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Levin introduced an average-case complexity measure, based on a
notion of ``polynomial on average,'' and defined ``average-case poly-
nomial-time many-one reducibility'' among randomized decision
problems. We generalize his notions of average-case complexity
classes, Random-NP and Average-P. Ben-David et al. use the notation
of (C, F) to denote the set of randomized decision problems (L, +)
such that L is a set in C and + is a probability density function in F. This
paper introduces Aver(C, F) as the class of randomized decision
problems (L, +) such that L is computed by a type-C machine on
+-average and + is a density function in F. These notations capture all
known average-case complexity classes as, for example, Random-NP=
(NP, P-comp) and Average-P=Aver(P, V), where P-comp denotes
the set of density functions whose distributions are computable in
polynomial time, and V denotes the set of all density functions. Mainly
studied are polynomial-time reductions between randomized decision
problems: many�one, deterministic Turing and nondeterministic Turing
reductions and the average-case versions of them. Based on these
reducibilities, structural properties of average-case complexity classes
are discussed. We give average-case analogues of concepts in worst-
case complexity theory; in particular, the polynomial time hierarchy and
Turing self-reducibility, and we show that all known complete sets for
Random-NP are Turing self-reducible. A new notion of ``real polyno-
mial-time computations'' is introduced based on average polynomial-
time computations for arbitrary distributions from a fixed set, and it is
used to characterize the worst-case complexity classes 2p

k and 7p
k of the

polynomial-time hierarchy. ] 1996 Academic Press, Inc.

1. INTRODUCTION

The classical complexity theory of NP-completeness is
based on the worst-case analysis of algorithms. A prob-
abilistic analysis has been applied so far only to specific
algorithms typically with respect to the uniform distribution

for each length of inputs. Levin [21] gave a general
framework to perform average-case analysis in a way that
allows us to discuss many questions of worst-case
complexity theory in a more general setting. The average-
case analysis considers randomized problems, namely, pairs
of a decision problem and a probability density (or distribu-
tion) function which assigns probabilities to instances.

In [21] Levin implicitly defined the average-case
complexity classes ``Average-P'' and ``Random-NP'' as
analogues of the worst-case complexity classes P and NP,
respectively. Roughly speaking, Average-P (called AP in
[16, 37]) is the class of randomized problems which are, on
the average, solvable in polynomial time for a given
distribution on the input, and Random-NP (called DistNP
in [13, 4, 29], RNP in [16], and DNP in [37]) is the
class of problems in NP, together with polynomial time
computable distribution on the inputs. A stimulating
question of whether Average-P contains the class Random-
NP, was raised by Levin in his very terse papers [21, 22].
Up to now, this question has not been solved.

In recent literature [13, 16, 21, 22, 34�36], several
randomized decision problems have been shown to be poly-
nomial-time complete for Random-NP with respect to
several different reducibilities. Average-case analysis is very
sensitive to the choice of distributions on the instances,
since, for example, if a density function + decreases faster
than 2&|x| with the length of the instances x, then all
NP-complete problems are solvable in time polynomial on
+-average. Even if we stick to ``reasonable'' distributions,
``fast on average'' algorithms have been found even for
natural NP-complete problems. Fox example, the
satisfiability problem, SAT with a natural distribution [9],
the graph 3-colorability problem with a natural distribution
[40], and the Hamiltonian circuit problem with a natural
distribution and edge probability 1

2 [7] are all in Average-P.
In the decade since Levin's fundamental papers, several
results have revealed the significant role of distributions on
the average-case complexity (see, e.g., [37]). However, it is
still open whether every NP-complete problem is complete
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for Random-NP for some reasonable distribution. In this
paper, our main interest lies in the analysis of structural
properties of average-case complexity classes. We extend
well-known notions of worst-case complexity theory such as
time- and space-bounded computation, nondeterministic
Turing reducibility, self-reducibility, and relativization to
average-case analysis. Taking a set of distributions, we
further discuss the (maximal) average-case complexity of
problems under every distribution chosen from the given
set.

Ben-David et al. [4] introduced the notation (C, F) to
discuss the average-case complexity of decision problems
in a general setting. The class (C, F) contains all
randomized problems (L, +) (recall that a randomized
problem here is always a pair of a decision problem and a
density function on the instances) such that L is in the
complexity class C and + is in a class of density functions F.
Random-NP can simply be denoted as (NP, P-comp) ,
where P-comp (polynomial-time computable) denotes the
set of density functions whose distributions can be
approximated by a deterministic Turing machine in
polynomial time.

Schapire [29] has given a different characterization of
Levin's notion of ``polynomial on +-average,'' which will be
used in this paper. He has shown that a function g from
strings to nonnegative real numbers is polynomial on +
average, in Levin's sense, if and only if there exists a polyno-
mial p such that Prob+[[x | g(x)>p( |x| } r)]]<1�r for any
positive real number r. Schapire's characterization is
intuitive and can be easily generalized to the notion of ``f on
+-average'' by replacing the polynomial p by a function f
which is defined on nonnegative real numbers.

This paper introduces the notation Aver(C, F) to
denote the set of all problems (L, +) such that + is in F, and
L is recognized by a ``type-C on +-average'' machine. Here,
C denotes a time- or space-bounded complexity class, and a
type-C on +-average machine is intuitively a Turing machine
which respects, on +-average, this time- or space-bound,
respectively. By using this notation, for example, Average-P,
the set of problems solvable in average polynomial time, can
be denoted as Aver(P, V) , where V is the set of all density
functions. Levin's most intriguing open question is
rephrased as whether (NP, P-comp) �Aver(P, V) holds.

A central concept in this paper is different types of poly-
nomial-time reductions which are generalizations of the
polynomial-time many�one reducibility defined by Levin.
Roughly speaking, a reduction function between two
randomized problems reduces a set of strings to another set
of strings and also satisfies the so-called domination
condition between density functions, which ensures that
likely instances are mapped to likely instances. Since Levin's
work, random many�one reducibility [4, 34] and polyno-
mial-time deterministic Turing reducibility [4, 18] have
been defined and studied. All those reducibilities can be

extended by allowing their many�one reduction functions
or oracle Turing reduction machines to be polynomial-time
bounded on +-average. We study properties of many�one
reduction, deterministic Turing reduction and their
average-case extensions.

In this paper, a polynomial-time nondeterministic Turing
reduction between randomized decision problems is defined
in a way that captures both deterministic Turing
reducibility and random many�one reducibility. Let M be a
nondeterministic oracle Turing machine, E a set, and p a
polynomial. By Q(M, E, x, y), we denote the set of strings
which are queried by M with oracle E on input x on
computation path y, and Acc(M, E, x) (resp. Rej(M, E, x))
denotes the set of (codes of) accepting (resp. rejecting)
computation paths given by M with E on input x. We intro-
duce the density function +$ that is induced from +, M and
E as: +$(x, y)=+(x)�|Acc(M, E, x)| if y is an accepting path
of ME on input x; +$(x, y)=+(x)�|Rej(M, E, x)| if there is
no accepting paths and y is a rejecting path; otherwise,
+$(x, y)=0. The machine M polynomial-time nondeter-
ministic (on +-average) Turing reduces (D, +) to (E, &) if
D=L(ME), ME is polynomial (on +-average) time
bounded, and there exists a density function " which
polynomially (on +-average) dominates +$ such that &(z)�
Prob"[[(x, y) | z # Q(M, E, x, y)]] for all strings z.

A randomized decision problem (L, +) is said to be
(C, F)-complete if (L, +) is in (C, F) , and every problem
in (C, F) is polynomial-time many�one reducible to
(L, +). Levin has first proven that the randomized tiling
problem is (NP, P-comp)-complete [21]. Another impor-
tant (NP, P-comp)-complete problem is the randomized
bounded halting problem [16]. Both problems are typical
NP-complete problems, together with some natural
distributions. Note that if (L, +) is (NP, P-comp)-
complete, then L must be NP-complete. As we noted before,
however, it is not known whether every NP-complete set L
has an appropriate density function + which forces (L, +) to
be (NP, P-comp)-complete.

This paper extends the notion of average-case complexity
further to discuss questions raised in structural complexity
theory. An interesting property of complete sets is the
(Turing) self-reducibility [24], and, in worst-case complexity
theory, many known NP-complete sets are actually self-
reducible. Analogously, we can introduce a self-reducibility
into our average-case analysis. A randomized decision
problem is called self-reducible if it is polynomial-time Turing
reducible to itself, while querying only strings of length
smaller than the input. We show the existence of (7p

k ,
P-comp)-complete sets which are self-reducible by demon-
strating that the kth level of the randomized bounded halting
problem (RHk, +RH) is (7P

k , P-comp)-complete and also
self-reducible. From the fact that most of the known (NP,
P-comp)-complete problems are p-isomorphic [38], they
turn out to be self-reducible.
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We study a relativization of Aver(P, F) and Aver(NP,
F) which is done in a similar fashion as we obtain
relativized classes PB and NPB from P and NP, respectively.
To be more precise, recall that PB (resp. NPB) is equivalent
to the collection of sets which are polynomial-time deter-
ministic (resp. nondeterministic) Turing reducible to B.
Analogously, we define a class Aver(P, F) (E, &) (resp.
Aver(NP, F) (E, &)) as a collection of randomized decision
problems (D, +), with + # F, which are deterministic (resp.
nondeterministic) polynomial-time on +-average Turing
reducible to (E, &).

We demonstrate that (NP, F)�Aver(P, F) and
(NP, F) �3 Aver(P, F) in some relativized worlds, using
the technique of Baker et al. [1]. These contradictory
results imply that any proof technique which can be rela-
tivized will not solve Levin's question.

Similar to the Meyer�Stockmeyer polynomial-time
hierarchy [25] in worst-case complexity theory, we give a
precise definition of its average-case analogue, the average
polynomial-time hierarchy, founded on a relativization of
Aver(P, F) and Aver(NP, F). Let Aver(2p

k , F) denote
the k th level of the average polynomial-time hierarchy.
This paper considers the general question of whether
(7p

k , P-comp) �Aver(2p
k , V). We show that this is not

the case unless every tally set in 7p
k is in 2p

k . Hence, we con-
jecture that (7p

k , P-comp) �3 Aver(2p
k , V) since it seems

very likely that tally sets exist in 7p
k&2p

k .
Finally we discuss a tie between worst-case and average-

case complexity classes. Note that every polynomial-time
computation is polynomial on +-average even if + is chosen
by some (powerful) adversary, that is, every set in P is com-
putable by a deterministic Turing machine which is poly-
nomial-time bounded on +-average for every density func-
tion +. In other words, if A is in P then (A, +) # Aver(P, V)
for every +. On the other hand, P can be expected to be the
largest class which satisfies this property. This is indeed true
[23]. This observation can be generalized as follows. For a
class C, we define the real C over F, denoted by CF , to be
the class of all sets A such that (A, +) # Aver(C, V) for every
density function + in F. For example, P�PP-comp �E, and
Levin's question of whether (NP, P-comp) �Aver(P, V)
can be now stated as whether NP�PP-comp . We show
that 2p

k=2p
kREC-comp and 7p

k=7p
kREC-comp for all levels k>0,

where REC-comp denotes the collection of all recursive
density functions. As a particular case, we can show that
P=PE-comp .

We show that, relative to random oracle, NPP-comp is
different from PP-comp with probability 1.

2. PRELIMINARIES

In this paper, we follow the standard definitions and
notations of complexity theory; see, e.g., [10, 2]. Here we
briefly present necessary notations and notions.

Fix 7=[0, 1]. By 7* we denote the set of all strings over
7, and 7n denotes the set of all strings of length n. The set
7* admits the standard lexicographic order: =<0<1<
00<01< } } } , where = denotes the empty string. The
successor and predecessor of x in this order are denoted by
x+ and x&, respectively. A subset A of 7* is often identified
with its characteristic function, i.e., A(x)=1 if x # A, and
A(x)=0 otherwise. The cardinality of a set A and the length
of a string x # 7* are respectively denoted by |A| and |x|.
The complement of a set A is denoted by A� . For two sets A
and B, let A q B denote the symmetric difference of A and
B and let A�B be the disjoint union of A and B.

Let N be the set of all nonnegative integers and let R+ be
the set of all nonnegative real numbers. A nonnegative
integer can be identified with its binary representation, and
we often refer to strings as nonnegative integers. Especially,
7* is identified with the set D=[m�2n | m<2, m, n # N] of
nonnegative dyadic rational numbers, i.e., a string d1d2 } } } dn

in 7* is identified with the number d12&1+d22&2+ } } } +
dn 2&n in D.

A set is tally if it is a subset of [0]*, and a set A is ( polyno-
mially) sparse if there is a polynomial p such that
|A & 7n|�p(n) for all n # N. Denote by TALLY the class of
all tally sets and by SPARSE the class of all sparse sets.

A formal definition of Turing machines with semi-infinite
tapes is given in, for example, [11, 10, 17, 2], and we assume
the reader's familiarity with it. In this paper, we are inter-
ested in only resource bounded algorithms and assume that
all Turing machines are designed in such a way that all
computation paths have the same length. Therefore, for
every oracle Turing machine M and a set A, the running
time of the machine M with oracle A on input x, denoted by
TimeA

M(x), is simply defined to be the length of some possible
computation, and the space complexity, SpaceA

M(x), is
defined to be the maximum, over all configurations of M with
oracle A on input x, of the number of tape-squares in use.

A (non-)deterministic oracle Turing machine accepts an
input x if there is an accepting computation of M with
oracle A on input x; otherwise, M rejects x. If M is
probabilistic, then M accepts x if ProbM[M on input x halts
in an accepting state]> 1

2; otherwise, M rejects x, where
ProbM[Q(M)] denotes the probability that Q(M) holds.

Let Acc(M, A, x) denote the set of (codes of) accepting
computations of M on input x with oracle A, and, similarly,
Rej(M, A, x) denotes that of rejecting computation paths.
Let Q(M, A, x, y) be the set of strings queried by M with A
on input x on computation path y. If M is deterministic,
then we simply denote by Q(M, A, x) the set of all strings
queried by M on input x with oracle A.

As usual, L(M, A) denotes the set of strings accepted by
M with oracle A, and we simply say that MA computes a set
B if B=L(M, A). For a machine M, MA(x) denotes the
output of a computation of M on input x. For a deter-
ministic Turing machine M with an output tape (also called

310 SCHULER AND YAMAKAMI



File: 571J 139604 . By:CV . Date:13:07:07 . Time:15:57 LOP8M. V8.0. Page 01:01
Codes: 6491 Signs: 5486 . Length: 56 pic 0 pts, 236 mm

a transducer), M computes a function f if f (x)=MA(x) for
all x # 7*.

For any function t on N, a Turing machine M with oracle
A is t-time bounded (resp. t-space bounded) if TimeA

M(x)�
t( |x| ) (resp. SpaceA

M(x)�t( |x| )) for all x. Let DTIME(t),
NTIME(t), and DSPACE(t) denote the class of all sets
computable by deterministic t-time bounded, nondeter-
ministic t-time bounded, and deterministic t-space bounded
Turing machines, respectively. Finally, let BPTIME(t)
denote the class of sets B computable by t-time bounded
probabilistic Turing machines with bounded error
probability, i.e., there is a constant =, 0�=< 1

2 such that
ProbM[M(x)=B(x)]<1&= holds for all x.

We assume that the reader is familiar with standard
notations of complexity classes, such as P, NP, 2p

k , 7p
k , PH

(the polynomial-time hierarchy), BPP, PSPACE, E (linear
exponential time), NE, EXP (exponential time), NEXP,
and FP (polynomial-time computable functions). More-
over, we let ESPACE=�k>0 DSPACE(2kn+k) and BPE=
�k>0 BPTIME(2kn+k).

A function f on 7* is p-honest if there exists a polynomial
p such that p( | f (x)| )�|x| for any string x, and f is p-inver-
tible if there is a function g in FP such that g b f (x)=x for
all x. A function f from N to R+ is called unbounded if
limk � � supn>k f (n)=�.

A set D is polynomial-time many-one reducible to a set E
if there exists a function f in FP such that, for all x, x # D if
and only if f (x) # E. A set D is polynomial-time many�one
complete for a class C if D # C and every set in C is polyno-
mial-time many�one reducible to D. We simply say that D
is C-complete for a class C if it is polynomial-time many�one
complete for C.

In the following, we use the following pairing function
( , ) [27], from 7*_7* onto 7*, that is defined as
follows: (x, y) =d(x) y if | y|�1; otherwise (x, y) =
d(x) i2[( y&)&], where d(=)==, d(0x)=00d(x), d(1x)=
11d(x), i2[0x]=01x, and i2[1x]=10x for all x. This
pairing function is monotone, i.e., x�x$ and y�y$ imply
(x, y)�(x$, y$), and it is computable in linear-time in the
lengths of x and y. Moreover, it holds that 2 |x|+| y|�
|(x, y) |�2 |x|+| y|+1 for all x and y. This paring
function is recursively generalized to a bijection from (7*)k

onto 7* as (x1 , x2 , ..., xk) =(x1 , (x2 , ..., xk)).
A function +: 7* � [0, 1] is called a density function if

�x # 7* +(x)=1, and its corresponding distribution +* is
given by +*(x)=�z�x +(z). To avoid confusion, we remark
here that density functions were also called ``probability
distributions'' in [6, 37, 38] or ``probability functions'' in
[16], and distributions were called ``probability distribu-
tions'' in [13, 16]. Let +n denote the conditional density
function for strings of length n, i.e., +n(x)=+(x)�
�y : | y|=n +( y) whenever �y : | y|=n +( y){0; otherwise 0. We
use the notations +(x, y) and +(x, y, z) to denote +((x, y) )
and +((x, y, z) ), respectively.

For a finite domain D, the uniform density function on D
is defined as 1�|D| for every x in D. The standard density
function &st on 7* is defined as &st(x)=(6�?2) } ( |x|+1)&2 }
2&|x| for all x. Although the standard distribution is called
``uniform'' in, e.g., [4]; actually only its conditional
distribution is uniform for all lengths n. We note that there
are other ways to define a ``standard'' density function; see
Gurevich [16] for a discussion. A density function + is
called flat if +(x)�2&|x|= for some constant =>0 [16], and
+ is positive if +(x)>0 for all x.

For a density function +, we use the notation
Prob+[[x | Q(x)]] to denote the probability that property
Q(x) holds, where x is chosen randomly according to +. For
set A, let +(A) denote �x # A +(x).

In his papers [21, 22], Levin considers ``polynomial-time
computable'' distributions as reasonable to discuss the
average time-complexity of NP problems. Later a more
generalized notion, i.e., ``polynomial-time samplable''
distributions, has been proposed [4]. This paper follows
Gurevich [16] to define the notion of ``polynomial-time
computability'' of distributions.

Definition 2.1 [20, 16]. Let g be a distribution from
7* to [0,1] and f be a function on N:

1. g is f-time computable (resp. f-space computable) if
there exists a deterministic f-time (resp. f-space) bounded
transducer T such that, for all x # 7* and all k�0,

| g(x)&T(x01k)|�2&k.

2. g is F-time computable (resp. F-space computable)
for a class F if there exists a function f # F such that g is
f-time (resp. f-space) computable.

3. Let L-comp, P-comp, PSPACE-comp, and EXP-
comp denote the class of density functions whose distribu-
tions are logarithmic-space, polynomial-time, polynomial-
space, and exponential-time computable, respectively. Let
REC-comp denote the set of all recursive density functions.

We remark that if a distribution is F-time computable,
then the density function is also F-time computable. The
converse, however, may not always hold since it is shown in,
e.g., [16] that if P{NP, then there is a polynomial-time
computable density function such that its associated
distribution can not be computed in polynomial time.

Note also that Ben-David et al. [4] use a stronger
definition of polynomial-time computability; i.e., for all x,
the value of +*(x) is exactly computed by some polynomial-
time bounded transducer. Let SP-comp denote the class of
these density functions. Naturally, if g # SP-comp, then g(x)
is either 0 or greater than 2&p( |x| ) for some polynomial p.
However, for every + # P-comp, there exists a positive
& # SP-comp such that &(x) has at most 4+2 |x| binary
digits and 4&(x)>+(x) for all x [16]. Also, if +(x)>2&p( |x| )

311STRUCTURAL AVERAGE CASE COMPLEXITY



File: 571J 139605 . By:CV . Date:13:07:07 . Time:15:57 LOP8M. V8.0. Page 01:01
Codes: 6205 Signs: 4582 . Length: 56 pic 0 pts, 236 mm

for some polynomial p, then there exists a total, one�one,
p-invertible function f # FP such that, for all x, 4 } 2&| f (x)|�
+(x)�20 } 2&| f (x)| [38].

A central concept in average-case complexity is ``a
computation being time (space) bounded on the average for
some distribution.'' For a discussion on the definition of
``polynomial on +-average,'' see [13, 16]. This paper uses a
characterization of polynomial on +-average given by
Schapire [29], since it can be easily extended to the notion
of ``f on +-average'' for an arbitrary function f.

Definition 2.2 (cf. [29]). Let f be a function on R+

and let + be a density function. A function g: 7* � R+ is f
on +-average if Prob+[[x| g(x)>f ( |x| } r)]]<1�r for any
real number r>0. For a class C of functions, g is F on
+-average if there exists a function f # F, and g is f on
+-average.

It immediately follows from this definition that increasing
the value of r also increases the probability weight of the set
of strings x with the property that g(x)�f ( |x| } r), which is
1&1�r. One significant consequence of this fact is that if g
is f on +-average, then g(x)�f ( |x|�+(x)) for all x with
+(x)>0. This fact can be seen as follows. Suppose that there
exists an x0 such that g(x0)>f ( |x0 |�+(x0)) and +(x0)>0.
Choose r=1�+(x0). Then +(x0)�Prob+[[x | g(x)> f ( |x| }
r)]]<1�r=+(x0), a contradiction.

Definition 2.2 allows us to discuss an arbitrary set of
functions which are bounded on average. For instance, if
F=[*x } (xk+k) | k>0] (the set of polynomials), then we
obtain the notion of polynomial on +-average as defined in
[21, 22] and used in [13, 29, 16, 4, 37]. Similarly, if F=
[*x } (c log x+d ) | c, d�0] (the set of logarithmic func-
tions), then the above definition yields the notion of
logarithmic on +-average as defined in [4] and also used in
[14]. The following lemma gives the justification of the
above definition.

Lemma 2.3. [29]. Let g be a function from 7* to R+:

1. The function g is polynomial on +-average if and only
if it is polynomial on +-average in the sense of Levin, i.e., for
some $>0,

:
x : |x|>0

g(x)$

|x|
+(x)<�.

2. The function g is logarithmic on +-average if and only
if, for some $>0,

:
x: |x|>0

(2 g(x))$

|x|
+(x)<�.

Proof. The proof of the claim (1) follows [29]. Without
loss of generality, assume that g(=)=0 and that g is *n } cnk

on +-average for some k. By definition, for any real number
r>0, Prob+[[x | g(x)>c(r |x| )k]]<1�r. This indicates
that Prob+[[x | g(x)>c(r |x| 2)k]]<1�r. In other words,
Prob+[[x | g(x)1�2k |x|&1>c1�2kr1�2]]<1�r. For every
integer t>0, let r=t2�c1�k, and thus Prob+[[x | g(x)1�2k

|x|&1>t]]<c1�k�t2. Then,

:
x : |x|>0

g(x)1�2k

|x|
+(x)

� :
�

t=1

Prob+ _{x } t&1<
g(x)1�2k

|x|
�t=& } t

= :
�

t=0

Prob+ _{x } g(x)1�2k

|x|
>t=&<�.

Conversely, assume that �x : |x|>0 g(x)$ |x|&1 +(x)�N
for some number N�1 and choose a positive integer k such
that 1�k<$. Markov's inequality enables us to show that
Prob+[[x | g(x)1�k |x|&1>r } N]]<1�r for any real number
r>0. This yields Prob+[[x | g(x)>(rN |x| )k]]<1�r.
Hence, g is *n } (Nn)k on +-average.

To see the claim (2), note that the function g is
logarithmic on +-average if and only if *x } 2 g(x) is polyno-
mial on +-average. K

The next definition follows the notion of ``polynomial
domination'' introduced by Levin [21, 22]. The domination
condition between density functions is crucial in the defini-
tion of reducibilities among randomized decision problems
in Section 4. Intuitively, it ensures that if an algorithm is fast
(e.g., polynomial) on average for a distribution +, then this
algorithm is also fast on average for all distributions which
are dominated by +.

Definition 2.4. Let +1 , +2 , and & be density functions.

1. Let t and T be a function and a set of functions from
7* to R+, respectively. The density function +2 t-dominates
+1 if +2(x) } t(x)�+1(x) for all x # 7*, and +2 T-dominates
+1 if there exists a function t$ # T such that +2 t$-dominates
+1 .

2. Let t and T be a function and a set of functions on
R+, respectively. The density function +2 t on &-average
dominates +1 if there exists a function t$, from 7* to R+,
such that t$ is t on &-average and +2 t$-dominates +1 , and +2

T on &-average dominates +1 if there exists a function t in T
such that +2 t on &-average dominates +1 .

This definition enables us to consider logarithmic, poly-
nomial, and exponential domination and domination on
+-average. For example, if T is the set of polynomials, then
+2 polynomially dominates +1 , denoted by +1Pp +2 , and
+2 polynomial on &-average dominates +1 , denoted by
+1 Pp, & +2 , respectively. In [16], polynomial domination
and polynomial on +-average domination are called
``domination'' and ``weakly domination,'' respectively.
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We will now give a general definition of ``time- and space-
bounded on average'' for Turing machines.

Definition 2.5. Let M be an oracle Turing machine,
A a set, + a density function, and let t and T be a function
and a set of functions on R+, respectively. The machine MA

is t-time bounded on +-average if the function TimeA
M is t on

+-average, and MA is T-time bounded on +-average if there
exists a function t # T such that MA is t-time bounded on
+-average. The notions of t-space bounded on +-average and
T-space bounded on +-average are defined similarly by using
SpaceA

M instead of TimeA
M .

For instance, if T is the set of polynomials, then we say
that MA is polynomial-time (or polynomial-space) bounded
on +-average as in [21, 22]. If a function f is computed by
a deterministic transducer which is polynomial-time bounded
on +-average, we say that f is computable in time polynomial
on +-average.

We observe that the quantifier characterization of non-
deterministic and probabilistic Turing machines holds also
in average-case setting. Recall that, for instance, all sets in
NP can be characterized by an existential quantifier and
deterministic Turing machines as follows: a set D is in NP
if and only if there exist a polynomial p and a polynomial-
time deterministic Turing machine M such that D=
[x | _y[ | y|=p( |x| ) 7 (x, y) # L(M)]] [41].

Proposition 2.6. For every set D and every density func-
tion +, the following statements are equivalent:

1. There exists a nondeterministic Turing machine M
such that D=L(M) and M is polynomial-time bounded on
+-average.

2. There exists a function p from 7* to N and a polyno-
mial-time bounded deterministic Turing machine Msuch that
p is computable in time polynomial on +-average and D=
[x | _y[ | y|=p(x) 7 (x, y) # L(M)]].

Proposition 2.7. For every set D, every density function
+, the following statements are equivalent:

1. There exists a bounded-error probabilistic Turing
machine M such that D=L(M) and M is polynomial-time
bounded on +-average.

2. For every function q that is computable in time polyno-
mial on +-average, there exists a probabilistic Turing machine
M such that M is polynomial-time bounded on +-average,
D=L(M) and ProbM[M(x)=D(x)]�1&2&q(x) for all x.

3. For every function q that is computable in time polyno-
mial on +-average, there exists a function f from 7* to N and
a polynomial-time bounded deterministic Turing machine M
such that f is computable in time polynomial on +-average,
D=L(M), and Prob&[[ y | x # D iff (x, y) # L(M)]]�
1&2&q(x) for all x, where & is the uniform density function
on 7 f (x).

Proofs. The proof of Proposition 2.6 is straightforward
and follows from the standard technique of encoding non-
deterministic computation paths into strings and the fact
that TimeM is computed by a deterministic transducer that
is polynomial-time bounded on +-average.

A similar argument shows that (3) infers (2) in Propo-
sition 2.7. Clearly (1) follows from (2). Thus, it only remains
to show that (1) infers (3). Assume that (1) holds. Then,
TimeM is polynomial on +-average. Now we perform the
usual probability amplification (see, e.g., [2, p. 139]). We
simulate the machine M p(n)(=O(q(n))) times and accept x
as soon as more that p(n)�2 simulations accept x, and reject
x as soon as more that p(n)�2 simulations reject x. Hence, if
we choose f (x)=p( |x| ) } k } TimeM(x), then (3) holds.

3. RANDOMIZED DECISION PROBLEMS

The basic objects of average-case complexity theory are
(decision or search) problems, together with distributions
on instances, i.e., a density function assigns probabilities to
instances of those problems. The time and space complexity
of an algorithm for that problem is measured under the
assumption that the inputs occur according to the given
distribution. The hope is to show that even for (some)
intractable problems, hard instances occur only with small
probability. Hence, some algorithm should run efficiently
on average.

Some NP-complete problems, such as the satisfiability
problem, the graph 3-colorability problem, and the
Hamiltonian circuit problem, can be solved by deterministic
algorithms in time polynomial on average with respect to
reasonably chosen density functions [9, 7, 40].

This paper will focus only on decision problems (readers
interested in search problems are referred to [4, 6]). For a
decision problem D and a density function +, the pair (D, +)
is called a randomized (decision) problem. Here, (D, +)
means that instances of the decision problem D are given
randomly according to +; in other words, a string s occurs
as input to some algorithm deciding D with probability +(s).
Average-case complexity classes are sets of randomized
problems. We note that, in [21, 22], Levin has first consid-
ered pairs of a decision problem and a distribution function
(also called distribution problems). See [4] for more details.

We will consider two different types of average-case
complexity classes. The first type is defined by a worst-case
complexity class and a class of density functions. In the
second type of classes, the resource bounds of the complexity
class are taken with respect to the given density functions.

Definition 3.1 [4]. Let C be a complexity class and F
be a class of density functions. The randomized class
(C, F) is the set [(D, +)| # F and D # C].

Definition 3.2. Let t be a function on N and F be a
class of density functions. Time- and space-bounded average
classes are defined as follows:
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1. Aver(DTIME(t), F) =[(D, +) | + # F and D=
L(M) for a deterministic Turing machine M which is t-time
bounded on +-average].

2. Aver(NTIME(t), F) =[(D, +) | + # F and D=
L(M) for a nondeterministic Turing machine M which is
t-time bounded on +-average].

3. Aver(DSPACE(t), F)=[(D, +) | + # F and D=
L(M) for a deterministic Turing machine M which is t-space
bounded on +-average].

4. Aver(NSPACE(t), F)=[(D, +) | + # F and D=
L(M) for a nondeterministic Turing machine M which is
t-space bounded on +-average].

5. Aver(BTIME(t), F) =[(D, +) | + # F and D=
L(M) for a bounded-error probabilistic Turing machine M
which is t-time bounded on +-average].

Using the above definitions, one can consider average-
case analogues of many known time- or space-bounded
complexity classes. For example, NP with polynomial-time
computable distributions, as defined in [4], is expressed as
(NP, SP-comp) . The set of randomized problems solvable
in polynomial-time on average (AverageP or AP in [16,
37]) is denoted by Aver(P, V). Here, V denotes the set of all
density functions. Aver(P, P-comp) and Aver(NP,
P-comp) (denoted by APP and ANPP [37]) is the set of
problems (D, +) such that + # P-comp, and D is solvable
respectively deterministically and nondeterministically in
polynomial-time on +-average. The class of randomized
problems which are solvable in logarithmic-space on
average (Average-logspace [4] and averageL in [14]) is
denoted by Aver(L, V).

Note that Ben-David et al. [4] use the notation
AverDTime(t(n)) to denote Aver(DTIME(t), V) (also
denoted by AvDTime(t(n)) in [28]). Several important
randomized decision problems which belong to (NP,
P-comp) can be found in [16].

The next propositions follow immediately from the defini-
tions of the average-case complexity classes.

Proposition 3.3. Let C # [DTIME(t), NTIME(t),
DSPACE(t), NSPACE(t), BPTIME(t)] for some increasing
function t on N, and let F be a set of density functions. Then,
(C, F)�Aver(C, F).

Proposition 3.4. Let F be a set of density functions and
let t be a function on N:

1. Aver ( DTIME (t), F) � Aver(NTIME(t), F) �
Aver(NSPACE(t), F).

2. Aver ( DTIME(t), F) � Aver(DSPACE(t), F) �
Aver(DTIME(2t(n)), F).

It is natural to ask whether (D, &) # Aver(DTIME(t),
F) implies (D, +) # Aver(DTIME(t b h), F) if + # F and
& h-dominates + for some function h. An affirmative answer

for a special case is given by the following lemma. A set T
of functions is said to be closed under composition with poly-
nomials if, for any function t and any polynomial p, t # T
implies *x . t( p(x)) # T.

Lemma 3.5. Let + and & be density functions, T a set of
functions on R+ which is closed under composition with
polynomials, and let h be a function from 7* to R+. If & poly-
nomially on +-average dominates + and h is T on &-average,
then h is also T on +-average.

Proof. Assume that +Pp, + &, and h is t on &-average for
some function t # T. Choose a function q which is polyno-
mial on +-average such that, for all x # 7*, &(x) } q(x)�
+(x). By assumption, Prob&[[x | h(x)>t( |x| } r)]]<1�r for
all r>0. Since the set T is closed under composition with
polynomials, without loss of generality, we assume that
h(=)<t(0) and therefore Prob+[[x | h(=)>t(0)]]=0.
Since q is polynomial on +-average, there exists a polynomial
p such that Prob+[[x | q(x)>p(|x| } r)]]<1�r for all r>0.

Let +n and &n denote the conditional probability of strings
of length n of + and &, respectively. Note that if q(x)�
p( |x| } r) for a string x of length n, then +(7n) } +n(x)�
&(7n) } p(n } r) } &n(x) and &(7n) } Prob&n[[x | h(x)>
t( |x| } r)]]<1�r for all n # N and r>0. Now define g as
g(x)=t(4x3 } p(2x)). Since T is closed under composition
with polynomials, g is in T. We note that, for all n # N and
all r # R+, g(n } r)�t(n } r3 } 4n2 } p(n } 2r)). It remains to
show that h is g on +-average. For every real number r�1,

Prob+[[x | h(x)>g( |x| } r)]]

�Prob+[[x | q(x)>p( |x| } 2r)]]

+Prob+[[x | q(x)�p( |x| } 2r) 7 h(x)>g( |x| } r)]]

<
1
2r

+ :
�

n=1

&(7n) } p(2nr)

_Prob&n[[x | q(x)�p(2nr) 7 h(x)>g(nr)]]

�
1
2r

+ :
�

n=1

&(7n) } p(2nr)

_Prob&n[[x | h(x)>t( |x| } 4n2r3 } p(2nr))]]

<
1
2r

+ :
�

n=1

p(2nr)
4n2r3 } p(2nr)

=
1
2r

+
?2

24r2<
1
r

. K

Theorem 3.6. Let C # [L, P, NP, PSPACE, NPSPACE,
EXP], and assume (D, &) # Aver(C, F) for some set of
density functions F. For all + # F, if & polynomially on
+-average dominates +, then (D, +) # Aver(C, F).

Proof. Since the sets of polynomials, logarithms, and
exponentials are all closed under composition with polyno-
mials, the theorem immediately follows from Lemma 3.5. K
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From the definition, it is obvious that if C1 is a proper
subset of C2 , then (C1 , F) is also a proper subset of
(C2 , F). A similar hierarchy result can be shown for the
second type of average-case complexity classes. See also
[14, 12].

Theorem 3.7. Let s and t be space- and time-construc-
tible functions, respectively, and s$(n) # |(log n) s$(n) #
|(s(n } f (n))), t$(n)>(n) and t$(n) # |(t(n } f (n))) for some
nondecreasing, unbounded function f from N to R+. Assume
that F contains a density function +f of the form

+f (x)={
1

c } f ( |x| )
} 2&|x|

if f ( |x|&1)<k2� f ( |x| ) for some integer k>2,
0 otherwise,

where c is a constant with 1
4>c>0:

1. Aver(DSPACE(s(n)), F) / Aver(DSPACE(s$(n)),
F).

2. Aver(DTIME(t(n)), F) / Aver(DTIME(log t(n) }
t$(n)), F).

Proof. (1) Choose a nondecreasing, unbounded func-
tion f such that +f # F and s$(n) # |(s(n } f (n))). It is shown
in [39, 26] that there exists a set A in DSPACE(s$(n))
which are random for DSPACE(s(n } f (n))), i.e., for every set
B # DSPACE(s(n } f (n))) and every =>0, there exists an
integer n0>0, such that, for all n>n0 ,

} |A
n q Bn|

2n &
1
2 }<=.

Clearly (A, +f) # (DSPACE(s$(n)), F) �Aver(DSPACE
(s$(n)), F).

We show that (A, +f) � Aver(DSPACE(s(n)), F).
Assume to the contrary that (A, +) # Aver(DSPACE(s(n)),
F) and let M be a deterministic Turing machine which
accepts A and is s-space bounded on +f -average, i.e.,
Prob+f [[x | SpaceM(x)>s( |x| } r)]]<1�r for any real
number r>0. Then, a set D=[x | SpaceM(x)<s(n }
f (n)) 7 M(x)=1] belongs to DSPACE(s(n } f (n)), and
thus A is random for [D]. Choose == 1

8. The randomness of
A indicates that there exists an integer n0>0 such that, for
all n>n0 ,

} |A
n q Dn|

2n &
1
2 }<

1
8

.

Note that, for all n, +f (7n)=1�(c } f (n)) if f (n&1)<
k2�f (n) for some constant k. It follows that, for some
n>n0 ,

Prob+f [[x # 7n | SpaceM(x)>s(n } f (n))]]

�
1

f (n)
} c } f (n)<

1
4

.

Therefore, D is identical to A on at least 3
4 of all strings of

length n. This contradicts the randomness of A.

(2) The proof for the time-bounded classes is similar to
(1) and follows from the fact that, for every time-construc-
tible function t$(n)>(n) and t$(n) # |(t(n } f (n)), there exists
a set in DTIME(log t(n) } t$(n)) which is random for
DTIME(t(n } f (n))) [39, 26]. K

Corollary 3.8. Let p and p$ be polynomials such that
p$(n) # |( p(n)):

1. Aver( DTIME ( p( n) ), P-comp) / Aver( DTIME
(log p(n) } p$(n)+n), P-comp).

2. Aver( DSPACE( p(n)), P-comp) / Aver( DSPACE
( p$(n)+log n), P-comp).

We show a basic relationship between worst-case
complexity and average-case complexity on strings with
high probability. To show this, we first introduce an ``inter-
polation'' property of an average-case complexity class
Aver(C, F).

Definition 3.9. For a sparse set S and a polynomial q,
let +S, q denote a density function such that +S, q(x)�
1�q( |x| ) for all x # S. A class Aver(C, F) has the sparse
interpolation property if, for any set A, any infinite sparse set
S and any polynomial q such that (A, +S, q) # Aver(C, F) ,
there exists a set B # C such that A & S$�B�A. The set B
is called an interpolant of A and S.

Lemma 3.10. For a class C # [P, NP, BPP, PSPACE],
Aver(C, V) has the sparse interpolation property.

Proof. We show the case C=NP. Take any sparse set
S and a polynomial q and assume that (A, +S, q) #
Aver(NP, V). There exists a Turing machine M which
computes A such that TimeM is p on +S, q-average for some
polynomial p. Note that TimeM(x)�p( |x|�+S, q(x)) for all x
with +S, q(x)>0. Let N simulate M on input x in p( |x| }
q( |x| )) steps. If the simulation of M does not terminate
within p( |x| } q( |x| )) steps, then N rejects x. Let B=L(N).
Clearly B�A. Since q( |x| )�1�+S, q(x) for all x # S, N
completely simulates M on all inputs x in S, and thus,
A & S=B & S. Clearly N is polynomial-time bounded.
Therefore, B # NP. K

In Section 6, we will extend Lemma 3.10 to the k th level
of an ``average polynomial-time hierarchy'' which is an
average-case version of the Meyer�Stockmeyer polyno-
mial-time hierarchy.

One of the most interesting open questions is whether
NP sets can be solved in average polynomial time for
every polynomial time computable distribution, i.e., if
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(NP, P-comp) �Aver(P, V) holds or not. Clearly if P=
NP, then (NP, F) is included in Aver(P, F). Ben-David
et al. [4] first gave a partial answer to this question by
showing that (NP, P-comp) �3 Aver(P, V) if E{NE.
Under the same assumption, it also holds that (NP,
L-comp) �3 Aver(P, V) [4]. Ben-David et al. actually
show that (NP & TALLY, L-comp) �Aver(P, V) if and
only if NP & TALLY�P.

Here we consider the bounded-error probabilistic class
Aver(BPP, V) and extend the above result by Ben-David
et al. to Aver(BPP, V).

Theorem 3.11. ( NP & TALLY, L-comp ) � Aver
(BPP, V) if and only if NP & TALLY�BPP.

Proof. From the assumption that NP & TALLY�
BPP, it immediately follows that (NP & TALLY, L-
comp)�Aver(BPP, V). For the converse, we assume that
(NP & TALLY, L-comp) �Aver(BPP, V) . Choose a
density function + satisfying +(x)B( |x|+1)&2 if x # [0]*,
and 0 otherwise. Obviously + # L-comp. By our assumption,
for every set A # NP & TALLY, (A, +) # Aver(BPP, V).
Namely, there is a probabilistic Turing machine M, with
exponential small error probability, computing A which
runs in time q on +-average for some polynomial q. This
shows that TimeM(x)�q( |x|�+(x))�q(3|x|( |x|+1)2) for
all x # [0]*. Therefore, A is in BPP. K

A standard padding argument shows that NP &

TALLY�BPP if and only if NE�BPE. Hence, we have
the following conclusion.

Corollary 3.12. NE�3 BPE implies (NP, P-comp) �3
Aver(BPP, V).

4. MANY�ONE AND TURING REDUCTIONS

A theory of average NP-completeness was initiated by
Levin in his terse papers [21, 22]. Levin has introduced a
polynomial-time many�one reducibility between randomized
decision problems and has shown that the randomized tiling
problem, the ``tiling problem'' with a natural distribution, is
complete for Random-NP or, in our notation, complete for
(NP, P-comp). Intuitively, this reduction from (D1 , +1) to
(D2 , +2) reduces a set D1 to a set D2 and ensures a domination
condition between +1 and +2 which guarantees that instances
in D1 occurring with high probability are reduced to instan-
ces in D2 occurring with high probability. The notions of
deterministic Turing reducibility and random many�one
reducibility have been introduced in [21, 4]. The latter is
especially suitable for randomized algorithms (see [4, 18,
6]). Also considered so far were logspace many�one reduc-
tions [4] and logspace many�one reductions which are
p-honest [14].

We first recall from [21, 4] the definition of polynomial
time many�one and Turing reducibilities.

Definition 4.1 [21]. Let (D1 , +1) and (D2 , +2) be ran-
domized decision problems:

1. (D1 , +1) is polynomial-time many�one reducible to
(D2 , +2), denoted by (D1 , +1)�p

m (D2 , +2), if there exists a
density function & and a function f such that

(i) f # FP;

(ii) for all x, x # D1 if and only if f (x) # D2 ; and

(iii) +1Pp &, and +2( y)�Prob&[[x | f (x)=y]] for all y.

2. (D1 , +1) is average polynomial-time many�one
reducible to (D2 , +2), denoted by (D1 , +1)�p, av

m (D2 , +2), if
f is polynomial on +1-average and +1 Pp, +1 & in 1.

The condition (iii) on the density functions in the above
definition is simply called the domination condition for the
reduction. There are several weaker definitions of the
domination conditions; however, the one used here sim-
plifies the reductions and guarantees that the reducibilities
are reflexive and transitive. See [16] for more discussion.

Definition 4.2 [4]. Let (D1 , +1) and (D2 , +2) be ran-
domized decision problems:

1. (D1 , +1) is polynomial-time Turing reducible to
(D2 , +2), denoted by (D1 , +1)�p

T (D2 , +2), if there exists a
density function & and an oracle Turing machine M such
that

(i) MD2 is polynomial-time bounded;

(ii) D1=L(M, D2); and

(iii) +1 Pp &, and +2( y)�Prob&[[x | y # Q(M, D2 , x)]]
for all y.

Here Q(M, D2 , x) is the set of strings queried by M with
oracle D2 on input x.

2. (D1 , +1) is average polynomial-time Turing reducible
to (D2 , +2), denoted by (D1 , +1)�p, av

T (D2 , +2), if M is poly-
nomial-time bounded on +-average and +1 Pp, +1 & in 1.

Let : be a reducibility. For a class C, a problem (D, +) is
:-hard for C if every problem (E, &) in C is :-reducible to
(D, +), and (D, +) is :-complete for C if it is in C and is
:-hard for C. If C is of the form (C$, F) (resp.
Aver(C$, F) ), then let C-complete abbreviate ``many-one
complete'' (resp. ``many-one complete on average'') for C.

It is shown in [16] that if (D, +) is �p
m-hard for (NP, P-

comp) for a language D in EXP and a flat density function
+, then EXP=NEXP. Note that that the standard density
function is flat. Hence, under the condition of EXP{
NEXP, no decision problem with the standard density func-
tion is (NP, P-comp)-complete. By the result of Wang and
Belanger [37], every (NP, P-comp)-complete problem is
also Aver(NP, P-comp)-complete, i.e., �p,av

m -complete for
Aver(NP, P-comp).
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Now we introduce an average-case version of the non-
deterministic Turing reducibility. This will be used to build
an ``average polynomial-time hierarchy'' in Section 6. Recall
that Acc(M, D, x) (resp. Rej(M, D, x)) is the set of (codes
of) all accepting (resp. rejecting) computation paths of M
with oracle D on input x, and Q(M, D, x, y) is the set of
strings queried by M with oracle D on input x on computa-
tion path y.

Definition 4.3. Let (D1 , +1) and (D2 , +2) be ran-
domized decision problems:

1. (D1 , +1) is polynomial-time nondeterministic Turing
reducible to (D2 , +2), denoted by (D1 , +1)�np

T (D2 , +2), if
there exist a density function & and a nondeterministic
Turing machine M such that

i. MD2 is polynomial-time bounded;

ii. D1=L(M, D2); and

iii. +$1 Pp &, and +2(z)�Prob&[[(x, y) | z # Q(M, D2 ,
x, y)]] for all z,

where +$1 is the density function induced from +, M, and D2

as:

+$1(x, y)={
+1(x)�|Acc(M, D2 , x)|

if y # Acc(M, D2 , x),
+1(x)�|Rej(M, D2 , x)|

if Acc(M, D2 , x)=<
and y # Rej(M, D2 , x),

0 otherwise.

2. (D1 , +1) is average polynomial-time nondeterministic
Turing reducible to (D2 , +2), denoted by (D1 , +1)�np, av

T

(D2 , +2), if MD2 is polynomial-time bounded on +1 -average
and +$1 Pp, +$1 & in 1.

We note that, in the case that the reduction machine
always has one computation path, the nondeterministic
Turing reduction coincides with deterministic one in
Definition 4.2.

In the following, we state basic properties of the
reducibilities (cf. [16, 4]).

Proposition 4.4. Let Ai=(Di , +i), i=1, 2, 3, be ran-
domized decision problems:

1. Polynomial-time reducibility implies average polyno-
mial-time reducibility, i.e., for every : # [m, T] and
; # [p, np], if A1�;

: A2 then A1�;, av
: A2 .

2. Many�one reducibility implies deterministic Turing
reducibility, i.e., if A1�p

m A2 then A1�p
T A2 , and if

A1�p, av
m A2 then A1�p, av

T A2 .

3. Deterministic Turing reducibility implies nondeter-
ministic Turing reducibility, i.e., if A1�p

T A2 then A1�np
T A2 ,

and if A1�p, av
T A2 then A1�np, av

T A2 .

4. Nondeterministic Turing reducibility is reflexive, i.e.,
A1�np

T A1 and A1�np, av
T A1 .

5. Many-one reducibility and deterministic Turing
reducibility are reflexive and transitive, i.e., for every
�: # [�p

m , �p, av
m , �p

T , �p, av
T ], A1�: A1 , and if A1�: A2

and A2�: A3 then A1�: A3 .

Proof. The claims (1)�(4) immediately follow from the
definitions. The claim for reflexivity in (5) is also obvious.
Here we show that �p, av

T is transitive. The proofs for the
transitivity of the other reducibilities are analogous. Now,
we assume that (D1 , +1)�p, av

T (D2 , +2) via a deterministic
Turing machine M1 and a density function &2 and assume
that (D2 , +2)�p, av

T (D3 , +3) via a deterministic machine M2

and a density function &2 . In what follows, we will show that
(D1 , +1)�p, av

T (D3 , +3).
By definition, there exist two functions f1 and f2 which are

polynomial on +1-average and on +2 -average, respectively,
such that f1(x) } "1(x)�+1(x) and f2(x) } &2(x)�+2(x) for
all x. Assume that f1(x)>0 and f2(x)>0 for all strings x.

We define a new machine M as follows: on input x, M
deterministically simulates M1 on x, and whenever M1

queries a string y, M deterministically simulates M2 on
input y. Especially, in the case that x is the empty string =,
M is designed not to query any strings; even if M2 queries
some strings to oracle D3 , but their oracle answers are
encoded in a program of M. Clearly D1=L(M, D3). Note
that

TimeD3
M(x)�c } \TimeD2

M1
(x)+ :

y # Q(M1 , D2 , x)

TimeD3
M2

( y)+
for some constant c>0.

Let f (x)=f1(x) } (�y # Q(M1 , D2 , x) f2( y)+1) and choose a
density function & such that &(=)=1&�x +1(x)�f (x) and
f (x) } &(x)=+1(x) for all strings x different from =. For each
string z, we define a set Az such that that (x, y) # Az if and
only if z # Q(M2 , D3 , y), y # Q(M1 , D2 , x), and (x$, y) � Az

for every string x$<x. Then, for all z # �x Q(M, D3 , x),

+3(z)�Prob&2
[[ y | z # Q(M2 , D3 , y)]]

� :
y :z # Q(M2 , D3 , y)

+2( y)
f2( y)

� :
x :z # Q(M, D3 , x)

:
y : (x, y) # Az

1
f2( y)

} +2( y)

� :
x :z # Q(M, D3 , x)

:
y : (x, y) # Az

1
f2( y)

}
+1(x)
f1(x)

� :
x :z # Q(M, D3 , x)

+1(x)
f1(x) } �y # Q(M1 , D2 , x) f2( y)

�Prob&[[x | z # Q(M, D3 , x)]]

since �n
i=1(1�ai)�1��n

i=1ai .
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It remains to show that M and f are polynomial on
+1-average. Let p1 and p2 be polynomials such that, for any
real number r>0,

Prob+1
[[x | TimeD2

M1
(x)<p1( |x| } r)]]<1�r,

Prob+2
[[ y | TimeD3

M2
( y)<p2( | y| } r)]]<1�r.

Now we define a polynomial s as s(z)=c } p1(2z) } (1+
p2(2z } p1(2z)))+c0 , where c0=TimeD3

M(=). Note that
|Q(M1 , D2 , x)|�TimeD2

M1
(x) for all x. Then, for all x and

r>0,

Prob+1
[[x | TimeD3

M (x)>s( |x| } r)]]

�Prob+1
[[x | TimeD2

M1
(x)>p1( |x| } 2r)]]

+Prob+1 _{x } TimeD2
M1

(x)�p1( |x| } 2r)

7 :
y # Q(M1 , D2 , x)

TimeD3
L2

( y)

>p2( p1( |x| } 2r) } 2r) } p1( |x| } 2r)=&
<1�2r+Prob+1

[[x | _y # Q(M1 , D2 , x)

[TimeD3
M2

( y)>p2( | y| } 2r)]]]

�1�2r+Prob+2
[[ y | TimeD3

M2
( y)>p2( | y| } 2r)]]<1�r.

The proof that f is polynomial on +1-average is similar and,
thus, the claim is established. K

The following lemma shows how the domination condi-
tion for Turing reducibilities works.

Lemma 4.5. Assume that (E ) is computable by a non-
deterministic Turing machine N in time polynomial on
&-average:

1. Assume that (D, +)�p, av
T (E, &) via a machine M and

let h(x)=�z # Q(M, D, x) TimeN(z). Then, h is polynomial on
+-average.

2. Assume that (D, +)�np, av
T (E, &) via a machine M and

let h(x)=miny # Acc(M, D, x) �z # Q(M, D, x, y) TimeN(z) if x # D;
otherwise, h(x)=miny # Rej(M, D, x) �z # Q(M, D, x, y) TimeN(z).
Then, h is polynomial on +-average.

Proof. We prove the claim (2). Since (D, +)�np, av
T (E, &)

via some nondeterministic oracle Turing machine M, there
exist a density function " and a polynomial pD such that
D=L(M, E), +$Pp, +$ ", TimeE

M is pD on +-average, and
&(z)�Prob"[[(x, y) | z # Q(M, E, x, y)] for all z, where +$
is the density function induced from +, M, and E as in
Definition 4.3. Assume that TimeE

M(x)>|x| for all x.
Choose a nondeterministic Turing machine N and a poly-

nomial pE such that E=L(N) and TimeN is pE on &-average.

Moreover, let p be a polynomial and q a function such that
q is p on +-average and q(x) } "(x)�+$(x) for all x.

Now define a polynomial s as

s(z)=pD(6z) } pE ( pD(6z) } 10z2 } ( pD(6z)+2)2

_p(6z } pD(6z)))+c0 ,

where c0=TimeE
M(=).

We show that h is s on +-average. For simplicity, let Ax

denote Acc(M, E, x) and let Qx, y denote Q(M, E, x, y).
Note that |Qx, y | , |z|�TimeE

M(x) and |(x, y) |�2 |x|
(TimeE

M(x)+2) if x{=. First we prove that Prob+[[x # D |
h(x)>s(r } |x| )]]<1�2r. For any real number r>0,

Prob+[[x # D | h(x)>s(r } |x| )]]

�Prob+[[x # D | TimeE
M(x)>pD(6r } |x| )]]

+Prob+[[x # D | TimeE
M(x)�pD(6r } |x| )

7\y # Ax _ :
z # Qx, y

TimeN(z)>s(r } |x| )]]&
�

1
6r

+Prob+[[x # D | \y # Ax _z # Qx, y

[TimeN(z)>pE ( |z| } 10r } |(x, y) | 2

_p(6r } |(x, y) | ))]]]

The latter term can be calculated further as

Prob+$[[(x, y) | x # D 7_z # Qx, y

[TimeN(z)>pE ( |z| } 10r } |(x, y) | 2

_p(6r } |(x, y) | ))]]]

= :
�

n=1

+$(7n) } Prob+$n
[[(x, y) | x # D 7 _z # Qx, y

[TimeN(z)>pE ( |z| } 10rn2 } p(6rn))]]]

�Prob+$[[(x, y) | q((x, y) )>p(6r } |(x, y) | )]]

+ :
�

n=1

"(7n) } p(6rn) } Prob"n[[(x, y) | _z # Qx, y

[TimeN(z)>pE ( |z| } 10rn2 } p(6rn))]]]

�
1
6r

+ :
�

n=1

p(6rn) } Prob&[[z | TimeN(z)

>pE ( |z| } 10rn2 } p(6rn))]]

�
1
6r

+ :
�

n=1

p(6rn) }
1

10rn2 } p(6rn)
=

1
6r

+
?2

60r
<

1
3r

.

A similar argument shows that Prob+[[x # D� | h(x)>
s(r } |x| )]]<1�2r. Thus, h is s on +-average. K
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Lemma 4.6. Let F be a set of density functions:

1. Aver(NP, V) is closed under �p, av
m -reductions [16].

2. Aver(P, V) is closed under �p, av
T -reductions [4].

Moreover, Aver(P, F) =[(D, +) | + # F, (D, +)�p, av
T

(E, &) and (E, &) # Aver(P, V)].

3. Aver(NP, F)=[(D, +) | + # F, (D, +)�np, av
T (E, &)

and (E, &) # (P, V)].

Proof. The claims (1) and (2) follow from Lemma 4.5.
Here we show the claim (3). Clearly if (D, +) #
Aver(NP, F) , then (D, +)�np, av

T (,, &st). To see the other
direction, we assume that + # F, (D, +)�np, av

T (E, &) and
(E, &) # (P, V) . We will show that (D, +) belongs to
Aver(NP, F).

Since (D, +)�np, av
T (E, &), there exist a polynomial pD and

a nondeterministic oracle Turing machine MD such that
D=L(MD , E) and TimeE

MD
is pD on +-average. Let ME be

a deterministic Turing machine and pE a polynomial such
that E=L(ME) and TimeME is pE-time bounded.

Note that TimeME (z)�pE (TimeMD(x)) for all y and all z
in Q(MD , E, x, y). Now we consider a machine M which
nondeterministically simulates the computation of MD , and
whenever MD makes a query z, M deterministically
simulates ME on input z. By definition, D is computed by
M, and on each computation path y of M on x, the number
of steps that M actually takes is bounded by

c } \TimeE
MD

(x)+ :
z # Q(MD , E, x, y)

TimeME (z)+
�c } (TimeE

MD
(x)+TimeE

MD
(x)

_ max
z # q(MD , E, x, y)

TimeME (z))

�c } TimeE
MD

(x) } (1+pE (TimeE
MD

(x))).

Hence, we can redefine M such that all computation
paths of M have the same length. The function TimeM is
polynomial on +-average since TimeE

MD
is polynomial on

+-average, and the set of functions which are polynomial on
+-average is closed under composition with polynomials
[16]. Therefore, (D, +) # Aver(NP, F). K

Although Aver(P, V) is closed under polynomial-time
many�one reducibility, it is known that there exist two
problems (A, +) and (B, &) such that (A, +)�p

m (B, &), and
(B, &) # Aver(P, P-comp) , but (A, +) � Aver(P, P-comp)
[37].

The following theorem shows the existence of incom-
parable pairs with respect to �p

T .

Theorem 4.7. For every recursive decision problem D
not in P, there exist density functions +1 and +2 in P-comp
such that (D, +1) and (D, +2) are incomparable, i.e.,
(D, +1)��

p
T (D, +2) and (D, +2)��

p
T (D, +1).

Proof. The proof proceeds by a slow diagonalization
technique. Let M1 , M2 , ... denote a standard enumeration
of all deterministic polynomial-time oracle Turing
machines. We identify each nonnegative integer i with the
(i+1)th string on the lexicographic order: =<0<1<00<
01< } } } . We define two density functions +1 , +2 and an
auxiliary function r on N by the following recursive
procedure.

Stage 0. Let r(0)=0, +1(0) B 1, and +2(0) B 1.

Stage n, n>0. The values r(n), +1(n), and +2(n) are
defined as follows. Assume that, in |n| steps, the initial
segment of the sequence

(r(0), D(0), +1(0), +2(0)) , (r(1), D(1), +1(1), +2(1)) , ...

is computed by applying repeatedly the same procedure for
previous stages. Let m be the largest integer, if any, for
which (r(m), D(m), +1(m), +2(m)) is completely computed;
if no such m exists, however, then let r(n)=1, +1(n) B 1, and
+2(n)B1. The values depend on whether r(m) is even or odd.

First suppose that r(m) is even. Let i=r(m)�2, and
assume that the sequence M D

i (0), M D
i (1), ... is computed by

simulating Mi until either more than |n| steps are done, or
on some input y, M D

i ( y) queries to oracle D a string larger
than m. Let k be the largest integer for which the simulation
of M D

i (k) can be completed. If there exists a y�k such that
either (i) M D

i ( y){D( y), or (ii) M D
i on input y queries some

w satisfying that +1( y)>+2(w)=0, then let r(n)=r(m)+1,
+1(n)=0, and +2(n) B 2&(|n|+1). Clearly (D, +1) is not
Turing reducible to (D, +2) via Mi . If there is no such y, then
let r(n)=r(m), +1(n) B 2&(|n|+1), and +2(n)=0.

If r(m) is odd, then let i=(r(m)&1)�2 and change the
roles of +1 and +2 .

Claim 1. range(r)=N, where range(r)=[r(z) | z # N].

Proof of Claim. Assume range(r){N. Take the mini-
mal integer n0 such that r(n0) is the maximum in range(r).

First consider the case that r(n0) is even. Let i=r(n0)�2
and let n be large enough such that (r(n0), D(n0), +1(n0),
+2(n0)) is constructed. Note that, for every y>n, +1( y)>0
and +2( y)=0. For every y>n, we have M D

i ( y)=D( y), and
M D

i ( y) does not query any string w, where +1( y)>
+2(w)=0. Hence, M D

i computes D on all inputs, and it
queries only strings shorter than n0 . This implies that D is
in P, and this contradicts our assumption. The same argu-
ment also holds for the case that r(n0) is odd. K

Therefore, +1 and +2 are well defined. It is not hard to see
that +1 , +2 # P-comp since, in each stage n, we quit the
simulations after |n| steps are done. Thus, we complete the
proof. K
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5. COMPLETE PROBLEMS AND SELF-REDUCIBILITY

The randomized tiling problem is the first problem that
was shown to be (NP, P-comp)-complete [21, 22]. In the
past decade, several other randomized decision problems
have been proven to be (NP, P-comp)-complete [13, 15,
16, 29, 35, 36, 38]. One of the most useful randomized
problem is the randomized bounded halting problem (RH,
+RH) that is defined as follows: RH=[(i, x, 1n) | Mi

accepts x within n steps] and +RH((i, x, 1n) ) B ( |i |+1)&2

( |x|+1)&2 (n+1)&2 2&(|i |+|x| ), where M0 , M1 , ... is a fixed
enumeration of all nondeterministic Turing machines.
A proof that (RH, +RH) is (NP, P-comp)-complete can be
found in [13, 16, 4]. We note that each of the complete
problems is a pair of an NP-complete set and a natural
density function. However, a randomized satisfiability
problem and a randomized graph 3-colorability problem
are not (NP, P-comp)-complete for reasonable natural
density functions [9, 40]. In [37], Wang and Belanger
show that for every set D, if D is �p

m-hard for NP, then
there exists a density function + such that (D, +) is �p

m-hard
for (NP, P-comp). However, it is not known whether
every NP-complete set D has a density function + such that
(D, +) is (NP, P-comp)-complete.

The (Turing) self-reducibility has been introduced into
worst-case complexity theory by Meyer and Paterson [24].
All known NP-complete problems are self-reducible and
every self-reducible set belongs to PSPACE. It is natural to
ask whether the notion of self-reducibility is applicable to
randomized decision problems.

Definition 5.1. A polynomial-time computable partial
order <is OK if there exists a polynomial p such that

1. every strictly descending chain is finite and is polyno-
mial in the length of its maximum element, i.e., if xk<
xk&1< } } } <x2<x1 is a descending chain starting from x1 ,
then k�p( |x1 | ), and

2. for every x and y, x<y implies |x|�p( | y| ).

Definition 5.2. A randomized decision problem (D, +)
is (Turing) self-reducible if there exists an OK partial order
and a deterministic oracle Turing machine M such that
(D, +)�p

T (D, +) via M, and for every input x, all query
strings in the computation of M on input x are smaller than
x with respect to the partial order.

Clearly every randomized problem in Aver(P, V) is self-
reducible and every self-reducible randomized problem is in
Aver(PSPACE, V). Moreover, the set of all self-reducible
problems is closed under polynomial isomorphism, i.e., if
(D, +)$p (E, &) and (E, &) is self-reducible, then (D, +) is
self-reducible.

One of the classical self-reducible NP-complete problems
is the satisfiability problem, SAT. However, we do not know

a simple density function + such that (SAT, +) is (NP,
P-comp)-complete. Franco and Paull [9] show that SAT
with a natural probability distribution on formulas is in
Aver(P, V) . So, we consider, as a canonical example, the
randomized bounded halting problem again. More
precisely, we consider the k th level of the randomized
bounded halting problem (RHk, +RH) that is defined as
follows. Assume that M0 , M1 , ... is an effective enumeration
of all nondeterministic oracle Turing machines, and define
RH(A)=[(i, x, 1n) | M A

i accepts x in less than n steps].
Let RH1=RH(,) and RHk+1=RH(RHk) for k�1. We
note that RHk is 7p

k-complete.

Lemma 5.3. For any k>0, (RHk, +RH) is (7p
k , P-

comp)-complete.

Proof. The case k=1 is shown in [4, 13, 16, 38]. Now
let k>1. The proof follows [37]. For any set D # 7p

k and
any density function + # P-comp, we will show that
(D, +)�p

m (RHk, +RH). Without loss of generality, we
assume that |+(x)|�2 |x|+4 (see Lemma 1.6 in [16]).
Since RHk&1 is 7p

k&1-complete, there exists a polynomial-
time nondeterministic oracle Turing machine M such that
D=L(M, RHk&1). Let a function g be defined as follows:
on input x, g deterministically computes a minimal string y
such that +*(x&)<0.y1�+*(x). Now consider a machine
N: on input y, N first computes a string x that y=g(x), by
a binary search in time polynomial in |x|, and if x exists,
then N nondeterministically simulates M on input x;
otherwise, N simply rejects x. Note that | g(x)|�q( |x| ) for
some absolute polynomial q, and that +(x)<2&| g(x)|. Now
let i be an index such that L(Mi)=L(N). Let p be a polyno-
mial time bound of Mi . The desired reduction f is now
defined as f (x)=(i, g(x), 1 p( |x| )) . Note that f is one-one
and reduces D to RHk. It suffices to check that f satisfies the
domination condition. Since i is a constant in the reduction,
it follows that

+RH((i, g(x), 1 p( |x| )) )

=
c

( |i |+1)2 ( | g(x)|+1)2 ( p( |x| )+1)2 } 2 |i | 2&| g(x)|

�
1

s( |x| )
} +(x),

where s is a polynomial such that c } s(n)�( |i |+1)2 (q(n)+
1)2 ( p(n)+1)2 } 2 |i |. Hence, (D, +)�p

m(RHk, +RH). K

Theorem 5.4. For each k>0, (RHk, +RH) is self-
reducible.

Proof. Without loss of generality, we assume that non-
deterministic Turing machines have transition functions
with exactly two nondeterministic choices. Consider the
following encoding of nondeterministic oracle Turing
machines M: let (M) be the code of a set of finite states
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(each state qi is simply encoded by (0, i) ), the initial state,
the final states and the transition function, where the trans-
ition function is given by a table in which each row consists
of four quintuples; (qi , 0, q1

j , t1, s1), (qi , 0, q2
j , t2, s2),

(qi , 1, q3
j , t3, s3), and (qi , 1, q4

j , t4, s4).
Let g(M, x, t) be 0 if t � [0, 1]; otherwise, let g(M, x, t) be

a code of a nondeterministic Turing machine M$ that
simulates M on input x, but the first nondeterministic step
of M is deterministically done, depending on the value of t.
The code of M$ is obtained from the code of M with a new
initial state and one additional row in the transition table,
which describes the first step. We can assume that g is one�
one, computable in polynomial time, and | g(M, x, t)|�
|M|+c log |M|+c for some constant c.

We define an OK partial order < on strings of the form
(M, (x, s) , 1n) as follows: (M$, (x$, s$) , 1m)<(M,
(x, s) , 1n) if x$=x, s$=st, where t # [0, 1], M$=
g(M, x, t), and |s$|+m=|s|+n, i.e., m=n&1. Note that
every string of the form (M, (x, =) , 1n) is the largest string
in this order <. Each chain starting from (M, (x, =) , 1n)
has at most length n.

Now let N be an oracle Turing machine which, on input
F=(M, (x, s) , 1n) , works as follows: if n=0, then N
accepts F exactly when M is in an accepting configuration
after |s| deterministic steps; otherwise, N computes two
strings F 0=(g(M, s, 0), (x, s0) , 1n&1) and F 1=(g(M,
s, 1), (x, s1), 1n&1) and accepts exactly when either F 0 or
F 1 (or both) appears to be in the oracle.

Clearly N reduces RHk to RHk by querying only strings
which are smaller than input with respect to <. It remains
to show that, for some polynomial q, +RH(F $)�7F +RH(F )�
q( |F | ), where F ranges over all strings which are reduced to
F $ by N. From the construction of the strings F 0 and F 1, it
follows immediately that they are only asked on input F.
Therefore, it suffices to show that +RH(F 0)�+RH(F )�
q( |F 0| ). Let p((M, (x, s) , 1n) )=( |M|+1)2 ( |(x, s) |+
1)2 (n+1)2. Thus,

+RH(F 0)=+RH((g(M, s, 0), (x, s0) , 1n&1) )

�
c

p((g(M, s, 0), (x, s0) , 1n&1) )

_2&(| g(M, s, 0)| +|(x, s0) | )

�
c

p((g(M, s, 0), (x, s0) , 1n&1) )

_2&(|M|+clog |M|+|(x, s) |+c+1)

�
c

2c+1 } p((g(M, s, 0), (x, s0), 1n&1) ) } |M| c

_2&(|M|+|(x, s) | )

�
+RH((M, (x, s) , 1n) )

q((g(M, s, 0), (x, s0) , 1n&1) )
=

+RH(F )
q( |F 0| )

for some polynomial q. K

Wang and Belanger [38] show that the following
(NP, P-comp)-complete problems are polynomially
isomorphic to each other: the randomized bounded halting
problem [13, 16, 4], the randomized tiling problem [21, 22,
16], the randomized Post correspondence problem [16], and
the randomized word problem for Thue systems [38]. From
Theorem 5.4, we immediately conclude the following.

Corollary 5.5. The following randomized decision
problems are all self-reducible: the randomized tiling problem,
the randomized Post correspondence problem, and the ran-
domized Word problem for Thue systems.

We note that if every pair of (NP, P-comp)-complete
problems is polynomially isomorphic, then every (NP, P-
comp)-complete problem is self-reducible.

6. AVERAGE POLYNOMIAL TIME HIERARCHY

The Meyer�Stockmeyer polynomial-time hierarchy is
introduced in [25] based on polynomial-time deterministic
and nondeterministic Turing reducibilities and is a central
concept in worst-case complexity theory. Here, Turing
reductions are used to define new classes over P and NP in
an analogous way to the Kleene arithmetical hierarchy.

The theory of average NP-completeness can be similarly
generalized to an arbitrary level of the Meyer�Stockmeyer
polynomial-time hierarchy by using Turing reducibilities
among randomized decision problems. We have already
seen in Section 5 that all the classes (7p

k , P-comp) , k>0
have �p

m-complete sets. It is natural to ask whether, e.g.,
(7p

k , P-comp) is contained in an average-case version of
2p

k or not. To answer this question, we introduce a notion
of an average polynomial-time hierarchy, which is based on
average polynomial-time Turing reducibilities discussed in
Section 4, in analogy with the Meyer�Stockmeyer polyno-
mial-time hierarchy.

First we define a relativization of the average-case
complexity classes, Aver(P, F) and Aver(NP, F) , to an
oracle (E, &).

Definition 6.1. Let (E, &) be a randomized decision
problem and let F be a set of density functions:

1. (P, F) (E, &)=[(D, +) | + # F, (D, +)�p
T (E, &)].

2. (NP, F) (E, &)=[(D, +) | + # F, (D, +)�np
T (E, &)].

3. Aver( P, F) (E, &)=[ (D, + ) | + # F, (D, +)�p, av
T

(E, &)].

4. Aver(NP, F) (E, &)=[(D, +) | + # F, (D, +)�np, av
T

(E, &)].

From the definitions of Turing reducibilities, it
immediately follows that, for any randomized problem
(E, &), Aver(P, F)�Aver(P, F) (E, &), Aver(NP, F)�
Aver(NP, F) (E, &), (P, F) (E, &)�Aver(NP, F) (E, &), and
(NP, F) (E, &)�Aver(NP, F) (E, &).
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Definition 6.2. Let C be a class of randomized deci-
sion problems and let F be a set of density functions:

1. ( P, F ) C = [ ( D , + ) | _( E , & ) # C [ ( D , + ) # ( P,
F) ( E , & ) ] ] .

2. ( NP, F)C=[ (D, + ) | _(E, &) # C[(D, + ) # ( NP,
F) (E, &)]].

3. Aver(P, F)C=[(D, +) | _(E, &) # C[(D, +) # Aver(P,
F) (E, &)]].

4. Aver( NP, F)C=[(D, +) | _(E, &) # C[(D, +) # Aver
(NP, F) (E, &)]].

Lemma 4.6 immediately yields the following closure
properties.

Lemma 6.3. Let F be a set of density functions:

1. Aver(P, F) Aver( P, V ) = Aver( P, F) (P, V)=Aver
(P, F) .

2. Aver(NP, F) (P, V)=Aver(NP, F) .

Up to now, it is unknown whether ``in the unrelativized
world'' (NP, P-comp)�Aver(P, P-comp) or not. Recall
that if E{NE, then (NP, P-comp) �3 Aver(P, P-comp)
[4]. Here we give two contradicting relativized results: an
inclusion and a separation.

Theorem 6.4. 1. ( NP, P-comp) (A, +) � Aver( P, P-
comp) (A, +) for some randomized problem (A, +).

2. ( NP, P-comp) (B, &) �3 Aver( P, P-comp) (B, &) for
some randomized problem (B, &).

Proof. (1) The desired oracle (A, +) is a special version
of the randomized halting problem. Let (N, x, 1t) be in A
if the nondetertninistic Turing machine N with oracle A
accepts x in less than t steps. Note that this is a valid defini-
tion since N can make only queries smaller than
1t(<(N, x, 1t) ). We define +((N, x, 1t) ) B ( |N|+1)&2

( |x|+1)&2 (t+1)&2 } 2&(|N|+|x| ).
Recall the proof that the randomized halting problem is

�p
m-hard for (NP, P-comp) [4, 13, 16, 38]. By exactly the

same argument, it follows that (A, +) is �p
m-hard for

(NP, P-comp) (A, +). Therefore, (NP, P-comp) (A, +)=(P,
P-comp) (A, +).

Let B be the oracle set used by Baker et al. [1] to separate
P from NP using the tally set L(B)=[0n | _y[| y|=
n7 y # B]] in NPB&PB and let &(x) B ( |x|+1)&2 if x # B;
otherwise, ( |x|+1)&2 } 2&|x|. Consider the randomized
problem (L(B), '), where '(x) B ( |x|+1)&2 if x # [0]*,
and 0 otherwise. Clearly (L(B), ') is in (NP, P-comp) (B, &),
and, thus, it is in Aver(NP, P-comp) (B, &). Now assume
that (L(B), ') belongs to Aver(P, P-comp) (B, &). There
exist a deterministic Turing machine M which witnesses
that (L(B), ')�np, av

T (B, &). Since M is polynomial-time
bounded on '-average, we have L(B) # PB. This is a
contradiction against the fact that L(B) � PB. K

We now give a definition of an average polynomial-time
hierarchy, which is an average-case analogue of the
Meyer�Stockmeyer polynomial-time hierarchy in worst-
case complexity theory.

Definition 6.5. Let k>1 and let F be a set of density
functions:

1. Aver(2p
0 , F)=Aver(7p

0 , F)=Aver(P, F) .

2. Aver(2p
k , F)=Aver(P, F) Aver(7p

k&1, V).

3. Aver(7p
k , F)=Aver(NP, F) Aver(7p

k&1, V).

4. Aver(PH, F)=�k�0 Aver(7p
k , F).

We remark here that oracle sets used in this definition are
not restricted to the class Aver(7p

k&1 , F) since the
domination condition of Turing reducibility already puts a
constraint on the complexity of the density function of the
oracle.

Note also that Lemma 4.6(1) can be easily extended to
the class Aver(7p

k , F) , namely, Aver(7p
k , F) is closed

under �p,av
m -reductions.

The following two propositions give reasonable evidence
that the average polynomial-time hierarchy above defined
has a structure similar to that of the worst-case polynomial-
time hierarchy.

Proposition 6.6. Let k�1 and let F be any set of
density functions:

1. Aver(2p
k , F)�Aver(7p

k , F).

2. Aver(7p
k , F)�Aver(2p

k+1 , F) .

Proof. The proposition follows immediately from
Definition 6.5. K

Proposition 6.7. Let F be any class of density func-
tions, then Aver(BPP, F)�Aver(7p

2 , F).

Proof. Let (D, +) be an arbitrary problem in
Aver(BPP, F). By Proposition 2.7, there exists a polyno-
mial p, a p-time bounded deterministic Turing machine M,
and a function f such that f is computable in time polynomial
on +-average, and for all x, there are more than 2 f (x)&|x|

strings w of length f (x) such that x # D if and only if M
accepts (x, w). It suffices show that (D, +)�np, av

T (E, &) for
some decision problem (E, &) # Aver(NP, V).

We first define a nondeterministic oracle Turing machine
M0 with an oracle set E as follows. On input x, M0 first
computes the value f (x), then it guesses a nonnegative
integer m, and distinct strings u1 , ..., uf (x) and a string w of
length f (x), and queries the string (x, u1 } } } uf (x) , w) to the
oracle E. If the string is in E, then M0 simulates M on input
(x, w); otherwise, it rejects the input. Clearly M0 is polyno-
mial-time bounded on +-average since f is computable in
time polynomial on +-average.

The desired oracle E is defined as the set computed by the
nondeterministic machine M1 that works as follows: on
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input (x, u1 } } } um , w) , M1 guesses v of length m and
x1 , ..., xm of length |x|, and checks if M((xi , ui �v) ){
M((xi , w) ), for all i�m, where u�v denotes the bitwise
addition of u and v. If this is true, then M0 accepts the input;
otherwise, M0 rejects the input. Then, we have D=
L(M0 , E) (for a proof, see [2, pp. 170�173]). Note that M1

is polynomial-time bounded, and therefore, E # NP.
We next define the desired density function & on E. Take

the density function +$ induced from +, M0 and E and set
&(z) = Prob+$[[ (x, y) | z # Q(M0 , E, x, y)]]. Hence, we
have (D, +)�np, av

T (E, &), and consequently (D, +) is in Aver
(NP, F) (E, &)�Aver(NP, F)Aver(NP, V)=Aver(7p

2 , F). K

The definition of the average polynomial-time hierarchy
implies that any average-case complexity class of the
hierarchy contains its associated worst-case complexity
class together with a set of density functions.

Lemma 6.8. Let k�1 and let F be any set of density
functions:

1. (2p
k , F)�(P, F) (7p

k&1, V)�Aver(P, F) (7p
k&1,V)�

Aver(2p
k , F).

2. ( 7 p
k , F ) � ( NP, F ) ( 7 p

k & 1 , V ) � Aver ( NP,
F) ( 7 p

k & 1 , V) � Aver( 7 p
k , F) .

Proof. We show the claim (2) since the proof of (1) is
analogous. The proof proceeds by induction on k. The case
k=1 is obvious.

Let k>1 and assume that (A, +) # (7p
k , F). There is a

set B # 7p
k&1, a polynomial p, and a nondeterministic oracle

Turing machine M which is p-time bounded such that M
computes A with oracle B.

Take +$ induced from +, M and B as in Definition 4.3.
A density function & on the oracle B is given by &(z) =
Prob+$[[(x, y) | z # Q(M, B, x, y)]]. Clearly (A, +)�np

T

(B, &). Since (B, &) # (7p
k&1 , V) , we have (A, +) # (NP,

F) (7p
k&1, V). Therefore, (A, +) is in Aver(NP, F) (7p

k&1, V).
Since, by induction hypothesis, (7p

k&1 , V) is included in
Aver(7p

k&1, V) , we have (A, +) # Aver(7p
k F). K

Lemma 3.10 can be extended into an arbitrary level of the
average polynomial-time hierarchy. We first see a key
lemma.

Lemma 6.9. Let k�0 and assume that (A, +)�np, av
T

(B, &) and (B, &) # Aver(7p
k , V). For any set S and any poly-

nomial q, there exist sets C0 # 7p
k+1 , C1 # 6 p

k+1 and S$
such that A & S$�C0 �A, A� & S$�C1 �A� and +(S n)&
+(S$n)�1�q(n) for all n # N.

Proof. The proof proceeds by induction on k. The base
case k=0 follows from Lemma 3.10.

Let k�1 and assume that (A, +) # Aver(7p
k+1 , V). By

definition, there is a nondeterministic Turing machine M
and a randomized decision problem (B, &) # Aver(7p

k , V)
such that (A, +)�np, av

T (B, &) via M. Let p be a polynomial

such that Prob+[[x | TimeB
M(x)>p( |x| } m)]]<1�m for

any positive real number m.
Let +$ be the density function induced from +, M, and B.

Furthermore, let " be a density function, such that +$Pp, +$ "
and "(z)�Prob"[[(x, y) | z # Q(M, B, x, y)]]. Since +$Pp, +$

", there exists a function f which is r on +$-average such that
"(x, y) } f (x, y)�+$(x, y), where r is a polynomial.

Claim 2. There exists a nondeterministic Turing
machine M$ and a randomized problem (B$, "$) in Aver
(7p

k , F) such that (A, +)�np, av
T (B$, "$) via M$, and all

strings queried by M$ with oracle B$ on input x are of length
greater than |x|.

Proof. Let B$=[z01n | z # B] and let

&$(w)={
&(z) }

Prob+$[[(x, y) | |x|=n7z # Q(M, B, x, y)]]
Prob+$[[(x, y) | z # Q(M, B, x, y)]]

if w=z01n for some z and n,

0 otherwise.

We define a new oracle Turing machine M$ which works
as follows: on input x, simulate M on input x, and whenever
M queries a string z, M$ queries z01|x| to the oracle. It is
easy to see that (A, +)�np, av

T (B$, "$) via M$. We next show
that (B$, "$) is in Aver(7p

k , V). Note that (B$, "$) is average
polynomial-time many�one reducible to (B, &). Since Aver
(7p

k , V) is closed under �p
m-reduction, (B$, &$) is in

Aver(7p
k , V). K

Therefore, without loss of generality, we assume that M
queries only strings of length greater than length of inputs.
For each n # N, it holds that

Prob+[[x | TimeB
M(x)>p( |x| } 3q(n))]]<1�3q(n),

Prob+$[[(x, y) | f (x, y)>r( |(x, y) | } 3q(n))]]>1�3q(n).

Let Flip(x) be Acc(M, B, x) if x # D, or else let it be
Rej(M, B, x). We define a set Tn by

Tn=[(x, y) | x # S n and TimeB
M(x)�p( |x| } 3q(n)) and

y # Flip(x) and +$(x, y)�r( |(x, y) | } 3q(n)) } "(x, y)],

and let T=�n>0Tn . It is easy to see that +(Sn)&+$(Tn)�
2�3q(n). For any pair (x, y) in T,

+$(x, y)�r( |(x, y) | } 3q(n)) } "(x, y)

�r((2n+p(n } 3q(n)+1)) } 3q(n)) } "(x, y)

since | y|�p( |x| } 3q(n)), and thus we have +$(x, y)�s(n) }
"(x, y) for some polynomial s.

Now let Z=[z | _(x, y) # T[z # Q(M, B, x, y)]]. Recall
that (B, &) is in Aver(7p

k , V). Hence, it follows by induction
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hypothesis that, for any polynomial l, there exist a subset Z$
of Z and sets C$0 # 7p

k and C$1 # 6 p
k such that B & Z$�

C$0 �B, B� & Z$�C$1 �B� and &(Zn)&&(Z$n)�1�l(n).
Denote by Zn (resp. Z$n) the set of all strings in Z (resp. Z$)
whose lengths are between n and p(n } 3q(n)). Now choose
l(n)=3q(n) } s(n) } p(n } 3q(n)) for all n # N. Then, we have
&(Zn)&&(Z$n)�1�3q(n) s(n).

Now we define T $=[(x, y) # T | Q(M, B, x, y)�Z$].
Note that, for all n # N,

Tn&T $n �[(x, y) # Tn | Q(M, B, x, y) & (Zn&Z$n){<].

Hence, it holds that &(Zn&Z$n)�"(Tn&T $n) for all n # N.
Then, for every n,

1�3q(n)�(&(Zn)&&(Z$n)) } s(n)

�("(Tn)&"(T $n)) } s(n)�+$(Tn)&+$(T $n).

The desired set S$ is defined as S$=[x | _y[(x, y) # T $]].
Note that +(S$n)�+$(T $n) holds. It immediately follows from
our definition that S$�S and +(Sn)&+(S$n)�1�q(n) for all
n # N.

Let M0 be an oracle Turing machine with oracle X
defined as follows: on input x, M0 simulates M on x in time
p( |x| } 3q( |x| )), and whenever M queries a string z, M0

queries both (0, z) and (1, z) to its oracle X. If (0, z) # X
and (1, z) � X, M0 continues the simulation with assuming
that the oracle answer is ``yes''; if (0, z) � X and (1, z) # X,
then it continues the simulation with the oracle answer
``no''; otherwise, it immediately rejects the input x. The
machine M0 accepts x exactly when M halts and accepts it.
Similarly, we define a machine M1 by interchanging the
oracle answers and accepts the input if M halts in time
p( |x| } 3q( |x| )) and rejects it. Now let C0=L(M0 , C$0 �C$1)
and C1=L(M1 , C$0 �C$1). By definition of the oracle
machines M0 and M1 , it follows that A & S$�C0 �A and
A� & S$�C1 �A� . K

Proposition 6.10. For k�1, Aver(2p
k , V) and Aver

(7p
k , V) have the sparse interpolation property.

Proof. We show the case Aver(7p
k , V) here. The case

k=1 follows from Lemma 3.10. Let k�2 and assume that
(A, +S, q) # Aver(7p

k , V) for a sparse set S and a polynomial
q. It follows from Lemma 6.9 that there exists a set C # 7p

k

and a subset S$ of S such that A & S$�C�A and
+S, q(Sn)&+S, q(S$n)�1�2q(n) for all n # N. It suffices to
show that S$=S. Assume that there exists a string
x # S&S$. Let n=|x|. Since +S, q(x)�1�q( |x| ),

1
q(n)

�+S, q(Sn)&+S, q(S$n)�
1

2q(n)
.

This is a contradiction. Hence, S$=S. K

The average polynomial-time hierarchy allows us to
construct an average-version of the high and low hierarchy
in NP [30] to refine the structure within NP. It might be
possible that some NP-complete problems with natural
distributions which are unknown to be either in Aver(P, V)
or (NP, P-comp)-complete fall into a ``low (or high)
hierarchy in Aver(NP, P-comp).''

Returning to Levin's fundamental question of whether
NP, P-comp) � Aver(P, V) , we can now raise a more
general question of whether (7p

k , P-comp) �Aver(2p
k , V)

holds or not. However, to answer this question turns out to
be very hard since the following claim closes the gap
between average-case and worst-case.

Theorem 6.11. For any k�1, ( 7 p
k & TALLY,

L-comp)�Aver(2p
k , V) if and only if 7p

k & TALLY�2p
k .

Proof. It suffices to prove the ``only if '' part of the
theorem. Let +(x)=6�?2( |x|+1)2 if x # [0]*, and 0
otherwise. Clearly + is in L-comp. Suppose that (7p

k &

TALLY, L-comp) �Aver(2p
k , V) , and A # 7p

k & TALLY.
Since (A, +) # Aver(2p

k , V) , Proposition 6.10 shows the
existence of a set B # 2p

k such that A & [0]*=B & [0]*.
Now define B$=B & [0]*. Since A�[0]*, we obtain
A=B$ # 2p

k . K

It seems unlikely that (7p
k , P-comp) �Aver(2p

k , V)
since, as is believed, some tally 7p

k sets might not fall
into 2p

k .

Corollary 6.12. Let k�1. If Aver(2p
k , P-comp)=

Aver(7p
k , P-comp) , then 7p

k & TALLY�2p
k .

7. REAL POLYNOMIAL TIME COMPUTABILITY

This section establishes a direct link to the classical
framework of worst-case complexity theory. This link casts
a light on the essential role of average-case analysis in the
study of worst-case complexity.

As we have seen, average-case analysis is very sensitive to
the selection of distributions. For example, fast decreasing
density functions help average polynomial-time bounded
machines to solve hard sets; however, there exist sets in
EXP that are not solvable in average polynomial-time if
we choose, e.g., a density function & defined as &(x) B
( |x|+1)&2 for x # [0]*, and 0 otherwise. This approach
toward average-case analysis does not capture an important
feature of average-case analysis. To see this feature, we
try to abstract a notion of ``rare instances'' under any
``reasonable'' distribution in order to make the notion inde-
pendent from individual distributions, and study its general
properties.

Observe that the class P is the largest class of sets which
are computable in average polynomial-time with respect to
every density function [23]. Here we focus on the class of
sets which are deterministically computable in average poly-
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nomial-time for every density function in P-comp, and refer
to it as a ``real P over P-comp.'' First we introduce a more
general notion of ``real C over F.''

Definition 7.1. Let C be a complexity class and let F
be a class of density functions. The real C over F, denoted
by CF , is the class of languages D such that (D, +) #
Aver(C, V) for every + # F.

This new definition formalizes a significant property of
the associated average-case complexity classes. The next
proposition obviously indicates the importance of this
notion.

Proposition 7.2. Let (C, F) and Aver(D, F) be any
randomized and average-case complexity classes, respec-
tively. Then, C�DF if and only if (C, F)�Aver(D, F).

Proof. Assume that C�DF and (A, +) is in (C, F).
From the fact that A belongs to DF , it follows that
(A, +) # Aver(C, F). Conversely, assume that (C, F) �
Aver(D, V). Let D be any a set in D. For every + # F, since
(D, +) # Aver(D, F) , we obtain (D, +) # Aver(C, F).
Hence, D belongs to DF . K

By Proposition 7.2, Levin's original question of whether
(NP, P-comp) �Aver(P, V) is simply rephrased as
whether NP�PP-comp holds or not.

Lemma 7.3. Let F be any set of density functions which
contains the standard density function:

1. P�PF �E.

2. NP�NPF �NE.

3. BPP�BPPF �BPE.

4. PSPACE�PSPACEF �ESPACE.

Proof. Here we give only the proof of (1) since the rest
of the claims follow by a similar argument. Since (P, F) �
Aver(P, F) , we have P�PF . Now we show that PF �E.
Let A be any set in P F . Since (A, &st) # Aver(P, F) , there
exists a polynomial p and a deterministic Turing machine M
which is p-time bounded on &st -average such that M
computes A. It clearly holds that, for almost all x,

TimeM(x)�p( |x|�&st(x))=p(?2|x|( |x|+1)2 } 2|x|�6)�2c |x|

for some adequate constant c>0. Therefore, we have
A # DTIME(2cn). K

We call [2p
kF , 7p

kF |k>0] the real polynomial-time
hierarchy with respect to a set F of density functions. The
next result immediately follows from Lemma 6.8.

Lemma 7.4. Let k>0 and let F be any set of density
functions:

1. 2p
k �2p

kF .

2. 7p
k �7p

kF .

Tally sets play a significant role in average-case analysis.
From Lemma 3.10 and Proposition 6.10, the average-case
complexity of tally sets turns out to equal the worst-case
complexity of them.

Proposition 7.5. For every C # [2p
k , 7p

k , BPP,
PSPACE], CP-comp & TALLY�C.

Proof. The proof is similar to Theorem 6.11. K

Recall that REC-comp denotes the set of recursive density
functions, i.e., all ``computable'' density functions (under
Church's thesis). If we take REC-comp as a set of density
functions F, then the real computable classes collapse to
their worst-case counterparts.

To prove this, we show that if Aver(C, REC-comp) has
the sparse interpolation property, then CREC-comp �C. In
the proof of the following lemma, we use the notion of
infinite, recursive, proper hard cores [8]. A set H is called
a proper hard core for A with respect to C if H�A, and for
all D # C, if D�A, then |D & H | is finite.

Lemma 7.6. Let Aver(C, REC-comp) be an average-
case complexity class. If Aver(C, REC-comp) has the
sparse interpolation property, then CREC-comp �C.

Proof. Suppose that Aver(C, REC-comp) has the
sparse interpolation property. We show that CREC-comp�C
by leading to a contradiction. Now assume that there exists
a set A in CREC-comp&C. By [8], there exists an infinite,
recursive, proper hard core H for A with respect to C. We
note that if C=P, then H is in the class E (see, e.g., [2]).
Thus, for any set B # C, if B�A, then B & H is finite. Now let
S be a recursive, infinite, sparse subset of H. Let q(n) =
|S & 7n|. Consider the density function +S, q such that
+S, q(x) B ( |x|+1)&2 } q( |x| )&1 for all x # S, and +S, q(x)=0
otherwise. Clearly +S, q , # REC-comp. Since (A, +S, q) #
Aver(C, REC-comp) , there exists an interpolant B$ # C of
A and S. We then have B$ & H$S, and thus B$ & H is
infinite. This contradicts the fact that H is a proper hard
core for A. K

Theorem 7.7. Let k>0:

1. 2p
kREC-comp=2p

k .

2. 7p
kREC-comp=7p

k .

3. BPPREC-comp=BPP.

4. PSPACEREC-comp=PSPACE.

Proof. By Lemma 7.6, it suffices to show that, for C #
[2p

k , 7p
k , BPP, PSPACE], Aver(C, REC-comp) has the

sparse interpolation property. This claim for C # [BPP,
PSPACE] follows from Lemma 3.10, and the claim for C #
[2p

k , 7p
k] follows from Proposition 6.10. K

Theorem 7.7 implies that the definition of the average
polynomial-time hierarchy in Section 6 is a reasonable
generalization of the worst-case polynomial-time hierarchy.
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Note that, in the proof of Lemma 7.6, the complexity of
the distribution +S, q depends only on the complexity of the
complexity core. Since all sets not in P have complexity
cores in E, we get the following corollary.

Corollary 7.8. PE-comp=P.

Very recently, PP-comp is shown to be different from P and
NP [31].

At the end of this section, we show that, relative to random
oracle, NPP-comp is different from PP-comp with probability 1.
In other words, Lebesgue measure of the set [X | PX

PX-comp {
NPX

PX-comp] is 1, where PX-comp denotes the set of density
functions whose distributions are polynomial-time
computable relative to oracle X.

Definition 7.9. Let X be a set of strings, and let FX be
a set of density functions relative to X:

1. Let PX
FX be the collection of all sets A such that, for

any density function + in FX, (A, +)�p, av
T (X, &) for some

density function &.

2. Let NPX
FX be the collection of all sets A such that, for

any density function + in FX, (A, +)�np, av
T (X, &) for some

density function &.

Proposition 7.10. With probability 1, PX
PX-comp {

NPX
PX-comp relative to a random oracle X.

Proof. For any oracle A, PA
PA-comp=NPX

PX-comp clearly
implies NPA & TALLY�PA. Bennett and Gill [3] have
proven that, relative to a random oracle X, NPX &

TALLY�3 PX with probability 1. Hence, we get the desired
result. K

8. CONCLUSIONS AND OPEN PROBLEMS

We have discussed structural properties of average-case
complexity classes. Especially reducibilities have played a
central role in our study of structural properties of those
classes. This paper has introduced an average-case counter-
part of the Meyer�Stockmeyer polynomial-time hierarchy
based on the deterministic and nondeterministic Turing
reducibilities between randomized decision problems, and
we have seen that this hierarchy has a structure similar to its
counterpart in worst-case complexity. We give some
problems still open in this paper:

1. Let D be any 7p
k -complete set. Does there exist a

``natural'' density function + such that (D, +) is �p
m-complete

for (7p
k , P-comp)? For example, if A is NP-complete with

p-honest reductions, then there exists a density function +
whose distribution is polynomial-time computable relative
to *P such that (A, +) is �p

m-hard for (NP, P-comp) .

2. Are all (7p
k , P-comp)-complete problems Turing

self-reducible ? Can we extend the notion of polynomial-
time Turing self-reducibility for randomized problems by

allowing the reduction to be polynomial-time bounded on
average?

3. In Lemma 2.6, Aver(NP, F) is characterized in
terms of both deterministic machine models and logical
formulas with the existential quantifier. Can this result be
extended to characterize the class Aver(7p

k , F)?

4. Is Aver(7p
k , F) contained in Aver(2p

k , F) for
some reasonable set F? Recall that if Aver(2p

k , P-comp) is
equal to Aver(7p

k , P-comp) , then all tally 7p
k-sets are in 2p

k .

5. Is Aver(7p
k , F) different from Aver(NP,

F) (7p
k&1, V), k>1, for a reasonable set F, such as P-comp?

6. In worst-case complexity theory, many important
complexity classes, such as UP, CP and �P, are used to
classify intractable problems and to investigate their struc-
tural properties. Is it reasonable to consider those classes in
average-case complexity theory?

7. Very recently, it is shown that PP-comp {P [31].
Can we extend this result to show that 7p

kP-comp {7p
k or

2p
kP-comp {2p

k ?

8. Is it possible to show that some NP-complete
problem with some natural density function is in the ``low
hierarchy in Aver(NP, F) ''?

9. What is a reasonable relativization of classes, such
as Aver(BPP, F) and Aver(PSPACE, F)?

10. Recall from [17] the definition of the time-com-
plexity of a nondeterministic Turing machine M. Here we
define TimeM to be the minimal length of accepting com-
putations of M on input x if one exists; otherwise, TimeM(x)
is always set to 1. Can we develop a theory founded on this
type of nondeterministic Turing machines which are poly-
nomial-time (or polynomial-space) bounded on +-average?
In this setting, for example, we can prove that Aver(P, V){
Aver(NP, V) by choosing a nonrecursive, recursively
enumerable set A=[M(0), M(1), ...] by a deterministic
machine M and defining a density function + by: +(x) B
( |x|+1)&2 } 2&7ni=0TimeM(i) if x # A and n=min[k | M(k)=
x], or else 0.

11. An alternative definition of real polynomial-time
hierarchy is given by: 2p

kF=P7p
k&1F

F
and 7p

kF=NP7p
k&1F

F
. Is

it possible to develop a theory based on these 2p
kF and 7p

kF ?
For example, it is not hard to show that 2p

kREC-comp=2p
k and

7p
kREC-comp=7p

k also in this setting.
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