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Abstract 

The standard complexity classes of complexity theory do not allow for direct classification of 
most of the problems solved by heuristic search algorithms. The reason is that, almost always. 
these are defined in terms of implicit graphs of state or problem reduction spaces, while the 
standard definitions of all complexity classes are specifically tailored to explicit inputs. 

To allow for more precise comparisons with standard complexity classes, we introduce here 
a model for the analysis of algorithms on graphs given by vertex expansion procedures. It is 
based on previously studied concepts of “succinct representation” techniques, and allows us to 
prove PSPACE-completeness or EXPTIME-completeness of specific, natural problems on implicit 
graphs, such as those solved by A*, AO*, and other best-first search strategies. 

1. The problem and the model 

Heuristic search algorithms play a noticeable role among the techniques developed 
for attacking many relevant, practically important problems currently considered as 

intractable. Our aim here is to promote the use of a tool taken from structural complexity 
theory, namely “succinct representations”, to gain further understanding of some aspects 
of the computational problems to which these algorithms are applied. 

A common characteristic of several such algorithms, including the well-known A* 

and AO* algorithms employed in the artificial intelligence area (see e.g. [28,29] ), is 
that the use of heuristic information, gained from study of the specific problem at hand, 
frequently allows for a dramatic cutdown of computer time needed to solve many a 
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specific instance; but, on the other hand, little or no guarantee of fast performance can 
be given a priori (otherwise the corresponding problems would not merit anymore the 

adjective of “intractable”). 
Many combinatorial optimization algorithms and problems from operations research 

have been given a lot of attention from the complexity theory community, being ac- 
tually a main source of examples of completeness for various complexity classes (see 
[ 9,12,14,15] ). However, for optimization algorithms from AI, some of which follow 
analogous intuitions, much less seems to be known. Some information about problems 
on AND/OR graphs is readily obtained from the rich body of literature about the 

complexity-theoretic approach to games via alternation (let us mention in particular 
[ 3 I] ). But for simpler search problems, all the complexity-theoretic analyses known to 

the author are based on concepts, tools, and conventions essentially different from those 
of structural complexity. This paper suggests the use of “succinct representations” to 

bridge this gap. 
This consists of encoding the input to combinatorial algorithms by means of “pro- 

grams” in some specific (most frequently, boolean) model. Encoding the input via 
circuits was labeled as “a natural, if not practical, representation” in [27, p. 1811. We 
will develop in this paper a close relative of this input encoding that is arguably prac- 

tical, in that it captures the essence of the widely implemented AI approach to graph 
searching. Let’s explain why. 

Inputs to realistic graph searching 

From the point of view of a naive complexity theorist, the problems solved by A* 

and other best-first strategies are not difficult: essentially, construction and optimization 

of paths in graphs, captured by nondeterministic logarithmic space complexity classes. 
In the AI case, the graph is a so-called “state space”, characterized by the fact that 

the exploration of a vertex is done with knowledge of additional information, gathered 
along the path to it or computed on the spot. The algorithm may decide to expand a 
vertex, and this operation consists of computing all its successors. In most cases, what 

is wanted is to find a path from a start vertex to one of a set of goal vertices, often with 
the additional request of minimizing a cost function. 

Actually, starting from Dijkstra’s algorithm, and continuing with many other appli- 
cations of algorithm design techniques, polynomial time algorithms solving that sort 
of problems exist, offering good practical performance. Most of them are currently 
available, precompiled in libraries, ready to use very easily, as executable subroutines 

of C++ programs [22]. Variants of A* can be seen as refinements of Dijkstra’s algo- 
rithm through the use of so-called “admissible” heuristic information (see the discussion 
in [20]). 

But from the complexity-theoretic approach, one would consider that the input to the 
algorithm is the whole graph, and this would be already unacceptable to practitioners: in 
most practical cases, the search graph is huge enough that even linear time on its size is 
infeasible by far. This accounts for the labeling of “hard”, often applied to the problems 
solved by such AI algorithms, and for the fact that these algorithms can be employed 
to attack well-known NP-complete problems. It is a task for complexity theory (which 
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we address here) to find a framework to analyze these problems in a more satisfactory 
way, taking into account the astonishing sizes of the searched graphs. 

There are several results on the formal analysis of the complexity of these algorithms; 

see [ 281 (in particular, Chapters 5 and 6). The context is often probabilistic, the 

analysis is given mostly as a function of the length of the optimal output path, and 

made in terms of other quantities, such as the number of different expanded vertices, 
or the total number of vertex expansions (which in A* is exponentially higher since, 
in the bad context of a nonmonotonic admissible heuristic, the same vertex may be 

chosen for expansion exponentially many times). Such frameworks do not allow for 
easy translation into standard complexity classes. In other cases the analysis is restricted 
to the use of the algorithm to solve some specific, particular problem. 

We want to supplement the view obtained from the probabilistic average analysis, 
which is of course very useful but depends on several simplifying assumptions and on 
the hypothesis of some specific probability distribution [ 281; we will see how to model 

these algorithms in such a way that the standard complexity classes give informative 

properties of (the problems solved by) these algorithms, in as much generality as 
possible, and in terms of worst-case complexity. 

Our point of view is that, in order to obtain a consistent approach, informative for 
workers of other areas, one must consider that the input to such search algorithms is 
not the state space graph, but is instead the (hopefully efficient) procedure for vertex 
expansion. Note that, if simply to expand a vertex is computationally expensive, then 

the mere feasibility of all such algorithms is at stake. Moreover, this condition that 
expansion better be efficient implies that the outdegree of the state space graph must 
be appropriately bounded, lest simply the production of a too long list of successors be 

unaffordable. 
It is not clear a priori how complexity classes could cope with the idea of having a 

vertex expansion procedure as input. As it turns out, complexity theory has the right 

intuitive tool to put to use: here we suggest to resort to an appropriately refined notion 
of succinct representation. 

Indeed, one could argue that the vertex expansion procedure is, in a sense, a de- 

scription of the whole graph, allowing for efficient local treatment. One well-studied 

form of succinct representation is based on encoding the transition matrix: a small, fast 
enough procedure receives as input (the codes of) two vertices and outputs simply the 
bit indicating presence or absence of an edge between them (or even, more elaboratedly, 

its cost). But this is not appropriate here: the search algorithms we want to model fre- 
quently assume that more information can be obtained from each vertex, including the 
complete list of successors. It may be infeasible to extract this list from the transition 
matrix, for instance when the number of actual successors is not high but the total 
number of vertices is large. 

We propose here to use as succinct representation of the graph the formalization 
of a procedure that, given a vertex, produces the list of successors, including, when 

appropriate, the cost corresponding to each edge. It must be feasible, so certainly a mild 
condition on it is to require it to work in polynomial time, which marks a weak feasibility 
limit. Therefore, we assume that it can be implemented with a family of boolean circuits: 
it is well known that this model exactly characterizes (via completeness) polynomial 
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time computations [ I 1. Let us set this idea in the perspective of previous research on 
succinct input representation. 

Problems on succinct representations 

The study of algorithmic graph problems on succinct representations was introduced 
independently in [ 8,321, and has been proven useful in other applications of complexity 
theory. Essentially, the idea is as follows: while traditional models of computation 
assume their input represented, under some reasonable encoding, as a string of letters 

over some alphabet (frequently binary), it is interesting as well to see what happens 

to computational problems when their instances are encoded in some other, hopefully 

more compact, form. 
A paradigmatic case is that of graphs with regularities, which arise in many practical 

and theoretical areas of computer science: representing highly regular graphs by standard 

means such as transition matrices may result in an undesirable waste of memory space, 

since these regularities may allow for much more concise representations in the computer 
memory. Schemes which allow considerable savings include hierarchical representations 
and boolean computational models [ 8.2 1,321. The same idea can be applied to other 

data types via integer expressions [ 321 or vector languages [ 191, and an essentially 
analogous intuition (with a very different technical development) was used in [ 131 to 
obtain complete problems for deterministic linear space. We will use here a variant of 

the boolean circuit representation. 
In principle, the intuitive consequences of such input conventions are contradictory: 

being, in general, shorter than the full description, they allow for less running time 
(which is a function of the length of the shorter input); but since only very regular 

instances allow for substantial savings in the encoding, it may be the case that the 

algorithms operate faster on these instances. So, a careful and detailed analysis of each 

input convention is necessary. 
In the case of decisional problems on graphs, the input is not the graph itself but 

(the encoding of) a boolean circuit which computes its transition matrix. For this 
model. [ 8,321 classify as complete in some class of the polynomial time hierarchy or 
the counting hierarchy (or higher up) many specific problems on succinct instances; 

many of these are polynomially solvable for standard input representation. Then [27] 
pointed out that the use of projection reducibility allows one to prove that all known 
NP-complete problems become NEXP-complete under succinct input representation via 

circuits (see also [ 24, Ch. 201). This observation is extended in [ 21, by means of log 
time reducibility, to a very general result (the Conversion Lemma) relating the com- 
plexity of problems on standard input convention to their respective succinct versions, 
independently of the complexity classes in which they lie. This last result also abstracts 
from the previously used graph-theoretic setting, since the Conversion Lemma works on 
binary encodings of arbitrary data types. 

Subsequently, the notion of succinct representation and variants of the results from 
[ 21 have been employed in [ 4,7] to characterize the computational complexity of a 
number of problems from logic programming and databases; specifically, the combined 
complexity of queries based on default logic and certain issues arising from disjunctive 
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datalog queries under various semantics, respectively. Similar technical tools and intu- 
itions, based on comparing the succinctness of the descriptions under different models 

of representation, appear also in [ 3,101, where they are used to obtain results in other 
settings. 

This tool could be used as such for our study of graph search algorithms, but would 
admit a serious criticism: the model assumes a restriction that, in general, does not apply 
to practical cases. Indeed, in the work done so far one assumes that the input circuit is 

only able to indicate the presence or absence of an edge, given both endpoints; practical 

applications assume the ability to expand a vertex, i.e., generate all its successors, 

and this may be infeasible from the plain “transition matrix” implementation. A better 
alternative is to introduce a new model for succinct inputs, better suited to the application 

we have in mind, which closely parallels the idea of giving, as input to the algorithm, 
a procedure to expand nodes. We will see that this approach gives more informative 
characterizations of the hardness of graph search problems. 

2. Preliminaries 

Most of our notions of complexity theory regarding models of computation, complex- 

ity classes, and reducibilities, are standard [ 1,241. We assume decisional problems to 
be encoded as sets of strings over the standard binary alphabet. Likewise, functional 

problems are encoded as partial functions from strings to strings. It is a well-known 
fact (heavily employed when computers are in use) that binary strings can represent 
numbers and many other combinatorial structures such as graphs. For a string x, we 
denote by 1x1 its length. Real-valued functions are assumed to be rounded to the nearest 

positive integer. Graphs are assumed to be directed. We assume that (., .) is an easily 
computable pairing function, and that both arguments can be easily computed from the 
result. 

Our model of computation is a variant of the multitape Turing machine; it is well 
known that other more realistic models are equivalent to this one modulo polynomial 
time overheads and constant factor space overheads, so that all the complexity classes 
we mention are invariant with respect to the machine model employed. 

The slight difference between the standard Turing machine model and ours consists 
in that, since we will need to work with sublinear time computations, we cannot afford 

sequential access to the input. Instead, we use indexing machines [ 51, in which there 
is a specific “indexing tape” which points to the input tape. On an input of length n, 

when the machine enters a specific “read” state with i < n written on the indexing tape, 
then in one step the ith input symbol is transferred to the head of the first worktape. A 
special “error” mark appears there if the contents of the indexing tape is i > n. Note 
that this is nothing but a straightforward formalization of the idea of direct access to the 
input, as if it is stored in RAM. 

We will mention the following generic complexity classes of decisional problems: for 
space or time bounds f, respectively, we have DSPACE( f), corresponding to problems 
A such that the problem of deciding whether x E A that can be solved within memory 
space f( 1x1)) and DTIME( f) , corresponding to problems A such that deciding whether 
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x E A that can be solved within computation time f( 1x1). Many classes have more 
familiar names, and thus 

LOGSPACE = DSPACE( log n) , P = U DTIME(~~), 

PSPACE = u DSPACE( nk ) , EXPTIME = /_j DTIME( 2Ni ) 

kEW kEN 

We will briefly mention in the wrap-up discussion the well-known class NP, which is 

defined by polynomial time nondeterministic machines. 

We also need two concepts of reducibility. The first one is standard: a decisional 

problem A is polynomial time m-reducible to a problem B, denoted A 6, B, if there is 
a polynomial time computable function f for which x E A u f(x) E B holds for 
all x. So f provides a way of solving A in polynomial time given any arbitrary way of 

solving B in polynomial time. 
Our main results are based on polylog time m-reducibility. A function f is computable 

in polylogarithmic time if there is an indexing machine that, on input x and j, with j < 
If(x outputs the jth bit of f(x) in time log”” /xl. Analogously to the polynomial 
time case, a polylog time reduction from problem A to problem B is a function f 
computable in polylogarithmic time such that, for all x, x E A e f(x) E B. We 
say that A is PL-reducible to B, and denote it A <Lk B. The use of polylog time 
instead of log time reductions in combination with succinct representations was one of 
the contributions of [ 71. 

The concept of reducibility gives rise immediately to the concepts of hardness and 

completeness for a complexity class. A problem A is hard for a class V under a 
reducibility if all problems in V are reducible to A. A problem A is complete for a class 
2) if it is hard for it and also belongs to it. 

From the time and space hierarchy theorems of complexity theory, it is well known that 
LOGSPACE + PSPACE and that P Z EXPTIME. In particular, this implies that a com- 
plete problem for PSPACE, under any of our reducibilities, cannot be in LOGSPACE, 

and actually cannot be solved in subpolynomial memory space (here subpolynomial 
means o(na) for all a). Similarly, a problem that is complete for EXPTIME cannot be 
solved in polynomial, nor even subexponential, running time. As of now, it is possible 
that P = PSPACE, so that completeness for PSPACE does not rule out the possible exis- 
tence of a polynomial time algorithm; but such an algorithm would imply immediately 

polynomial time algorithms for all problems in PSPACE, including all NP-complete 
problems and many others seemingly harder than them. 

Let f be a polylog time reduction. We say that f is polylog time covered (or PL- 
covered) if the values j such that the bit (i, j) of f(x) is 1 are predictable in advance, 
only knowing i and 1x1, as well as the size off(x); more formally, if there is an indexing 
machine that on inputs i and IZ (in binary) and in polynomial time (equivalently, polylog 
time when inputs are in unary), computes a value m and a list L such that, whenever 
bit (i,j) of f(x) is 1 for some x of length n, we have j E L and m = ) f (x) (. Of 
course, this definition only applies to reductions for which the length of the output only 
depends on the length of the input, and not on its actual value. 
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This notion will be used in the following context: the output of f will be interpreted 
as an instance of a decisional problem on (directed) graphs, described by a transition 

matrix. Bit (i, j) indicates presence or absence of the edge (i, j) in the output graph. 
Coverability means, therefore, that, when all x with 1x1 = IZ are considered, and for each i, 

there are only log’(‘) n many potential outgoing edges from vertex i that may appear in 
any of the graphs f(x), and that all their other endpoints are easily computable. This 
technical condition is necessary in some of our statements, and can be extended easily, 
if necessary, to the case in which the graphs are weighted. 

3. A new model of succinct instance representation 

Following the informal description given in the introduction, we now choose to rep- 
resent graphs as follows. First, we restrict ourselves to graphs without isolated vertices. 

For a graph of less than n vertices and degree d, its representation is a boolean circuit of 

log n inputs and d log it outputs. Without loss of generality, we assume that the value of 
II is encoded or hardwired into the circuit, so that it can be read out easily. This can be 

achieved with logn clearly identified constant gates, and would correspond, intuitively, 
with a constant declared inside the vertex expansion procedure. Vertices are numbered, 
reserving code 0 to be an additional dummy vertex name. Assume that vertex Uk cor- 
responding to number k has as successors ui, . . . UC with p < d; then p among the d 

groups of logn output gates must each give one of the numbers ij, written in binary 

with zeroes to the left up to size logn, and without repetition; the remaining outputs 
must be all zero, i.e., describe the additional dummy vertex. 

Clearly the representation is not unique, but given a circuit c of logn inputs and 
d log IZ outputs, there is a single graph G, represented by it: take as vertices the positive 
integers that can be written with logn inputs, set edges by feeding each to the circuit 

to find out the successors of each vertex and discarding vertex zero whenever it shows 
up, and finally remove any isolated vertices that might be left. When c is a syntactically 
incorrect circuit in which the number of outputs is not a multiple of the number of 

inputs, and which therefore does not represent any graph, then it is mapped to some 

fixed, trivial graph G, = Go. 
Note the following fact: it is not necessary that the vertices are numbered by consec- 

utive numbers. As a consequence of our convention, we may afford as many numbers 
as convenient that do not correspond to any vertex. It suffices that the circuit is able to 

detect them, to output an empty list of successors, and to never output them as succes- 

sors of other vertex numbers. In this way, they are represented as isolated and will be 
discarded by our interpretation. 

Let A be any decisional problem on graphs. We denote by sA the succinct version 
of A, defined as follows: sA = {c 1 G, E A}. We state now the main property of this 
representation, from the complexity-theoretic point of view. The analogous result for 
another, technically different, simpler form of succinct representation was given in [21 
(knowledge of that proof may help in understanding this one) ; it used also a slightly 
different reducibility, and did not need the extra condition of coverability. The proof is 
now more complex due to the more involved definition of succinct representation, which 
now must provide more information. 
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worktape and state code 1 indexing tape code 1 

worktape and state code indexing tape code 

Fig. I. Circuitry between two layers in the simulation of M by C’ 

Theorem 1. Let A and B be decisional problems dejned on graphs. If A <LL B, via a 

PL-covered reduction, then .sA <,,, sB. 

Proof. Let f be the reduction, and let M be the indexing Turing machine that com- 
putes it. We must design a reduction between the corresponding succinctly represented 
problems. Assume M works in time logk 12. By the definition of computing in polylog 
time, given an instance of A, M finds individual bits of the image under the reduction. 
Therefore, its input is an instance of A, i.e.. (an encoding of) a graph G on, say, n 

vertices, and a pair of vertices of f(G); it finds whether this pair is indeed an edge 
of f(G) Via a now standard transformation (see [ I] ), and assuming that all the bits 
of G are available at all times, a boolean circuit can be constructed which computes 
any requested bit of the output of the reduction on x. The size of the circuit is log2k n. 
However, the bits of G are not so readily available. 

What is available now, instead, is an instance of sA: a circuit again, which, on 
input j, provides the list of all vertices that are successors of vertex j in G. Without 
loss of generality, we have assumed that II can be easily read out from this input circuit. 
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i 

simulation of N 

Fig. 2. Overall structure of the constructed succinct representation 

Examination of the circuit simulating M (see [ 1 ] > shows that it consists of layers, each 
layer t computing the configuration of the machine after t steps. Each layer contains 
gates whose output bits encode the contents of the indexing tape, and therefore mark 

the bit being read at that step. The next layer needs knowledge of that bit. Therefore, 
between each pair of layers, extra circuitry is added to obtain that bit, as follows: if 
the indexing tape requires the bit corresponding to edge (p, q) of A, then p is fed into 
the input circuit (the given instance of sA) and q is matched for equality (in parallel) 

against all the output vertices of the input circuit. This provides exactly the needed bit. 
Fig. 1 describes intuitively the circuitry between consecutive layers; the top and bottom 

boxes represent a large set of parallel wires carrying the sequence of bits encoding the 
configuration, where we have assumed that the encoding of the indexing tape comes at 
the end. 

In this way, the whole circuit calculating each bit of f(G) is obtained; call this circuit 
C’. It would qualify as a succinct representation of f(G) under the definition of [ 81; 
but does not yet, for ours, exactly for the same reason that the previously used succinct 
representations did not provide an adequate model for the graph search algorithms: it 
computes a bit of the transition matrix, not a list of successors. 

Here is where coverability enters into play. Let N be the machine that computes the 
covering. Note that it provides also the size of the output, that we need to hardwire into 
the circuit for that output. We construct the circuit we finally desire, C, as follows. Let i 
be the input to C. Using the same simulation as before, now applied to the machine N, 
and run simultaneously with the simulation above, in parallel, on n and i, a subcircuit 
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can now produce a superset of the list of successors of vertex i. Each of them, k, together 
with i itself, is fed into its own replica of C’, and if the output is 1 then k is transmitted 

through to the output of C. See Fig. 2. 

In this way, C computes exactly the list of successors of i in f(G), i.e., it is now 

a bona fide succinct representation of ,f(G), constructed on the basis of a succinct 
representation of G. This is exactly what the reduction from sA into sB must construct. 
All the computations involved are easily seen to be accomplished in polynomial time; 

this completes the proof. 0 

A straightforward modification takes care of the case in which weights (or costs) are 

associated to the edges. Our only proviso is that the costs are not exceedingly high; 
more precisely, since our application domain requires to consider already the size of 
the graph N too high, we require that the weights can be written down in polylog 
many bits (on N). In this way, the polylog time reduction is able to provide not 
only the presence or absence of an edge but also the cost associated with it. Then, 

both A and B can be defined in terms of the costs, and the relationship will still 

hold. 
If the succinct representation of a graph becomes exponentially smaller, then the 

complexity of a problem A may jump up by about one exponential when passing to sA. 

It is not difficult to see that it does not jump up more: 

Lemma 2. If A E DTIME( f( n) ) then sA E DTIME( f( 2”“)) ), for f at least linear; 

if A E DSPACE( f( n)), then sA E DSPACE( f(2 0(n) ) ) , for f at least logarithmic; and 

similarly for nondeterministic complexity classes. 

The proof is a simple modification of the analogous one in [ 81: for time classes, 
given the circuit, first expand it into the whole graph, then apply an algorithm on the 
standard representation; for space classes, input bits are computed from the circuit (and 
possibly recomputed many times) whenever necessary, then discarded. 

We end this section with the following technical fact, necessary in later proofs: the 
“succinct representation” operator has a kind of “inverse”, given by what we will call 
trivial graph representation. Let w be a binary string. Then tg(w) is a “chain” graph 

of m nodes, each but the last having a single edge to the next, the last to itself, and m 
being selected so that its binary representation is Iw. Note that it is exponentially large 

in (w(. Overloading the operator, let tg( L) = {tg( w) / w E L}. 

Lemma 3. Every set L of binary strings is m-reducible in polynomial time to the 

succinct representation of tg( L). 

Proof. It suffices to construct from w a circuit corresponding to tg( w). It simply checks 
whether the number of the input vertex is exactly 1 w (read in binary), which corresponds 
to the last vertex, to output the same number; or it is less than lw, to add one and output 
the result. Else, it outputs 0, i.e., marks it as an isolated vertex, which is ignored by the 
convention on succinct representations. 0 
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4. Application to graph search 

The graph accessibility problem (GAP) is: given a directed graph, a source vertex, 
and a goal vertex (or set of them), decide whether there is a path connecting the source 

vertex to a goal. In the weighted variant, costs are associated to the edges; an integer k is 

also given, and the question is whether such a path of total cost at most k exists. Without 
loss of generality, we assume that the source and goal vertices have always specific 
numbers (such as 1 and 2 respectively), so that the input to the problem is just the graph. 

Some broadly employed heuristic search algorithms solve precisely this problem, with 
the peculiarity that the graph is not given explicitly. Instead, a procedure is given to 

“expand” a node, i.e., to find the list of all successors of a given vertex, together with 
the costs of the edges in the weighted variant. 

Vertices are described, in these cases, by some kind of “configuration” or specification 

of “how the vertex looks like” (e.g. pieces on a board); essentially, the information that 
must be present in this description is (at least) the necessary data to compute feasibly 

all successors. We assume that the number of vertices (or configurations) may reach an 
exponential on the number of bits used to store a configuration. 

The point is now that the internal representation of the configuration in a computer 

program, whatever means are used for it, can be read as a binary number (a form of 
GSdel numbering, in a sense) and directly interpreted as the number of the vertex. Thus, 
the vertex number abstracts the description of “how the vertex looks like” and contains 
information about how to find the successors. Syntactically incorrect descriptions corre- 
spond to numbers that do not represent vertices, and will be treated as isolated vertices 

by the circuit representation, as indicated in the previous section. 
We assume that the “expand” procedure is feasible, i.e., takes time polynomial on the 

size of (the codenumber of) the vertex. Every reasonable application of graph search 
will need this condition; otherwise the search will be infeasible just because some node 

expansions, to start with, take far too long. This also implies that the degree, and the 
number of bits needed to specify costs, are also polynomial on the size of the number 
of the vertex. Note that this upper bound may be as restrictive as a polylog function on 
the size of the whole graph; in concrete applications, constant degrees and cost sizes 

are frequent. 
Equivalently, under this condition, we can formalize the expansion procedure as a 

boolean circuit, via the standard simulation of polynomial time computations by boolean 

circuits. This simulation is feasible, and any other sequential programming language can 

be assumed instead for the expansion procedure, since all these can be compiled into 
circuits in polynomial time. This circuit is the input to a search algorithm based on node 
expansions. The output wanted is given, in general, by an optimality condition, but a 
(somewhat artificial) decisional problem can be associated to it in a standard way 191; 
and the optimization problem is no easier (and possibly harder) than the decisional 

problem. 
In this case, the decisional problem is exactly (the weighted version of) sGAP, since 

the solution is a path and the input is a circuit describing the vertex expansion procedure 
to construct the graph. Our aim in this section is to use the setup from the previous 

section to show: 
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Theorem 4. sGAP is PSPACE-complete. 

The following lemma is needed for the proof: 

Lemma 5. GAP is hard jtir LOGSPACE under PL-covered polylog time m-reductions. 

Actually, GAP is complete in the larger class corresponding to nondeterministic log- 

arithmic space under logarithmic space reducibility [ 16,301. The proof of the lemma is 
obtained by an analysis of the completeness proofs in these references, checking that the 

necessary computations can be performed in polylog time on indexing machines; we sim- 
ply sketch it here. Essentially, each node is a configuration of a Turing machine M, and 

an edge connects successive configurations: this amounts to checking locally constant 
size fragment of each configuration to test the agreement with the transition function. 

The edges depend on the symbol read from the input at that configuration, but it is 
possible to compute all possible successors over the finitely many possibilities for that 
symbol: this proves coverability. 

Now let’s go back to the proof that sGAP is PSPACE-complete. 

Proof. Membership in PSPACE follows by an argument like that of Lemma 2. Let us 

argue hardness. Let L be an arbitrary set in DSPACE(n”). Let L’ = (~101~1” 1 w E L}, 

so that L <,, L’. Also, by Lemma 3 above, L’ <,,, .s( tg( L’)). It is immediate to see that 

tg(L’) is in LOGSPACE, just by rejecting all graphs that are not tg(w) for some w, 
and by recovering w, discarding the lO* tail, and simulating the computation for L. By 
Lemma 5, tg( L’) <Lt GAP under a PL-covered reduction, and both are graph problems. 

By the main theorem of Section 3, there is a polynomial time m-reduction from the 
succinct version of the first to that of the second. So we have the following chain of 
reducibilities, which implies PSPACE-completeness by transitivity: 

L <,p, L’ <nr s(tg(L’)) 6,,, sGAP. 0 

This is to say, the power of graph search algorithms, working on such implicit 
graphs given by expansion prodecures, captures exactly (functional and optimization 
versions of) PSPACE, and will only admit a polynomial time solution (in the size of 
the configurations) if P = PSPACE. Moreover, the space hierarchy theorem (see [ l] ) 

guarantees that there is 110 subpolynomial memory space solution for this problem. 
(“Subpolynomial” was defined in the preliminaries.) Of course, all algorithms used in 

practice are memory consuming in the worst case. PSPACE-completeness implies that 
there is no substantially cheaper alternative. 

Note that this result holds for all algorithm schemes described in a generic way in 
terms of vertex expansions, including A* and other best-first search methods, among 
others. Of course, some particular search problems lie in complexity classes poten- 
tially below PSPACE, and particular algorithms for them may be more efficient. To 
bypass our hardness result, however, the price is to design specific algorithms ex- 
tracting from their input more information than plainly a way of expanding ver- 
tices. 
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5. Some approximability issues 

In many specific practical situations, the state space has weights in the edges, thus 

allowing for a definition of optimal solution, but only an approximate solution is actually 

needed. We argue here that the problem of finding a value which falls within any given 

constant factor of the optimal cost is as difficult, from the (worst-case) structural 
complexity point of view, as knowing whether there is a solution. So, no algorithm can 

be proved to furnish in polynomial time even an approximation, within a given interval, 
to the optimum cost, unless P = PSPACE. 

Technically, the proof is not difficult. It relies on the most basic existing technique for 

proving such results: creating a gap in the costs. More precisely, a reduction is defined 
that, for each instance graph, creates a new graph in which there is always a solution 
path, having however a very high cost; substantially cheaper solutions are constructed 
on the basis of the solutions for the given instance. Hence, there is a solution for the 

given graph if and only if in the resulting construction there is a cheap path. Moreover, 
the difference is ample enough that a rough approximation to the optimal cost suffices 
to distinguish both cases. We claim that this construction can be performed as well in 

our succinct representation model. 

Theorem 6. The problem of approximating within any constant factor the cost of a 

solution path in a succinctly represented graph is PSPACE-hard. 

Proof. Fix the constant factor c. Given any circuit representing a graph of n vertices, 
convert it into another circuit acting as follows: on any nonsource vertex, output the 
original list of successors, associating unit cost to each edge; and on the source vertex, 

output the original list of successors extended with an additional new vertex, associating 
cost c2n to this additional edge, and unit cost to all the other edges; and finally, on the 
new additional vertex, output as only successor the goal vertex, again with a cost of 
c2n. Note that O(logn) bits (output wires) suffice to write down this cost. The size of 
the new circuit is therefore polynomial on the size of the original one. 

Now it is easy to see the following property: there is a path from the source to the 

goal vertex in the graph represented by the given circuit if and only if, in the constructed 
circuit, any approximation to the optimal cost to a factor of c is less than cn. Indeed, if 
there is a path in the graph represented by the given circuit, since each edge is preserved 
with unit cost, there is a path of cost at most n, so approximating this value to factor c 

implies an approximate value of at most cn. On the other hand, if there is no such path 
in the given graph, then the only solution in the constructed graph has cost 2c2n, and 
any approximation to a factor of c of this value is at least 2cn. 

Thus, we have a polynomial time reduction from sGAP to the problem of approxi- 
mating the cost of the optimal path in a graph given by a succinct representation, and it 

follows that the latter is PSPACE-hard. 0 

It is easy to see that the proof works as well for weaker approximations such as 

approximating to a polynomial, since a cost of nc can still be output with 0( logn) 
wires. 
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6. Application to AND/OR graphs 

Another problem of wide practical interest is the search in AND/OR graphs, also 

called “problem reduction spaces” or also “alternating graphs”. ’ In these, each nongoal 
vertex carries a label as “universal” or “existential”. A solution is no longer a path, but 
a subgraph in which each existential vertex has exactly one successor and each universal 
vertex has all its successors; all the leaves must be goal nodes. A prime set of examples 
of application is given by games (although the problem appears in many other guises). 

The AND/OR graph problem (AGAP also standing for alternating GAP) is: given 

an AND/OR directed graph, a start vertex, and a set of goal vertices, decide whether 
there is a solution subgraph. The obvious weighted variant is also useful. 

Again, algorithms (like AO*) exist for this problem, and various relevant algorithms 
are specifically tailored to games, in which the minimax principle is applied. Let us 

mention only alpha-beta pruning and SSS* [ 281. The complexity of searching AND/OR 
graphs can be assessed from the abundant studies on the complexity of games. In 

particular, in [ 3 I] a number of games are proved to be EXPTIME-complete. 
In that reference, a game is defined as given by the set of positions (encoded as 

words of a given length, and split into existential and universal) and a polynomial time 
algorithm to check validity of a move. There is a condition that “the board cannot 

be enlarged during the play”, i.e., that valid moves are between positions encoded by 

words of the same length. Succinct representations as defined here (i.e., easy enough 
expansion algorithms) do not necessarily exist for the games from [ 3 11, and for some 
of them the (high) degree of each vertex makes them impossible. But, actually, careful 
examination proves that for some of the EXPTIME-complete games from [ 311, poly- 
nomial time expansion algorithms (i.e., succinct representations as defined here) do 

exist. In particular, the “game” on propositional formulas labeled GZ in that paper has 
easy expansion algorithms, is EXPTIME-complete, and reduces to sAGAP (i.e., can be 

solved by AO*) A proof that sAGAP is EXPTIME-complete follows immediately from 
this fact. 

Theorem 7. sAGAP is EXPTIME-complete 

This implies, by the time hierarchy theorem (see [ 1 ] ), that no polynomial (nor even 
subexponential) time solution exists at all for this problem: EXPTIME-complete prob- 

lems are provably intractable. The heuristic search methods such as AO* are therefore 

unavoidable to obtain solutions to practical cases in feasible computer time, and will 

never be proved to provide u guarantee of feasibility since such feasibility provably 

does not hold. (Note that no such provability can be stated for A* since it is possible, 
as of now, that P = PSPACE, or equivalently that polynomial time algorithms for sGAP 
exist.) 

’ The reason is that, without loss of generality, one can assume that through each path AND (universal) 

vertices and OR (existential) vertices alternate. The problem is often modeled equivalently with hyper- 
graphs I29 I. 
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Let us comment briefly on an alternative proof, based on our succinct representations 
and essentially analogous to that of the case of GAP. We believe that this argumentation 

of the theorem is of independent interest. The problem GAME is proved P-complete 
in [ 171, under logspace reducibility. That problem is simply a rephrasing of AGAP in 
terms of players, where there are two sets of positions (the existential and universal 
vertices respectively), a starting position (source), a set of winning positions (goals), 
and a set of allowable moves (edges). The problem is to find out whether the starting 
position is winning for the first player (who plays on existential vertices). This is 

equivalent to finding out whether a solution subgraph exists. 

The proof of P-completeness in [ 171 relies on a general reduction (through an 

intermediate problem) that is easily seen to be computable in polylog time on indexing 

machines, and PL-coverable, by the same argument as for GAP. Thus, we can refine 
the notion of reducibility (to the polylog time PL-covered case) for the P-completeness 

of GAME, and immediately we get EXPTIME-completeness of its succinct version, 

sAGAP, from our Theorem 1. We should point out here that concrete, specific, natural 
cases, such as appropriately formalized chess (and also checkers) problems, are known 
already to be EXPTIME-complete [ 141. 

Note that in the definition of “game” in [ 3 11, it is assumed that the only knowledge 
readily available about the game is a polynomial time test for legitimacy of a move, 

corresponding closely to the previously used notion of succinct representations via cir- 

cuits; more precisely, the condition that valid moves are between positions encoded by 
words of the same length allows for implementing the polynomial time algorithm as 
a circuit, and therefore the games from [31] correpond to a succinct representation 

in terms of transition matrices (in the sense of [ 81) of the GAME problem of [ 171, 
and thus it follows from [2] that there are EXPTIME-complete games. Note, how- 

ever, that in principle these facts do not speak of algorithms such as AO*, which are 
based on vertex expansions instead of recognizing edges. Indeed, since the practical 
algorithms assume more, namely, ability to expand a vertex, our more complex model 
of succinct representation is necessary to model search problems on implicit AND/OR 

graphs. 

7. Discussion 

The complexity of graph search problems, when the graph is given only implicitly as 
a procedure for vertex expansion (computing a list of successors) has been characterized 
as a function of the same problem on a standard representation such as the transition 
matrix. 

A technical condition on the reductions (coverability) was necessary. It is interesting 
to note that several other reductions between (seemingly noncomplete) problems in 
nondeterministic LOGSPACE are not PL-coverable under our definition [ 181; however, 
they become so under a somewhat more involved notion of coverability which takes into 
account the outdegree of the input graph. We have refrained from following this more 
general path since the simpler definition was sufficient for our purposes, but a theory 
of coverable reductions (which could conceivably have other interesting applications) 
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should be based in a more general form, capturing as many existing reductions as 
possible [6,18]. 

Back to the study of the complexity of graph search problems under our succinct 

representation, we have argued that the relevance of this approach stems from the fact 

that many practical search algorithms can be seen as exploring an exponentially large 
graph for which a feasible vertex expansion procedure exists, such as A* or AO*. But 
there is a different context in which a similar consideration has been made: certain 
classes of total multivalued nondeterministically computable functions. These include 
PLS [ 151 and functions related to parity arguments [ 251. 

All these classes contain relevant, practical problems, and sometimes they turn out 
to be complete for the class. For instance, a large number of heuristic algorithms for 

the traveling salesman problem consider tours or partial tours and “move” from one 
to another. Indeed, in [ 1 I] a number of heuristics for TSP are classified as “tour 

construction”, where exploration “moves” among progressively more complete partial 

tours, or “tour improvement”, where one tour is changed into another searching for 

better payoffs; mixed strategies are also considered. 

In this sense, there is a huge graph, each of whose nodes is a (partial) tour, and 
whose edges indicate how to move from one to another. In this context, the input graph 
is nothing but a succinct representation of the graph of all its (partial) tours. Local search 
algorithms (such as those using the Lin-Kernighan-type heuristics [ 261) are actually 
searching this large, succinctly represented graph. The problem to be solved (finding a 

vertex, i.e., a tour, below a given cost) lies in nondeterministic polylogarithmic time, and 
accordingly the succinct representation, TSP, is NP-complete in the decisional version. 

Consider the following functional version based on a given local search algorithm: 
given an input, find the precise output of the local search started on it. This can be seen 
as the search for a path in the exponentially large graph defined by the neighborhood 
structure of the local search scheme; indeed, accordingly, for hard enough local search 
schemes this problem is PSPACE-hard [ 15,241. However, other functional versions in 
which any local optimum suffices as output lie probably lower: in PLS [ 151. The 
approach used here is, thus, consistent with the known results, and might be informative 

as of properties of these local search classes and problems. Similar considerations can be 
made with respect to the classes introduced in [ 251 based on “parity” or on “pigeonhole” 

arguments (PPA, PPAD, and PPP) 
A major obstacle seems to be the fact that all these classes of functions below 

functional NP correspond to total functions, i.e., some sort of the so-called “promise 

problems” in which onIy inputs fulfilling certain “promise” are to be solved correctly. 
It is not clear to the author what could be the appropriate notion for obtaining from this 
intuition more general results about the classes PLS, PPA, PPAD, and PPP. 
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