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Abstract. The traditional view of evidence in mathematics is that evidence is just
proof and proof is just derivation. There are good reasons for thinking that this
view should be rejected: it misrepresents both historical and current mathematical
practice. Nonetheless, evidence, proof, and derivation are closely intertwined.
This paper seeks to tease these concepts apart. It emphasizes the role of argu-
mentation as a context shared by evidence, proofs, and derivations. The utility of
argumentation theory, in general, and argumentation schemes, in particular, as
a methodology for the study of mathematical practice is thereby demonstrated.
Argumentation schemes represent an almost untapped resource for mathematics
education. Notably, they provide a consistent treatment of rigorous and non-
rigorous argumentation, thereby working to exhibit the continuity of reasoning
in mathematics with reasoning in other areas. Moreover, since argumentation
schemes are a comparatively mature methodology, there is a substantial body of
existing work to draw upon, including some increasingly sophisticated software
tools. Such tools have significant potential for the analysis and evaluation of
mathematical argumentation. The first four sections of the paper address the
relationships of evidence to proof, proof to derivation, argument to proof, and
argument to evidence, respectively. The final section directly addresses some of
the educational implications of an argumentation scheme account of mathematical
reasoning.

1. Evidence versus Proof

The traditional view of evidence in mathematics is that evidence is just proof.
Donald Martin poses the question, ‘What then does count as mathematical evi-
dence? There is, of course, an obvious answer to the question of how one can come
to know the truth of a mathematical proposition: namely, proof. Indeed, this may
seem the only way to establish mathematical truth’ (Martin, 1998, 216). However, as
Martin acknowledges, there are good reasons for not accepting this view. Crucially,
it does not comport with actual mathematical practice. Here, for example, is a
short, melancholy narrative of an unsuccessful proof attempt, unusual only in be-
ing so self-contained. The mathematician Vašek Chvátal proposed as a conjecture
a generalization of the well-known Sylvester–Gallai theorem. Unable to supply
a proof, he comments that ‘we present meagre evidence in support of this rash
conjecture’ (Chvátal, 2004, 175). However, the last lines of his published paper
read: ‘Received July 14, 2002, and in revised form April 14, 2003. Online publication
December 31, 2003. Note added in proof. In September 2003 Xiaomin Chen proved
Conjecture 3.2’ (Chvátal, 2004, 195). Conjecture 3.2 is Chvátal’s ‘rash conjecture’;
where Chvátal had evidence, Chen had proof. If proof were the only evidence
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there is in mathematics, then either Chvátal would have had nothing to say, or
Chen nothing to add.

Here is a more protracted exhibition of the use of evidence beyond proof in
mathematical practice. One of the last publications of the celebrated mathemati-
cian (and Nobel laureate) John Nash was a collection of essays on open problems,
edited in collaboration with Michael Rassias. The editors remark of their choice of
problems that ‘Some were chosen for their undoubtable importance and applicabil-
ity, others because they constitute intriguing curiosities which remain unexplained
mysteries on the basis of current knowledge and techniques, and some for more
emotional reasons’ (Nash and Rassias, 2016, vi). Their selection includes many
of the best known open problems in mathematics, each discussed by a leading
expert. Not every essay explicitly references the evidence for these conjectures, but
many do. Here is a sample (boldface emphasis mine throughout; internal citations
omitted):

P versus NP: ‘Of course, this gives even more dramatic evidence that GraphIso

is not NP-complete: if it was, then all NP problems would be solvable in
npolylog n time as well’ (Aaronson, 2016, 20).

Montgomery’s Pair Correlation Conjecture: ‘The agreement with the first
million zeros is poor, but the agreement near zero number 1012 is close,
near perfect near zero number 1016, and even better near zero number
1020. These results provide massive evidence for Montgomery’s conjecture’
(Barrett et al., 2016, 155).

The Birch–Swinnerton-Dyer Conjecture: ‘Today, the numerical evidence in
support of both the weak and full Birch–Swinnerton-Dyer conjecture is
overwhelming, and probably more extensive than for any other conjecture
in the history of mathematics’ (Coates, 2016, 213).

The Erdős–Szekeres Problem: ‘The special cases A = I and A = {i1, in}
correspond to minimal evidence for existence of an n-cup and an n-cap’
(Morris and Soltan, 2016, 363).

The Hadwiger–Nelson Problem: ‘Ronald L. Graham . . . cites a theorem of
Paul O’Donnell (see [34, 49]) showing the existence of 4-chromatic unit-
distance graphs of arbitrarily large girth (Theorem 28 below) as “perhaps,
the evidence that χ is at least 5.”’ (Soifer, 2016, 441).

Erdős’s Unit Distance Conjecture: ‘There is no strong evidence supporting
the assumption that such an example cannot exist’ (Szemerédi, 2016, 468).

Goldbach’s Conjecture: This is the strongest evidence we have that for even
n, r2(n) ∼ nS2(n)’ (Vaughan, 2016, 486).

The Hodge Conjecture: ‘The following theorem proved in [7] is the best
known evidence for the Hodge conjecture’ (Voisin, 2016, 538).

None of these examples of evidence refers to proof; indeed, in many of them
the evidence is for a conjecture notable for being unproven. Nonetheless, we
may see that mathematical evidence can be dramatic, massive, overwhelming,
strong—or, conversely, minimal. But even overwhelming evidence falls short
of proof. Notice also that evidence can diverge from proof on more than one
dimension. Some of these cases fall short of proof since they are proofs of
some weaker conjecture that provides bounds on the headline conjecture, or is
otherwise suggestive of its truth (e.g. Hadwiger–Nelson, Hodge); others differ
in kind, rather than degree, by offering numerical, that is empirical, evidence
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(e.g. Montgomery, Birch–Swinnerton-Dyer). Nor are considerations of evidence
short of proof confined to the contemplation of stubbornly unsolved problems.
On the contrary, mathematicians must often consider such evidence when making
decisions about their own careers and those of their students. Crucially, as
James Franklin notes, every Ph.D. supervisor must ensure that the problems their
students tackle are open, but likely to yield to a few years work (Franklin, 1987, 2).
Similar considerations of evidence bear on grant awards, tenure decisions, and
many other administrative aspects of mathematical practice.

2. Proof versus Derivation

The ‘standard view’ of the relationship between informal, or everyday proof
and derivation, its formal counterpart, is that ‘informal proofs are just sloppy,
incomplete versions of formal proofs’ (Pawlowski and Urbaniak, 2018). On this
account, the only proofs worthy of the name would either already be derivations
or be rewritable as derivations in a more or less trivial manner. Nonetheless, it has
lately become ‘a common observation that the proofs that mathematicians write
on blackboards and publish in journals are not like the derivations that appear as
objects in proof theory’ (Larvor, 2016, 401). However, it can be a challenge to pin
down exactly where the divergence arises.

Before going any further, I should clarify what I am not saying. Nothing in
this paper is intended to contradict what is sometimes termed the Formalizability
Thesis: that every proof can (in principle, at least) be formalized as a derivation.1

Crucially, the Formalizability Thesis is an existence claim: it states that for every
proof there is a derivation. It makes no claim as to whether the derivation is
known, or accessible, or surveyable. It does not require that the internal structure
of a proof bear any resemblance to that of the corresponding derivation.2 It also
makes no claim as to the metaphysical status of the relationship between the proof
and the derivation. For present purposes it suffices to observe that accepting that
there is a derivation for every proof is consistent with proofs and derivations being
profoundly different entities and specifically does not entail that knowing a proof
has any connection to knowing a derivation.

The proof/derivation distinction has been drawn in multiple, conceptually
distinct ways. I shall survey some of the most important—semantic/syntactic;
normative/theoretical; act/object—before addressing how they are related. One
influential account of the proof/derivation distinction situates it in the different
manner of expression of proofs and derivations. Thus Yehuda Rav, in a highly
influential paper, declares that he will ‘understand by proof a conceptual proof of
customary mathematical discourse, having an irreducible semantic content, and
distinguish it from derivation, which is a syntactic object of some formal system’
(Rav, 1999, 11). Likewise, Jody Azzouni draws the distinction between ‘formal
derivations, which occur in artificial languages, and mathematical proof, which
occurs in natural languages’ (Azzouni, 2013, 247). Analogously, Keith Weber and
Lara Alcock ‘define a syntactic proof production to occur when the prover draws
inferences by manipulating symbolic formulae in a logically permissible way’ and

1This is sometimes referred to as Hilbert’s Thesis, although that name is more properly reserved for
the narrower claim that every proof can be formalized as a derivation in first-order logic (Kahle, 2019).

2This reflects what has been called Tait’s Maxim: ‘The notion of formal proof was invented to study
the existence of proofs, not methods of proof’ (Baldwin, 2013, 114).
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‘define a semantic proof production to occur when the prover uses instantiations
of mathematical concepts to guide the formal inferences that he or she draws’
(Weber and Alcock, 2004, 209). While all of these points are correct, we may feel
that they do not strike to the heart of the distinction.

By contrast, Gila Hanna draws the distinction in a manner that brings out the
social aspects of the contrast:

(1) Formal proof: proof as a theoretical concept in formal logic
(or metalogic), which may be thought of as the ideal which
actual mathematical practice only approximates.

(2) Acceptable proof: proof as a normative concept that defines
what is acceptable to qualified mathematicians (Hanna, 1990,
6).

The mathematician John Baldwin, asserts that he takes Hanna’s ‘formal/acceptable
to be the same distinction’ (Baldwin, 2016, 71) as that he draws between ‘two
degrees of formalization’, respectively into a formal syntax and rules of inference
or within (sufficiently mathematical) natural language (Baldwin, 2013, 89). So, for
Baldwin at least, Hanna’s distinction is coextensive with that between proofs and
derivations. However, Hanna stresses the essentially social role of acceptability
in proof which has no counterpart in derivation. Authors who emphasize the
argumentational nature of proof, to which we will return below, specifically draw
attention to this factor. Thus Todd CadwalladerOlsker states that the ‘formal view
of proof is contrasted with the view of proofs as arguments intended to convince
a reader’ (CadwalladerOlsker, 2011, 33) and Trevor Bench-Capon stresses that
‘argumentation is . . . an activity which has to be actively engaged with, whereas
a proof is an object to be understood and admired’ (Bench-Capon, 2012). The
latter observation points towards an aspect of the proof/derivation contrast that
Hanna’s distinction overlooks: derivations are objects; proofs are acts.

In support of an account of proofs as acts, Joseph Goguen argues that the
only sort of proofs ‘that can actually happen in the real world are proof events, or
provings, which are actual experiences, each occurring at a particular time and
place, and involving particular people, who have particular skills as members of
an appropriate mathematical community’ (Goguen, 2001; see also Stefaneas and
Vandoulakis, 2012, 489 ff.). Goguen is not alone in drawing the distinction this
way. Oswaldo Chateaubriand also distinguishes between ‘provings and idealized
proofs’ (Chateaubriand, 2003, 41), while tracing the temporal conception back
to Brouwer. Goguen also observes that provings often have internal temporal
structure—their components must be executed in the right order—and are thus
ultimately proof processes:

The efficacy of some proof events depends on the components of
a proof object being seen to be given in a certain temporal order,
e.g., Euclidean geometric proofs, and commutative diagrams in
algebra; in some cases, the order may not be easily infered from
just the diagram. Therefore we must generalize from static proof
objects to proof processes, such as diagrams being drawn, movies
being shown, and Java applets being executed (Goguen, 2001).

Lest this conception of proof seem to have drifted too far from what is conven-
tionally labelled as proof, it is important to reflect on what is meant by an act.
Göran Sundholm draws a useful distinction between an act, the subjective process
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that comprises the act, and the trace that the act leaves behind (Sundholm, 2012,
948). In the case of proof, we may further distinguish the concrete traces (marks
on the blackboard, empty coffee cups, and so on) from the informational trace, a
written proof (see Fig. 1). The latter signifies the act and serves as a blueprint or
recipe whereby the act may be repeated. Just as recipes aren’t very nourishing
unless you carry them out, likewise the written proof only works as a proof if it
is actually carried out. Although the contrast is more stark in the case of proofs,
we may draw a similar contrast between derivations and derivation traces: the
derivation is a mathematical object; its trace is a written counterpart to that object
(a formal proof, or a sequence of code, or the like).

Act of Proof Theorem

Process of getting to know
(exercised act)

(trace)

set of coffee cups,
chalk marks, scrap paper

(concrete trace)

written proof in
mathematical text

(signified act)

Figure 1. Göran Sundholm’s act/process/trace distinction (after
Sundholm, 2012, 948)

In summary, we shall say that proofs make irreducible use of the semantics of
natural language; involve a normative appeal to acceptance by a mathematical
audience; and are events that involve participants and extend over time. Con-
versely, derivations are mathematical objects that represent formal relationships
between propositions in an artificial language. Of course, this definition of proof
is stipulative. If we treat the three contrasts discussed above—semantic/syntactic;
normative/theoretical; act/object—as separate axes, then my definitions of proof
and derivation occupy diagonally opposite vertices: {0, 0, 0} and {1, 1, 1}, as it
were. That leaves six other, unlabelled vertices. I shall not attempt a complete
taxonomy here, but some conceptions of proof rival to that defended here may be
seen to correspond to some of these other vertices.

3. Argument versus Proof

We saw in §1 that mathematicians make use of a concept of evidence distinct
from proof and we saw in §2 that the practice of mathematical proof cannot be
reduced to derivation. But nor can we discard derivations: they are mathematical
objects in good standing (whatever that means—I make no ontological claim), and
acknowledged as such by the mathematicians who study them. Furthermore, at
least in the eyes of many mathematicians, it is the existence of a derivation that is
the ultimate guarantor of the truth of a theorem.3 So, if we are to respect actual
mathematical practice, we must accommodate all three concepts: evidence, proof,

3For example, for Saunders Mac Lane, ‘the test for the correctness of a proposed proof is by formal
criteria and not by reference to the subject matter at issue’ (Mac Lane, 1986, 378) and Thomas Hales
characterizes formal proof as providing ‘a thorough verification of my own research that goes beyond
what the traditional peer review process has been able to provide’ (Hales, 2008, 1378).
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and derivation. Is there a common framework into which they may be subsumed?
One candidate is argument. I have already alluded to an argumentation-based
account of mathematical reasoning. In its barest form, this states that a mathemat-
ical argument is ‘a more liberalized version of the notion of mathematical proof’
(Van Bendegem, 2005, 157). That is, proofs are a special case of mathematical argu-
ment. If these arguments are understood as similar in kind to the arguments of
non-mathematical discourse, it follows that an account of mathematical reasoning
may be given using the tools of argumentation theory.

Elsewhere I have referred to proofs∗, where the asterisk indicates that the proof
does not command universal assent (Aberdein, 2009, 2). These include unsur-
veyably long proofs∗, diagrammatic proofs∗, proofs∗ that depend on contested
axioms, computer-assisted proof∗, experimental proof∗, proof∗ by probabilistic
methods, and so on. While it is controversial in each case whether proofs∗ should
lose the asterisk (for relevant discussion, see Fallis, 1997; Van Bendegem, 2005;
Paseau, 2015), each of these is uncontroversially a mathematical argument. Some
proofs∗ also uncontroversially correspond to derivations. For others this is less
obvious; their admission as proofs would pose a challenge to the Formalizability
Thesis discussed in §2. The Formalizability Thesis, that ‘every proof can be for-
malized as a derivation’, is one clause of what has been called Leibniz’s Thesis; the
other clause states that ‘every acceptable argument of (informal) mathematics is
a proof’ (Berk, 1982, 17). This implies that mathematical arguments that are not
proofs are unacceptable. But what does it mean for a mathematical argument to
be acceptable? Interpreted widely, as ‘acceptable in some mathematical practice’,
then the thesis is demonstrably false; interpreted narrowly, as ‘acceptable as proof’,
then the thesis seems almost tautological. Nonetheless, as we have acknowledged
above, being acceptable to a mathematical audience is a necessary requirement for
a proof. Below I shall sketch what that might mean.

Arguments resemble proofs, at least as defined above, much more closely than
they do derivations. Both arguments and proofs are acts (or processes comprised
of acts) whereas derivations are objects. Yet, as we saw in the last section, proofs
and derivations both leave traces: written blueprints or recipes. Likewise, we can
consider argument traces. The passing resemblance between a proof trace and a
derivation trace explains how two such dissimilar things as proofs and derivations
ever came to be conflated. A derivation is a directed graph. Its nodes are (formal
counterparts of) truths of mathematics and its edges represent logical deductions.
A determination of whether a derivation is sound requires a choice of axioms and
of logical system. Relative to that choice, the derivation is sound if all its source
nodes (those which do not depend on other nodes) are axioms and all its edges are
valid. Proof traces (and argument traces in general) are also directed graphs. The
nodes of a proof trace are mathematical truths, expressed in a suitably augmented
natural language, and the edges are arguments of some kind.

So, the same theorem will be linked to (at least) two structures: a proof trace
and a derivation, each of which is comprised of directed graphs. How do these two
structures relate to each other? In principle, any node in either structure could be
a node in the other, at least assuming the Formalizability Thesis holds. In practice,
there is rather less overlap. Derivations are substantially more verbose than proofs:
they contain many more intermediate statements and they take everything back
to axioms, as proofs characteristically do not. What’s more, they may follow an
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entirely different path from any recognisable proof. (Recall Tait’s Maxim, cited
above.) And, for that reason, proof traces may contain nodes that do not figure
in any corresponding derivation. But at least the nodes of the two structures
are held to the same standard: in each case, they must be true. The edges, on
the other hand, must be judged differently. As deductions in a system of formal
logic, the edges of a derivation can be assessed by the canons of that system:
do they instantiate an admissible rule of inference? Of course, the edges of the
proof structure may also be logical deductions, in which case they can be held to
that standard too. But, with some rarefied exceptions, mathematical proofs are
seldom purely logical proofs. So the edges of the proof structure must be judged
instead by standards appropriate to arguments of the relevant kind; that is, by the
standards of (some suitably localized form of) argumentation theory.

Multiple methodologies for the analysis and evaluation of informal arguments
have been proposed, but here I shall focus on the method of argumentation
schemes. This is an ancient idea in origin, deriving from the topoi or loci of classical
rhetoric, but it has been reinvigorated in recent years. An argumentation scheme
is a template that captures a stereotypical pattern of reasoning. Different schemes
are fine-tuned to capture the idiosyncrasies of different types of argument—and
can be brought to bear to determine when they have been used cogently. This
evaluative function is largely the role of the critical questions, which most schemes
contain. If in some instantiation of a scheme these questions cannot be adequately
addressed, then the argument fails. Deductive inference rules can be understood
as argumentation schemes, but the method comes into its own when applied
to non-deductive reasoning. Douglas Walton and colleagues characterize many
such schemes as special cases of the very general scheme that they call Defeasible
Modus Ponens (Walton et al., 2008, 366). In Scheme 1, I have adapted their
presentation of this scheme to bring out the resemblance between argumentation
schemes and Toulmin layouts (Toulmin, 1958, 101):4

Argumentation Scheme 1. Defeasible Modus Ponens

Data: P.
Warrant: As a rule, if P, then Q.

Therefore, . . .
Qualifier: presumably, . . .
Conclusion: . . . Q.

Critical Questions
(1) Backing: What reason is there to accept that, as a rule, if P, then Q?
(2) Rebuttal: Is the present case an exception to the rule that if P, then Q?

In principle, any argument that can be represented using Toulmin layouts could
be represented using Scheme 1. However, the great strength of the argumentation
scheme methodology lies in its diversity: there are many more schemes to choose
from. One of the most extensive surveys of general purpose schemes distinguishes
more than 90 different types (Walton et al., 2008, 308 ff.). Some of these off-the-shelf
schemes are directly applicable to mathematics, but yet more can be produced to
order.

4For a more protracted discussion of how these two models of reasoning are related, see (Pease
and Aberdein, 2011, 28 ff.). For an alternative account, see (Konstantinidou and Macagno, 2013, 1070).
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Elsewhere I draw a distinction between three classes of scheme that are of
immediate relevance to proof (Aberdein, 2013b, 366 f.):

• A-schemes correspond directly to derivation rules. (Equivalently, we could
think in terms of a single A-scheme, the ‘pointing scheme’ which picks out
a derivation whose premisses and conclusion are formal counterparts of
its data and claim.)
• B-schemes are exclusively mathematical arguments: high-level algorithms

or macros. Their instantiations correspond to substructures of derivations
rather than individual derivations (and they may appeal to additional
formally verified propositions).
• C-schemes are even looser in their relationship to derivations, since the link

between their data and claim need not be deductive. Specific instantiations
may still correspond to derivations, but there will be no guarantee that this
is so and no procedure that will always yield the required structure even
when it exists. Thus, where the qualifier of A- and B-schemes will always
indicate deductive certainty, the qualifiers of C-schemes may exhibit more
diversity. Indeed, different instantiations of the same scheme may have
different qualifiers.

We are now in a position to analyze what it means for a proof to be acceptable. For
a given mathematical audience, that is a community of mathematicians who share
the same standards, a proof will count as acceptable if the schemes it instantiates
are ones which that audience judges consistent with mathematical rigour. In other
words, the audience must be convinced that each step of the proof instantiates a
scheme in such a way that it earns the qualifier ‘rigorously’ (or stronger). Exactly
which schemes are deemed consistent with rigour will vary by audience. Different
areas of mathematics can have somewhat different standards and even within the
same area there are different audiences: the audience for a research article is not
identical to that for an undergraduate lecture.

Nonetheless, we may generalize. For most audiences, A-schemes are invariably
admissible. Likewise, most audiences will admit many B-schemes. However, some
B-schemes can be highly complex. As such they may only be admissible to a
narrow audience: professionals in a particular subspecialty, say. Such schemes
may need to be broken into simpler steps (probably also instantiating simpler
B-schemes) for consumption by a wider audience of research mathematicians,
let alone for a student audience. Indeed, in some pedagogic contexts, it may
be expedient to substitute a less (than) rigorous C-scheme for an intricate B-
scheme, thereby ‘handwaving’ through an aspect of the proof unsuitable for a
given audience. C-schemes themselves pose a further challenge. Since not all
their instantiations are deductive, it may be tempting to assume that they have no
place in rigorous argument, at least as most mathematical audiences understand it.
Even were this so, they would still be welcomed by some mathematical audiences,
notably those that see no need for the asterisks on some of the more outré species
of proof∗. However, in practice, even quite conservative mathematical audiences
can find some C-schemes admissible.

Some of the general purpose C-schemes that may be accepted by some mathe-
matical audiences are listed in Table 1 This is by no means an exhaustive list; nor
is the classification of schemes it presumes unarguable. In the article from which
Table 1 is taken, I discuss the application to informal mathematical reasoning of ten
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Table 1. Summary of reasoning types and schemes (Aberdein,
2013a, 247)

(1) Reasoning
(a) Retroduction

(i) Argument from Gradualism
(ii) Argument from Positive Consequences

(iii) Argument from Evidence to a Hypothesis
(2) Source Based

(a) Citation
(i) Appeal to Expert Opinion

(ii) Argument from Danger
(b) Intuition

(i) Argument from Position to Know
(c) Meta-Argument

(i) Ethotic Argument
(d) Closure

(i) Argument from Ignorance
(3) Rule Based

(a) Generalization
(i) Argument from Example

(b) Definition
(i) Argument from Definition to Verbal Classification

schemes drawn from (Walton et al., 2008). I only have space to address a couple
of them in comparable detail here, but I will briefly survey the rest. I classified
three schemes as retroduction, that is reasoning backwards from a conclusion,
a common strategy in mathematical argument since antiquity. Argument from
Gradualism comprises multi-step argumentation. This can be fallacious when
the steps are individually dubious or collectively improbable, yielding a slippery
slope fallacy. Conversely, if all the steps are deductively valid, it would correspond
to a derivation. Some instances of this scheme, however, are neither fallacious
nor deductively valid: their admissibility will turn on the standards of rigour
of the audience. Argument from Positive Consequences is well described by its
name. It finds a place in mathematics in the informal justification of axioms and
hypotheses.5 I will discuss Argument from Evidence to a Hypothesis at greater
length in the next section.

Several of the schemes in Table 1 are source-based: that is, they involve reason-
ing to a mathematical conclusion from a source external to the reasoning process.
The most familiar of these reasoning patterns may be the use of citation, which
is ubiquitous in most mathematical research. Appeal to Expert Opinion is an
obvious fit for such reasoning, and also one of the most widely studied schemes
in the argumentation scheme literature. Argument from Danger, which I also
included under citation, is of much narrower application. It captures arguments

5The mathematical uses of Argument from Positive Consequences are also discussed, together with
some other schemes not in Table 1, in work by Nikolaos Metaxas and colleagues (Metaxas, 2015, 84;
Metaxas et al., 2016, 387).



10 ANDREW ABERDEIN

to the effect that one should not act in a way that would be a danger (to oneself or
others). I argued that this is employed in what is sometimes (facetiously) called
‘proof by intimidation’: dismissing objections as trivial, for example. Argument
from Position to Know describes a pattern of argument where an informant is
taken to have a privileged source of information. The obvious non-mathematical
example would be an eye witness; in a mathematical context, this scheme might
be employed to characterize appeals to intuition, which some authors analogize
to perception (for example, Chudnoff, 2013). Ethotic Arguments are appeals to
the character (or ethos) of some individual. It has been shown empirically that
such factors can also influence how mathematical results are received (Inglis and
Mejı́a-Ramos, 2009). Argument from Ignorance is generally treated as a fallacy,
since not knowing that something is false is not usually a legitimate reason for
treating it as true. Yet it can be a reliable inference in special circumstances, some
of which can be found in mathematical reasoning, such as reporting the outcome
of an exhaustive search.

The last group of schemes in Table 1 are those involving the justification or
application of rules. Argument from Definition to Verbal Classification could
potentially correspond to a step in a derivation, but it can also be used more
casually, and is vulnerable to outright misuse, for example when a definition is
subtly misstated. For a more considered example, consider the following:

Argumentation Scheme 2. Argument from Example

Premise: In this particular case, the individual a has property F and also
property G.

Conclusion: Therefore, generally, if x has property F, then it also has prop-
erty G.

Critical Questions
(1) Is the proposition claimed in the premise in fact true?
(2) Does the example cited support the generalization it is supposed to be an

instance of?
(3) Is the example typical of the kinds of cases the generalization covers?
(4) How strong is the generalization?
(5) Do special circumstances of the example impair its generalizability? (Wal-

ton et al., 2008, 314)
Many instantiations of Argument from Example will not be acceptable at least to
modern audiences. Enumerative induction, for instance, can be characterized in
terms of this scheme. But there are other cases where Argument from Example
meets modern standards of rigour. In order to do so, adequate answers to all the
critical questions will need to be provided. In particular, question (4) will require
an exceptional answer: one justifying the revision of the qualifier from ‘generally’
to ‘necessarily’.6

4. Argument versus Evidence

We have explored the relationship between proofs and derivations and between
each of these and arguments. We have not yet addressed the relationship between

6For a more extensive discussion of mathematical uses of Scheme 2, see (Aberdein, 2013a, 244).
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evidence and argument, but alert readers may have spotted the following scheme
in Table 1:

Argumentation Scheme 3. Argument from Evidence to a Hypothesis

Major Premise: If A (a hypothesis) is true, then B (a proposition reporting
an event) will be observed to be true.

Minor Premise: B has been observed to be true, in a given instance.
Conclusion: Therefore, [presumably,] A is true.

Critical Questions
(1) Is it the case that if A is true, then B is true?
(2) Has B been observed to be true?
(3) Could there be some reason why B is true, other than its being because of

A being true? (Walton et al., 2008, 331 f.)
This is the pattern of reasoning called abduction by Charles Peirce (for a direct
comparison, see Pease and Aberdein, 2011, 22; for an alternative approach to
abduction in terms of argumentation schemes, see Metaxas et al., 2016, 386). To
observe how this scheme might work in practice, consider the following example
of evidence for Goldbach’s Conjecture (GC), as reconstructed by the philosopher
Alan Baker:

Another line of auxiliary argument might be based on the various
partial results relating to GC. In 1931, Schnirelmann proved that
every even number can be written as the sum of not more than
300,000 primes(!). This upper bound on the number of primes
required has since lowered to 6 (Ramaré 1995). In addition, Chen
(1978) proved that all sufficiently large even numbers are the sum
of a prime and the product of two primes. Such results do not
seem to make the truth of GC any more likely. But perhaps they
provide evidence that GC is provable (Baker, 2007, 71).

Here the hypothesis A is the proposition that GC is provable and the ‘event’ (or
events) that B reports on are a series of proofs of weaker, but related, conjectures.
As Baker acknowledges, this is at best suggestive. Critical question (3) is completely
open and the argument would only sustain a very weak qualifier. On the other
hand, some of the examples of argument from evidence cited in §1 are much
more convincing. For instance, the argument for Montgomery’s Pair Correlation
Conjecture can easily be reconstructed as an instance of Scheme 3, with A a
statement of the conjecture and B the observation that ‘the agreement near zero
number 1012 is close, near perfect near zero number 1016, and even better near zero
number 1020’ (Barrett et al., 2016, 155). Of course, as stressed in §1, the authors of
this argument are not claiming that this is a proof. Hence this instance of Scheme 3

is not one that they would treat as acceptable.
Are there any instances of Scheme 3 which a mainstream mathematical audience

would treat as acceptable? One possible affirmative answer brings us back to
derivations. In his discussion of the relationship between proofs and derivations,
Richard Epstein makes the following bold assertion: ‘A proof in a fully formal
system of logic that a claim follows from some axioms is not a proof in mathematics.
It is evidence that can be used in a mathematical proof’ (Epstein, 2013, 274). In the
terminology of this paper, Epstein may be read as saying that a derivation, or more
properly, a derivation trace, should not be mistaken for a proof (or proof trace), but



12 ANDREW ABERDEIN

can be employed in a proof as evidence. On the account of proof defended above,
such employment would require use of an argumentation scheme, presumably
along the lines of Scheme 3. For proofs where the corresponding derivation is
comparatively short and straightforward, this may seem to be an unnecessarily
scrupulous point. Yes, in principle, the derivation is a mathematical object, but
its trace will be similar enough to a proof trace for it to be treated as such with
comparatively little additional effort, at least for audiences familiar with such
things. In these sorts of cases, the more characteristic response to a derivation
trace would be to ‘reverse engineer’ it into a proof in this manner. But, for longer
or more technical derivations, this process is less practical. In such cases, Epstein’s
analysis seems correct. If there is a sufficiently strong reason for accepting the
derivation trace as reliable, then this would be an acceptable instance of Scheme 3.

Unsurveyable computer-assisted proof∗ represents a similar application of
Scheme 3. Proofs such as Kenneth Appel and Wolfgang Haken’s proof of the Four
Colour Conjecture or Thomas Hales’s proof of Kepler’s Conjecture depend essen-
tially on unsurveyably vast computer calculations. Within the human readable
component of the proof, these calculations play an evidential role. Thus, if these
proofs are acceptable to the mathematical community, then the steps introducing
the computer calculations can be seen as acceptable instances of Scheme 3. Of
course, while the consensus seems now to be in their favour, I have flagged such
results as proof∗ because their acceptability remains a topic of debate. However,
if the existence of a derivation is what ultimately underwrites the acceptance of
a theorem, then a mechanically verified derivation trace may be an (even more)
acceptable instance of Scheme 3. Successful formalization projects, such as Georges
Gonthier’s work on the Four Colour Theorem or Hales’s Flyspeck Project, have
provided just such corroboration (Gonthier, 2008; Hales et al., 2017).7

5. Conclusions for Education

One of the morals of this paper is that it is important to carefully distinguish
proof from derivation. This observation certainly has profound implications for the
teaching of mathematics. However, it is scarcely novel: I have already cited a paper
from almost thirty years ago which addresses the educational implications of the
distinction (Hanna, 1990). The role of evidence in relation to proof and derivation
has received rather less attention. I have suggested that it can be successfully
accommodated within the framework of argumentation schemes. Specifically,
appeals to evidence can be understood as C-schemes: argumentation schemes
drawn from natural language reasoning that generally fall short of rigorous proof,
but can sometimes be used rigorously. In this manner, mathematical arguments
that rely on evidence to provide less than rigorous support for their conclusions
can be understood as belonging to the same genus as mathematical proofs, but
not the same species. Thereby the importance of rigour in proof is maintained,
but without misleading the student into imagining that proof is somehow entirely
alien from ordinary reasoning.

7It may be objected that this results in a regress, since the software checking the derivation trace
must itself be checked. However, it is what Hales has called ‘a rather manageable regress’ (Hales, 2008,
1376). The kernel of such proof checking software is very carefully designed to be small enough and
clear enough to be amenable to thorough human checking.
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The framework of argumentation schemes, however, is itself a potentially
valuable instrument for the mathematics educator. Toulmin layouts, which are also
drawn from the toolbox of argumentation theory, have lately been widely applied
to mathematical reasoning by educational theorists (see, for example, Knipping and
Reid, 2013). At least in their current form, argumentation schemes are a much more
recent invention, and they have yet to receive much attention from mathematics
educators: I am only aware of a few studies from one group of researchers
specifically applying argumentation schemes to mathematics education (Metaxas
et al., 2009; Metaxas, 2015; Metaxas et al., 2016; Koleza et al., 2017). In addition,
Aikaterini Konstantinidou and Fabrizio Macagno have discussed the application of
argumentation schemes to science education (Konstantinidou and Macagno, 2013;
Macagno and Konstantinidou, 2013). They argue that argumentation schemes can
have a particular value in ‘discovering the implicit beliefs affecting a student’s
learning process’ (Macagno and Konstantinidou, 2013, 235). This is an important
task in mathematics education too, and their study would seem to naturally
generalize to mathematics education.

Perhaps the most exciting opportunity that argumentation schemes represent
for mathematics education is that they are already widely implemented within
what is sometimes called the ‘argument web’ (Reed et al., 2017). In recent years, a
growing number of software tools of increasing sophistication have been designed
for the analysis and evaluation of argument. These tools represent a potentially
invaluable resource for the study of mathematical argument, but their application
to mathematics has only just begun (Pease et al., 2017; Corneli et al., 2019). Again, I
am unaware of any application of these resources in mathematics education: there
is a growing body of work applying digital tools to mathematics education (for
example, Modeste, 2016; Durand-Guerrier et al., 2019), but not the tools specific to
argumentation. They represent an as yet untapped resource, of considerable scale
and importance.

A final, more speculative benefit may accrue from an educational approach
which emphasizes the continuity of mathematical argument and argument in
other areas. Some authors have urged that mathematics educators promulgate
the value of an education in mathematics as a source of the intellectual virtues
and skills necessary for successful navigation of contemporary society (recent
examples include Su, 2017; Cheng, 2018). When mathematics is taught in a fashion
that emphasizes its differences from everyday reasoning this can be a tough
case to make. But argumentation schemes represent a plausible bridge between
mathematical and other conversations; and mathematics may thereby provide an
invaluable testbed for the acquisition and mastery of argumentation techniques of
much wider application.
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