
Artificial
Intelligence

36(1996)171-188

Research Note

The complexity of searching implicit graphs *

Jost L. Balciizar*
Departament UI, lhiversitat Politknica de Catalunya, Edi’ci U, Pau Gargallo 5.

E-08028 Barcelona. Spain

Received July 1995; revised April 1996

Abstract

The standard complexity classes of complexity theory do not allow for direct classification of
most of the problems solved by heuristic search algorithms. The reason is that, almost always.
these are defined in terms of implicit graphs of state or problem reduction spaces, while the
standard definitions of all complexity classes are specifically tailored to explicit inputs.

To allow for more precise comparisons with standard complexity classes, we introduce here
a model for the analysis of algorithms on graphs given by vertex expansion procedures. It is
based on previously studied concepts of “succinct representation” techniques, and allows us to
prove PSPACE-completeness or EXPTIME-completeness of specific, natural problems on implicit
graphs, such as those solved by A*, AO*, and other best-first search strategies.

1. The problem and the model

Heuristic search algorithms play a noticeable role among the techniques developed
for attacking many relevant, practically important problems currently considered as

intractable. Our aim here is to promote the use of a tool taken from structural complexity
theory, namely “succinct representations”, to gain further understanding of some aspects
of the computational problems to which these algorithms are applied.

A common characteristic of several such algorithms, including the well-known A*

and AO* algorithms employed in the artificial intelligence area (see e.g. [28,29]), is
that the use of heuristic information, gained from study of the specific problem at hand,
frequently allows for a dramatic cutdown of computer time needed to solve many a

*Work supported by the EC through the Esprit BRA Program (project 7141, ALCOM II) and through the

HCM Program (project CHRX-CT93-0415, COLORET Network).

* E-mail: balqui@lsi.upc.es.

0004-3702/96/$15.00 Copyright @ 1996 Elsevier Science B.V. All rights reserved.

PIISOOO4-3702(96)00014-8

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82647162?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

172 J.L. 1Yulcdzur/Artijiciai Intelligence 86 (1996) 171-188

specific instance; but, on the other hand, little or no guarantee of fast performance can
be given a priori (otherwise the corresponding problems would not merit anymore the

adjective of “intractable”).
Many combinatorial optimization algorithms and problems from operations research

have been given a lot of attention from the complexity theory community, being ac-
tually a main source of examples of completeness for various complexity classes (see
[9,12,14,15]). However, for optimization algorithms from AI, some of which follow
analogous intuitions, much less seems to be known. Some information about problems
on AND/OR graphs is readily obtained from the rich body of literature about the

complexity-theoretic approach to games via alternation (let us mention in particular
[3 I]). But for simpler search problems, all the complexity-theoretic analyses known to

the author are based on concepts, tools, and conventions essentially different from those
of structural complexity. This paper suggests the use of “succinct representations” to

bridge this gap.
This consists of encoding the input to combinatorial algorithms by means of “pro-

grams” in some specific (most frequently, boolean) model. Encoding the input via
circuits was labeled as “a natural, if not practical, representation” in [27, p. 1811. We
will develop in this paper a close relative of this input encoding that is arguably prac-

tical, in that it captures the essence of the widely implemented AI approach to graph
searching. Let’s explain why.

Inputs to realistic graph searching

From the point of view of a naive complexity theorist, the problems solved by A*

and other best-first strategies are not difficult: essentially, construction and optimization

of paths in graphs, captured by nondeterministic logarithmic space complexity classes.
In the AI case, the graph is a so-called “state space”, characterized by the fact that

the exploration of a vertex is done with knowledge of additional information, gathered
along the path to it or computed on the spot. The algorithm may decide to expand a
vertex, and this operation consists of computing all its successors. In most cases, what

is wanted is to find a path from a start vertex to one of a set of goal vertices, often with
the additional request of minimizing a cost function.

Actually, starting from Dijkstra’s algorithm, and continuing with many other appli-
cations of algorithm design techniques, polynomial time algorithms solving that sort
of problems exist, offering good practical performance. Most of them are currently
available, precompiled in libraries, ready to use very easily, as executable subroutines

of C++ programs [22]. Variants of A* can be seen as refinements of Dijkstra’s algo-
rithm through the use of so-called “admissible” heuristic information (see the discussion
in [20]).

But from the complexity-theoretic approach, one would consider that the input to the
algorithm is the whole graph, and this would be already unacceptable to practitioners: in
most practical cases, the search graph is huge enough that even linear time on its size is
infeasible by far. This accounts for the labeling of “hard”, often applied to the problems
solved by such AI algorithms, and for the fact that these algorithms can be employed
to attack well-known NP-complete problems. It is a task for complexity theory (which

J.L. Balc~zar/Art$cial Intelligence 86 (1996) 171-188 173

we address here) to find a framework to analyze these problems in a more satisfactory
way, taking into account the astonishing sizes of the searched graphs.

There are several results on the formal analysis of the complexity of these algorithms;

see [281 (in particular, Chapters 5 and 6). The context is often probabilistic, the

analysis is given mostly as a function of the length of the optimal output path, and

made in terms of other quantities, such as the number of different expanded vertices,
or the total number of vertex expansions (which in A* is exponentially higher since,
in the bad context of a nonmonotonic admissible heuristic, the same vertex may be

chosen for expansion exponentially many times). Such frameworks do not allow for
easy translation into standard complexity classes. In other cases the analysis is restricted
to the use of the algorithm to solve some specific, particular problem.

We want to supplement the view obtained from the probabilistic average analysis,
which is of course very useful but depends on several simplifying assumptions and on
the hypothesis of some specific probability distribution [281; we will see how to model

these algorithms in such a way that the standard complexity classes give informative

properties of (the problems solved by) these algorithms, in as much generality as
possible, and in terms of worst-case complexity.

Our point of view is that, in order to obtain a consistent approach, informative for
workers of other areas, one must consider that the input to such search algorithms is
not the state space graph, but is instead the (hopefully efficient) procedure for vertex
expansion. Note that, if simply to expand a vertex is computationally expensive, then

the mere feasibility of all such algorithms is at stake. Moreover, this condition that
expansion better be efficient implies that the outdegree of the state space graph must
be appropriately bounded, lest simply the production of a too long list of successors be

unaffordable.
It is not clear a priori how complexity classes could cope with the idea of having a

vertex expansion procedure as input. As it turns out, complexity theory has the right

intuitive tool to put to use: here we suggest to resort to an appropriately refined notion
of succinct representation.

Indeed, one could argue that the vertex expansion procedure is, in a sense, a de-

scription of the whole graph, allowing for efficient local treatment. One well-studied

form of succinct representation is based on encoding the transition matrix: a small, fast
enough procedure receives as input (the codes of) two vertices and outputs simply the
bit indicating presence or absence of an edge between them (or even, more elaboratedly,

its cost). But this is not appropriate here: the search algorithms we want to model fre-
quently assume that more information can be obtained from each vertex, including the
complete list of successors. It may be infeasible to extract this list from the transition
matrix, for instance when the number of actual successors is not high but the total
number of vertices is large.

We propose here to use as succinct representation of the graph the formalization
of a procedure that, given a vertex, produces the list of successors, including, when

appropriate, the cost corresponding to each edge. It must be feasible, so certainly a mild
condition on it is to require it to work in polynomial time, which marks a weak feasibility
limit. Therefore, we assume that it can be implemented with a family of boolean circuits:
it is well known that this model exactly characterizes (via completeness) polynomial

174 J.L. .!Mcdzur/Arr~cial Intelligence 86 (1996) 171-188

time computations [I 1. Let us set this idea in the perspective of previous research on
succinct input representation.

Problems on succinct representations

The study of algorithmic graph problems on succinct representations was introduced
independently in [8,321, and has been proven useful in other applications of complexity
theory. Essentially, the idea is as follows: while traditional models of computation
assume their input represented, under some reasonable encoding, as a string of letters

over some alphabet (frequently binary), it is interesting as well to see what happens

to computational problems when their instances are encoded in some other, hopefully

more compact, form.
A paradigmatic case is that of graphs with regularities, which arise in many practical

and theoretical areas of computer science: representing highly regular graphs by standard

means such as transition matrices may result in an undesirable waste of memory space,

since these regularities may allow for much more concise representations in the computer
memory. Schemes which allow considerable savings include hierarchical representations
and boolean computational models [8.2 1,321. The same idea can be applied to other

data types via integer expressions [321 or vector languages [191, and an essentially
analogous intuition (with a very different technical development) was used in [131 to
obtain complete problems for deterministic linear space. We will use here a variant of

the boolean circuit representation.
In principle, the intuitive consequences of such input conventions are contradictory:

being, in general, shorter than the full description, they allow for less running time
(which is a function of the length of the shorter input); but since only very regular

instances allow for substantial savings in the encoding, it may be the case that the

algorithms operate faster on these instances. So, a careful and detailed analysis of each

input convention is necessary.
In the case of decisional problems on graphs, the input is not the graph itself but

(the encoding of) a boolean circuit which computes its transition matrix. For this
model. [8,321 classify as complete in some class of the polynomial time hierarchy or
the counting hierarchy (or higher up) many specific problems on succinct instances;

many of these are polynomially solvable for standard input representation. Then [27]
pointed out that the use of projection reducibility allows one to prove that all known
NP-complete problems become NEXP-complete under succinct input representation via

circuits (see also [24, Ch. 201). This observation is extended in [21, by means of log
time reducibility, to a very general result (the Conversion Lemma) relating the com-
plexity of problems on standard input convention to their respective succinct versions,
independently of the complexity classes in which they lie. This last result also abstracts
from the previously used graph-theoretic setting, since the Conversion Lemma works on
binary encodings of arbitrary data types.

Subsequently, the notion of succinct representation and variants of the results from
[21 have been employed in [4,7] to characterize the computational complexity of a
number of problems from logic programming and databases; specifically, the combined
complexity of queries based on default logic and certain issues arising from disjunctive

J.L. Balcdzar/Art@cial Intelligence 86 (1996) 171-188 175

datalog queries under various semantics, respectively. Similar technical tools and intu-
itions, based on comparing the succinctness of the descriptions under different models

of representation, appear also in [3,101, where they are used to obtain results in other
settings.

This tool could be used as such for our study of graph search algorithms, but would
admit a serious criticism: the model assumes a restriction that, in general, does not apply
to practical cases. Indeed, in the work done so far one assumes that the input circuit is

only able to indicate the presence or absence of an edge, given both endpoints; practical

applications assume the ability to expand a vertex, i.e., generate all its successors,

and this may be infeasible from the plain “transition matrix” implementation. A better
alternative is to introduce a new model for succinct inputs, better suited to the application

we have in mind, which closely parallels the idea of giving, as input to the algorithm,
a procedure to expand nodes. We will see that this approach gives more informative
characterizations of the hardness of graph search problems.

2. Preliminaries

Most of our notions of complexity theory regarding models of computation, complex-

ity classes, and reducibilities, are standard [1,241. We assume decisional problems to
be encoded as sets of strings over the standard binary alphabet. Likewise, functional

problems are encoded as partial functions from strings to strings. It is a well-known
fact (heavily employed when computers are in use) that binary strings can represent
numbers and many other combinatorial structures such as graphs. For a string x, we
denote by 1x1 its length. Real-valued functions are assumed to be rounded to the nearest

positive integer. Graphs are assumed to be directed. We assume that (., .) is an easily
computable pairing function, and that both arguments can be easily computed from the
result.

Our model of computation is a variant of the multitape Turing machine; it is well
known that other more realistic models are equivalent to this one modulo polynomial
time overheads and constant factor space overheads, so that all the complexity classes
we mention are invariant with respect to the machine model employed.

The slight difference between the standard Turing machine model and ours consists
in that, since we will need to work with sublinear time computations, we cannot afford

sequential access to the input. Instead, we use indexing machines [51, in which there
is a specific “indexing tape” which points to the input tape. On an input of length n,

when the machine enters a specific “read” state with i < n written on the indexing tape,
then in one step the ith input symbol is transferred to the head of the first worktape. A
special “error” mark appears there if the contents of the indexing tape is i > n. Note
that this is nothing but a straightforward formalization of the idea of direct access to the
input, as if it is stored in RAM.

We will mention the following generic complexity classes of decisional problems: for
space or time bounds f, respectively, we have DSPACE(f), corresponding to problems
A such that the problem of deciding whether x E A that can be solved within memory
space f(1x1)) and DTIME(f) , corresponding to problems A such that deciding whether

176 J.L. Balch.ar/Artijicial Intelligence 86 (1996) 171-188

x E A that can be solved within computation time f(1x1). Many classes have more
familiar names, and thus

LOGSPACE = DSPACE(log n) , P = U DTIME(~~),

PSPACE = u DSPACE(nk) , EXPTIME = /_j DTIME(2Ni)

kEW kEN

We will briefly mention in the wrap-up discussion the well-known class NP, which is

defined by polynomial time nondeterministic machines.

We also need two concepts of reducibility. The first one is standard: a decisional

problem A is polynomial time m-reducible to a problem B, denoted A 6, B, if there is
a polynomial time computable function f for which x E A u f(x) E B holds for
all x. So f provides a way of solving A in polynomial time given any arbitrary way of

solving B in polynomial time.
Our main results are based on polylog time m-reducibility. A function f is computable

in polylogarithmic time if there is an indexing machine that, on input x and j, with j <
If(x outputs the jth bit of f(x) in time log”” /xl. Analogously to the polynomial
time case, a polylog time reduction from problem A to problem B is a function f
computable in polylogarithmic time such that, for all x, x E A e f(x) E B. We
say that A is PL-reducible to B, and denote it A <Lk B. The use of polylog time
instead of log time reductions in combination with succinct representations was one of
the contributions of [71.

The concept of reducibility gives rise immediately to the concepts of hardness and

completeness for a complexity class. A problem A is hard for a class V under a
reducibility if all problems in V are reducible to A. A problem A is complete for a class
2) if it is hard for it and also belongs to it.

From the time and space hierarchy theorems of complexity theory, it is well known that
LOGSPACE + PSPACE and that P Z EXPTIME. In particular, this implies that a com-
plete problem for PSPACE, under any of our reducibilities, cannot be in LOGSPACE,

and actually cannot be solved in subpolynomial memory space (here subpolynomial
means o(na) for all a). Similarly, a problem that is complete for EXPTIME cannot be
solved in polynomial, nor even subexponential, running time. As of now, it is possible
that P = PSPACE, so that completeness for PSPACE does not rule out the possible exis-
tence of a polynomial time algorithm; but such an algorithm would imply immediately

polynomial time algorithms for all problems in PSPACE, including all NP-complete
problems and many others seemingly harder than them.

Let f be a polylog time reduction. We say that f is polylog time covered (or PL-
covered) if the values j such that the bit (i, j) of f(x) is 1 are predictable in advance,
only knowing i and 1x1, as well as the size off(x); more formally, if there is an indexing
machine that on inputs i and IZ (in binary) and in polynomial time (equivalently, polylog
time when inputs are in unary), computes a value m and a list L such that, whenever
bit (i,j) of f(x) is 1 for some x of length n, we have j E L and m =) f (x) (. Of
course, this definition only applies to reductions for which the length of the output only
depends on the length of the input, and not on its actual value.

J.L. Balc&ar/ArtQicial Intelligence 86 (1996) 171-188 171

This notion will be used in the following context: the output of f will be interpreted
as an instance of a decisional problem on (directed) graphs, described by a transition

matrix. Bit (i, j) indicates presence or absence of the edge (i, j) in the output graph.
Coverability means, therefore, that, when all x with 1x1 = IZ are considered, and for each i,

there are only log’(‘) n many potential outgoing edges from vertex i that may appear in
any of the graphs f(x), and that all their other endpoints are easily computable. This
technical condition is necessary in some of our statements, and can be extended easily,
if necessary, to the case in which the graphs are weighted.

3. A new model of succinct instance representation

Following the informal description given in the introduction, we now choose to rep-
resent graphs as follows. First, we restrict ourselves to graphs without isolated vertices.

For a graph of less than n vertices and degree d, its representation is a boolean circuit of

log n inputs and d log it outputs. Without loss of generality, we assume that the value of
II is encoded or hardwired into the circuit, so that it can be read out easily. This can be

achieved with logn clearly identified constant gates, and would correspond, intuitively,
with a constant declared inside the vertex expansion procedure. Vertices are numbered,
reserving code 0 to be an additional dummy vertex name. Assume that vertex Uk cor-
responding to number k has as successors ui, . . . UC with p < d; then p among the d

groups of logn output gates must each give one of the numbers ij, written in binary

with zeroes to the left up to size logn, and without repetition; the remaining outputs
must be all zero, i.e., describe the additional dummy vertex.

Clearly the representation is not unique, but given a circuit c of logn inputs and
d log IZ outputs, there is a single graph G, represented by it: take as vertices the positive
integers that can be written with logn inputs, set edges by feeding each to the circuit

to find out the successors of each vertex and discarding vertex zero whenever it shows
up, and finally remove any isolated vertices that might be left. When c is a syntactically
incorrect circuit in which the number of outputs is not a multiple of the number of

inputs, and which therefore does not represent any graph, then it is mapped to some

fixed, trivial graph G, = Go.
Note the following fact: it is not necessary that the vertices are numbered by consec-

utive numbers. As a consequence of our convention, we may afford as many numbers
as convenient that do not correspond to any vertex. It suffices that the circuit is able to

detect them, to output an empty list of successors, and to never output them as succes-

sors of other vertex numbers. In this way, they are represented as isolated and will be
discarded by our interpretation.

Let A be any decisional problem on graphs. We denote by sA the succinct version
of A, defined as follows: sA = {c 1 G, E A}. We state now the main property of this
representation, from the complexity-theoretic point of view. The analogous result for
another, technically different, simpler form of succinct representation was given in [21
(knowledge of that proof may help in understanding this one) ; it used also a slightly
different reducibility, and did not need the extra condition of coverability. The proof is
now more complex due to the more involved definition of succinct representation, which
now must provide more information.

178 J.L. Balcdzar/Artijicial Intelligence 86 (1996) 171-188

worktape and state code 1 indexing tape code 1

worktape and state code indexing tape code

Fig. I. Circuitry between two layers in the simulation of M by C’

Theorem 1. Let A and B be decisional problems dejned on graphs. If A <LL B, via a

PL-covered reduction, then .sA <,,, sB.

Proof. Let f be the reduction, and let M be the indexing Turing machine that com-
putes it. We must design a reduction between the corresponding succinctly represented
problems. Assume M works in time logk 12. By the definition of computing in polylog
time, given an instance of A, M finds individual bits of the image under the reduction.
Therefore, its input is an instance of A, i.e.. (an encoding of) a graph G on, say, n

vertices, and a pair of vertices of f(G); it finds whether this pair is indeed an edge
of f(G) Via a now standard transformation (see [I]), and assuming that all the bits
of G are available at all times, a boolean circuit can be constructed which computes
any requested bit of the output of the reduction on x. The size of the circuit is log2k n.
However, the bits of G are not so readily available.

What is available now, instead, is an instance of sA: a circuit again, which, on
input j, provides the list of all vertices that are successors of vertex j in G. Without
loss of generality, we have assumed that II can be easily read out from this input circuit.

J.L. Balcdzar/Ari$cial Intelligence 86 (I 996) 171-188 179

i

simulation of N

Fig. 2. Overall structure of the constructed succinct representation

Examination of the circuit simulating M (see [1] > shows that it consists of layers, each
layer t computing the configuration of the machine after t steps. Each layer contains
gates whose output bits encode the contents of the indexing tape, and therefore mark

the bit being read at that step. The next layer needs knowledge of that bit. Therefore,
between each pair of layers, extra circuitry is added to obtain that bit, as follows: if
the indexing tape requires the bit corresponding to edge (p, q) of A, then p is fed into
the input circuit (the given instance of sA) and q is matched for equality (in parallel)

against all the output vertices of the input circuit. This provides exactly the needed bit.
Fig. 1 describes intuitively the circuitry between consecutive layers; the top and bottom

boxes represent a large set of parallel wires carrying the sequence of bits encoding the
configuration, where we have assumed that the encoding of the indexing tape comes at
the end.

In this way, the whole circuit calculating each bit of f(G) is obtained; call this circuit
C’. It would qualify as a succinct representation of f(G) under the definition of [81;
but does not yet, for ours, exactly for the same reason that the previously used succinct
representations did not provide an adequate model for the graph search algorithms: it
computes a bit of the transition matrix, not a list of successors.

Here is where coverability enters into play. Let N be the machine that computes the
covering. Note that it provides also the size of the output, that we need to hardwire into
the circuit for that output. We construct the circuit we finally desire, C, as follows. Let i
be the input to C. Using the same simulation as before, now applied to the machine N,
and run simultaneously with the simulation above, in parallel, on n and i, a subcircuit

180 .l.L. Bulcdzar/Art$ciul Intelligence 86 (1996) 171-188

can now produce a superset of the list of successors of vertex i. Each of them, k, together
with i itself, is fed into its own replica of C’, and if the output is 1 then k is transmitted

through to the output of C. See Fig. 2.

In this way, C computes exactly the list of successors of i in f(G), i.e., it is now

a bona fide succinct representation of ,f(G), constructed on the basis of a succinct
representation of G. This is exactly what the reduction from sA into sB must construct.
All the computations involved are easily seen to be accomplished in polynomial time;

this completes the proof. 0

A straightforward modification takes care of the case in which weights (or costs) are

associated to the edges. Our only proviso is that the costs are not exceedingly high;
more precisely, since our application domain requires to consider already the size of
the graph N too high, we require that the weights can be written down in polylog
many bits (on N). In this way, the polylog time reduction is able to provide not
only the presence or absence of an edge but also the cost associated with it. Then,

both A and B can be defined in terms of the costs, and the relationship will still

hold.
If the succinct representation of a graph becomes exponentially smaller, then the

complexity of a problem A may jump up by about one exponential when passing to sA.

It is not difficult to see that it does not jump up more:

Lemma 2. If A E DTIME(f(n)) then sA E DTIME(f(2”“))), for f at least linear;

if A E DSPACE(f(n)), then sA E DSPACE(f(2 0(n))) , for f at least logarithmic; and

similarly for nondeterministic complexity classes.

The proof is a simple modification of the analogous one in [81: for time classes,
given the circuit, first expand it into the whole graph, then apply an algorithm on the
standard representation; for space classes, input bits are computed from the circuit (and
possibly recomputed many times) whenever necessary, then discarded.

We end this section with the following technical fact, necessary in later proofs: the
“succinct representation” operator has a kind of “inverse”, given by what we will call
trivial graph representation. Let w be a binary string. Then tg(w) is a “chain” graph

of m nodes, each but the last having a single edge to the next, the last to itself, and m
being selected so that its binary representation is Iw. Note that it is exponentially large

in (w(. Overloading the operator, let tg(L) = {tg(w) / w E L}.

Lemma 3. Every set L of binary strings is m-reducible in polynomial time to the

succinct representation of tg(L).

Proof. It suffices to construct from w a circuit corresponding to tg(w). It simply checks
whether the number of the input vertex is exactly 1 w (read in binary), which corresponds
to the last vertex, to output the same number; or it is less than lw, to add one and output
the result. Else, it outputs 0, i.e., marks it as an isolated vertex, which is ignored by the
convention on succinct representations. 0

J.L. Bahizar/Art@cial Intelligence 86 (1996) 171-I@ 181

4. Application to graph search

The graph accessibility problem (GAP) is: given a directed graph, a source vertex,
and a goal vertex (or set of them), decide whether there is a path connecting the source

vertex to a goal. In the weighted variant, costs are associated to the edges; an integer k is

also given, and the question is whether such a path of total cost at most k exists. Without
loss of generality, we assume that the source and goal vertices have always specific
numbers (such as 1 and 2 respectively), so that the input to the problem is just the graph.

Some broadly employed heuristic search algorithms solve precisely this problem, with
the peculiarity that the graph is not given explicitly. Instead, a procedure is given to

“expand” a node, i.e., to find the list of all successors of a given vertex, together with
the costs of the edges in the weighted variant.

Vertices are described, in these cases, by some kind of “configuration” or specification

of “how the vertex looks like” (e.g. pieces on a board); essentially, the information that
must be present in this description is (at least) the necessary data to compute feasibly

all successors. We assume that the number of vertices (or configurations) may reach an
exponential on the number of bits used to store a configuration.

The point is now that the internal representation of the configuration in a computer

program, whatever means are used for it, can be read as a binary number (a form of
GSdel numbering, in a sense) and directly interpreted as the number of the vertex. Thus,
the vertex number abstracts the description of “how the vertex looks like” and contains
information about how to find the successors. Syntactically incorrect descriptions corre-
spond to numbers that do not represent vertices, and will be treated as isolated vertices

by the circuit representation, as indicated in the previous section.
We assume that the “expand” procedure is feasible, i.e., takes time polynomial on the

size of (the codenumber of) the vertex. Every reasonable application of graph search
will need this condition; otherwise the search will be infeasible just because some node

expansions, to start with, take far too long. This also implies that the degree, and the
number of bits needed to specify costs, are also polynomial on the size of the number
of the vertex. Note that this upper bound may be as restrictive as a polylog function on
the size of the whole graph; in concrete applications, constant degrees and cost sizes

are frequent.
Equivalently, under this condition, we can formalize the expansion procedure as a

boolean circuit, via the standard simulation of polynomial time computations by boolean

circuits. This simulation is feasible, and any other sequential programming language can

be assumed instead for the expansion procedure, since all these can be compiled into
circuits in polynomial time. This circuit is the input to a search algorithm based on node
expansions. The output wanted is given, in general, by an optimality condition, but a
(somewhat artificial) decisional problem can be associated to it in a standard way 191;
and the optimization problem is no easier (and possibly harder) than the decisional

problem.
In this case, the decisional problem is exactly (the weighted version of) sGAP, since

the solution is a path and the input is a circuit describing the vertex expansion procedure
to construct the graph. Our aim in this section is to use the setup from the previous

section to show:

182 J.L. Bulcrizur/Artijiciul Intelligence 86 (I 996) 171-188

Theorem 4. sGAP is PSPACE-complete.

The following lemma is needed for the proof:

Lemma 5. GAP is hard jtir LOGSPACE under PL-covered polylog time m-reductions.

Actually, GAP is complete in the larger class corresponding to nondeterministic log-

arithmic space under logarithmic space reducibility [16,301. The proof of the lemma is
obtained by an analysis of the completeness proofs in these references, checking that the

necessary computations can be performed in polylog time on indexing machines; we sim-
ply sketch it here. Essentially, each node is a configuration of a Turing machine M, and

an edge connects successive configurations: this amounts to checking locally constant
size fragment of each configuration to test the agreement with the transition function.

The edges depend on the symbol read from the input at that configuration, but it is
possible to compute all possible successors over the finitely many possibilities for that
symbol: this proves coverability.

Now let’s go back to the proof that sGAP is PSPACE-complete.

Proof. Membership in PSPACE follows by an argument like that of Lemma 2. Let us

argue hardness. Let L be an arbitrary set in DSPACE(n”). Let L’ = (~101~1” 1 w E L},

so that L <,, L’. Also, by Lemma 3 above, L’ <,,, .s(tg(L’)). It is immediate to see that

tg(L’) is in LOGSPACE, just by rejecting all graphs that are not tg(w) for some w,
and by recovering w, discarding the lO* tail, and simulating the computation for L. By
Lemma 5, tg(L’) <Lt GAP under a PL-covered reduction, and both are graph problems.

By the main theorem of Section 3, there is a polynomial time m-reduction from the
succinct version of the first to that of the second. So we have the following chain of
reducibilities, which implies PSPACE-completeness by transitivity:

L <,p, L’ <nr s(tg(L’)) 6,,, sGAP. 0

This is to say, the power of graph search algorithms, working on such implicit
graphs given by expansion prodecures, captures exactly (functional and optimization
versions of) PSPACE, and will only admit a polynomial time solution (in the size of
the configurations) if P = PSPACE. Moreover, the space hierarchy theorem (see [l])

guarantees that there is 110 subpolynomial memory space solution for this problem.
(“Subpolynomial” was defined in the preliminaries.) Of course, all algorithms used in

practice are memory consuming in the worst case. PSPACE-completeness implies that
there is no substantially cheaper alternative.

Note that this result holds for all algorithm schemes described in a generic way in
terms of vertex expansions, including A* and other best-first search methods, among
others. Of course, some particular search problems lie in complexity classes poten-
tially below PSPACE, and particular algorithms for them may be more efficient. To
bypass our hardness result, however, the price is to design specific algorithms ex-
tracting from their input more information than plainly a way of expanding ver-
tices.

J.L. Balcdzar/Artifcial Intelligence 86 (I 996) 171-188 183

5. Some approximability issues

In many specific practical situations, the state space has weights in the edges, thus

allowing for a definition of optimal solution, but only an approximate solution is actually

needed. We argue here that the problem of finding a value which falls within any given

constant factor of the optimal cost is as difficult, from the (worst-case) structural
complexity point of view, as knowing whether there is a solution. So, no algorithm can

be proved to furnish in polynomial time even an approximation, within a given interval,
to the optimum cost, unless P = PSPACE.

Technically, the proof is not difficult. It relies on the most basic existing technique for

proving such results: creating a gap in the costs. More precisely, a reduction is defined
that, for each instance graph, creates a new graph in which there is always a solution
path, having however a very high cost; substantially cheaper solutions are constructed
on the basis of the solutions for the given instance. Hence, there is a solution for the

given graph if and only if in the resulting construction there is a cheap path. Moreover,
the difference is ample enough that a rough approximation to the optimal cost suffices
to distinguish both cases. We claim that this construction can be performed as well in

our succinct representation model.

Theorem 6. The problem of approximating within any constant factor the cost of a

solution path in a succinctly represented graph is PSPACE-hard.

Proof. Fix the constant factor c. Given any circuit representing a graph of n vertices,
convert it into another circuit acting as follows: on any nonsource vertex, output the
original list of successors, associating unit cost to each edge; and on the source vertex,

output the original list of successors extended with an additional new vertex, associating
cost c2n to this additional edge, and unit cost to all the other edges; and finally, on the
new additional vertex, output as only successor the goal vertex, again with a cost of
c2n. Note that O(logn) bits (output wires) suffice to write down this cost. The size of
the new circuit is therefore polynomial on the size of the original one.

Now it is easy to see the following property: there is a path from the source to the

goal vertex in the graph represented by the given circuit if and only if, in the constructed
circuit, any approximation to the optimal cost to a factor of c is less than cn. Indeed, if
there is a path in the graph represented by the given circuit, since each edge is preserved
with unit cost, there is a path of cost at most n, so approximating this value to factor c

implies an approximate value of at most cn. On the other hand, if there is no such path
in the given graph, then the only solution in the constructed graph has cost 2c2n, and
any approximation to a factor of c of this value is at least 2cn.

Thus, we have a polynomial time reduction from sGAP to the problem of approxi-
mating the cost of the optimal path in a graph given by a succinct representation, and it

follows that the latter is PSPACE-hard. 0

It is easy to see that the proof works as well for weaker approximations such as

approximating to a polynomial, since a cost of nc can still be output with 0(logn)
wires.

184 J.L. Bulcdzur/Artijiciul Intelligence R6 (1996) 171-188

6. Application to AND/OR graphs

Another problem of wide practical interest is the search in AND/OR graphs, also

called “problem reduction spaces” or also “alternating graphs”. ’ In these, each nongoal
vertex carries a label as “universal” or “existential”. A solution is no longer a path, but
a subgraph in which each existential vertex has exactly one successor and each universal
vertex has all its successors; all the leaves must be goal nodes. A prime set of examples
of application is given by games (although the problem appears in many other guises).

The AND/OR graph problem (AGAP also standing for alternating GAP) is: given

an AND/OR directed graph, a start vertex, and a set of goal vertices, decide whether
there is a solution subgraph. The obvious weighted variant is also useful.

Again, algorithms (like AO*) exist for this problem, and various relevant algorithms
are specifically tailored to games, in which the minimax principle is applied. Let us

mention only alpha-beta pruning and SSS* [281. The complexity of searching AND/OR
graphs can be assessed from the abundant studies on the complexity of games. In

particular, in [3 I] a number of games are proved to be EXPTIME-complete.
In that reference, a game is defined as given by the set of positions (encoded as

words of a given length, and split into existential and universal) and a polynomial time
algorithm to check validity of a move. There is a condition that “the board cannot

be enlarged during the play”, i.e., that valid moves are between positions encoded by

words of the same length. Succinct representations as defined here (i.e., easy enough
expansion algorithms) do not necessarily exist for the games from [3 11, and for some
of them the (high) degree of each vertex makes them impossible. But, actually, careful
examination proves that for some of the EXPTIME-complete games from [311, poly-
nomial time expansion algorithms (i.e., succinct representations as defined here) do

exist. In particular, the “game” on propositional formulas labeled GZ in that paper has
easy expansion algorithms, is EXPTIME-complete, and reduces to sAGAP (i.e., can be

solved by AO*) A proof that sAGAP is EXPTIME-complete follows immediately from
this fact.

Theorem 7. sAGAP is EXPTIME-complete

This implies, by the time hierarchy theorem (see [1]), that no polynomial (nor even
subexponential) time solution exists at all for this problem: EXPTIME-complete prob-

lems are provably intractable. The heuristic search methods such as AO* are therefore

unavoidable to obtain solutions to practical cases in feasible computer time, and will

never be proved to provide u guarantee of feasibility since such feasibility provably

does not hold. (Note that no such provability can be stated for A* since it is possible,
as of now, that P = PSPACE, or equivalently that polynomial time algorithms for sGAP
exist.)

’ The reason is that, without loss of generality, one can assume that through each path AND (universal)

vertices and OR (existential) vertices alternate. The problem is often modeled equivalently with hyper-
graphs I29 I.

J.L. Balccizar/Art@cial Intelligence 86 (1996) 171-188 185

Let us comment briefly on an alternative proof, based on our succinct representations
and essentially analogous to that of the case of GAP. We believe that this argumentation

of the theorem is of independent interest. The problem GAME is proved P-complete
in [171, under logspace reducibility. That problem is simply a rephrasing of AGAP in
terms of players, where there are two sets of positions (the existential and universal
vertices respectively), a starting position (source), a set of winning positions (goals),
and a set of allowable moves (edges). The problem is to find out whether the starting
position is winning for the first player (who plays on existential vertices). This is

equivalent to finding out whether a solution subgraph exists.

The proof of P-completeness in [171 relies on a general reduction (through an

intermediate problem) that is easily seen to be computable in polylog time on indexing

machines, and PL-coverable, by the same argument as for GAP. Thus, we can refine
the notion of reducibility (to the polylog time PL-covered case) for the P-completeness

of GAME, and immediately we get EXPTIME-completeness of its succinct version,

sAGAP, from our Theorem 1. We should point out here that concrete, specific, natural
cases, such as appropriately formalized chess (and also checkers) problems, are known
already to be EXPTIME-complete [141.

Note that in the definition of “game” in [3 11, it is assumed that the only knowledge
readily available about the game is a polynomial time test for legitimacy of a move,

corresponding closely to the previously used notion of succinct representations via cir-

cuits; more precisely, the condition that valid moves are between positions encoded by
words of the same length allows for implementing the polynomial time algorithm as
a circuit, and therefore the games from [31] correpond to a succinct representation

in terms of transition matrices (in the sense of [81) of the GAME problem of [171,
and thus it follows from [2] that there are EXPTIME-complete games. Note, how-

ever, that in principle these facts do not speak of algorithms such as AO*, which are
based on vertex expansions instead of recognizing edges. Indeed, since the practical
algorithms assume more, namely, ability to expand a vertex, our more complex model
of succinct representation is necessary to model search problems on implicit AND/OR

graphs.

7. Discussion

The complexity of graph search problems, when the graph is given only implicitly as
a procedure for vertex expansion (computing a list of successors) has been characterized
as a function of the same problem on a standard representation such as the transition
matrix.

A technical condition on the reductions (coverability) was necessary. It is interesting
to note that several other reductions between (seemingly noncomplete) problems in
nondeterministic LOGSPACE are not PL-coverable under our definition [181; however,
they become so under a somewhat more involved notion of coverability which takes into
account the outdegree of the input graph. We have refrained from following this more
general path since the simpler definition was sufficient for our purposes, but a theory
of coverable reductions (which could conceivably have other interesting applications)

186 J.L. Balcdzur/Art$ciul Intelligence 86 (1996) 171-188

should be based in a more general form, capturing as many existing reductions as
possible [6,18].

Back to the study of the complexity of graph search problems under our succinct

representation, we have argued that the relevance of this approach stems from the fact

that many practical search algorithms can be seen as exploring an exponentially large
graph for which a feasible vertex expansion procedure exists, such as A* or AO*. But
there is a different context in which a similar consideration has been made: certain
classes of total multivalued nondeterministically computable functions. These include
PLS [151 and functions related to parity arguments [251.

All these classes contain relevant, practical problems, and sometimes they turn out
to be complete for the class. For instance, a large number of heuristic algorithms for

the traveling salesman problem consider tours or partial tours and “move” from one
to another. Indeed, in [1 I] a number of heuristics for TSP are classified as “tour

construction”, where exploration “moves” among progressively more complete partial

tours, or “tour improvement”, where one tour is changed into another searching for

better payoffs; mixed strategies are also considered.

In this sense, there is a huge graph, each of whose nodes is a (partial) tour, and
whose edges indicate how to move from one to another. In this context, the input graph
is nothing but a succinct representation of the graph of all its (partial) tours. Local search
algorithms (such as those using the Lin-Kernighan-type heuristics [261) are actually
searching this large, succinctly represented graph. The problem to be solved (finding a

vertex, i.e., a tour, below a given cost) lies in nondeterministic polylogarithmic time, and
accordingly the succinct representation, TSP, is NP-complete in the decisional version.

Consider the following functional version based on a given local search algorithm:
given an input, find the precise output of the local search started on it. This can be seen
as the search for a path in the exponentially large graph defined by the neighborhood
structure of the local search scheme; indeed, accordingly, for hard enough local search
schemes this problem is PSPACE-hard [15,241. However, other functional versions in
which any local optimum suffices as output lie probably lower: in PLS [151. The
approach used here is, thus, consistent with the known results, and might be informative

as of properties of these local search classes and problems. Similar considerations can be
made with respect to the classes introduced in [251 based on “parity” or on “pigeonhole”

arguments (PPA, PPAD, and PPP)
A major obstacle seems to be the fact that all these classes of functions below

functional NP correspond to total functions, i.e., some sort of the so-called “promise

problems” in which onIy inputs fulfilling certain “promise” are to be solved correctly.
It is not clear to the author what could be the appropriate notion for obtaining from this
intuition more general results about the classes PLS, PPA, PPAD, and PPP.

Acknowledgements

The following persons have been very helpful, either through personal discussions,
proofreading, or both: Ndria Castell, Josep Diaz, Ricard GavaldB, Montse Hermo, Antoni
Lozano, Pedro Meseguer, Jacob0 Toran, and Carme Torras. Special thanks are due to

J.L. Balc~zar/Artijicial Intelligence 86 (1996) 171-188 187

Georg Gottlob, for indicating that the scope of applications of the succinct representation
technique was broader than I thought, and for suggesting the use of the (transitive)
polylog time reducibility instead of log time reducibility. The help of the referees in

improving the paper is also acknowledged.

References

I I] J.L. BalcBzar, .I. Diaz and J. Gabam5, Structural Complexi@ I (Springer, Berlin, 1988).

[2] J.L. Balchzar, A. Lozano and J. Torrin, The complexity of algorithmic problems on succinct instances,

in: R. Baeza-Yates and U. Manber, eds., Computer Science: Research and Applications (Plenum, New

York, 1992).

[31 M. Cadoli, EM. Donini, P Liberatore and M. Schaerf, The size of a revised knowledge base, in:

Proceedings 14th Symposium on Principles of Database Systems (1995) 151-162.
[4] M. Cadoli, T. Eiter and G. Gottlob, Default logic as a query language, in: Proceedings 4th Infernational

Conference on Principles of Knowledge Representation and Reasoning (1994).
[51 A.K. Chandra, D.C. Kozen and L.J. Stockmeyer, Alternation, J. ACM 28 (1981) 114-133.

161 A.K. Chandra, L.J. Stockmeyer and U. Vishkin, Constant depth reducibility, SIAM J. Cornput 13 (1984)

423-439.
[71 T. Eiter, G. Gottlob and H. Mannila, Adding disjunction to DATALOG, in: Proceedings ACM Symposium

on Principles of Database Systems (1994).
[81 H. Galperin and A. Wigderson, Succinct representations of graphs, Inform. Control 56 (1983) 183-198.
[9] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to rhe Theory of NP-Complereness

(Freeman, San Francisco, CA, 1979).

I 101 G. Gogic, H. Kautz, C. Papadimitriou and B. Selman, The comparative linguistics of knowledge

representation, in: Proceedings IJCAI-95, Montreal, Que. (1995) 862-869.

[111 B.L. Golden and W.R. Stewart, Empirical analysis of heuristics. in: E.L. Lawler, J.K. Lenstra,

A.H.G. Rinnooy Kan and D.B. Shmoys, eds., The Traveling Salesman Problem: A Guided Tour of
Combinatorial Optimizarion (Wiley, New York, 1985).

[121 R. Greenlaw, H.J. Hoover and W.L. Ruzzo, A Compendium of Problems Complete for P (Oxford

University Press, Oxford, 1994).

[131 J.-W. Hong, On some deterministic space complexity problems, SIAM J. Compur. 11 (1982) 591-601.

[141 D.S. Johnson, A catalog of complexity classes, in: J. van Leeuwen, ed., Handbook of Theoretical
Computer Science, Vol. A: Algorithms and Complexity (North-Holland, Amsterdam, 1990) 67- 16 1.

[151 D.S. Johnson, C.H. Papadimitriou and M. Yannakakis, How easy is local search?, J. Compur. Syst. Sci.
37 (1988) 79-100.

[161 N.D. Jones, Space-bounded reducibility among combinatorial problems, J. Comput. Syst. Sci. 11 (1975)

68-75.

[171 N.D. Jones and W.T. Laaser, Complete problems for deterministic polynomial time, Theoret. Cornput
sci. 3 (1977) 105-l 17.

[181 N.D. Jones, Y.E. Lien and W.T. Laaser, New problems complete for nondeterministic log space, Math.
Sysr. Theory 10 (1976) I-17.

[191 M. Kowaluk and K.W. Wagner, Vector language: simple description of hard instances, in: Proceedings
Mathematical Foundations of Computer Science, Lecture Notes in Computer Science 452 (Springer,

Berlin, 1990) 378-384.

[201 S. Kundu, A new variant of the A* algorithm which closes a node at most once, Ann. Math. Artif: Intell.

4 (1991) 157-176.

[2 I] T. Lengauer and K.W. Wagner, The correlation between the complexities of the nonhierarchical and

hierarchical versions of graph problems, J. Cornput. Sysr. Sci. 44 (1992) 63-93.
[22] K. Mehlhom and S. Niiher, LEDA: a platform for combinatorial and geometric computing, Commun.

ACM 38 (1995) 96-102.
[231 C.H. Papadimitriou, The complexity of the Lin-Kemighan heuristic for the Traveling Salesman Problem,

SIAM J. Comput. 21 (1992) 450-465.

188 J.L. Balccizar/Artt$cral Intellrgence 86 (1996) 171-188

[241 C.H. Papadimitriou, Computational Complexity (Addison-Wesley, Reading, MA, 1994)

1251 C.H. Papadimitriou, On the complexity of the parity argument and other inefficient proofs of existence,

J. Cornput. Sysi. Sci. 48 (1994) 498-532.

I26 1 C.H. Papadimitriou and K. Steiglitz, Combinatorial Uptimiz.afion: Algorithms and Complexity (Prentice-

Hall, Englewood Cliffs, NJ, 1982).

[27 1 C.H. Papadimitriou and M. Yannakakis. A note on succinct representations of graphs, Infi)rm. Control

71 (1986) 18]-185.

I28 I J. Pearl, Heuristics: lnrelltgent Seurch Strctte~wr fi)r Computer Problem Solving (Addison-Wesley,

Reading, MA, 1984).
I29 J E. Rich and K. Knight, Artifictal lnfelligence (McGraw-Hill, New York, 2nd ed., 199 I)

] 301 W.J. Savitch, Relations between nondeterministic and deterministic tape complexities, .I. Cornput Syst.

SC;. 4 (1970) 177-192.

13 I] L.J. Stockmeyer and A.K. Chandra, Provably difficult combinatorial games, SIAM J. Comput. 8 (1979)

151-174.

[32 [K.W. Wagner. The complexity of combinatorial problems with succinct input representation, Acta fnfurm.

23 (1986) 325-3.56.

