229 research outputs found

    Proof Relevant Corecursive Resolution

    Full text link
    Resolution lies at the foundation of both logic programming and type class context reduction in functional languages. Terminating derivations by resolution have well-defined inductive meaning, whereas some non-terminating derivations can be understood coinductively. Cycle detection is a popular method to capture a small subset of such derivations. We show that in fact cycle detection is a restricted form of coinductive proof, in which the atomic formula forming the cycle plays the role of coinductive hypothesis. This paper introduces a heuristic method for obtaining richer coinductive hypotheses in the form of Horn formulas. Our approach subsumes cycle detection and gives coinductive meaning to a larger class of derivations. For this purpose we extend resolution with Horn formula resolvents and corecursive evidence generation. We illustrate our method on non-terminating type class resolution problems.Comment: 23 pages, with appendices in FLOPS 201

    Inductive and Coinductive Components of Corecursive Functions in Coq

    Get PDF
    In Constructive Type Theory, recursive and corecursive definitions are subject to syntactic restrictions which guarantee termination for recursive functions and productivity for corecursive functions. However, many terminating and productive functions do not pass the syntactic tests. Bove proposed in her thesis an elegant reformulation of the method of accessibility predicates that widens the range of terminative recursive functions formalisable in Constructive Type Theory. In this paper, we pursue the same goal for productive corecursive functions. Notably, our method of formalisation of coinductive definitions of productive functions in Coq requires not only the use of ad-hoc predicates, but also a systematic algorithm that separates the inductive and coinductive parts of functions.Comment: Dans Coalgebraic Methods in Computer Science (2008

    Implicit complexity for coinductive data: a characterization of corecurrence

    Full text link
    We propose a framework for reasoning about programs that manipulate coinductive data as well as inductive data. Our approach is based on using equational programs, which support a seamless combination of computation and reasoning, and using productivity (fairness) as the fundamental assertion, rather than bi-simulation. The latter is expressible in terms of the former. As an application to this framework, we give an implicit characterization of corecurrence: a function is definable using corecurrence iff its productivity is provable using coinduction for formulas in which data-predicates do not occur negatively. This is an analog, albeit in weaker form, of a characterization of recurrence (i.e. primitive recursion) in [Leivant, Unipolar induction, TCS 318, 2004].Comment: In Proceedings DICE 2011, arXiv:1201.034

    Beating the Productivity Checker Using Embedded Languages

    Full text link
    Some total languages, like Agda and Coq, allow the use of guarded corecursion to construct infinite values and proofs. Guarded corecursion is a form of recursion in which arbitrary recursive calls are allowed, as long as they are guarded by a coinductive constructor. Guardedness ensures that programs are productive, i.e. that every finite prefix of an infinite value can be computed in finite time. However, many productive programs are not guarded, and it can be nontrivial to put them in guarded form. This paper gives a method for turning a productive program into a guarded program. The method amounts to defining a problem-specific language as a data type, writing the program in the problem-specific language, and writing a guarded interpreter for this language.Comment: In Proceedings PAR 2010, arXiv:1012.455

    Coinductive soundness of corecursive type class resolution

    Get PDF
    This work has been partially supported by the EU Horizon 2020 grant “RePhrase: Refactoring Parallel Heterogeneous Resource-Aware Applications - a Software Engineering Approach” (ICT-644235), by COST Action IC1202 (TACLe), supported by COST (European Cooperation in Science and Technology), and by EPSRC grant EP/K031864/1-2 “‘Coalgebraic Logic Programming for Type Inference”.Horn clauses and first-order resolution are commonly used for the implementation of type classes in Haskell. Recently, several core- cursive extensions to type class resolution have been proposed, with the common goal of allowing (co)recursive dictionary construction for those cases when resolution does not terminate. This paper shows, for the first time, that corecursive type class resolution and its recent extensions are coinductively sound with respect to the greatest Herbrand models of logic programs and that they are inductively unsound with respect to the least Herbrand models.Postprin

    Coinductive soundness of corecursive type class resolution

    Get PDF
    This work has been supported by the EPSRC grant “Coalgebraic Logic Programming for Type Inference” EP/K031864/1-2, EU Horizon 2020 grant “RePhrase: Refactoring Parallel Heterogeneous Resource-Aware Applications - a Software Engineering Approach” (ICT-644235), and by COST Action IC1202 (TACLe), supported by COST (European Cooperation in Science and Technology)Horn clauses and first-order resolution are commonly used to implement type classes in Haskell. Several corecursive extensions to type class resolution have recently been proposed, with the goal of allowing (co)recursive dictionary construction where resolution does not terminate. This paper shows, for the first time, that corecursive type class resolution and its extensions are coinductively sound with respect to the greatest Herbrand models of logic programs and that they are inductively unsound with respect to the least Herbrand models. We establish incompleteness results for various fragments of the proof system.Postprin

    Language Constructs for Non-Well-Founded Computation

    Get PDF
    Recursive functions defined on a coalgebraic datatype C may not converge if there are cycles in the input, that is, if the input object is not well-founded. Even so, there is often a useful solution; for example, the free variables of an infinitary λ-term, or the expected running time of a finite-state probabilistic protocol. Theoretical models of recursion schemes have been well studied
    corecore