8 research outputs found

    Proof Repair Infrastructure for Supervised Models: Building a Large Proof Repair Dataset

    Get PDF
    We report on our efforts building a new, large proof-repair dataset and benchmark suite for the Coq proof assistant. The dataset is made up of Git commits from open-source projects with old and new versions of definitions and proofs aligned across commits. Building this dataset has been a significant undertaking, highlighting a number of challenges and gaps in existing infrastructure. We discuss these challenges and gaps, and we provide recommendations for how the proof assistant community can address them. Our hope is to make it easier to build datasets and benchmark suites so that machine-learning tools for proofs will move to target the tasks that matter most and do so equitably across proof assistants

    A Type Checker for a Logical Framework with Union and Intersection Types

    Get PDF
    We present the syntax, semantics, and typing rules of Bull, a prototype theorem prover based on the Delta-Framework, i.e. a fully-typed lambda-calculus decorated with union and intersection types, as described in previous papers by the authors. Bull also implements a subtyping algorithm for the Type Theory Xi of Barbanera-Dezani-de'Liguoro. Bull has a command-line interface where the user can declare axioms, terms, and perform computations and some basic terminal-style features like error pretty-printing, subexpressions highlighting, and file loading. Moreover, it can typecheck a proof or normalize it. These terms can be incomplete, therefore the typechecking algorithm uses unification to try to construct the missing subterms. Bull uses the syntax of Berardi's Pure Type Systems to improve the compactness and the modularity of the kernel. Abstract and concrete syntax are mostly aligned and similar to the concrete syntax of Coq. Bull uses a higher-order unification algorithm for terms, while typechecking and partial type inference are done by a bidirectional refinement algorithm, similar to the one found in Matita and Beluga. The refinement can be split into two parts: the essence refinement and the typing refinement. Binders are implemented using commonly-used de Bruijn indices. We have defined a concrete language syntax that will allow the user to write Delta-terms. We have defined the reduction rules and an evaluator. We have implemented from scratch a refiner which does partial typechecking and type reconstruction. We have experimented Bull with classical examples of the intersection and union literature, such as the ones formalized by Pfenning with his Refinement Types in LF. We hope that this research vein could be useful to experiment, in a proof theoretical setting, forms of polymorphism alternatives to Girard's parametric one

    A Type Checker for a Logical Framework with Union and Intersection Types

    Get PDF
    International audienceWe present the syntax, semantics, typing, subtyping, unification, refinement, and REPL of Bull, a prototype theorem prover based on the ∆-Framework, i.e. a fully-typed Logical Framework à la Edinburgh LF decorated with union and intersection types, as described in previous papers by the authors. Bull also implements a subtyping algorithm for the Type Theory Ξ of Barbanera-Dezani-de'Liguoro. Bull has a command-line interface where the user can declare axioms, terms, and perform computations and some basic terminal-style features like error pretty-printing, subexpressions highlighting, and file loading. Moreover, it can typecheck a proof or normalize it. These terms can be incomplete, therefore the typechecking algorithm uses unification to try to construct the missing subterms. Bull uses the syntax of Berardi's Pure Type Systems to improve the compactness and the modularity of the kernel. Abstract and concrete syntax are mostly aligned and similar to the concrete syntax of Coq. Bull uses a higher-order unification algorithm for terms, while typechecking and partial type inference are done by a bidirectional refinement algorithm, similar to the one found in Matita and Beluga. The refinement can be split into two parts: the essence refinement and the typing refinement. Binders are implemented using commonly-used de Bruijn indices. We have defined a concrete language syntax that will allow user to write ∆-terms. We have defined the reduction rules and an evaluator. We have implemented from scratch a refiner which does partial typechecking and type reconstruction. We have experimented Bull with classical examples of the intersection and union literature, such as the ones formalized by Pfenning with his Refinement Types in LF and by Pierce. We hope that this research vein could be useful to experiment, in a proof theoretical setting, forms of polymorphism alternatives to Girard's parametric one

    Design and Implementation of Family Polymorphism for Interactive Theorem Proving

    Get PDF
    With the growing practice of mechanizing language metatheories, it has become ever more pressing that interactive theorem provers make it easy to write reusable, extensible code and proofs. This thesis presents a novel language design geared towards extensible metatheory mechanization in a proof assistant. The new design achieves reuse and extensibility via a form of family polymorphism, an object-oriented idea, that allows code and proofs to be polymorphic to their enclosing families. Our development addresses technical challenges that arise from the underlying language of a proof assistant being simultaneously functional, dependently typed, a logic, and an interactive tool. Our results include (1) a prototypical implementation of the language design as a Coq plugin, (2) a dependent type theory capturing the essence of the language mechanism and its consistency and canonicity results, and (3) case studies showing how the new expressiveness naturally addresses real programming challenges in metatheory mechanization

    Mechanising syntax with binders in Coq

    Get PDF
    Mechanising binders in general-purpose proof assistants such as Coq is cumbersome and difficult. Yet binders, substitutions, and instantiation of terms with substitutions are a critical ingredient of many programming languages. Any practicable mechanisation of the meta-theory of the latter hence requires a lean formalisation of the former. We investigate the topic from three angles: First, we realise formal systems with binders based on both pure and scoped de Bruijn algebras together with basic syntactic rewriting lemmas and automation. We automate this process in a compiler called Autosubst; our final tool supports many-sorted, variadic, and modular syntax. Second, we justify our choice of realisation and mechanise a proof of convergence of the sigma calculus, a calculus of explicit substitutions that is complete for equality of the de Bruijn algebra corresponding to the lambda calculus. Third, to demonstrate the practical usefulness of our approach, we provide concise, transparent, and accessible mechanised proofs for a variety of case studies refined to de Bruijn substitutions.Die Mechanisierung von Bindern in universellen Beweisassistenten wie Coq ist arbeitsaufwändig und schwierig. Binder, Substitutionen und die Instantiierung von Substitutionen sind jedoch kritischer Bestandteil vieler Programmiersprachen. Deshalb setzt eine praktikable Mechanisierung der Metatheorie von Programmiersprachen eine elegante Formalisierung von Bindern voraus. Wir nähern uns dem Thema aus drei Richtungen an: Zuerst realisieren wir formale Systeme mit Bindern mit Hilfe von reinen und indizierten de Bruijn Algebren, zusammen mit grundlegenden syntaktischen Gleichungen und Automatisierung. Wir automatisieren diesen Prozess in einem Kompilierer namens Autosubst. Unser finaler Kompilierer unterstützt Sortenlogik, variadische Syntax und modulare Syntax. Zweitens rechtfertigen wir unsere Repräsentation und mechanisieren einen Beweis der Konvergenz des SP-Kalküls, einem Kalkül expliziter Substitutionen der bezüglich der Gleichheit der puren de Bruijn Algebra des -Kalküls vollständig ist. Drittens entwickeln wir kurze, transparente und leicht zugängliche mechanisierte Beweise für diverse Fallstudien, die wir an de Bruijn Substitutionen angepasst haben. Wir weisen so die praktische Anwendbarkeit unseres Ansatzes nach

    Transformations of specifications and proofs to support an evolutionary formal software development

    Get PDF
    Like other software engineering activities, formal modelling needs to deal with change: bugs and omissions need to be corrected, and changes from the outside need to be dealtwith. In the context of axiomatic specifications and (partly) interactive proofs, the main obstacle is that changes invalidate proofs, which then need to be rebuilt using an inhibitive amount of resources. This thesis proposes to solve the problem by considering the state of a formal development consisting of (potentially buggy) specification and (potentially partial) proofs as one entity and transforming it using preconceived transformations. These transformations are operationally motivated: how would one patch the proofs on paper given a consistent transformation for the specification? They are formulated in terms of the specification and logic language, so as to be usable for several application domains. In order to make the approach compatible with the architecture of existing support systems, development graphs are added as an intermediate concept between specification and proof obligations, and the transformations are extended to work in the presence of the indirection. This leads to a separation of a framework for propagating transformations through development graphs and a reference instantiation that commits to concrete languages and proof representation. The reference instantiation works for many practically relevant scenarios. Other instantiations can be based on the framework

    Proof Reuse with Extended Inductive Types

    No full text
    Proof assistants based on type theory such as Coq or Lego, putemphasis on inductive specifications and proofs by featuringexpressive inductive types. It isfrequent to modify an existing specification or proof by adding ormodifying constructors in inductive types. In the context of language design,adding constructors is a common practice to make progress step-by-step.In this article, we propose amechanism to extend and parameter inductive types, and aproof reuse mechanism founded on proof terms reuse
    corecore