k _ i ~ t k _ i ]  of the conditional expression. 
However, such a translation does not in general lead to a Fully Defined 
CTRS: the well-founded term ordering required for termination of the 
CTRS cannot be obtained when (as in most Applicative definitions), 
extractor terms are to be deemed "smaller" than their subterms (e.g., 
CAR(x) <~ x). 

EXAMPLE. The applicative definition [ f (2)  COND([ C1 --* tl ],..., 
[Cn ~ tn])] may be translated to the conditional rewrite rules 

643/71/3-6 
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sat[C1] ::f(ff) ~ t 1 

sat[C2] unsat[C1 ] : :f(~) --, t2 

sa t [C , ]  unsat[C1, C2,..., C,_  1] ::f(37) ~ t,. 

3.6. Applicative to Unconditional Rewrite Rule Formalism 

The transformation of functions from the applicative definition to an 
unconditional rewrite rule definition can be done in two phases: first, to the 
conditional rule formalism, and second from the conditional to the uncon- 
ditional formalism. Both of these phases have been described in earlier sec- 
tions (3.5 and 3.3). Since the only variables of an applicative definition are 
those that occur as "arguments" to the function being defined, both phases 
of translation are possible. However, considerable control structure is 
embedded in the resulting TRS, disallowing the nondeterminism normally 
inherent in term rewriting reductions. 

4. COMPARISON OF THE FORMALISMS 

When new variables not occurring in the lhs are allowed in the condition 
of a conditional definition rule, the CTRS formalism is more expressive 
than the other formalisms, and spans a larger subset of first order logic for- 
mulas than the others. We focus the following discussion on the more com- 
parable case, wherein no new variables are allowed in the condition of a 
rule. We examine how the three formalisms described above differ in the 
amount of control information embedded in their operational semantics, 

It may appear to be possible to incorporate conditional rewriting into 
unconditional TRS by using a 3-ary if_then_else (or a 2-ary if_then) 
function with the rules: 

i f  then_else(true, x, y)  - -  x, 

if_then_else(false, x, y)  ---, y. 

However, these rules may lead to nonterminating rewrite sequences since 
the nondeterminism in the choice of the subterm to be rewritten allows 
undesirable and unnecessary rewriting. 

EXAMPLE. Consider the TRS with the rule 

Fact (y )  ~ i f  then_else((y <~ 0), 1, y x Fac t (y  - l)). 
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When this rule is invoked by attempting to rewrite Fact( l ) ,  one of the 
reduction sequences obtainable is 

Fact (1) ~ if_then_else((1 ~< 0), 1, 1 x Fact (1 - 1 )) 

-~ if_then_else(( 1 ~< 0), 1, 1 x if_then_else( (( 1 - 1 ) ~< 0), 1, ( 1 - 1 ) 

x Fact((1 - 1 ) -  1)) 

To obtain the desired result, it is necessary to impose the restriction that 
the if part be evaluated first, before rewriting the then and else parts of the 
term. Such a restriction is foreign to the range of non-determinism allowed 
by TRS, and conforms more to the operational semantics of CTRS. Thus, 
although there exists an unconditional rewrite sequence achieving the same 
effect as every conditional rewrite sequence, this TRS allows several other 
rewrite sequences (disallowed by the corresponding CTRS), some of which 
may be nonterminating. 

Using the method proposed in [DeP185] (discussed in Sect. 3.3), trans- 
lation from conditional rules to unconditional TRS can be carried out 
whenever constructor terms denote distinct objects. However, this trans- 
lation also involves considerably restricting the order in which rules are to 
be applied, into a compound if_then else structure with more control 
embedded than even that of the corresponding CTRS rules, and hence 
resembling an applicative definition rather than a TRS. Translation 
avoiding the deterministic structure causes the problems of either non-ter- 
mination (as in the Fact example above) or reduction to an irreducible 
term with a new function-symbol. 

A greater amount of control information is embedded in an applicative 
definition than in a CTRS definition: applicative definitions imply a strict 
sequencing in the evaluation of conditions. As discussed in Section 3.5, any 
applicative definition may be translated into a conditional definition in 
which each rule is of the form sat[Ci]unsat[C1,  C 2 ..... C i _ l ]  : :f(2) ~ ti. 
The operational semantics of Tue-Rednction allows any of the subterms Cj 
(where j~< i) to be evaluated first. For some k, the Tue-Reduction of Ck 
may not terminate, whereas Tue-Reducing a different subterm of the 
condition may obviate the need to Tue-Reduce Ck. An effective and 
terminating evaluation may hence be possible only if a control strategy 
enforces some order of evaluation among conditions. 

EXAMPLE. We consider the translation to a CTRS of the following 
applicative definition of a function f generating the sequence 
1, 2, 5, 10, 21,..., for integer arguments 0, l, 2, 3, 4,..., respectively: 
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I f (z )  COND([(z  ~< 0)--* 1] 

[odd(f (z- 1))--, 2 , / ( z -  1)3 

[true--+ 1 + 2 , f ( z -  1)])] 

where odd, <~, + ,  - ,  • are functions assumed to be defined at a lower 
level. The corresponding conditional definition rules obtained by trans- 
lation are: 

(1) s a t [ z < . O ] : : f ( z ) - +  1, 

(2) s a t [ o d d ( f ( z  - 1))] unsat[z ~< 0] ::f(z) o 2 , f (z  - 1), 

(3) unsat[(z~<0), o d d ( f ( z -  1 ) ) ] : : f ( z ) o  1 + 2 , f ( z -  1). 

In this conditional definition, the attempt to Tue-Reduce f ( - 1 )  will 
succeed only if rule (1) is used for reduction. Attempting to reduce 
f ( - 1 )  using conditional rule (2) entails checking the condition 
s a t [ o d d ( f ( - 2 ) ) ]  unsat[-1<~0] which means f ( - 2 )  will first have to be 
evaluated, which in turn means f ( - 3 )  has to be evaluated, and so on in a 
non-terminating sequence. 

We thus identify the degree of non-determinism in execution strategy as 
the factor important in distinguishing between definitions for the same 
function in the TRS, CTRS and applicative formalisms. 

5. CONCLUSIONS 

We have presented three formalisms of function definition in this paper. 
Issues of unambiguity, completeness and termination of functions upon 
invocation on constructor terms have been addressed. Syntactic criteria 
have been drawn up to enable verification of these properties for function 
definitions. The formalisms of TRS, CTRS, and Applicative systems have 
been compared, particularly with respect to interconvertibility of 
definitions among the formalisms investigated. 

We have defined an operational semantics for conditional term rewriting 
systems that is more general than several other formulations. Conditions in 
the rules may contain variables not in the lhs, and literals (including 
equalities) that are to be proved satisfiable or unsatisfiable. Variables 
absent from the lhs (allowed in the condition and the rhs of a rule) serve as 
intermediate objects during computation and also allow the testing of syn- 
tactic structure of normal forms of terms. However, Tue-reducibility as for- 
mulated in this paper is inefficient as well as undecidable, and practical 
considerations necessitate restrictions on the degree of generality allowed. 
We have given restrictions that allow the definition of functions in a way 
that satisfies the desirable properties of unambiguity, completeness and ter- 
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mination. The multilevel pseudo-hierarchy allows for recursive function 
invocations in the conditions of a rule. 

We find that it is easiest to translate unconditional term rewriting 
definitions to other formalisms. Correspondingly, translation from con- 
ditional term rewriting systems to other systems seems hardest. The 
expressive power of each system appears to be directly related to the degree 
of nondeterminism allowed by the formalism. 

In summary, we have explored function definition mechanisms with 
varied expressive power, ease of computation, and degrees of nondeter- 
minism, formulating syntactically verifiable restrictions to ensure 
provability of termination, unambiguity, and completeness. We feel that 
this work would assist the tasks of program design and verification in 
declarative languages. 
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