122 research outputs found

    Structural Average Case Complexity

    Get PDF
    AbstractLevin introduced an average-case complexity measure, based on a notion of “polynomial on average,” and defined “average-case polynomial-time many-one reducibility” among randomized decision problems. We generalize his notions of average-case complexity classes, Random-NP and Average-P. Ben-Davidet al. use the notation of 〈C, F〉 to denote the set of randomized decision problems (L, Ό) such thatLis a set in C andÎŒis a probability density function in F. This paper introduces Aver〈C, F〉 as the class of randomized decision problems (L, Ό) such thatLis computed by a type-C machine onÎŒ-average andÎŒis a density function in F. These notations capture all known average-case complexity classes as, for example, Random-NP= 〈NP, P-comp〉 and Average-P=Aver〈P, ∗〉, where P-comp denotes the set of density functions whose distributions are computable in polynomial time, and ∗ denotes the set of all density functions. Mainly studied are polynomial-time reductions between randomized decision problems: many–one, deterministic Turing and nondeterministic Turing reductions and the average-case versions of them. Based on these reducibilities, structural properties of average-case complexity classes are discussed. We give average-case analogues of concepts in worst-case complexity theory; in particular, the polynomial time hierarchy and Turing self-reducibility, and we show that all known complete sets for Random-NP are Turing self-reducible. A new notion of “real polynomial-time computations” is introduced based on average polynomial-time computations for arbitrary distributions from a fixed set, and it is used to characterize the worst-case complexity classesΔpkandÎŁpkof the polynomial-time hierarchy

    Restricted Information from Nonadaptive Queries to NP

    Get PDF
    AbstractWe investigate classes of sets that can be decided by bounded truth-table reductions to an NP set in which evaluators donothave full access to the answers to the queries but get only restricted information such as the number of queries that are in the oracle set or even just this number modulom, for somemâ©Ÿ2. We also investigate the case in which evaluators are nondeterministic. We show that when we vary the information that the evaluators get, this can change the resulting power of the evaluators. We locate all these classes within levels of the Boolean hierarchy which allows us to compare the complexity of such classes

    Approximate solution of NP optimization problems

    Get PDF
    AbstractThis paper presents the main results obtained in the field of approximation algorithms in a unified framework. Most of these results have been revisited in order to emphasize two basic tools useful for characterizing approximation classes, that is, combinatorial properties of problems and approximation preserving reducibilities. In particular, after reviewing the most important combinatorial characterizations of the classes PTAS and FPTAS, we concentrate on the class APX and, as a concluding result, we show that this class coincides with the class of optimization problems which are reducible to the maximum satisfiability problem with respect to a polynomial-time approximation preserving reducibility

    Hamming Approximation of NP Witnesses

    Get PDF
    Given a satisfiable 3-SAT formula, how hard is it to find an assignment to the variables that has Hamming distance at most n/2 to a satisfying assignment? More generally, consider any polynomial-time verifier for any NP-complete language. A d(n)-Hamming-approximation algorithm for the verifier is one that, given any member x of the language, outputs in polynomial time a string a with Hamming distance at most d(n) to some witness w, where (x,w) is accepted by the verifier. Previous results have shown that, if P != NP, then every NP-complete language has a verifier for which there is no (n/2-n^(2/3+d))-Hamming-approximation algorithm, for various constants d > 0. Our main result is that, if P != NP, then every paddable NP-complete language has a verifier that admits no (n/2+O(sqrt(n log n)))-Hamming-approximation algorithm. That is, one cannot get even half the bits right. We also consider natural verifiers for various well-known NP-complete problems. They do have n/2-Hamming-approximation algorithms, but, if P != NP, have no (n/2-n^epsilon)-Hamming-approximation algorithms for any constant epsilon > 0. We show similar results for randomized algorithms

    The complexity of searching implicit graphs

    Get PDF
    AbstractThe standard complexity classes of complexity theory do not allow for direct classification of most of the problems solved by heuristic search algorithms. The reason is that, almost always, these are defined in terms of implicit graphs of state or problem reduction spaces, while the standard definitions of all complexity classes are specifically tailored to explicit inputs.To allow for more precise comparisons with standard complexity classes, we introduce here a model for the analysis of algorithms on graphs given by vertex expansion procedures. It is based on previously studied concepts of “succinct representation” techniques, and allows us to prove PSPACE-completeness or EXPTIME-completeness of specific, natural problems on implicit graphs, such as those solved by A∗, AO∗, and other best-first search strategies

    Two Theorems in List Decoding

    Full text link
    We prove the following results concerning the list decoding of error-correcting codes: (i) We show that for \textit{any} code with a relative distance of Ύ\delta (over a large enough alphabet), the following result holds for \textit{random errors}: With high probability, for a \rho\le \delta -\eps fraction of random errors (for any \eps>0), the received word will have only the transmitted codeword in a Hamming ball of radius ρ\rho around it. Thus, for random errors, one can correct twice the number of errors uniquely correctable from worst-case errors for any code. A variant of our result also gives a simple algorithm to decode Reed-Solomon codes from random errors that, to the best of our knowledge, runs faster than known algorithms for certain ranges of parameters. (ii) We show that concatenated codes can achieve the list decoding capacity for erasures. A similar result for worst-case errors was proven by Guruswami and Rudra (SODA 08), although their result does not directly imply our result. Our results show that a subset of the random ensemble of codes considered by Guruswami and Rudra also achieve the list decoding capacity for erasures. Our proofs employ simple counting and probabilistic arguments.Comment: 19 pages, 0 figure

    Approximating solution structure of the Weighted Sentence Alignment problem

    Full text link
    We study the complexity of approximating solution structure of the bijective weighted sentence alignment problem of DeNero and Klein (2008). In particular, we consider the complexity of finding an alignment that has a significant overlap with an optimal alignment. We discuss ways of representing the solution for the general weighted sentence alignment as well as phrases-to-words alignment problem, and show that computing a string which agrees with the optimal sentence partition on more than half (plus an arbitrarily small polynomial fraction) positions for the phrases-to-words alignment is NP-hard. For the general weighted sentence alignment we obtain such bound from the agreement on a little over 2/3 of the bits. Additionally, we generalize the Hamming distance approximation of a solution structure to approximating it with respect to the edit distance metric, obtaining similar lower bounds

    A PCP Characterization of AM

    Get PDF
    We introduce a 2-round stochastic constraint-satisfaction problem, and show that its approximation version is complete for (the promise version of) the complexity class AM. This gives a `PCP characterization' of AM analogous to the PCP Theorem for NP. Similar characterizations have been given for higher levels of the Polynomial Hierarchy, and for PSPACE; however, we suggest that the result for AM might be of particular significance for attempts to derandomize this class. To test this notion, we pose some `Randomized Optimization Hypotheses' related to our stochastic CSPs that (in light of our result) would imply collapse results for AM. Unfortunately, the hypotheses appear over-strong, and we present evidence against them. In the process we show that, if some language in NP is hard-on-average against circuits of size 2^{Omega(n)}, then there exist hard-on-average optimization problems of a particularly elegant form. All our proofs use a powerful form of PCPs known as Probabilistically Checkable Proofs of Proximity, and demonstrate their versatility. We also use known results on randomness-efficient soundness- and hardness-amplification. In particular, we make essential use of the Impagliazzo-Wigderson generator; our analysis relies on a recent Chernoff-type theorem for expander walks.Comment: 18 page

    Total Representations

    Full text link
    Almost all representations considered in computable analysis are partial. We provide arguments in favor of total representations (by elements of the Baire space). Total representations make the well known analogy between numberings and representations closer, unify some terminology, simplify some technical details, suggest interesting open questions and new invariants of topological spaces relevant to computable analysis.Comment: 30 page
    • 

    corecore