548,774 research outputs found

    Explanatory Proofs and Beautiful Proofs

    Get PDF
    This paper concerns the relation between a proof’s beauty and its explanatory power – that is, its capacity to go beyond proving a given theorem to explaining why that theorem holds. Explanatory power and beauty are among the many virtues that mathematicians value and seek in various proofs, and it is important to come to a better understanding of the relations among these virtues. Mathematical practice has long recognized that certain proofs but not others have explanatory power, and this paper offers an account of what makes a proof explanatory. This account is motivated by a wide range of examples drawn from mathematical practice, and the account proposed here is compared to other accounts in the literature. The concept of a proof that explains is closely intertwined with other important concepts, such as a brute force proof, a mathematical coincidence, unification in mathematics, and natural properties. Ultimately, this paper concludes that the features of a proof that would contribute to its explanatory power would also contribute to its beauty, but that these two virtues are not the same; a beautiful proof need not be explanatory

    Euclid's theorem on the infinitude of primes: a historical survey of its proofs (300 B.C.--2017) and another new proof

    Full text link
    In this article, we provide a comprehensive historical survey of 183 different proofs of famous Euclid's theorem on the infinitude of prime numbers. The author is trying to collect almost all the known proofs on infinitude of primes, including some proofs that can be easily obtained as consequences of some known problems or divisibility properties. Furthermore, here are listed numerous elementary proofs of the infinitude of primes in different arithmetic progressions. All the references concerning the proofs of Euclid's theorem that use similar methods and ideas are exposed subsequently. Namely, presented proofs are divided into 8 subsections of Section 2 in dependence of the methods that are used in them. {\bf Related new 14 proofs (2012-2017) are given in the last subsection of Section 2.} In the next section, we survey mainly elementary proofs of the infinitude of primes in different arithmetic progressions. Presented proofs are special cases of Dirichlet's theorem. In Section 4, we give a new simple "Euclidean's proof" of the infinitude of primes.Comment: 70 pages. In this extended third version of the article, 14 new proofs of the infnitude of primes are added (2012-2017

    Trade-Offs in Distributed Interactive Proofs

    Get PDF
    The study of interactive proofs in the context of distributed network computing is a novel topic, recently introduced by Kol, Oshman, and Saxena [PODC 2018]. In the spirit of sequential interactive proofs theory, we study the power of distributed interactive proofs. This is achieved via a series of results establishing trade-offs between various parameters impacting the power of interactive proofs, including the number of interactions, the certificate size, the communication complexity, and the form of randomness used. Our results also connect distributed interactive proofs with the established field of distributed verification. In general, our results contribute to providing structure to the landscape of distributed interactive proofs

    Compressibility and probabilistic proofs

    Full text link
    We consider several examples of probabilistic existence proofs using compressibility arguments, including some results that involve Lov\'asz local lemma.Comment: Invited talk for CiE 2017 (full version

    Lower Bounds on the van der Waerden Numbers: Randomized- and Deterministic-Constructive

    Get PDF
    The van der Waerden number W(k,2) is the smallest integer n such that every 2-coloring of 1 to n has a monochromatic arithmetic progression of length k. The existence of such an n for any k is due to van der Waerden but known upper bounds on W(k,2) are enormous. Much effort was put into developing lower bounds on W(k,2). Most of these lower bound proofs employ the probabilistic method often in combination with the Lov\'asz Local Lemma. While these proofs show the existence of a 2-coloring that has no monochromatic arithmetic progression of length k they provide no efficient algorithm to find such a coloring. These kind of proofs are often informally called nonconstructive in contrast to constructive proofs that provide an efficient algorithm. This paper clarifies these notions and gives definitions for deterministic- and randomized-constructive proofs as different types of constructive proofs. We then survey the literature on lower bounds on W(k,2) in this light. We show how known nonconstructive lower bound proofs based on the Lov\'asz Local Lemma can be made randomized-constructive using the recent algorithms of Moser and Tardos. We also use a derandomization of Chandrasekaran, Goyal and Haeupler to transform these proofs into deterministic-constructive proofs. We provide greatly simplified and fully self-contained proofs and descriptions for these algorithms

    Deductively Sound Formal Proofs

    Get PDF
    Could the intersection of [formal proofs of mathematical logic] and [sound deductive inference] specify formal systems having [deductively sound formal proofs of mathematical logic]? All that we have to do to provide [deductively sound formal proofs of mathematical logic] is select the subset of conventional [formal proofs of mathematical logic] having true premises and now we have [deductively sound formal proofs of mathematical logic]

    Evidence, Proofs, and Derivations

    Get PDF
    The traditional view of evidence in mathematics is that evidence is just proof and proof is just derivation. There are good reasons for thinking that this view should be rejected: it misrepresents both historical and current mathematical practice. Nonetheless, evidence, proof, and derivation are closely intertwined. This paper seeks to tease these concepts apart. It emphasizes the role of argumentation as a context shared by evidence, proofs, and derivations. The utility of argumentation theory, in general, and argumentation schemes, in particular, as a methodology for the study of mathematical practice is thereby demonstrated. Argumentation schemes represent an almost untapped resource for mathematics education. Notably, they provide a consistent treatment of rigorous and non-rigorous argumentation, thereby working to exhibit the continuity of reasoning in mathematics with reasoning in other areas. Moreover, since argumentation schemes are a comparatively mature methodology, there is a substantial body of existing work to draw upon, including some increasingly sophisticated software tools. Such tools have significant potential for the analysis and evaluation of mathematical argumentation. The first four sections of the paper address the relationships of evidence to proof, proof to derivation, argument to proof, and argument to evidence, respectively. The final section directly addresses some of the educational implications of an argumentation scheme account of mathematical reasoning
    corecore