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Explanatory Proofs and Beautiful Proofs

1

Marc Lange
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Abstract

This paper concerns the relation between a proof’s beauty and its explanatory

power — that is, its capacity to go beyond proving a given theorem to explaining

why that theorem holds. Explanatory power and beauty are among the many

virtues that mathematicians value and seek in various proofs, and it is impor-

tant to come to a better understanding of the relations among these virtues.

Mathematical practice has long recognized that certain proofs but not others

have explanatory power, and this paper o↵ers an account of what makes a proof

explanatory. This account is motivated by a wide range of examples drawn from

mathematical practice, and the account proposed here is compared to other ac-

counts in the literature. The concept of a proof that explains is closely intertwined

with other important concepts, such as a brute force proof, a mathematical co-

incidence, unification in mathematics, and natural properties. Ultimately, this

paper concludes that the features of a proof that would contribute to its ex-

planatory power would also contribute to its beauty, but that these two virtues

are not the same; a beautiful proof need not be explanatory.

Keywords: proof; explanation; beauty; unification; symmetry; coincidence

1. Introduction

There are many virtues that a mathematical proof may exhibit. These
virtues include accessibility to a given audience, beauty, brevity, depth, el-

1A portion of this paper is from my “Aspects of Mathematical Explanation: Symme-
try, Unity, and Salience”, originally published in The Philosophical Review, Volume 123
Number 4 (October 2014), pages 485–531.
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egance, explanatory power, fruitfulness, generalizability, purity, and visual-
izability. It is not easy to say precisely what each of these virtues amounts
to — or whether mathematicians are appealing to the same virtue each time
they invoke “beauty” (for instance). Nevertheless, these virtues clearly fig-
ure in mathematical practice. Mathematicians praise a proof for exhibiting
one of these virtues, though there need not be any sense in which a proof
that exhibits one of them is “better, all things considered” than a proof that
lacks any of these virtues. Furthermore, even though a proof that lacks any
of these virtues remains just as valid as a virtuous proof, mathematicians
who already possess a proof of a given theorem nevertheless seek additional
proofs of it that exhibit virtues absent from all previous proofs. A proof that
exhibits one of these virtues is often a valuable discovery even if it fails to
exhibit any of the other virtues.

Some of these virtues (such as accessibility to a given audience, brevity,
and fruitfulness) presumably qualify as virtues because their possession by a
proof makes that proof valuable as a means to other goals (such as commu-
nicating with an audience or discovering new theorems or proofs). Others of
these virtues (such as explanatory power and purity, perhaps) may be valu-
able in themselves; mathematics may seek them not as a means to some end,
but as ends in themselves. Some of these virtues may be entirely independent
of others. On the other hand, some may be reducible to others, or they may
stand in some more complicated relation.

This paper investigates the relation between two of these virtues: ex-
planatory power and beauty. I will spend much of the paper investigating
what it would be for a given proof to succeed not merely in proving its the-
orem, but also in explaining why its theorem holds. I will o↵er an account
of what makes certain proofs but not others explanatory, and I will compare
my account with others that have been proposed. At the paper’s close, I will
tentatively suggest that the features of a proof that would contribute to its
explanatory power would also contribute to its beauty, but that these two
virtues are not the same; a beautiful proof need not be explanatory.

2. Explanatory proofs in mathematics

Two mathematical proofs may prove the same theorem from the same
axioms, though only one of these proofs explains why that theorem is true.
One of my goals in this paper will be to identify the ground of this distinction.
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Accordingly, my focus will be on the course that a given proof takes between
its premises and its conclusion. The distinction between explanatory and
non-explanatory proofs from the same premises must rest on di↵erences in
the way they extract the theorem from the axioms.

To clarify this idea, let’s look briefly at an example (to which I will return
in Section 7). Take an ordinary calculator keyboard, though without the zero
(Figure 1):

Figure 1: Calculator keyboard.

We can form a six-digit number by taking the three digits on any row,
column, or main diagonal on the keyboard in forward and then in reverse
order. For instance, the bottom row taken from left to right, and then right
to left, yields 123321. There are sixteen such “calculator numbers” (321123,
741147, 951159 . . . ). As you can easily verify (with a calculator!), every
calculator number is divisible by 37. But a proof that checks each of the
calculator numbers separately does not explain why every calculator number
is divisible by 37. Compare this case-by-case proof to the following proof:

The three digits from which a calculator number is formed are
three integers a, a+d, and a+2d in arithmetic progression. Take
any number formed from three such integers in the manner of
a calculator number — that is, any number of the form 105a +
104(a+d)+103(a+2d)+102(a+2d)+10(a+d)+a. Regrouping,
we find this equals to a(105 +104 +103 +102 +10+ 1)+ d(104 +
2⇥ 103 +2⇥ 102 +10) = 111111a+12210d = 1221(91a+10d) =
(3⇥ 11⇥ 37)(91a+ 10d).2

This proof explains why all of the calculator numbers are divisible by 37; as
a mathematician says, this proof (unlike the case-by-case proof) reveals the
result to be “no coincidence” [36]. Later I will propose an account of what
makes this proof but not the case-by-case proof explanatory.

2The example appears in an unsigned “gleaning” on page 283 of the December 1986
issue of The Mathematical Gazette. Roy Sorensen [43] called this lovely example to my
attention. He also cited [36], from which this explanatory proof comes.
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In Section 3, I will present another example in which two proofs of the
same theorem di↵er (according to a mathematician) in explanatory power.
In Section 4, I will try to spell out the di↵erence between these proofs that is
responsible for their di↵erence in explanatory power. Roughly speaking, I will
suggest that one of these proofs is explanatory because it exploits a symmetry
in the problem — a symmetry of the same kind as the symmetry that initially
struck us in the result being explained. In Sections 5 and 6, I will present
several other, diverse examples where di↵erent proofs of the same theorem
have been recognized as di↵ering in explanatory power. In each example, I
will suggest that this di↵erence arises from a di↵erence in whether the proofs
exploit a symmetry in the problem that is like a striking symmetry in the
theorem. In addition, these cases will illustrate how “brute force” proofs
fail to explain when the theorem exhibits a striking symmetry and also why
some auxiliary constructions but not others are “artificial”. In Section 7, I
will generalize my proposal to explanations that do not exploit symmetries
(as in the calculator-number example). I will argue that in many cases, at
least, what it means to ask for a proof that explains is to ask for a proof that
exploits a certain kind of feature in the problem: the same kind of feature
that is outstanding in the result being explained. The distinction between
proofs explaining why some theorem holds and proofs merely establishing
that it holds arises only when some feature of the result is salient. In Section
8, I will briefly contrast my account of mathematical explanation with those
of Steiner [47], Kitcher [22, 23] and Resnik and Kushner [40]. Finally, in
Section 9, I will o↵er a conjecture regarding the relation between a proof’s
explanatory power and its beauty.

For at least six decades, philosophy of science has been concerned with un-
derstanding what it is to give a scientific explanation (such as an explanation
of why the dinosaurs became extinct or an explanation of why the pressure of
a gas rises with its temperature under constant volume). By contrast, expla-
nation in mathematics has been little explored by philosophers.3 Its neglect
is remarkable. Mathematical proofs that explain why some theorem holds

3In the philosophical literature on explanation, the existence of explanations in math-
ematics is often acknowledged; for one example per decade, see [33, page 16], [39, page 4],
[42, page 96], [41, page 2], and [38, page 2]. But explanation in mathematics is typically
not examined at length; in the five works just cited, either it is set aside as not germane
to the kind of explanation being examined, or it is given cursory treatment, or it is just
ignored after being acknowledged once.
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were distinguished by ancient Greek mathematicians from proofs that merely
establish that some theorem holds [17], and this distinction has been invoked
in various ways throughout the history of mathematics.4 Fortunately, mathe-
matical explanation has now begun to receive greater philosophical attention.
As Mancosu remarks, the topic’s “recent revival in the analytic literature is
a welcome addition to the philosophy of mathematics” [31, page 134].

A key issue in the philosophical study of scientific explanation is the
source of explanatory asymmetry: why does one fact explain another rather
than vice versa? Some philosophers have argued that explanatory priority
is generally grounded in causal priority: causes explain their e↵ects, not
the reverse. By contrast, in mathematical explanations consisting of proofs,
the source of explanatory priority cannot be causal (or temporal) priority.
Rather, at least part of its source would seem to be that axioms explain
theorems, not vice versa. Of course, there may be several di↵erent ways
to axiomatize a given branch of mathematics. Perhaps only some of these
axiomatizations are correct for explanatory purposes. Or perhaps any ax-
iomatization is equally good for explanatory purposes, but a proof’s status
as explanatory is relative to a given axiomatization.

In any case, I will be concerned with a logically prior issue: the distinc-
tion between explanatory and non-explanatory proofs of the same theorem
from the same axioms.5 Nevertheless, I will not contend that all mathe-

4“Explaining why the theorem holds” is just explaining the theorem. It is distinct from
explaining why we should (or do) believe the theorem. This distinction is familiar from
scientific explanation.

5Of course, mathematical facts are often used to explain why certain contingent facts
hold. Sometimes mathematical facts may even play the central role in explaining some
physical fact. (For recent discussions, see [3] and [27]; see also [48].) But these are not
“mathematical explanations” of the kind that I will be discussing, which have mathe-
matical theorems rather than physical facts as their target. In a conversation, we might
“explain” why (or how) some mathematical proof works (e.g., by making more explicit
the transitions between steps). A textbook might “explain” how to multiply matrices. A
mathematics popularizer might “explain” an obscure theorem by unpacking it. However,
none of these is the kind of “mathematical explanation” with which I will be concerned.
None involves explaining why some result holds — just as Hempel [20, page 80] pointed
out that an account of scientific explanation does not aim to account for what I do when
I use gestures to “explain” to a Yugoslav garage mechanic how my car has been mis-
behaving. I am also not concerned with historical or psychological explanations of why
mathematicians held various beliefs or how a given mathematician managed to make a
certain discovery.
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matical explanations consist of proofs. Indeed, I will give some examples of
mathematical explanations that are not proofs.

We will see several examples where mathematicians have distinguished
proofs that explain why some theorem holds from proofs that merely establish
that it holds.6 For instance, in the Port-Royal Logic of 1662, Pierre Nicole
and Antoine Arnauld characterized indirect proof (that is, proof of p by
showing that ¬p implies a contradiction) as “useful” but non-explanatory:

. . . such Demonstrations constrain us indeed to give our Consent,
but no way clear our Understandings, which ought to be the
principal End of Sciences: for our Understanding is not satisfied
if it does not know not only that a thing is, but why it is? which
cannot be obtain’d by a Demonstration reducing to Impossibility.
[35, page 422 (Part IV, chapter ix)]

Nicole and Arnauld obviously took explanation to be as important in math-
ematics as it is in science. More recently, the mathematician William Byers
has characterized a “good” proof as “one that brings out clearly the reason
why the result is valid” [9, page 337]. Likewise, researchers on mathematics
education have recently argued empirically that students who have proved
and are convinced of a mathematical result often still want to know why the
result is true [32], that students assess alternative proofs for their “explana-
tory power” [19, page 399], and that students expect a “good” proof “to
convey an insight into why the proposition is true” even though explanatory
power “does not a↵ect the validity of a proof” [5, page 24]. However, none

6To avoid the corrupting influence of philosophical intuitions, I have also tried to use
examples from workaday mathematics rather than from logic, set theory, and other parts
of mathematics that have important philosophical connections. But by focusing on proofs
that mathematicians themselves recognize as explanatory, I do not mean to suggest that
philosophers must unquestioningly accept the verdicts of mathematicians. Indeed, some
mathematicians, such as Gale [11], deny that there is any distinction between explanatory
and non-explanatory proofs. (Some philosophers agree; see, for example, [16, page 81].
Gale later changed his mind [12, page 41].) But just as an explication of scientific ex-
planation should do justice to scientific practice (without having to fit every judgment of
explanatory power made by every scientist), so an explication of mathematical explanation
should do justice to mathematical practice. Regarding the examples I will discuss, I have
found the judgments made by working mathematicians of which proofs do (and do not)
explain to be widely shared and easily appreciated by non-mathematicians. It is especially
important that an account of mathematical explanation fit such cases.
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of this work investigates what it is that makes certain proofs but not others
explanatory. This question will be my focus in the next few sections.

3. Zeitz’s biased coin: A suggestive example of mathematical ex-

planation

Consider this problem from the Bay Area Math Meet, San Francisco,
April 29, 2000:

A number p between 0 and 1 is generated randomly so that there
is an equal chance of the generated number’s falling within any
two intervals of the same size inside [0, 1]. Next a biased coin is
built so that p is its chance of landing heads. The coin is then
flipped 2000 times. What is the chance of getting exactly 1000
heads?

The mathematician Paul Zeitz gives the answer:

The amazing answer is that the probability is 1/2001. Indeed,
it doesn’t matter how many heads we wish to see — for any
[integer r] between 0 and 2000, the probability that r heads occur
is 1/2001. [53]

That is, each of the 2001 possible outcomes (from 0 heads to 2000 heads)
has the same likelihood. That is remarkable. It prompts us to ask, “Why
is that?” (There is nothing special about 2000 tosses; the analogous result
holds for any number n of tosses.)

Here is an elaboration of one proof that Zeitz sketches. (I give all of the
gory details, but you may safely skim over them, if you wish.)

If you flip a coin n times, where p is the chance of getting a head
on any single flip, then the chance of getting exactly r heads is

✓
n

r

◆
pr(1� p)n�r.

(The chance of getting a particular sequence of r heads and (n�r)
tails is pr(1� p)n�r, and there are

✓
n

r

◆
=

n!

r!(n� r)!
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di↵erent ways of arranging r heads and (n � r) tails.) In our
problem (where n = 2000), the total chance of getting exactly
r heads is the sum, taken over all possible p’s, of the chance of
getting r heads if the coin’s bias is p, multiplied by the chance dp
that p is the coin’s bias. This sum is an integral:

Z 1

0

✓
n

r

◆
pr(1� p)n�rdp =

✓
n

r

◆Z 1

0

pr(1� p)n�rdp

Let’s integrate “by parts” using
R
u · dv = uv �

R
v · du. Let

u = (1�p)n�r and dv = prdp. Then du = �(n�r)(1�p)n�r�1dp
and v = pr+1/r + 1. So

Z 1

0

pr(1� p)n�rdp = (1� p)n�r · pr+1

r + 1

����
1

0

+
n� r

r + 1

Z 1

0

pr+1(1� p)n�r�1dp.

The first term on the right side equals zero at both p = 0 and
p = 1. The integral in the second term on the right side takes the
same form as the integral on the left side, so another integration
by parts yields

Z 1

0

pr+1(1� p)n�r�1dp =
n� r � 1

r + 2

Z 1

0

pr+2(1� p)n�r�2dp.

Repeatedly integrate by parts until (1 � p)’s exponent has de-
creased to 0. The remaining integral is

Z 1

0

pn(1� p)0dp =

Z 1

0

pndp =
pn+1

n+ 1

����
1

0

=
1

n+ 1
.

So all together
Z 1

0

pr(1� p)n�rdp =

✓
n� r

r + 1

◆✓
n� r � 1

r + 2

◆
· · ·

✓
1

n

◆✓
1

n+ 1

◆

=

✓
1

n+ 1

◆
1

n(n�1)(n�2)···(r+2)(r+1)
(n�r)(n�r�1)···(2)

=

✓
1

n+ 1

◆
1�
n

n�r

� .
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This result times
�

n
n�r

�
is the total chance of getting exactly r

heads in our problem. But
�

n
n�r

�
=

�
n
r

�
since the number of

di↵erent arrangements of (say) exactly n � r tails in n tosses
equals the number of di↵erent arrangements of exactly r heads
in n tosses. So the total chance of getting exactly r heads in our
problem is ✓

n

r

◆✓
1

n+ 1

◆
1�
n

n�r

� =
1

n+ 1

the result we sought.

Although this proof succeeds, Zeitz says that it “shed[s] no real light on
why the answer is what it is. . . . [It] magically produced the value 1

n+1”
[53]. Although Zeitz does not spell out this reaction any further, I think we
can readily sympathize with it. This proof makes it seem like an accident of
algebra, as it were, that everything cancels out so nicely, leaving us with just
1

n+1 .

Of course, nothing in math is genuinely accidental; the result is mathe-
matically necessary. Nevertheless, until the very end, nothing in the proof
suggested that every possible outcome (for a given n) would receive the same
chance.7 The result simply turns out to be independent of r, and this fact
remains at least as remarkable after we have seen the above proof as it was
before. I think that many of us would be inclined to suspect that there is
some reason why the chance is the same for every possible outcome (given
n) — a reason that eludes the above proof. (Notice how natural it becomes
in this context to talk of “reasons why” the result holds.)

Zeitz says that in contrast to the foregoing argument, the following argu-
ment allows us to “understand why the coin problem had the answer that it
did” [53, his emphasis]:

Think of the outcomes of the n coin tosses as dictated by n further
numbers generated by the same random-number generator that
generated the coin’s chance p of landing heads: a number less than

7Regarding another method of tackling this integral (using generating functions), Zeitz
says: “The magical nature of the argument is also its shortcoming. Its punchline creeps
up without warning. Very entertaining, and very instructive in a general sense, but it
doesn’t shed quite enough light on this particular problem. It shows us how these n + 1
probabilities were uniformly distributed. But we still don’t know why” [55, page 352].
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p corresponds to a head, and a number greater than p corresponds
to a tail. (The chance that the number will be less than p is
obviously p – the chance of a head.) Thus, the same generator
generates n+1 numbers in total. The outcomes are all heads if the
first number generated (p) is larger than each of the n subsequent
numbers, all but one of the outcomes are heads if the first number
generated is larger than all but one of the n subsequent numbers,
and so forth. Obviously, if we were to rank the n + 1 generated
numbers from smallest to largest, then the first generated number
(p) has the same chance of being ranked first as it has of being
ranked second, and likewise for any other position. Hence, every
possibility (from 0 heads to n heads) is equally likely, so each has
chance 1

n+1 .

In light of this proof, Zeitz concludes that the result “is not unexpected,
magical algebra. It is just simple, almost inevitable symmetry” [53]. I agree:
this proof explains why every possible outcome has the same chance (and,
therefore, why each possible outcome’s chance is 1

n+1). The proof explains
the symmetry in the chances by showing how it arises from a symmetry in
the setup (rather than as an algebraic miracle): in e↵ect, the same random-
number generator is used for generating p as for generating each of the n
coin-toss outcomes, and when n + 1 numbers are so generated and listed
from smallest to largest, every position on the list is equally likely to end
up being occupied by the first number generated.8 A symmetry in the setup
accounts for the same symmetry in the chances of the possible outcomes.

In short, our curiosity was initially aroused by the symmetry of the result:
that, remarkably, every possible outcome has the same chance. The first
proof did not satisfy us because it failed to exploit any such symmetry in
the setup. We suspected that there was a reason for the result — a hidden
“evenness” in the setup that is responsible for the same “evenness” in the
result. The second proof revealed the setup’s hidden symmetry and thereby
explained the result.

8Zeitz: “The probabilities were uniform because the numbers [generated randomly] were
uniform, and thus their rankings [that is, the place of the first generated number among
the others, as ranked from smallest to largest] were uniform. The underlying principle,
the ‘why’ that explains this problem, is . . . Symmetry” [55, page 353].
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4. Explanation by symmetry

The example of Zeitz’s coin suggests the following proposal. Often a
mathematical result that exhibits symmetry of a certain kind is explained
by a proof showing how it follows from a similar symmetry in the problem.
Each of these symmetries consists of some sort of invariance under a given
transformation; the same transformation is involved in both symmetries. For
instance, in the example of Zeitz’s coin, both symmetries involve invariance
under a switch from one possible outcome (e.g., 1000 heads and 1000 tails) to
any other (e.g., 999 heads and 1001 tails). In such a case, what makes a proof
that appeals to an underlying symmetry in the setup count as “explanatory”
in contrast to other proofs of the same result? Nothing beyond the fact that
the symmetry of the result was what drew our attention in the first place.

For instance, in the example of Zeitz’s coin, had the result been some
complicated, unremarkable function of n and r, then the question “Why is
that the chance?” would probably have amounted to nothing more than a
request for a proof. One proof might have been shorter, less technical, more
pleasing or accessible to some audience, more elegant in some respect, or
more fully spelled out than some other proof. But any proof would have
counted as answering the question. There would have been no distinction
between a proof that explains the result and a proof that merely proves it.

However, the symmetry of the result immediately struck us, and it was
made further salient by the first proof we saw, since in that proof, the sym-
metry of the solution emerged “magically” from out of the fog of algebra.
Its origin was now especially puzzling. The symmetry, once having become
salient, prompts the demand for an explanation: a proof that traces the result
back to a similar symmetry in the problem. (There need not be any such
proof; a mathematical fact may have no explanation.9) In light of the salience
of the symmetry, there is a point in asking for an explanation over and above
a proof. A proof that exploits the symmetry of the setup is privileged as
explanatory because the symmetry of the result is especially striking.

My proposal predicts that mathematical practice contains many other
examples where an explanation of some result is distinguished from a mere

9For example, after asking why a given Taylor series fails to converge, Spivak [44, page
482] says, “Asking this sort of question is always dangerous, since we may have to settle
for an unsympathetic answer: it happens because it happens — that’s the way things are!”
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proof of it only in view of the result’s exhibiting a puzzling symmetry — and
where only a proof exploiting such a symmetry in the problem is recognized
as explaining why the solution holds. I will now present several examples of
this phenomenon.

5. A theorem explained by a symmetry in the unit imaginary num-

ber

Consider this theorem (first proved by d’Alembert in 1746):

If the complex number z = a + bi (where a and b are real) is a
solution to zn + an�1z

n�1 + · · · + a0 = 0 (where the ai are real),
then z’s complex conjugate z = a� bi is also a solution.

Why is this true?

We can prove this theorem directly by evaluating zn+an�1z
n�1+ · · ·+a0.

First, we show by calculation that z w = zw:

Let z = a + bi and w = c + di. Then z w = (a � bi)(c � di) =
ac�bd+i(�bc�ad). But zw = (a+bi)(c+di) = ac�bd+i(bc+ad)
and so zw = ac� bd� i(bc+ ad) = z w.

Hence, z2 = z z = zz = z2, and likewise for all other powers. Therefore,
zn + an�1z

n�1 + · · · + a0 = zn + an�1zn�1 + · · · + a0. Now we show by
calculation that z + w = z + w:

Let z = a+bi and w = c+di. Then z+w = (a�bi)+(c�di) = a+
c+i(�b�d) and z + w = a+ bi+ c+ di = a+c�i(b+d) = z+w.

Thus, zn + an�1zn�1 + · · · + a0 = zn + an�1zn�1 + · · ·+ a0, which equals 0
and hence 0 if z is a solution to the original equation.

Although this proof shows d’Alembert’s theorem to be true, it pursues
what mathematicians call a “brute force” approach. That is, it simply cal-
culates everything directly, plugging in everything we know and grinding out
the result. The striking feature of d’Alembert’s theorem is that the equa-
tion’s nonreal solutions all come in pairs where one member of the pair can
be transformed into the other by the replacement of i with �i. Why does
exchanging i for �i in a solution still leave us with a solution? This symme-
try just works out that way (“magically”) in the above proof. But we are
inclined to suspect that there is some reason for it. In other words, the sym-
metry in d’Alembert’s theorem puzzles us, and in asking for the theorem’s
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“explanation”, we are seeking a proof of the theorem from some similar sym-
metry in the original problem — that is, a proof that exploits the invariance
of the setup under the replacement of i with �i.

The sought-after explanation is that �i could play exactly the same roles
in the axioms of complex arithmetic as i plays. Each has exactly the same
definition: each is exhaustively captured as being such that its square equals
�1. There is nothing more to i (and to �i) than that characterization.
Of course, i and �i are not equal; each is the negative of the other. But
neither is intrinsically “positive”, for instance, since neither is greater than
(or less than) zero. They are distinct, but they are no di↵erent in their
relations to the real numbers. Whatever the axioms of complex arithmetic
say about one can also be truly said about the other. Since the axioms
remain true under the replacement of i with �i, so must the theorems — for
example, any fact about the roots of a polynomial with real coe�cients. (The
coe�cients must be real so that the transformation of i into �i leaves the
polynomial unchanged.) The symmetry expressed by d’Alembert’s theorem
is thus grounded in the same symmetry in the axioms.

Here we have another example where a proof is privileged as explana-
tory because it exploits a symmetry in the problem — a symmetry of the
same kind as initially struck us in the fact being explained. Furthermore,
this is a good example with which to combat the impression that a proof’s
being explanatory is no more objective (no less “in the eye of the beholder”)
than a proof’s being understandable, being of interest, or being su�ciently
spelled out. Mathematicians largely agree on whether or not a proof is aptly
characterized as “brute force”, and I suggest that no “brute force” proof is
explanatory when the theorem exhibits a striking symmetry. A brute force
approach is not selective. It sets aside no features of the problem as ir-
relevant. Rather, it just “ploughs ahead” like a “bulldozer” [2, page 215],
plugging everything in and calculating everything out. (The entire polyno-
mial, not just some piece or feature of it, was used in the first proof above
of d’Alembert’s theorem.) In contrast, an explanation must be selective. It
must pick out a particular feature of the setup and deem it responsible for
(and other features irrelevant to) the result being explained. (Shortly we
will see another example in which a brute-force proof is explanatorily im-
potent.) Mathematicians commonly say that a brute-force solution supplies
“little understanding” and fails to show “what’s going on” [29, pages 29-30].
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Suppose that we had begun not with d’Alembert’s theorem, but with
some particular instances of it (as d’Alembert might have done). The so-
lutions of z3 + 6z � 20 = 0 are 2, �1 + 3i, and �1 � 3i. The solutions of
z2 � 2z + 2 = 0 are 1 � i and 1 + i. In both examples, the solutions that
are not real numbers are pairs of complex conjugates. Having found many
examples like these, one might ask: Why is it that in all of the cases we
have examined of polynomials with real coe�cients, their non-real roots all
fall into complex-conjugate pairs? Is it a coincidence, or are they all like
that? One possible answer to this why question is that they are not all like
that; we have simply gotten lucky by having examined an unrepresentative
group of examples. Another possible answer is that our examples were un-
representative in some systematic way: all polynomials of a certain kind (e.g.,
with powers less than 4) have their non-real solutions coming in complex-
conjugate pairs, and all of the polynomials we examined were of that kind.
In fact, as we have seen, d’Alembert’s theorem is the explanation; any poly-
nomial with exclusively real coe�cients has all of its non-real roots coming
in complex-conjugate pairs. Here we have a mathematical explanation that
consists not of a proof, but merely of a theorem.

However, it is not the case that just any broader mathematical theorem
that subsumes the examples to be explained would su�ce to account for
them. After all, we could have subsumed those two cases under this ger-
rymandered theorem: For any equilateral triangle or equation that is either

z3 +6z� 20 = 0 or z2 � 2z+2 = 0 (the two cases above), either the triangle

is equiangular or the equation’s non-real solutions all form complex-conjugate

pairs. This theorem does not explain why the two equations have the given
feature. (Neither does a theorem covering just these two cases.) Plausibly,
whether a theorem can be used to explain its instances depends on whether
that theorem has a certain kind of explanation. In any case, my concern in
this paper is with the way that a certain proof of some theorem can explain
why that theorem holds rather than with mathematical explanations where
a theorem explains why one or more of its instances hold.

Here is another example (also discussed by Kitcher [23, pages 425-426])
of a proof that is widely respected as possessing explanatory power because
it derives a result exhibiting a salient symmetry from a similar symmetry in
the setup. It had been well known before Lagrange that a cubic equation of
the form x3+nx+p = 0, once transformed by x = y�n/3y, becomes a sixth-
degree equation y6 + py3 + n3/27 = 0 (the “resolvent”) that, miraculously,



22 Explanatory Proofs and Beautiful Proofs

is quadratic in y3. Lagrange aimed to determine why: “I gave reasons why
[raison pourquoi] this equation, which is always of a degree greater than that
of the given equation, can be reduced. . . ” [25, page 242]. Lagrange showed
that exactly the resolvent’s solutions y can be generated by taking 1/3(a1 +
!a2 + !2a3) and replacing a1, a2, and a3 with the cubic’s three solutions x1,
x2, and x3 in every possible order — where ! = (�1 +

p
3i)/2, one of the

cube roots of unity. But the three solutions generated by even permutations
of x1, x2, and x3 — namely 1/3(x1+!x2+!2x3), 1/3(x2+!x3+!2x1), and
1/3(x3 + !x1 + !2x2) — all have the same cubes (since 1 = !3 = (!2)3) —
and likewise for the three solutions generated by odd permutations. Since y3

takes on only two values, y3 must satisfy a quadratic equation. So “this is
why the equation that y satisfies proves to be a quadratic in y3” [24, page
602]. The symmetry of 1/3(a1+!a2+!2a3) under permutations of the three
xi explains the symmetry that initially strikes us regarding the sixth-degree
equation (that three of its six roots are the same, and the remaining three
are, too). As mathematicians commonly remark, y3 “assumes two values
under the six permutations of the x. It is for this reason that the equation
of degree six which [y] satisfies is in fact a quadratic in [y]3” [21, page 51].

6. Two geometric explanations that exploit symmetry

Proofs in geometry can also explain by exploiting symmetries. Consider
the theorem:

If ABCD is an isosceles trapezoid as shown in Figure 2 (AB
parallel to CD, AD = BC) such that AM = BK and ND = LC,
then ML = KN .

Figure 2: An isosceles trapezoid.
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A proof could proceed by brute-force coordinate geometry: first let D’s

coordinates be (0, 0), C’s be (0, c), A’s be (a, s), and B’s be (b, s), and then

solve algebraically for the two distances ML and KN , showing that they are

equal. A more inventive, Euclid-style option would be to draw some auxiliary
lines and to exploit the properties of triangles:

Draw the line from N perpendicular to CD; call their intersection
P (see Figure 3 below); likewise draw line LS.

Figure 3: A Euclid-style proof of isosceles trapezoid theorem.

Consider trianglesDNP and CLS: anglesD and C are congruent
(since the trapezoid is isosceles), ND = LC (given), and the
two right angles are congruent. Having two angles and the non-
included side congruent, triangles DNP and CLS are congruent,
so their corresponding sides NP and LS are congruent. They
are also parallel (being perpendicular to the same line). That
these two opposite sides are both congruent and parallel shows
PNLS to be a parallelogram. Hence, NL is parallel to DC. By
the same argument with two new auxiliary lines, AB is parallel
to MK. Therefore, MK and NL are parallel (since they are
parallel to lines that are parallel to each other), so MKLN is a
trapezoid. Since MN = AD � AM � ND, KL = BC � BK �
LC, AM = BK, AD = BC, and NK = LC, it follows that
MN = KL. As corresponding angles, \KLN = \LCS; since
triangle CLS is congruent to triangleDNP , \LCS = \NDP ; as
corresponding angles, \NDP = \MNL. Therefore, \KLN =
\MNL. From this last identity (and that NL = NL, MN =
KL), it follows (by having two sides and their included angle
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congruent) that triangles MNL and KLN are congruent, and so
their corresponding sides ML and KN are the same length.

This proof succeeds, but only by using a construction that many mathe-
maticians would regard as artificial or “clever.” (See [52], for instance, from
where I have taken this example.) The construction is artificial because the
proof using it seems forced to go to elaborate lengths — all because it fails to
exploit the feature of the figure that most forcibly strikes us: its symmetry
with respect to the line between the midpoints of the bases (Figure 4).

Figure 4: Symmetry in the trapezoid figure.

The theorem (that ML = KN) “makes sense” in view of the overall
symmetry of the figure. Intuitively, a proof that fails to proceed from this
symmetry strikes us as failing to focus on “what is really going on”: that we
have here the same figure twice, once on each side of the line of symmetry.
Folding the figure along the line of symmetry, we find that NO coincides
with LO and that MO coincides with KO, so that MO+OL = KO+ON ,
and hence ML = KN . Of course, to make this proof complete, we must
first show that the point at which ML intersects KN lies on the line of
symmetry. But that is also required by the overall symmetry of the figure: if
they intersect o↵ of the line of symmetry, then the setup will be symmetrical
only if there is another point of intersection at the mirror-image location on
the other side of the line of symmetry, but two lines (ML and KN) cannot
intersect at more than one point.

Of course, this proof exploits a very simple symmetry: mirror reflection
across a line. A proof in geometry can explain by virtue of exploiting a
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more intricate symmetry in the setup. For instance, consider one direction
of Menelaus’ theorem:

If the three sides of triangle ABC are intersected by a line l1 (see
Figure 5), where C 0 (A0, B0) is the point where l1 intersects line
AB (BC, CA, respectively), then

AC 0

BC 0
BA0

CA0
CB0

AB0 = 1.

Figure 5: Menelaus’ theorem.

We are immediately struck by the symmetry on the left side of this equation.
(Indeed, we inevitably use the symmetry to get a grip on what the left side is
all about.) The left side consists of a framework of primed points ·C0

·C0
·A0

·A0
·B0

·B0

exhibiting an obvious symmetry: “A”, “B”, and “C” all play the same role
around the primes (modulo the order from left to right, which makes no
di↵erence to the product of the three terms). Within this framework, the
three unprimed points are arranged so that “A”, “B”, and “C” all again play
the same role: each appears once on the top and once on the bottom, and each
is paired once with each of the other two letters primed. These constraints
su�ce to fix the expression modulo the left-right order, which does not matter
to their product, and modulo the inversion of top and bottom, which does
not matter since the equation sets the top and bottom equal. In short, the
left-hand expression is invariant (modulo features irrelevant to the equation)
under any systematic interchange of “A”, “B”, and “C” around the other
symbols. In the literature, the primed points are almost always named as
I have named them here (e.g., with C 0 as the point where l1 intersects line
AB) in order to better display the symmetry of the expression.

Having recognized this symmetry in the theorem, we regard any proof of
the theorem that ignores it as failing to explain why the theorem holds. For
instance, consider this proof:
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Draw the line through A parallel to l1 (dotted line in Figure
5); let X be its point of intersection with line BC. As cor-
responding angles, \BA0C 0 = \BXA. Therefore (since they
also share \B), triangles BC 0A0 and BAX are similar, so their
corresponding lengths are in a constant proportion. In particu-
lar, AC 0/BC 0 = XA0/BA0. Likewise, as corresponding angles,
\CB0A0 = \CAX. Therefore (since they also share \B0CA0),
triangles ACX and B0CA0 are similar, so their corresponding
lengths are in a constant proportion. In particular, AB0/CB0 =
XA0/CA0. Solving this for XA0 = (AB0)(CA0)/CB0 and substi-
tuting the resulting expression for XA0 into the earlier equation
yields AC 0/BC 0 = AB0/BA0 CA0/CB0. The theorem follows by
algebra.

Einstein says that this proof is “not satisfying” [30] and Bogomolny agrees
[6]. Both cite the fact that (in Einstein’s words) “the proof favors, for no
reason, the vertex A [since the auxiliary line is drawn from that vertex],
although the proposition [to be proved] is symmetrical in relation to A, B,
and C” [30]. I agree: this argument depicts the symmetric result as arising
“magically”, whereas to explain why the theorem holds, we must proceed
entirely from the symmetries of the figure over A-B-C.

Following Brunhes [8, page 84], Bogomolny [6] o↵ers such a proof, which
I now elaborate (see Figure 6):

Figure 6: Proof of Menelaus’ theorem.

Add a line l2 perpendicular to l1. Project A onto l2 by a line
lA from A parallel to l1; let Ap be the point on l2 to which A
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is projected. Perform the same operation on B and C, adding
lines lB and lC , points Bp and Cp. Of course, A0, B0, and C 0

all project to the same point on l2 (since l1 is their common line
of projection), which can equally well be called “A0

p”, “B
0
p”, or

“C 0
p”. The following equation exhibits the same symmetry as the

theorem:
ApC

0
p

BpC 0
p

BpA
0
p

CpA0
p

CpB
0
p

ApB0
p

= 1.

This equation is true (considering that A0
p, B

0
p, and C 0

p are the
same point, allowing a massive cancellation) and is strikingly
invariant (modulo features irrelevant to the equation: left-right
order and inversion of top and bottom) under systematic inter-
change of “A”, “B”, and “C” around the primes and subscript
“p”s — the same symmetry that the theorem possesses. To ar-
rive at the theorem, all we need to do is to find a way to remove
the subscript “p”s from this equation, which is easily done. For
any side of the triangle, l1 and the two lines projecting its end-
points onto l2 constitute three parallel lines, and all three are
crossed by the side and by l2. Now we use the lemma: Whenever

two transversals cross three parallel lines, the two segments into

which the three parallels cut one transversal stand in the same ra-

tio as the two segments into which the three parallels cut the other

transversal. That is, the ratio of one transversal’s segments is pre-
served in the ratio of their projections onto the other transversal.
By projecting each side onto l2, we find

ApC
0
p

BpC 0
p

=
AC 0

BC 0

BpA
0
p

CpA0
p

=
BA0

CA0

CpB
0
p

ApB0
p

=
CB0

AB0 .

Thus the theorem is proved by an argument that begins with an equation
that treats A, B, and C identically and in each further step treats them
identically. This proof reveals how features of the setup that are A-B-C
symmetric are responsible for the symmetry of the theorem. The symmetry
of the result does not just come out of nowhere. The general strategy of the
proof is to project A0, B0, and C 0 onto the very same point (thereby treating
them identically) by projecting the triangle’s three sides onto the same line.

This explanation also shows that the auxiliary lines of a proof need not
be “artificial”; that is, the use of auxiliary lines does not su�ce to make the
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proof non-explanatory. Although the auxiliary lines in the Euclidean proof of
the trapezoid theorem were mere devices to prove the theorem, and likewise
for line AX in the first proof of Menelaus’ theorem, the scheme of auxiliary
lines in the second proof of Menelaus’ theorem is A-B-C symmetric [6].

7. Generalizing the proposal: mathematical explanations that do

not exploit symmetries

I have now given several examples of mathematical explanations consist-
ing of proofs that exploit symmetries. However, I do not mean to suggest
that only a proof that appeals to some symmetry can explain why a mathe-
matical theorem holds. Rather, I am using proofs by symmetry to illustrate
the way in which certain proofs manage to become privileged as explana-
tory. Symmetries are not somehow intrinsically explanatory in mathematics.
Rather, some symmetry in a mathematical result is often salient to us, and
consequently, in those cases, a proof that traces the result back to a similar
symmetry in the problem counts as explaining why the result holds. Some
feature of a mathematical result other than its symmetry could likewise be
salient, prompting a why question answerable by a proof deriving the result
from a similar feature of the given. What it means to ask for a proof that
explains is to ask for a proof that exploits a certain kind of feature in the
setup — the same kind of feature that is outstanding in the result. The
distinction between proofs that explain why some theorem holds and proofs
that merely establish that it holds exists only when some feature of the result
being proved is salient. That feature’s salience makes certain proofs explana-
tory. A proof is accurately characterized as an explanation (or not) only in
a context where some feature of the result being proved is salient.

My proposal predicts that if the result exhibits no noteworthy feature,
then to demand an explanation of why it holds, not merely a proof that it
holds, makes no sense. There is nothing that its explanation over and above
its proof would amount to until some feature of the result becomes salient.10

10There may also be cases where the result exhibits a feature that is only slightly salient.
If some proofs but not others exploit a similar feature in the problem, this di↵erence would
ground only a slight distinction between proofs that explain why and proofs that merely
establish that some theorem holds. Another way for intermediate cases to arise is for a
certain feature to be salient in the result, but for proofs to exploit to varying degrees a
similar feature in the set up — rather than for any proof to proceed entirely from such a
feature. See also footnote 15.
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This prediction is borne out. For example, there is nothing that it would
be for some proof to explain why and not merely to prove that

Z 3

1

(x3 � 5x+ 2)dx = 4.

Nothing about this result calls for explanation.

My proposal also predicts that if a result exhibits some noteworthy fea-
ture, but no proof traces that result to a similar feature in the setup, then
the result has no explanation. This prediction is also borne out. Take the fol-
lowing example of a “mathematical coincidence” given by the mathematician
Timothy Gowers:

[C]onsider the decimal expansion of e, which begins 2.718281828 . . ..
It is quite striking that a pattern of four digits should repeat it-
self so soon — if you choose a random sequence of digits then the
chances of such a pattern appearing would be one in several thou-
sand — and yet this phenomenon is universally regarded as an
amusing coincidence, a fact that does not demand an explanation
[15, page 34]; cf. [4, page 140].

I take it, then, that mathematicians regard this fact as having no explanation.
Of course, there are many ways to derive e’s value, and thus to derive that
the third-through-sixth digits of its base-ten representation are repeated in
the seventh-through-tenth digits. For example, we could derive this result
from the fact that e equals the sum of 1/n! for n = 0, 1, 2, 3 . . .. However,
such a proof does not explain why the seventh-through-tenth digits repeat the
third-through-sixth digits. It merely proves that they do. On my view, that
is because the expression 1/0!+1/1!+1/2!+ · · · from which the proof begins
does not on its face exhibit any feature similar to the repeated sequence
of digits in e’s decimal expansion. (None of the familiar expressions for
calculating e makes any particular reference to base 10.) There is, I suggest,
no reason why that pattern of digits repeats. It just does.

Let’s now return to the example from Section 2: that every “calculator
number” is divisible by 37. Is this fact a coincidence? (This is the question
asked by the title of the Mathematical Gazette article that contributed this
example to the mathematical literature.)

The striking thing about this result is that it applies to every single
calculator number. In other words, the result’s “unity” is salient. A proof



30 Explanatory Proofs and Beautiful Proofs

that simply takes each calculator number in turn, separately showing each
to be divisible by 37, treats the result as if it were a coincidence. That
is, it fails to explain why all of the calculator numbers are divisible by 37.
Indeed, a case-by-case proof merely serves to highlight the fact that the result
applies to every single calculator number. Especially in light of this proof, an
explanation would be a proof that proceeds from a property common to each
of these numbers (where this property is a genuine respect in which these
numbers are similar, i.e., a mathematically “natural” property — unlike the
property of being either 123321 or 321123 or . . . ) and that is common to
them precisely because they are calculator numbers.11 I gave such a proof in
Section 2. I took it from a later Mathematical Gazette article entitled “No
Coincidence” [36]. That proof exploits the fact that every calculator number
can be expressed as 105a+104(a+d)+103(a+2d)+102(a+2d)+10(a+d)+a
where a, a + d, a + 2d are three integers in arithmetic progression. These
three integers, of course, are the three digits on the calculator keypads that,
taken forwards and backwards, generate the given calculator number. Hence,
this proof traces the fact that every calculator number is divisible by 37 to a
property that they have in common by virtue of being calculator numbers.

In short, an explanation of this result consists of a proof that treats every
calculator number in the same way.12 This unified treatment makes the
proof explanatory because what strikes us as remarkable about the result,
especially in light of the case-by-case proof, is its unity: that it identifies
a property common to every calculator number. The point of asking for
an explanation is then to ask for a proof that exploits some other feature
common to them because they are calculator numbers.13

11In [28], I am more explicit about what it takes for a mathematical predicate to denote
a mathematically natural property — a genuine respect of similarity. Strictly speaking,
that a given result identifies a property common to every single case of a certain sort is
just a symmetry in the result — for example, that under a switch from one calculator
number to any other, divisibility by 37 is invariant. Accordingly, I have already argued
that a proof that works by exploiting the same sort of symmetry in the setup counts as
explanatory. My view does not require that a theorem’s displaying a striking symmetry be
sharply distinguished from a theorem’s being striking for its treating various cases alike.

12In [28], I am more explicit about what it takes to treat them all “in the same way”.
I also explore more general philosophical issues concerning explanation, especially the
connections between explanation in mathematics and scientific explanation.

13If a result is remarkable for identifying something common to each case of an appar-
ently diverse lot, then those “cases” may themselves be general results — as when each
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A proof does not have to treat each instance separately in order to fail to
treat them all together. Consider this proof by mathematical induction of the
fact that the product of any three consecutive natural numbers is divisible
by 6:

The product of 1, 2, and 3 is 6, which is divisible by 6.

Suppose that the product of (n � 1), n, and (n + 1) is divisible
by 6. Let’s show that the product of n, (n + 1), and (n + 2) is
divisible by 6. By algebra, that product equals n3 + 3n2 + 2n =
(n3 � n) + 3n(n + 1). Now (n3 � n) = (n � 1)n(n + 1), so by

case is a theorem and the result identifies something common to each of them. Entirely
dissimilar proofs of two theorems would fail to explain why those theorems involve a com-
mon element. On the other hand, proofs of each theorem may explain this pattern if
the proofs themselves exploit a common element. Note the explanatory language in this
remark from the mathematician Terry Gannon:

There are lots of ‘meta-patterns’ in mathematics, i.e., collections of seemingly
di↵erent problems that have similar answers, or structures that appear more
often than we would have expected. Once one of these meta-patterns is
identified it is always helpful to understand what is responsible for it . . . To
give a trivial example, years ago while the author was writing up his PhD
thesis he noticed in several places the numbers 1, 2, 3, 4, and 6. For instance,
cos(2⇡r) 2 Q for r 2 Q i↵ the denominator of r is 1, 2, 3, 4, or 6. Likewise,
the theta function ⇥[Z + r](⌧) for r 2 Q can be written as

P
ai✓3(bi⌧) for

some ai, bir 2 R i↵ the denominator of r is 1, 2, 3, 4, or 6. This pattern
is easy to explain: they are precisely those positive integers n with Euler
totient '(n)  2, that is, there are at most two positive numbers less than
n coprime to n. The various incidences of these numbers can usually be
reduced to this '(n)  2 property [13, page 168].

We can understand the general idea here even if we do not know what Jacobi’s theta
function is or how '(n)  2 is connected to these two theorems. The general idea is
that proofs of the two theorems (one about cos, the other about ⇥[Z + r]) can explain
why {1, 2, 3, 4, 6} figures in both if each of those proofs exploits exactly the same feature of
{1, 2, 3, 4, 6} — e.g., nothing about {1, 2, 3, 4, 6} save that this set contains all and only the
positive integers where '(n)  2. (A proof exploits something other than a single feature
of {1, 2, 3, 4, 6} if, for instance, it determines which numbers n are such that '(n)  2,
and then proceed case-wise from there.) Since the striking feature of the two theorems
(when presented as Gannon does) is that {1, 2, 3, 4, 6} figures in both, the point of asking
why the two theorems hold is plainly to ask for proofs of the two theorems where (non-
trivially) both proofs exploit exactly the same feature of {1, 2, 3, 4, 6}. That both theorems
involve exactly the positive integers n where '(n)  2 explains why both theorems involve
{1, 2, 3, 4, 6}, and hence involve exactly the same integers.
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hypothesis, it is divisible by 6. And n(n+1) is even, so 3n(n+1)
is divisible by 3 and by 2, and therefore by 6. Hence, the original
product is the sum of two terms, each divisible by 6. Hence, that
product is divisible by 6.

This proof fails (by a whisker — see footnote 15) to treat every product of
three consecutive natural numbers alike. Instead, it divides them into two
classes: the product of 1, 2, and 3; and all of the others. This proof, then,
does not supply a common reason why all of the products of three consecutive
natural numbers are divisible by 6. Rather, it treats the first as a special
case. Insofar as we found the theorem remarkable for identifying a property
common to every triple of consecutive natural numbers, our point in asking
for an explanation was to ask for a proof that treats all of the triples alike.
This feature of the theorem is made especially salient by a proof that does
treat all of the triples alike:

Of any three consecutive natural numbers, at least one is even
(i.e., divisible by 2) and exactly one is divisible by 3. Therefore,
their product is divisible by 3⇥ 2 = 6.

This proof proceeds entirely from a property possessed by every triple.14 Like
the explanation of the fact that every calculator number is divisible by 37,
this proof traces the result to a property common to every instance and so
(when the unity of the result is salient) explains why the result holds.15

14Zeitz [54] mentions this theorem in passing but neither discusses it nor gives any proof
of it. I wonder if he had in mind either of the proofs I discuss.

15It follows that in a context where the result’s unity is salient, a proof by mathematical
induction cannot explain the result, since a proof by mathematical induction always treats
the first instance as a special case. However, the inductive proof of the triplet theorem
is a far cry from the proof of the calculator-number theorem that treats each of the
sixteen calculator numbers separately. The inductive proof nearly treats every triplet
alike. It gives special treatment only to the base case; all of the others receive the same
treatment. Therefore, although this inductive proof is not an explanation (when the
result’s unity is salient), it falls somewhere between an explanation and a proof utterly
lacking in explanatory power. A result (displaying unity as its striking feature) having such
a proof by induction, but (unlike the triplet theorem) having no proof that treats every
case alike, has no fully qualified explanation but is not an utter mathematical coincidence
either, since the inductive proof ties all but one of its cases together. On my account,
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A proof may focus our attention on a particular feature of the result that
would not otherwise have been salient. The proof may even call our attention
to this feature because the proof conspicuously fails to exploit it. When this
happens, the proof fails to qualify as explanatory. For instance, take one
standard proof of the formula for the sum S of the first n natural numbers
1 + 2 + · · ·+ (n� 1) + n.

There are two cases.

When n is even, we can pair the first and last numbers in the
sequence, the second and second-to-last, and so forth. The mem-
bers of each pair sum to n+1. No number is left unpaired, since
n is even. The number of pairs is n/2 (which is an integer, since
n is even). Hence, S = (n+ 1)n/2.

When n is odd, we can pair the numbers as before, except now
the middle number in the sequence is left unpaired. Again, the
members of each pair sum to n+1. This time there are (n�1)/2
pairs, since the middle number (n + 1)/2 is unpaired. The total
sum is the sum of the paired numbers plus the middle number:
S = (n+1)(n�1)/2+(n+1)/2. This simplifies to (n+1)n/2 —
remarkably, the same as the expression we just derived for even
n.

Before having seen this proof, we would not have found it remarkable that
the theorem finds that the same formula applies to both even n and odd n.
However, this feature of the result strikes us forcibly in light of this proof. We
might then well wonder: Is it a coincidence that the same formula emerges
in both cases? This proof depicts it as an algebraic miracle. Accordingly, in
this context, to ask for the reason why the formula holds, not merely a proof
that it holds, is to ask for the feature (if any) common to both of these kinds
of cases from which the common result follows.

Indeed there is such a feature; the result is no coincidence. Whether n
is even or odd, the sequence’s midpoint is half of the sum of the first and
last numbers: (1 + n)/2. Furthermore, all sequences of both kinds consist
of numbers balanced evenly about that midpoint. In other words, for ev-
ery number in the sequence exceeding the midpoint by some amount, the

the triplet theorem’s inductive proof is inferior in explanatory power to the fully unifying
proof, but nevertheless retains some measure of explanatory significance.
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sequence contains a number less than the midpoint by the same amount.
Allowing the excesses to cancel the deficiencies, we have each sequence con-
taining n numbers of (1+n)/2 each, yielding our formula. This is essentially
what happens in the standard proof of the formula, where each member
in the sequence having an excess is paired with a member having an equal
deficiency:

S = 1 + 2 + · · · + (n� 1) + n

S = n + (n� 1) + · · · + 2 + 1.

If we pair the first terms, the second terms, and so forth in each
sum, then each pair adds to (n + 1), and there are n pairs. So
2S = n(n+ 1), and hence S = n(n+ 1)/2.

This proof is just slightly di↵erent from the proof that deals separately with
even n and odd n. The use of two sequences could be considered nothing but
a trick for collapsing the two cases. Yet it is more than that. It brings out
something that the earlier proof obscures: that the common result arises from
a common feature of the two cases. For this reason, the earlier proof fails to
reveal that the formula’s success for both even n and odd n is no coincidence.
What allows the second proof to show that this is no coincidence? It traces
the result to a property common to the two cases: that the terms are balanced
around (1 + n)/2. (Whether or not a term in the sequence actually occupies
that midpoint is irrelevant to this balancing.) The earlier proof does not
exploit this common feature. Rather, it simply works its way through the
two cases and magically finds itself with the same result in both.16

Similar phenomena arise in some explanations that are not proofs. For
example, mathematicians such as Cardano and Euler had developed various
tricks for solving cubic and quartic equations. One of Lagrange’s tasks in
his monumental 1770-1 memoir “Reflections on the Solution of Algebraic
Equations” was to explain why his predecessors’ various methods all worked
(“pourquoi ces méthods réussissent” [26, page 206]; cf. [24, page 601]). By
showing that these di↵erent procedures all amount fundamentally to the same
method, Lagrange showed that it was no coincidence that they all worked.
In other words, faced with the fact that Cardano’s method works, Euler’s

16Steiner deems the second proof “more illuminating” than an inductive proof [47, page
136]. He does not discuss mathematical coincidences or contrast the second proof with
separate proofs for the even and odd cases.
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method works, Tschirnhaus’s method works, and so forth, one feature of
this fact is obviously salient: that it identifies something common to each of
these methods (namely, that each works). Lagrange’s explanation succeeds
by tracing this common feature to other features that these methods have
in common — in sum, that they are all fundamentally the same method:
“These methods all come down to the same general principle. . . ” [26, page
355], quoted in [21, page 45]. Part of the point in asking why these methods
all work is to ask whether their success can be traced to a feature common to
them all or is merely a coincidence. (Lagrange then asked why this common
method works; earlier we saw his explanation of the “resolvent”.)

Simplicity is another feature that generally stands out when a mathemat-
ical result possesses it.17 An especially simple result typically cries out for a
proof that exploits some similar, simple feature of the setup. In contrast, a
proof where the result, in all of its simplicity, appears suddenly out of a welter
of complexity — through some fortuitous cancellation or clever manipulation
— tends merely to heighten our curiosity about why the result holds. Such
a proof leaves us wanting to know where such a simple result came from.

17Poincaré says that a brute-force proof is unsatisfying when the result exhibits some
noteworthy feature such a symmetry or simplicity: “[W]hen a rather long calculation has
led to some simple and striking result, we are not satisfied until we have shown that we
should have been able to foresee, if not this entire result, at least its most characteristic
traits. . . . To obtain a result of real value, it is not enough to grind out calculations, or to
have a machine to put things in order. . . . The machine may gnaw on the crude fact, the
soul of the fact will always escape it” [37, pages 373-374].

Is it unilluminating to characterize a “salient feature” as a feature that gives content (in
the manner I have described) to a demand for mathematical explanation, while in turn
characterizing “mathematical explanation” in terms of a salient feature? I do not think
that my proposal is thereby rendered trivial or unilluminating. We can say plenty about
salience other than through its role in mathematical explanation (by way of paradigm
cases such as those given in this paper, the kinds of features that are typically salient,
how features become salient, and so forth) and we can recognize a feature as salient apart
from identifying a proof as explanatory. We can likewise say plenty about mathematical
explanation apart from its connection to salience. The connection my account alleges
between salience and mathematical explanation does no more to trivialize my account
than van Fraassen’s pragmatic approach to scientific explanation is trivialized by the fact
that it characterizes a “scientific explanation” as an answer to a question defined in terms
of a contrast class, while it characterizes the “contrast class” in a given case as consisting
of the possible occurrences that are understood to be playing a certain role in a given
question demanding a scientific explanation [51, page 127].
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After such a proof is given, there often appears a sentence like the following:
“The resulting answer is extremely simple despite the contortions involved
to obtain it, and it cries out for a better understanding” [45, page 14]. Then
another proof that traces the simple result to a similar, simple feature of the
problem counts as explaining why the result holds.

Examples of this kind often arise in proofs of “partition identities.” The
number p(n) of “partitions of n” is the number of ways that the non-negative
integer n can be expressed as the sum of one or more positive integers (ir-
respective of their order in the sum). For instance, p(5) = 7, since 5 can be
expressed in 7 ways: as 5, 4+ 1, 3+ 2, 3+ 1+1, 2+ 2+1, 2+ 1+1+1, and
1 + 1 + 1 + 1 + 1. (By convention, p(0) = 1.) Here is a “partition identity”
(proved by Euler in 1748): The number O(n) of partitions of n into exclu-

sively odd numbers (“O-partitions”) equals the number D(n) of partitions of
n into parts that are distinct, i.e., that are all unequal (“D-partitions”). For
instance, O(5) = 3 since 5, 3+1+1, and 1+1+1+1+1 are the O-partitions
of 5, and D(5) = 3 since 5, 4 + 1, and 3 + 2 are the D-partitions of 5.

There are two standard ways of proving partition identities: either with
“generating functions” or with “bijections”. The generating function f(q) for
a sequence a0, a1, a2, . . . is a0q0+a1q

1+a2q
2+· · · = a0+a1q+a2q

2+· · · . It does
not matter whether the sum in the generating function converges because it
is merely a device for putting the sequence on display; “qn” does not stand
for some unknown quantity, but just marks the place where an appears. Such
a “formal power series” can generally be manipulated in precisely the same
manner as a genuine power series. For example, “Consider (or as that word
often implies, ‘look out, here comes something from left field’)” [53, page 6]

(1+q+q2+q3 · · · )(1+q2+q4+q6 · · · )(1+q3+q6+q9 · · · )(1+q4+q8+q12 · · · ) · · ·

Multiplication of q3 from the first factor with 1’s from each other factor
will contribute q3 to the product. Another q3 is contributed by q from the
first factor multiplied by q2 from the second and 1’s from each of the rest.
Any combination of exponents adding to 3 contributes a q3. Each way of
contributing q3 corresponds to a partition of 3; for the mth factor, its repre-
sentative’s exponent divided bym equals the number of times thatm appears
as a part of that partition. For example, q3 from the first factor and 1’s from
every other factor corresponds to the partition with three 1’s and no other
parts, whereas q from the first factor, q2 from the second, and 1’s from the
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rest corresponds to the partition with one 1, one 2, and no other parts. Thus,
the above product is p(n)’s generating function: p(0) + p(1)q + p(2)q2 + · · · .
Since formally (1 + q + q2 + q3 + · · · )(1� q) = 1, the above product is

✓
1

1� q

◆ ✓
1

1� q2

◆ ✓
1

1� q3

◆
· · ·

By including only the factors corresponding to the number of 1’s, number of
3’s, number of 5’s, and so on:

(1 + q + q2 + q3 · · · )(1 + q3 + q6 + q9 · · · )(1 + q5 + q10 + q15 · · · )

we produce the generating function for O(n):

✓
1

1� q

◆ ✓
1

1� q3

◆ ✓
1

1� q5

◆
· · ·

Returning to the mth factor (1 + qm + q2m + q3m · · · ) of p(n)’s generating
function, we see that the terms beyond qm allow m to appear two or more
times in the partition, so their removal yields D(n)’s generating function

(1 + q)(1 + q2)(1 + q3) · · ·

By manipulating the generating functions in various ways (justified for in-
finite products by taking to the limit various manipulations for finite prod-
ucts), we can show (as Euler first did) that the two generating functions are
the same, and hence that O(n) = D(n):
✓

1

1� q

◆✓
1

1� q3

◆✓
1

1� q5

◆
· · · =

✓
1

1� q

◆✓
1� q2

1� q2

◆✓
1

1� q3

◆✓
1� q4

1� q4

◆
· · ·

=

✓
1� q2

1� q

◆✓
1� q4

1� q2

◆✓
1� q6

1� q3

◆✓
1� q8

1� q4

◆
· · ·

=

✓
(1� q)(1 + q)

1� q

◆✓
(1� q2)(1 + q2)

1� q2

◆
· · ·

= (1 + q)(1 + q2)(1 + q3) · · · .

Wilf terms this “a very slick proof” [53, page 10], which is to say that it involves
not only an initial generating function “from left field”, but also a sequence of
substitutions, manipulations, and cancellations having no motivation other than
that, miraculously, it works out to produce the simple result in the end. Proofs of
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partition identities by generating functions, although sound and useful, in many
cases “begin to obscure the simple patterns and relationships that the proof is
intended to illuminate” [7, page 46].

In contrast, “[a] common feeling among combinatorial mathematicians is that
a simple bijective proof of an identity conveys the deepest understanding of why
it is true [1, page 9, italics in the original]. A “bijection” is a 1-1 correspondence;
a bijective proof that O(n) = D(n) finds a way to pair each O-partition with
one and only one D-partition. Let us look at a bijective proof from Sylvester
[49] that O(n) = D(n). Display each O-partition as an array of dots, as in this
representation (Figure 7) of the partition 7 + 7 + 5 + 5 + 3 + 1 + 1 + 1 of 30:

Figure 7: A partition of 30.

Each row has the number of dots in a part of the partition, with the rows weakly
decreasing in length and their centers aligned. (Each row has a center dot since
each part is odd.) Here is a simple way to transform this O-partition into a D-
partition. The first part of the new partition is given by the dots on a line running
from the bottom up along the center column and turning right at the top — 11
dots. The next part is given by the dots on a line running from the bottom, up
along a column one dot left of center, turning left at the top — 7 dots. The next
part runs from the bottom upward along a column one dot right of center, turning
right at last available row (the second row from the top) — 6 dots. This pattern
leaves us with the fish-hook diagram (Figure 8):

Figure 8: Fish-hook diagram of partition.
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The result is a D-partition (11 + 7 + 6 + 4 + 2), and the reverse procedure on
that partition returns the original O-partition. With this bijection between O-
partitions and D-partitions, there must be the same number of each. The key to
the proof is that by “straightening the fish hooks”, we can see the same diagram
as depicting both an O-partition and a D-partition.

Because the bijection is so simple, this proof traces the simple relation between
O(n) and D(n) to a simple relation between the O-partitions and the D-partitions.
Moreover, the simple feature of the setup that the proof exploits is similar to the
result’s strikingly simple feature: the result is that O(n) and D(n) are the same,
and the simple bijection reveals that n’s O-partitions are essentially the same
objects as n’s D-partitions, since one can easily be transformed into the other. It
is then no wonder that O(n) = D(n), since e↵ectively the same objects are being
counted twice. This is the source of the explanatory power of a simple bijective
proof. As Wilf (personal communication) puts it, a simple bijective proof reveals
that “in a sense the elements [of the two sets of partitions] are the same, but have
simply been encoded di↵erently.”18

That is, the bijective proof shows that in counting O-partitions orD-partitions,
we are e↵ectively counting the same set of abstract objects. Each of these objects
can be represented by a dot diagram; the same diagram can be viewed as rep-
resenting an O-partition and a D-partition. To emphasize this point [1, pages
16-17], consider this partition identity: The number of partitions of n with exactly
m parts equals the number of partitions of n having m as their largest part. For
instance, Figure 9 shows the partitions of 7 with exactly three parts.19 Figure
10 shows each of these seen from a di↵erent vantage point — namely, after being
rotated one-quarter turn counterclockwise and then reflected across a horizontal
line above it. These are the partitions of 7 that have 3 as their largest part.

18Perhaps (contrary to the passages I have quoted) some combinatorial mathematicians
regard the proof from generating functions as explanatory just like the simple bijective
proof. Perhaps, then, I should restrict myself to identifying what it is that makes the
bijective proof explanatory and not argue that the generating-function proof lacks this
feature, but merely that it is perceived as lacking this feature by those who regard it as
less explanatorily powerful than the bijective proof. (See the remark quoted in footnote
20.)

19The dot diagrams given here all have their rows weakly decreasing in length (just like
the earlier diagram), but (unlike the earlier diagram) their rows do not have their centers
aligned. (Since the parts are not all odd, some rows do not have center dots.) Rather,
each row is aligned on the left. Clearly, the same partition may be displayed in various
dot diagrams.
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Figure 9: The partitions of 7 with exactly three parts.

Figure 10: The partitions of 7 that have 3 as their largest part.

Clearly, then, both sets of partitions are represented by the same set of four
arrays. A partition of one kind, seen from another vantage point, is a partition of
the other kind. The number of partitions of one kind is the same as the number of
partitions of the other kind because the same abstract object can be represented
as either kind of partition, and the number of those abstract objects is the same
no matter how we represent them.

Whereas the generatingfunctionology “seems like something external to the
combinatorics” (Andrews, personal communication) that just miraculously man-
ages to yield the simple result, a simple bijective proof shows that there is the same
number of partitions of two kinds because partitions of those two kinds, looked
at abstractly, are the same things seen from di↵erent perspectives. Such a proof
“makes the reason for the simple answer completely transparent” [45, page 15];
“[i]t provides a natural’ explanation . . . unlike the generating function proof which
depended on a miraculous trick” [46, page 24].20

20I do not contend that any bijective proof (regardless of the bijection’s complexity or
artificiality) is explanatory, that no generating function proof is explanatory, or that there
is never a good reason to seek a generating function proof once a simple, explanatory
bijective proof has been found. Each kind of proof may have value; for instance, a gen-
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8. Comparison to other proposals

Now I will briefly contrast my approach to proofs that explain with several
others in the recent literature.

According to Steiner [47], a proof explains why all S1’s are P1 if and only
if it reveals how this theorem depends on S1’s “characterizing property” — that
is, on the property essential to being S1 that is just su�cient to distinguish S1’s
from other entities in the same “family” (for example, to distinguish triangles from
other kinds of polygons). To reveal the theorem’s dependence on the character-
izing property, the proof must be “generalizable”. That is, if S1’s characterizing
property is replaced in the proof by the characterizing property for another kind S2

in the same family (but the original “proof idea” is maintained), then the resulting
“deformation” of the original proof proves that all S2’s are P2 for some property
P2 incompatible with P1. Thus, the original explanation helps to show that there
are di↵erent but analogous theorems for di↵erent classes in the same family.

Steiner’s proposal nicely accommodates some of the explanatory proofs I have
examined (at least under a natural reading of the relevant “family” and “proof
idea”). For instance, the proof I presented as explaining why the product of any
three consecutive natural numbers is divisible by 6(= 1⇥2⇥3) could be deformed
to prove that the product of any four consecutive natural numbers is divisible
by 24(= 1 ⇥ 2 ⇥ 3 ⇥ 4). However, this four-number result could also be proved
by mathematical induction — a proof that is a “deformation” of the proof by
induction of the three-number result. Yet (I have argued) the inductive proof of
the three-number result is not explanatory (in a context where the result’s treating
every case alike is salient), and its “generalizability” in Steiner’s sense does not
at all incline me to reconsider that verdict.21 The proof treats the first triplet

erating function proof may be much shorter or help us to find proofs of new theorems.
Also bear in mind that “[t]he precise border between combinatorial [i.e., bijective] and
non-combinatorial proofs is rather hazy, and certain arguments that to an inexperienced
enumerator will appear non-combinatorial will be recognized by a more facile counter as
combinatorial, primarily because he or she is aware of certain standard techniques for con-
verting apparently non-combinatorial arguments into combinatorial ones” [45, page 13].

21Steiner says that “inductive proofs usually do not allow deformation” and hence are
not explanatory, because by replacing S1s characterizing property with S2s in the original
inductive proof, we do not automatically replace the original theorem at the start of the
inductive step with the new theorem to be proved — and in an inductive argument, the
theorem must be introduced at the start of the inductive step [47, page 151]. It seems to
me, however, that if we take the inductive proof that the product of any three consecutive
natural numbers is divisible by 6(= 1 ⇥ 2 ⇥ 3) and replace the initial reference to three
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of natural numbers di↵erently from all of the others, rather than identifying a
property common to every triplet that makes each divisible by 6.

Furthermore, some of the explanatory proofs I have identified simply collapse
rather than yield new theorems when they are deformed to fit a di↵erent class in
what is presumably the same “family”. For instance, the proof from the isosce-
les trapezoid’s symmetry does not go anywhere when we shift to a non-isosceles
trapezoid, since the symmetry then vanishes.22 For some of the other explanatory
proofs I have presented, it is unclear what the relevant “family” includes. What,
for instance, are the other classes in the family associated with d’Alembert’s the-
orem that roots come in complex-conjugate pairs? Even if we could ultimately
discover such a family, we do not need to find it in order to recognize the explana-
tory power of the proof exploiting the setup’s invariance under the replacement of
i with �i. (I will return to this point momentarily.)

I turn now to Kitcher [22, pages 208-9, 227]; [23, pages 423-6, 437], who of-
fers a unified account of mathematical and scientific explanation; in fact, he sees
explanation of all kinds as involving unification. Roughly speaking, Kitcher says
that an explanation unifies the fact being explained with other facts by virtue of
their all being derivable by arguments of the same form. Explanations instantiate
argument schemes in the optimal collection (“the explanatory store”) — optimal
in that arguments instantiating these schemes manage to cover the most facts with
the fewest di↵erent argument schemes placing the most stringent constraints upon
arguments. An argument instantiating an argument scheme excluded from the
explanatory store fails to explain.

Thus, Kitcher sees a given mathematical proof’s explanatory power as arising
from the proof’s relation to other proofs (such as their all instantiating the same
scheme or their covering di↵erent facts). My account contrasts with Kitcher’s
(and with Steiner’s) in doing justice to the fact that (as we have seen in various
examples) we can appreciate a proof’s explanatory power (or impotence) just from

consecutive natural numbers with a reference to four consecutive natural numbers, then
the first step of the inductive proof is automatically that the first case of four consecutive
natural numbers is obviously divisible by their product (1 ⇥ 2 ⇥ 3 ⇥ 4 = 24), and this
gives us immediately the new theorem to be proved (namely, that the product of any four
consecutive natural numbers is divisible by 24) for use at the start of the second step. So
in this case, the inductive proof permits deformation.

22Resnik and Kushner [40, pages 147-152] likewise argue that the standard proof of
the intermediate value theorem (which, they say, is explanatory if any proofs are) simply
collapses if any attempt is made to shift it to cover anything besides an interval over the
reals (such as over the rationals or a disjoint pair of intervals over the reals).
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examining the details of that proof itself, without considering what else could be
proved by instantiating the same scheme (or “proof idea”) or how much coverage
the given proof adds to whatever is covered by proofs instantiating other schemes.
In addition, Kitcher regards all mathematical explanations as deriving their ex-
planatory power from possessing the same virtue: the scheme’s membership in the
“explanatory store”. It seems to me more plausible (especially given the diversity
of our examples) to expect di↵erent mathematical explanations to derive their ex-
planatory power by virtue of displaying di↵erent traits. On my approach, di↵erent
traits are called for when the result being explained has di↵erent salient features.

A typical proof by “brute force” uses a “plug and chug” technique that is per-
force applicable to a very wide range of problems. Presumably, then, its proof
scheme is likely to belong to Kitcher’s “explanatory store”. (Not every brute-force
proof instantiates the same scheme, but a given brute-force proof instantiates a
widely applicable scheme.) For example, as I mentioned in Section 6, we could
prove the theorem regarding isosceles trapezoids by expressing the setup in terms
of coordinate geometry and then algebraically grinding out the result. The same
strategy could be used to prove many other geometric theorems. Nevertheless,
these proofs lack explanatory power. This brute-force proof of the trapezoid theo-
rem is unilluminating because it begins by expressing the entire setup in terms of
coordinate geometry and never goes on to characterize various particular features
of the setup as irrelevant. Consequently, it fails to pick out any particular feature
of isosceles trapezoids (such as their symmetry) as the feature responsible for the
theorem. On my view, a brute-force proof is never explanatory when the salient
feature of the theorem being explained is its symmetry or simplicity or some other
such feature, since a brute-force proof does not exploit any such feature. (However,
if the theorem’s salient feature is its unity, then a brute-force proof can explain,
since it may well treat all cases alike.)

A new proof technique can explain why some theorem holds even if that tech-
nique allows no new theorems to be proved. My approach can account for this fea-
ture of mathematical explanation. It is more di�cult to accommodate on Kitcher’s
proposal, since any explanatory argument scheme must earn its way into the “ex-
planatory store” by adding coverage (without unduly increasing the number of
schemes or decreasing the stringency of their constraints).23

I turn finally to Resnik and Kushner [40], who doubt that any proofs explain
simpliciter. They contend that a proof’s being “explanatory” to a given audience

23Tappenden [50] o↵ers a similar objection to this “winner take all” feature of Kitcher’s
account.
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is nothing more than its being the kind of proof that the audience wants — perhaps
in view of its premises, its strategy, its perspicuity, or the collateral information it
supplies (or perhaps any proof whatsoever of the theorem would do). Contrary to
Resnik and Kushner, I do not think that whenever someone wants a certain kind of
proof, for whatever reason, then such a proof qualifies for them as explaining why
the theorem being proved holds. Rather, mathematical practice shows that an
explanatory proof requires some feature of the result to be salient and requires the
proof to exploit a similar noteworthy feature in the problem. Thus, the demand for
an explanation is not simply the demand for a certain kind of proof; the demand
arises from a certain feature of the result and is satisfied only by a proof that
involves such a feature from the outset. For example, we may want to see a proof
of the “calculator number” theorem that proceeds by checking each of the sixteen
calculator numbers individually. But this proof merely heightens our curiosity,
motivating us to seek the reason why all of the calculator numbers are divisible
by 37. It is not the case that any kind of proof we happen to want counts as an
explanation when we want it.

9. Conclusion

I have tried to identify the basis on which certain proofs but not others are
explanatory. Of course, I have not shown that all explanatory proofs work in the
manner I have identified. I claim only to have sketched one very common way in
which various proofs manage to explain. Admittedly, several fairly elastic notions
figure in my idea of a proof’s exploiting the same kind of feature in the problem as
was salient in the result. This elasticity allows my proposal to encompass a wide
range of cases (as I have shown). Insofar as the notions figuring in my proposal
have borderline cases, there will correspondingly be room for mathematical proofs
that are borderline explanatory.24 However, the existence of such cases would not
make a proof’s explanatory power rest merely “in the eye of the beholder.”

As I noted at the outset, it is challenging to find a source of explanatory
asymmetry for mathematical explanations, since the usual suspects in scientific
explanation (such as the priority of causes over their e↵ects, and the priority of
more fundamental laws of nature over more derivative laws) are unavailable. In
response, I have gestured toward the priority that axioms in mathematics have
over theorems, but I have also emphasized mathematical explanations that operate
in connection with “problems”, each of which is characterized by a “setup” and
a “result”. This structure of setup and result adds an asymmetry that enables

24See footnotes 10 and 15.



Marc Lange 45

mathematical explanation to get started by allowing why questions to be posed
(as in our first example, where Zeitz declares that he wants to “understand why
the coin problem [i.e., the setup] had the answer [i.e., the result] that it did”). Of
course, we bring this structure of “setup” and “result” to the mathematics, just
as we bring the sensibility that privileges certain features as salient. But although
the distinction between explanatory and non-explanatory proofs in the cases I
have examined arises only when these cases are understood in terms of setups and
results exhibiting salient features, it does not follow that a proof is explanatory
merely by virtue of striking its audience as explanatory.

Of course, if some extraterrestrials di↵er from us in which features of a given
theorem they find salient, then it follows from my account that those extraterres-
trials will also di↵er from us in which proofs they ought to regard as explanatory. I
embrace this conclusion. In di↵erent contexts, we properly regard di↵erent proofs
of the same theorem to be explanatory — namely, in contexts where di↵erent
features of the theorem are salient. Furthermore, if some extraterrestrials dif-
fered from us so much that they never regarded symmetry, unity, and simplicity
as salient, then even if we and they agreed on the truth of various mathematical
theorems, their practices in seeking and refining proofs of these theorems would
di↵er so greatly from ours that it would be a strain to characterize them as doing
mathematics. As cases such as the embrace of imaginary numbers illustrate, the
search for mathematical explanations often drives mathematical discovery and in-
novation. Such extraterrestrials would not be seeking the same things as we do in
doing mathematics.

Let me conclude by o↵ering a conjecture regarding the relation between a
mathematical proof’s explanatory power and its beauty. I suggest that all ex-
planatory proofs are beautiful (or, at least, not ugly). They derive their beauty
from exactly what gives them their explanatory power, namely, from their exploit-
ing precisely the feature in the setup that is salient in the theorem (such as its
symmetry, unity, or simplicity). Moreover, the possession of such a feature renders
a theorem beautiful (or, at least, not ugly).

This proposal accounts for many aspects of beauty in mathematics. For in-
stance, it accounts for the fact that brute-force proofs are not reckoned to be
beautiful when the theorem being explained is strikingly symmetrical or simple.
As Hardy pungently comments: “ ‘enumeration by cases’ . . . is one of the duller
forms of mathematical argument” [18, page 113]. Likewise, Bogolmy characterizes
the explanatory and non-explanatory proofs of Menelaus’ theorem as “elegant” and
“ugly”, respectively [6]. Similarly, consider Morley’s theorem (Figure 11): that for
any Euclidean triangle, an equilateral triangle is formed by the three intersection
points of adjacent interior angle trisectors.
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Figure 11: Morley’s theorem.

This result is widely deemed to be beautiful in virtue of the striking symmetry
that it reveals to be buried within even the most ungainly triangle. However, no
proof of the theorem has yet been found that is beautiful or that explains why
the theorem holds; none exploits some hidden symmetry in the setup. The proofs
it has received are characterized as not only ugly — as involving “elephantine”
geometrical constuctions [10] — but also explanatorily impotent:

[E]ven when I read the much simpler proof based on trigonometry,
or the fairly simple geometric proof due to Navansiengar, there was
still too much complexity and lack of motivation. (A series of lucky
breaks!) Were we to give up, forever, understanding the Morley Mir-
acle? [34, page 31]

Perhaps Morley’s “miracle” has no explanation and no beautiful proof, despite
being a beautiful theorem.

This proposal leaves room for beautiful proofs of theorems that have no salient
features and hence no explanations. It also does not rule out beautiful, non-
explanatory proofs of theorems that have explanations. There may be many dif-
ferent ways in which proofs come to qualify as “beautiful”. This proposal also
suggests that like its explanatory power, a proof’s beauty may be context sensitive
since it may depend on a certain feature of the theorem being salient.

Mathematicians do occasionally reflect upon explanation in mathematics. For
instance, Timothy Gowers writes:
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[Some] branches of mathematics derive their appeal from an abun-
dance of mysterious phenomena that demand explanation. These
might be striking numerical coincidences suggesting a deep relation-
ship between areas that appear on the surface to have nothing to do
with each other, arguments which prove interesting results by brute
force and therefore do not satisfactorily explain them, proofs that ap-
parently depend on a series of happy accidents . . . [14, page 73].

I hope that this paper has managed to unpack some of these provocative remarks.
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