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Abstract
Recursive functions defined on a coalgebraic datatype C may not
converge if there are cycles in the input, that is, if the input object
is not well-founded. Even so, there is often a useful solution; for
example, the free variables of an infinitary λ-term, or the expected
running time of a finite-state probabilistic protocol.

Theoretical models of recursion schemes have been well studied
under the names well-founded coalgebras, recursive coalgebras [2],
corecursive algebras [4], and Elgot algebras [1]. Much of this work
focuses on conditions ensuring unique or canonical solutions, e.g.
when C is well-founded.

If C is not well-founded, then there can be multiple solutions.
The standard semantics of recursive programs gives a particular
solution, namely the least solution in a flat Scott domain, which
may not be the one we want. Unfortunately, current programming
languages provide no support for specifying alternatives.

In this paper we give numerous examples in which it would
be useful to do so: free variables, α-conversion, and substitution
in infinitary terms; halting probabilities, expected running times,
and outcome functions of probabilistic protocols; various functions
on streams; semantics of alternating automata and games; and ab-
stract interpretation. In each case the function would diverge under
the standard semantics of recursion. We propose programming lan-
guage constructs that would allow the specification of alternative
solutions and methods to compute them. The programmer must es-
sentially provide a way to solve equations in the codomain. We
show how to implement these new constructs as an extension of
OCaml and give implementations of all our examples. In some
cases, some of the work can be automated.

We also prove some theoretical results characterizing well-
founded coalgebras that slightly extend results of Adamek, Luecke,
and Milius [2].

Categories and Subject Descriptors F.3.2 [Theory of Computa-
tion]: Semantics of Programming Languages; F.3.3 [Theory of
Computation]: Studies of Program Constructs

General Terms Program constructs, Coinduction

Keywords coalgebra, coinduction, coinductive datatypes, recur-
sion, programming language semantics
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1. Introduction
Coalgebraic datatypes have become popular in recent years in the
study of infinite behaviors and non-terminating computation. One
would like to define functions on coinductive datatypes by struc-
tural recursion, but such functions may not converge if there are
cycles in the input; that is, if the input object is not well-founded.
Even so, there is often a useful solution that we would like to com-
pute.

For example, consider the problem of computing the set of free
variables of a λ-term. In pseudo-ML, we might write

type term =
| Var of string
| App of term * term
| Lam of string * term

let rec fv = function
| Var v -> {v}
| App (t1,t2) -> (fv t1) ∪ (fv t2)
| Lam (x,t) -> (fv t) − {x}

and this works provided the argument is an ordinary (well-founded)
λ-term. However, if we call the function on an infinitary term, say

let rec t = App (Var "x", App (Var "y", t))

•

x •

y

(1)

then the function will diverge, even though it is clear the answer
should be {x, y}. Note that this is not a corecursive definition: we
are not asking for a greatest solution or a unique solution in a final
coalgebra, but rather a least solution in a different ordered domain
from the one provided by the standard semantics of recursive func-
tions. The standard semantics gives us the least solution in the flat
Scott domain (P(string)⊥, v) with bottom element⊥ represent-
ing nontermination, whereas we would like the least solution in a
different CPO, namely (P(string), ⊆) with bottom element ∅.

The coinductive elements we consider are always regular, i.e.,
they have a finite but possibly cyclic representation. This is differ-
ent from a setting in which infinite elements are represented lazily.
A few of our examples, like substitution, could be computed by lazy
evaluation, but most of them, for example free variables, could not.

Abstractly, the situation is governed by diagrams of the form

C

FC

A

FA

h

γ

Fh

α (2)

where (C, γ) and (A, α) are a coalgebra and an algebra, respec-
tively, for an endofunctor F . An h satisfying this diagram is called
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an F -coalgebra-algebra morphism [7]. Intuitively, given an input
x ∈ C, the destructor γ : C → FC is applied to x to compute the
arguments to recursive calls (including the identification of base
cases), the map Fh : FC → FA performs the recursive calls, and
the constructor α : FA → A is applied to the results of the recur-
sive calls to obtain the value of h(x).

A canonical example of this abstract definition is the factorial
function:

let rec factorial = function
| 0 -> 1
| n -> n * factorial (n-1)

The diagram (2) is instantiated to

N N

1+ N× N 1+ N× N

h

γ

id1 + idN × h

α (3)

where the functor is FX = 1+ N×X and γ and α are given by:

γ(0) = ι0() α(ι0()) = 1

γ(n+ 1) = ι1(n+ 1, n) α(ι1(c, d)) = c× d
The fact that there is one recursive call is reflected in the functor
by the single X occurring on the right-hand side. The destructor
γ determines whether the argument is a base case, and if not,
prepares the recursive call. The constructor α combines the result
of the recursive call with the input value by multiplication. In this
case we have a unique solution, which is precisely the factorial
function. The free variables example above also fits this scheme
with FX = Var +X2 + Var×X and

γ(Var x) = ι0(x) α(ι0(x)) = {x}
γ(App (t1, t2)) = ι1(t1, t2) α(ι1(u, v)) = u ∪ v
γ(Lam (x, t)) = ι2(x, t) α(ι2(x, v)) = v \ {x}.

Theoretical accounts of this general idea have been well stud-
ied under the names well-founded coalgebras [13], recursive coal-
gebras [2], corecursive algebras [4], and Elgot algebras [1]. Also
relevant from a more general perspective are iteration theories [3]
and traced monoidal categories [9]. Most of this work is focused
on conditions ensuring unique solutions, primarily when C is well-
founded or when A is a final coalgebra. The account most relevant
to this study is [1], in which a canonical solution can be specified
even when it is not unique, provided various desirable conditions
are met; for example, when A is a complete CPO and α is continu-
ous, or whenA is a complete metric space and α is contractive. We
would like to bring this theoretical work to bear on programming
language design and implementation.

Ordinary recursion over inductive datatypes corresponds to the
case in whichC is well-founded. In this case, the solution h always
exists and is unique: it is the least solution in the standard flat Scott
domain. For example, the factorial function is uniquely defined by
(3) in this sense. If C is not well-founded, there can be multiple
solutions, and the standard one may not be the one we want.
Nevertheless, the diagram (2) can still serve as a valid definitional
scheme, provided we are allowed to specify a desired solution. In
the free variables example, the codomain of the function (sets of
variables) is indeed a complete CPO under the usual set inclusion
order, and the constructor α is continuous, thus the desired solution
can be obtained by a least fixpoint computation.

Unfortunately, current programming languages provide little
support for specifying alternative solutions. One must be able to
specify a canonical method for solving systems of equations over
an F -algebra (the codomain) obtained from the function definition
and the input. We will demonstrate through many examples that

such a feature would be extremely useful in a programming lan-
guage and would bring coinduction and coinductive datatypes to
a new level of usability in accordance with the elegance already
present for algebraic datatypes. Our examples include free vari-
ables, α-conversion, and substitution in infinitary terms; halting
probabilities, expected running times, and outcome functions of
probabilistic protocols; various functions on streams; semantics of
alternating automata and games; and abstract interpretation. In each
case, the function would diverge under the standard semantics of re-
cursion. We propose programming language constructs that would
allow the specification of alternative solutions and methods to com-
pute them. These examples require different solution methods: it-
erative least fixpoint computation, Gaussian elimination, structural
coinduction. We describe how this feature might be implemented
in a functional language and give mock-up implementations of our
examples. In our implementation, we show how to automatically
extract a system of equations from the function definition and the
input, which can then be passed to a standard solver. In many cases
the process can be largely automated, requiring little extra work on
the part of the programmer.

An orthogonal issue is that current functional languages are
not particularly well suited to the manipulation of coinductive
datatypes. For example, in OCaml one can form coinductive ob-
jects with let rec as in (1), but due to the absence of mutable
variables such objects can only be created and not dynamically
manipulated, which severely limits their usefulness. One can simu-
late them with references, but this negates the elegance of algebraic
manipulation of inductively defined datatypes, for which the ML
family of languages is so well known. It would be of benefit to be
able to treat coinductive types the same way.

We also include some theoretical results that clarify and slightly
generalize some results of [2], namely:

• Every F -coalgebra C contains a maximal well-founded sub-
coalgebra wf C.
• If R is a final F -coalgebra, then wf R is the initial F -algebra.
• Let C be an F -coalgebra. The following are equivalent:

(i) C is well-founded; that is, C = wf C.

(ii) The induction principle

2P → P

P

is valid for C.

(iii) There is a unique coalgebra morphism C → wf R.

(iv) There is a unique coalgebra-algebra morphism from C to
any F -algebra.

• Let (A, α) be an ordered F -algebra such that A is a chain-
complete and α order-continuous. The construction of the least
solution h is natural in S; that is, if f : S → S′ is an F -
coalgebra morphism, then hS = hS′ ◦ f .

The last item provides a method to automatically compute least
solutions in an ordered setting and is therefore of practical impor-
tance, as we will show later in §A.

Our full implementation with all examples and solvers is
available from http://www.cs.cornell.edu/~kozen/nwf/
jb.zip. A more elementary preliminary version with only the free
variable and probabilistic examples and iteration solver is available
from http://www.cs.cornell.edu/~kozen/nwf/dk.zip.

2. Motivating Examples
In this section we present a number of motivating examples that il-
lustrate the diversity of the problem we are trying to tackle. The ex-
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amples can be divided into two subclasses: well-founded and non-
well-founded. The latter is no doubt the more challenging, but the
former illustrates in a simple setting the general idea of coalgebra-
algebra homomorphisms, so we start with such an example: com-
puting the greatest common divisor of two numbers. Further exam-
ples of well-founded definitions can be found in the cited literature,
including the Fibonacci function and various divide-and-conquer
algorithms such as quicksort and mergesort. Yet another interest-
ing example involving mutual recursive functions can be handled
by generalizing the results of [2] to a multi-sorted setting. We will
discuss this in appendix A. We illustrate it with mutually recursive
definitions of the even/odd predicates on natural numbers in sec-
tion 2.6, and the more intricate Ackermann function in section 2.8.

2.1 Integer GCD
For integers m,n ≥ 0 but not both 0, we would like to compute a
triple (g, s, t) such that g is the greatest common divisor (gcd) of
m and n and sm+ tn = g. A recursive definition is

let rec gcd m n =
if n = 0 then (m,1,0) else
let (q,r) = (m/n, m mod n) in
let (g,s,t) = gcd n r in
(g,t,s-q)

This gives the following instantiation of (2):

N× N N× Z× Z

F (N× N) F (N× Z× Z)

h

γ

Fh

α

Here FX = N+X × N and

γ(m,n) =

(
ι0(m) if n = 0

ι1(n,m mod n,m/n) if n 6= 0

α(ι0(g)) = (g, 1, 0)

α(ι1(g, s, t, q)) = (g, t, s− q).

The theory of recursive coalgebras [2] guarantees the existence of
a unique function satisfying the diagram.

2.2 Substitution
We now move to non-well-founded examples, with another func-
tion on infinitary λ-terms: substitution of a variable y by a term t.
A typical implementation would be

let rec subst t y = function
| Var x -> if x = y then t else Var x
| App (t1,t2) -> App (subst t y t1, subst t y t2)
| Lam (x,s) ->

if x = y then Lam (x,s)
else if x ∈ fv t then

let w = fresh ()
in Lam (w, subst t y (rename w x s))

else Lam (x, subst t y s)

where fv is the free variable function defined above and rename w
x s is a function that renames a variable x into w in a term s.

let rec rename w y = function
| Var x -> Var (if x = y then w else x)
| App (t1,t2) -> App (rename w y t1, rename w y t2)
| Lam (x,s) ->

if x = y then Lam (x,s)
else Lam (x, rename w y s)

An example of application would be to replace y by •

x x
in

•

x •

y

to get •

x •

•

x x

. The usual semantics would

infinitely unfold the term on the left, generating instead:
•

x •

• •

x x •

. . .. . .

•

x x
This computation would never finish.

2.3 Probabilistic Protocols
In this subsection, we present a few examples in the realm of
probabilistic protocols. Imagine one wants to simulate a biased
coin, say a coin with probability 2/3 of heads, with a fair coin. Here
is a possible solution: flip the fair coin. If it comes up heads, output
heads, otherwise flip again. If the second flip is tails, output tails,
otherwise repeat from the start. This protocol can be represented
succinctly by the following probabilistic automaton:

s

H t

T

1
2

1
2

1
2

1
2

Operationally, starting from states s and t, the protocol generates
series that converge to 2/3 and 1/3, respectively.

PrH(s) = 1
2

+ 1
8

+ 1
32

+ 1
128

+ · · · = 2
3

PrH(t) = 1
4

+ 1
16

+ 1
64

+ 1
256

+ · · · = 1
3
.

However, these values can also be seen to satisfy a pair of mutually
recursive equations:

PrH(s) = 1
2

+ 1
2
· PrH(t) PrH(t) = 1

2
· PrH(s).

This gives rise to a contractive map on the unit interval, which
has a unique solution. It is also monotone and continuous with
respect to the natural order on the unit interval. In either case an
iterative solution is possible, provided equality on the codomain is
defined to within ε. One would like to write a recursive program,
say something like

let rec pr_heads s = function
| H -> 1.
| T -> 0.
| Flip (p,u,v) ->

p *. (pr_heads u) +. (1 -. p) *. (pr_heads v)

and specify that the extracted equations should be solved by Gaus-
sian elimination or iteration. We give implementations using both
methods.

The protocol described above is an instance of a class of proba-
bilistic protocols that can be described by coalgebras (S, β), where
β : S → Γ + SΣ, and Σ and Γ are the input and output alphabets,
respectively. The von Neumann trick for simulating a fair coin with
a coin of arbitrary bias is another example of such a protocol. The
same approach could be used to model other probabilistic processes
such as Markov chains and Markov decision processes.
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Next, we discuss two other examples of interesting functions in
the probabilistic realm.

The expected consumption of random bits starting from state s
is the least solution of the equation

E(s) =

(
0 if β(s) ∈ {H, T}
1 + p · E(β(s)0) + (1− p) · E(β(s)1) if β(s) ∈ S{0,1}.

The outcome O(s) of the simulation starting from state s ∈ S
of a coalgebra (S, β) as above is a random variable defined on the
probability space {0, 1}ω taking values in {H, T,⊥}. The value ⊥
signifies nonhalting. Formally,

O : S → {0, 1}ω → {H, T,⊥}
is the least fixpoint of the equation

O(s)(X · σ) =

(
β(s) if β(s) ∈ {H, T}
O(β(s)X)(σ) if β(s) ∈ {0, 1} → S.

Both functions fit the abstract definitional scheme (2), and the
solution we are seeking can be described as the least fixpoint in
an appropriate ordered domain.

2.4 Alternating Turing Machines and IND Programs
The semantics of alternating Turing machines is described in terms
of an inductive labeling of machine configurations C with either
0 (rejecting), 1 (accepting), or ⊥ (undetermined). In the present
framework, the function γ would give the set of successor configu-
rations and the labeling of the state as either existential or universal,
and α would tell how to label configurations 0, 1, or⊥ inductively
up the computation tree. Formally, α gives the infimum for univer-
sal configurations and supremum for existential configurations in
3-valued Kleene logic 3 = {0,⊥,1} with ordering 0 ≤ ⊥ ≤ 1.

C 3

2× Pfin(C) 2× Pfin(3)

h

γ

id2 + Pfin(h)

α

The canonical solution is defined to be the least fixpoint with
respect to a different order, namely the flat Scott order ⊥ v 0,
⊥ v 1. This example is interesting, because it is a case in which α
is not strict; for example, a universal configuration can be labeled 0
as soon as one of its successors is known to be labeled 0, regardless
of the labels of the other successors.

A similar model is the IND programming language for the in-
ductive sets [8]. An IND program consists of a sequence of la-
beled statements of three kinds: universal and existential assign-
ment (x := ∀ and x := ∃, respectively), conditional test (if s =
t then `1 else `2), and halting (accept, reject). IND programs ac-
cept exactly the inductively definable sets, which over N are ex-
actly the Π1

1 sets. The semantics is identical to alternating Turing
machines, except that the branching degree is equal to the cardinal-
ity of the domain of computation, thus the finite powerset functor
must be replaced by the unrestricted powerset functor.

2.5 Descending Sequences
As the simplest nontrivial coinductive datatype, streams offer the
ideal playground to test new theories. We present an example on
streams of natural numbersNω . The following example, taken from
a talk by Capretta, has a unique solution, but does not fit the existing
theory of well-founded coalgebras.

The goal is to produce from a given stream of natural numbers
another stream of natural numbers containing the lengths of the
maximal strictly descending subsequences of the input stream. An

example is shown in the following figure, where the input stream is
depicted in a grid to easily picture the order of elements.

input: 4 3 1 1 3 2 3 5 3 2 0 3 1 . . .

output: 3, 1, 2, 1, 4, 2, . . .

Here is a simple recursive definition of the function:

let downruns s =
let rec countdown n (x::y::r) =

if x > y then countdown (n+1) (y::r)
else n :: (countdown 1 (y::r)) in

countdown 1 s

2.6 Mutually Recursive Functions: even-odd
This subsection illustrates how to generalize the uniqueness result
of [2] to the multi-sorted case and how this generalization can be
used to handle mutually recursive functions. We show the simplest
example: the definition of the even and odd predicates on natural
numbers.

let rec even n = if n = 0 then true else odd (n-1)
and odd n = if n = 0 then false else even (n-1)

We can depict the recursion graphically with the following dia-
gram:

N

1 N

1

2

1 2

1

heven

id

hodd

id

A way to look at this is as an endofunctor F : SetV → SetV ,
where V = {even, odd}. The functor is defined by: F (A,B) =
(1 + B, 1 + A) and if g : A → A′ and h : B → B′, then
F (g, h) = (id + h, id + g) : F (A,B)→ F (A′, B′).

An F -coalgebra is a pair ((C,D), γ), where γ : (C,D) →
F (C,D) is a morphism in the underlying category SetV ; that is,

γ = (γeven, γodd) : (C,D)→ (1+D,1+ C),

where γeven : C → 1 + D and γodd : D → 1 + C. Similarly, an
F -algebra is a pair ((A,B), α), where α : F (A,B) → (A,B) is
a morphism in SetV ; that is,

α = (αeven, αodd) : (1+B,1+A)→ (A,B),

where αeven : 1+B → A and αodd : 1+A→ B.
AnF -algebra-coalgebra morphism h : ((C,D), γ)→ ((A,B), α)

is a map h = (heven, hodd) : (C,D) → (A,B) such that the fol-
lowing diagram commutes:

(C,D) (A,B)

(1+D,1+ C) (1+B, 1+A)

(heven, hodd)

(γeven, γodd)

(id + hodd, id + heven)

(αeven, αodd)
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In our application, we have A = B = 2 and C = D = N, with

γeven(n) = γodd(n) =

(
ι0() if n = 0

ι1(n− 1) if n > 0

αeven(ι0()) = 1 αodd(ι0()) = 0 αeven(ι1(b)) = αodd(ι1(b)) = b.

2.7 Abstract Interpretation
This section presents an example involving abstract interpretation
of a simple imperative language, following Cousot and Cousot [6]
and further inspired by lecture notes of Stephen Chong [5].

Consider a simple imperative language of while programs with
integer expressions a and commands c. Let Var be a countable set
of variables.

a ::= n ∈ Z | x ∈ Var | a1 + a2

c ::= skip | x := a | c1 ; c2 | if a then c1 else c2 | while a do c

For the purpose of tests in the conditional and while loop, an in-
teger is considered true if and only if it is nonzero. Otherwise, the
operational semantics is standard, in the style of [14]. A store is
a partial function from variables to integers, an arithmetic expres-
sion is interpreted relative to a store and returns an integer; and a
command is interpreted relative to a store and returns an updated
store.

Abstract interpretation defines an abstract domain that approxi-
mates the values manipulated by the program. We define an abstract
domain for integers that abstracts an integer by its sign. The set of
abstract values is AbsInt = {neg, zero, pos,>}, where neg, zero,
and pos represent negative, zero, and positive integers, repectively,
and > represents an integer of unknown sign. The abstract values
form a join semilattice with join t:

>

zeroneg pos

(4)

The abstract interpretation of an arithmetic expression is defined
relative to an abstract store σ : Var ⇀ AbsInt, used to interpret the
abstract values of variables. We write AS = Var ⇀ AbsInt for
the set of abstract stores. The abstract interpretation of arithmetic
expressions is given by:

AJnKσ =

8<: pos if n > 0
zero if n = 0
neg if n < 0

AJxKσ = σ(x)

AJa1 + a2K = AJa1Kσ t AJa2Kσ.

The abstract interpretation of commands returns an abstract
store, which is an abstraction of the concrete store returned by the
commands. Abstract stores form a join semilattice, where the join
t of two abstract stores just takes the join of each variable:

(σ1 t σ2)(x) = σ1(x) t σ2(x).

Commands other than the while loop are interpreted as follows:

CJskipKσ = σ

CJx := aKσ = σ[x 7→ AJaKσ]

CJc1 ; c2Kσ = CJc2K(CJc1Kσ)

CJif a then c1 else c2Kσ =

8<: CJc1Kσ if AJaKσ ∈ {pos, neg}
CJc2Kσ if AJaKσ = zero
CJc1Kσ t CJc2Kσ otherwise

We would ideally like to define the abstract interpretation of the
while loop as:

CJwhile a do cKσ =

8<: σ if AJaKσ = zero
σ t CJwhile a do cK(CJcKσ)

otherwise

Unfortunately, in the case where AJaKσ 6= zero, this is not a well-
founded definition of CJwhile a do cK, because it is possible for
σ and CJcKσ to be equal. However, it is a correct definition of
CJwhile a do cK as a least fixpoint in the join semilattice of abstract
stores. The existence of the least fixpoint can be obtained in a finite
time by iteration because the join semilattice of abstract stores
satisfies the ascending chain condition (ACC), that is, it does not
contain any infinite ascending chains.

Given AJaK and CJcK previously defined, CJwhile a do cK can
be defined by the following diagram:

AS AS

AS + AS× AS AS + AS× AS

CJwhile a do cK

γ

idAS + idAS × CJwhile a do cK

α

where the functor is FX = AS + AS×X and

γ(σ) =


ι1(σ) if AJaKσ = zero
ι2(σ, CJcKσ) otherwise

α(ι1(σ)) = σ

α(ι2(σ, τ)) = σ t τ

The function CJwhile a do cK is the least function in the pointwise
order that makes the above diagram commute.

This technique allows us to define CJcK in general, inductively
on the structure of c. An inductive definition can be used here
because the set of abstract syntax trees is well-founded.

The literature on abstract interpretation explains how to com-
pute the least fixpoint, and much research has been done on tech-
niques for accelerating convergence to the least fixpoint. This body
of research can inform compiler optimization techniques for com-
putation with coalgebraic types.

2.8 Ackermann’s Function
The Ackermann function

A(0, n) = n+ 1

A(m+ 1, 0) = A(m, 1) (5)
A(m+ 1, n+ 1) = A(m,A(m+ 1, n))

is a notoriously fast-growing function that also fits into our general
scheme (although one should not try to compute it!). This example
is quite interesting, because at first glance it seems not to fit into the
general scheme (2) because of the nested recursive call in the third
clause. However, a key insight comes from the termination proof,
which is done by induction on the well-founded lexicographic order
on N×N withm as the more significant parameter. We see that we
can break the definition into two stages, both higher-order.

Rewriting A(m,n) as Am(n), we have that (5) is equivalent to

A0 = λn.n+ 1 Am+1 = λn.An+1
m (1),

where fn denotes the n-fold composition of f with itself:

f0 = λn.n fn+1 = f ◦ fn.
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The outermost stage computes m 7→ Am. The diagram is

N N
N

1+ N 1+ N
N

A

γ

id1 +A

α

where

γ(0) = ι0() α(ι0()) = λn.n+ 1

γ(m+ 1) = ι1(m) α(ι1(f)) = λn.fn+1(1).

In turn, the function α is defined in terms the n-fold composition
function (n, f) 7→ fn:

N×DD DD

F (N×DD) F (DD)

comp

γ

F (comp)

α

where FX = 1+DD ×X and

γ(0, f) = ι0() α(ι0()) = idD

γ(n+ 1, f) = ι1(f, n, f) α(ι1(f, g)) = f ◦ g.

3. A Framework for Non-Well-Founded
Computation

In this section we discuss our proposed framework for incorporat-
ing language constructs to support non-well-founded computation.
At a high level, we wish to specify a function h uniquely using a
finite set E of structural recursive equations. The function is de-
fined in much the same way as an ordinary recursive function on
an inductive datatype. However, the value h(x) of the function in
a particular input x is computed not by calling the function, but by
generating a system of equations from the function definition and
then passing the equations to a specified equation solver to find a
solution. The equation solver is either a standard library function
or programmed by the user according to an explicit interface.

The process is partitioned into several tasks as follows.

1. The left-hand sides of the clauses in the function definition de-
termine syntactic terms representing equation schemes. These
schemes are extracted by the compiler from the abstract syntax
tree of the left-hand side expressions. This determines (more or
less, subject to optimizations) the function γ in the diagram (2).

2. The right-hand sides of the clauses in the function definition
determine the function α in the diagram (2) (again, more or less,
subject to optimizations). These expressions essentially tell how
to evaluate terms extracted in step 1 in the codomain. As in 1,
these are determined by the compiler from the abstract syntax
trees of the right-hand sides.

3. At runtime, when the function is called with a coalgebraic
element c, a finite system of equations is generated from the
schemes extracted in steps 1 and 2, one equation for each
element of the coalgebra reachable from c. In fact, we can take
the elements reachable from c as the variables in our equations.
Each such element matches exactly one clause of the function
body, and this determines the right-hand side of the equation
that is generated.

4. The equations are passed to a solver that is specified by the
user. This will presumably be a module that is programmed
separately according to a fixed interface and available as a
library function. There should be a simple syntactic mechanism

for specifying an alternative solution method (although we do
not specify here what that should look like).

Let us illustrate this using our initial example of the free variables.
Recall the infinitary λ-term below and the definition of the free
variables function from the introduction:

•

x •

y

let rec fv = function
| Var v -> {v}
| App (t1,t2) -> (fv t1) ∪ (fv t2)
| Lam (x,t) -> (fv t) − {x}

(6)

Steps 1 and 2 would analyze the left-and right-hand sides of
the three clauses in the body at compile time to determine the
equation schemes. Then at runtime, if the function were called
on the coalgebraic element pictured, the runtime system would
generate four equations, one for each node reachable from the top
node:

fv t = (fv x) ∪ (fv u)
fv u = (fv y) ∪ (fv t)
fv x = {x}
fv y = {y}

where t and u are the unlabeled top and right nodes of the term
above.

As noted, these equations have many solutions. In fact, any set
containing the variables x and y will be a solution. However, we
are interested in the least solution in the ordered domain of sets of
variables with bottom element ∅. In this case, the least solution
would assign x to the rightmost node, y to the lowest node, and
{x,y} to the other two nodes.

With this in mind, we would pass the generated equations to an
iterative equation solver, which would produce the desired solution.
In many cases, such as this example, the codomain is a complete
partial order and we have default solvers to compute least fixpoints,
leaving to the programmer the simple task of indicating that this
is the desired solution method. That would be an ideal situation:
the defining equations of (6) plus a simple tag would be enough to
obtain the desired solution.

3.1 Generating Equations
The equations are generated from the recursive function definition
and the input c, a coalgebraic element, in accordance with the ab-
stract definitional scheme (2). The variables can be taken to be
the elements of the coalgebraic object reachable from c. There are
finitely many of these, as no infinite object can ever exist in a run-
ning program. More accurately stated, the objects of the final coal-
gebra represented by coalgebraic elements during program execu-
tion are all regular in the sense that they have a finite representa-
tion. These elements are first collected into a data structure (in our
implementation, simply a list) and the right-hand sides of the equa-
tions are determined by the structure of the object using pattern
matching. The object matches exactly one of the terms extracted in
step 1.

3.2 A Theorem on Well-Foundedness
When the function is called on a well-founded argument, the solu-
tion is unique and the standard semantics will terminate. The fol-
lowing theorem characterizes conditions under which this occurs.
It slightly generalizes [2] to the non-finitary case.

THEOREM 3.1. Let C be an F -coalgebra. The following are
equivalent:

(i) C is well-founded; that is, C = wf C.
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(ii) The induction principle
2P → P

P

is valid for C.
(iii) There is a unique coalgebra morphism C → wf R.
(iv) There is a unique coalgebra-algebra morphism from C to any

F -algebra.

The proof of this theorem, which we provide in appendix to not
disrupt the main focus of the paper, relies on some extra interesting
facts which we also prove, namely the fact that every F -coalgebra
C contains a maximal well-founded subcoalgebra wf C and that if
R is the final F -coalgebra, then wf R is the initial F -algebra.

However, in many interesting cases, h is not unique and depends
on the choice of solution methods in the codomain A. For a large
class of codomains we have however a canonical solution, namely
the least solution. This was studied in [1], although this study was
quite abstract and did not consider any programming language
constructs or practical applications.

The following theorem essentially says that under certain condi-
tions, the function can actually be considered a function on the final
coalgebra and is independent of the representation in the program.

THEOREM 3.2. Let (A, α) be an ordered F -algebra such that A
is a chain-complete and α order-continuous. The construction of
the least fixpoint of the map h 7→ α ◦Fh ◦ γ, is natural in S; that
is, if f : S → S′ is an F -coalgebra morphism, then hS = hS′ ◦ f .

This covers most of the examples of §2, where the intended
solution was the least one. In some of the examples, however, we
were interested in other solutions. For instance, in the substitution
example we intended to get an element of the final coalgebra; in
this case, the solution is unique for other reasons, but there is no
natural order on the codomain. Our methodology does not restrict
to a particular solution, but instead gives the programmer the power
to choose.

4. Implementation
The examples of the previous section show the need for new pro-
gram constructs that would allow the user to manipulate corecur-
sive types with the same ease and elegance as we are used to for
algebraic datatypes. It is the goal of this section to provide lan-
guage constructs that allow us to provide the intended semantics to
the examples above in a functional language like OCaml.

The general idea behind the implementation is as follows. We
want to keep the overhead for the programmer at a minimum
level. We want the programmer to specify the function in the usual
way, then at runtime, when the function is evaluated on a given
argument, a set of equations is generated and passed on to a solver,
which will find a solution according to the specification. In an ideal
situation, the programmer only has to specify the solver. For the
examples where a CPO structure is present in the codomain, such as
the free variable case, or when we have a complete metric space, we
provide the typical solution methods (least and unique fixpoint) and
the programmer only needs to tag the codomain with the intended
solver. In other cases, the programmer needs to implement the
solver.

4.1 Equations and Solvers
Recall the general diagram governing the situation:

C

FC

A

FA

h

γ

Fh

α

Our implementation aims at allowing the programmer to encode
this diagram as an OCaml module. This module can then be passed
to an OCaml functor, Corecursive, that builds the desired func-
tion. We discuss the structure of Corecursive later in this section.

The functor F is represented by a parameterized type ’b f, and
the coalgebra C and the algebra A are simply defined by types
coalgebra and algebra, respectively. This allows to specify γ
naturally as a function from coalgebra to coalgebra f, and α
as a function from algebra f to algebra. In the free variable
example, if VarSet is a module implementing sets of strings, this
is done as:

type ’b f = I1 of string | I2 of ’b * ’b
type coalgebra = Var of string

| App of coalgebra * coalgebra
| Lam of string * coalgebra

type algebra = VarSet.t

let gamma (c:coalgebra) : coalgebra f =
match c with

| Var v -> I1 v
| App(c1, c2) -> I2(c1, c2);;

let alpha (s:algebra f) : algebra =
match s with

| I1 v -> VarSet.singleton v
| I2(s1, s2) -> VarSet.union s1 s2

Variables are represented by strings and fresh variables are
generated with a counter. Equations are of the form variable
= t, where the variables on the left-hand side are elements of
the domain and the terms on the right side are built up from the
constructors of the datatype, constants and variables.

For instance, in the fv example, the domain was specified by
the following datatype:

type term =
| Var of string
| App of term * term
| Lam of string * term

Recall the four equations above defining the free variables of the
λ-term from the introduction:

fv t = (fv x) ∪ (fv u)
fv u = (fv y) ∪ (fv t)
fv x = {x}
fv y = {y}

A variable name is generated to the application of fv to each
element of the coalgebra encountered. For example, here we write
v1 for the unknown corresponding to the value of fv t; v2 for
x; v3 for u; and v4 for y. An equation is represented as a pair
of a variable and an element of type f variable. The intuitive,
informal meaning of a pair (v, w) is the equation v = α(w). For
example, in the example above, the equations would be represented
as:

("v1", I2("v2", "v3")) representing v1 = v2 ∪ v3
("v2", I1("x")) representing v2 = {x}
("v3", I2("v4", "v1")) representing v3 = v4 ∪ v1
("v4", I1("y")) representing v4 = {y}

The function solve can now be described: its arguments are a vari-
able v for which we want a solution, and a system of equations in
which v appears. It returns a value for v that satisfies the equations.
In most cases the solution is not unique, and specifying solve al-
lows the programmer to specify which solution to pick.

For technical reasons, two more functions need to be provided.
The function equal provides an equality on the coalgebra, which
allows the equation generator to know when it has encountered
a loop. In most cases, this equality is just the OCaml physical
equality ==; this is necessary because the OCaml equality = on
coinductive elements does not terminate. In some other cases the
function equal is an equality function built from both = and ==.
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The function fh can either be seen as an iterator on the functor
f, in the style of folding and mapping on lists; or it can be seen
as a monadic operator on the functor f. It allows the lifting of a
function from ’c (typically coalgebra) to ’a (typically algebra)
to a function from ’c f to ’a f, while folding on an element of
type ’e. It works by destructing the element of type ’c f to get
zero, one or several elements of type ’c, successively applying
the function on each of them, while passing through the element
of type ’e, and reconstructing an element of type ’a f with the
same constructor used in ’c f, returned with the final value of the
element of type ’e. For example, in the example on free variables,
the function fh is defined as:

let fh (h: ’c * ’e -> ’a * ’e)
: ’c f * ’e -> ’a f * ’e = function

| I1 v, e -> I1 v, e
| I2(c1, c2), e -> let a1, e1 = h (c1, e) in

let a2, e2 = h (c2, e1) in
I2(a1, a2), e2

If we had access to an abstract representation of the functor f,
analyzing it allows to automatically generate the function fh. This
is what we do in §4.5.

All this is summarized in the signature of a type SOLVER, used
to specify one of those functions:

module type SOLVER =
sig

type ’b f
type coalgebra
type algebra

val gamma : coalgebra -> coalgebra f
val alpha : algebra f -> algebra

type variable = string
type equation = variable * (variable f)

val solve : variable -> equation list -> algebra

val equal : coalgebra -> coalgebra -> bool
val fh : (’c * ’e -> ’a * ’e)

-> ’c f * ’e -> ’a f * ’e
end

Let us now define the OCaml functor Corecursive. From a spec-
ification of a function as a module S of type SOLVER, it generates
the equations to be solved and sends them to S.solve. Here is how
it generates the equations: starting from an element c of the coal-
gebra, it gathers all the elements of the coalgebra that are reachable
from c, recursively descending with gamma and fh, and stopping
when reaching an element that is equal—in the sense of the func-
tion equal—to an element that has already been seen. For each
of those elements, he generates an associated fresh variable and an
associated equation based on applying gamma to that element.

From an element c, generating the equations and solving them
with solve returns an element a in the coalgebra, the result of
applying the function we defined to c.

module Corecursive :
functor (S: SOLVER) ->

sig
val main : S.coalgebra -> S.algebra

end

We will now explain the default solvers we have implemented and
which are available for the programmer to use. These solvers cover
the examples we have shown before: a least fixpoint solver, a solver
that generates coinductive elements and is used for substitution, and
a Gaussian elimination solver.

4.2 Least Fixpoint
If the algebra A is a CPO, then every continuous function f on A
has a least fixpoint, by the Knaster–Tarski theorem. Moreover, if
the CPO satisfies the ascending chain condition (ACC), then this
least fixpoint can be computed in finite time by iteration, starting
from ⊥A.

We can apply this technique on the free variables example. The
algebra A equipped with the subset ordering (2Var,⊆) is a CPO,
and its bottom element is ⊥A = { }. It satisfies the ACC as long
as we restrict ourselves to the total set of variables appearing in the
term. This set is finite because the term is regular and thus has a
finite representation.

To implement this, first consider the set of equations: each vari-
able is defined by one equation relating it to the other variables. We
keep a guess for each variable, initially set at ⊥A, and compute a
next guess based on the equation for each variable. This eventually
converges and we can return the value of the desired variable. Note
that to implement this, the programmer needs to check that A is a
CPO with the ascending chain condition, and needs to provide two
things:

• a bottom element ⊥A; and
• an equality on A that determines when a fixpoint is reached.

The same technique can be used to implement the solver for
the abstract interpretation example, as it is also a least fixpoint in
a CPO. This CPO is the subset of the join semilattice of abstract
domains containing only the elements greater or equal than the
input abstract domain. The ACC is ensured by the fact that the
abstract domain is always of finite height. The bottom element is
the input abstract domain. Much of the code is shared with free
variables, and, as pointed out before, only the bottom element of A
and the equality on A change.

More suprisingly, this technique can also be used in probability
examples, where the system of equations looks more like a linear
system of equation on R. As long as the system of equations is
contracting, which is the case in the probability examples (except
in some trivial cases), we can solve it by iterative approximation
until getting close enough to a fixpoint. The initial element ⊥A is
then 0. The equality onA is the interesting part: since it determines
when to stop iterating, two elements of A are considered equal if
and only if they differ by less than ε, where ε is the precision of
the approximation. Of course, such a linear system could also be
solved with Gaussian elimination, as presented below in §4.4.

4.3 Generating Coinductive Elements and Substitution
Let us return to the substitution example and the example of replac-

ing y by •

x x

in •

x •

y

to get •

x •

•

x x

. The

equations we get tell us to find a v1 such that
v1 = App(v2, v3)
v2 = Var("x")
v3 = App(v4, v1)
v4 = App(Var "x", Var "x")

Finding such a v1 is easily done by executing the following code
in OCaml:

let rec v1 = App(v2, v3)
and v2 = Var("x")
and v3 = App(v4, v1)
and v4 = App(Var "x", Var "x")

in v1
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that can be easily generated (as a string of text) from the equations.
Unfortunately, there is no direct way of generating the element that
this code would produce. One workaround is to use the module
Toploop of OCaml that provides the ability to dynamically exe-
cute code from a string, like eval in Javascript. But that is not a
satisfying solution.

Another solution is to allow the program to manipulate terms by
making all subterms mutable using references:

type term =
| Var of string
| App of term ref * term ref
| Lam of string * term ref

This type allows the creation of the desired term by going down
the equations and building the terms progressively, backpatching if
necessary when encountering a loop. But this is also unsatisfactory,
as we had to change the type of term to allow references.

The missing piece is mutable variables, which are not present in
OCaml. References can simulate them, but they force us to change
the type, which we do not want to do. The only way to use and
manipulate corecursive types correctly is to have mutable variables.
The language constructs we propose should thus be created in a
programming language with mutable variables.

The same problem arises whenever A contains corecursive ele-
ments as well, such as in the example on descending sequences.

4.4 Gaussian Elimination
In many of the examples on probabilities and streams, a set of linear
equations is generated. For example, the example on probabilistic
protocols of §2.3 requires us to find a float var1 such that

var1 = 0.5 + 0.5 * var2
var2 = 0.5 * var1

In the case where the equations are contractive, we have already
seen that the solution is unique and we can approximate it by itera-
tion. We have also implemented a Gaussian elimination algorithm
that can be used to get a more precise answer or when the map is
not contractive but the solution is still unique.

But what happens when the linear system has no solution, or
an infinite number of solutions? If the system does not have a
solution, then there is no fixpoint for the function, and the function
is just undefined on that input. If there are an infinite number of
solutions, it depends on the application. For example, in the case
of computing the probability of heads in a probabilistic protocol,
we want the least such solution such that all variables take values
between 0 and 1.

For example, let us consider the following probabilistic proto-
col: Flip a fair coin. If it comes up heads, output heads, otherwise
flip again. Ignore the result and come back to this last state, effec-
tively flipping again forever. This protocol can be represented by
the following probabilistic automaton:

s

H t

1
2

1
2

1

The probability of obtaining heads, starting from s and t, respec-
tively, is given by:

PrH(s) = 1
2

+ 1
2
· PrH(t) PrH(t) = 1 · PrH(t).

The set of solutions for these equations for PrH(t) is the interval
[0, 1], thus the set of solutions for PrH(s) is the interval [ 1

2
, 1].

The desired result, however, is the least of those solutions, namely

1/2 for PrH(s), because the protocol halts with result heads only
with probability 1/2.

4.5 Automatic Partitioning
Providing all the elements to a SOLVER module requires from the
programmer a good understanding of the concepts explained in
this paper, and a method to solve equations. On the other hand,
examples show that the same solving techniques arise again and
again. Ideally, what we would like the programmer to write for free
variables is just:

type term =
| Var of string
| App of term * term
| Lam of string * term

let rec_lfp fv = function
| Var v -> {v}
| App (t1,t2) -> (fv t1) ∪ (fv t2)
| Lam (x,t) -> (fv t) − {x}

where the keyword rec_lfp has replaced the keyword rec, and
signifies that the equations generated for this function should be
solved using a least fixpoint algorithm by iteration, as described in
§4.2.

This definition is almost enough to generate the SOLVER mod-
ule. Only three more things need to be specified by the program-
mer:

• the function equal on coalgebras, here just ==, as in most cases;
and
• the two elements allowing to run the least fixpoint algorithm:

a bottom element ⊥A and an equality =A on the algebra A,
written algebra in the code.

The other elements can be directly computed from a careful analy-
sis of the code of fv:

• fv can be typed with the usual typing rules on recursive func-
tions. Then algebra is defined as its input type and coalgebra
as its output type;
• a dataflow analysis and analysis of the life of variables in fv

determines what is executed before the recursive calls and what
is executed after the recursive calls (assuming all the recursive
calls can be parallelized together). What is executed before the
recursive call forms the function gamma, and what is executed
after the recursive call forms the function alpha. Analyzing the
arguments that are passed to the recursive calls, as well as the
variables that are still alive across the boundary between gamma
and alpha, we build the functor f;
• folding on the abstract syntax tree of f, we generate code for fh;

more precisely, we can define fh by induction on the structure
of the abstract syntax tree defining f: if the definition of ’a f
does not contain any ’a, it just returns its second argument; if
it is a product, we apply its first argument h to every element
of type ’a in the product, passing through the element of type
’e, and returning a reconstructed product of the results; if it is
a sum type, we separate the different cases with a match, treat
each case as a product and inject back in the sum type; this is
done on the free variables example in §4.1;
• the type equation is always defined in the same way; and
• the solve function is generic for all functions solved as a least

fixpoint by iteration, just depending on the bottom element and
the equality on the algebra.
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5. Discussion
Coalgebraic (coinductive) datatypes and algebraic (inductive)
datatypes are similar in many ways. Nevertheless, there are some
important distinctions. Algebraic types have a long history, are
very well known, and are heavily used in modern applications, es-
pecially in the ML family of languages. Coalgebraic types, on the
other hand, are the subject of more recent research and are less well
known. Not all modern languages support coalgebraic types—for
example, Standard ML and F# do not—and even those that do may
not do so adequately.

The most important distinction is that coalgebraic objects can be
cyclic, whereas algebraic objects are always well-founded. Func-
tions defined by structural recursion on well-founded data always
terminate and yield a value under the standard semantics of recur-
sion, but not so on coalgebraic data. A more subtle distinction is
that constructors can be interpreted as functions under the alge-
braic interpretation, as they are in Standard ML, but not under the
coalgebraic interpretation as in OCaml.

Despite these differences, there are some strong similarities.
They are defined in the same way by recursive type equations,
algebraic types as initial solutions and coalgebraic types as final
solutions. Because of this similarity, we would like to program
with them in the same way, using constructors and destructors and
writing recursive definitions using pattern matching.

In this paper we have shown through several examples that this
approach to computing with coalgebraic types is not only useful
but viable. For this to be possible, it is necessary to circumvent
the standard semantics of recursion, and we have demonstrated
that this obstacle is not insurmountable. We have proposed new
programming language features that would allow the specification
of alternative solutions and methods to compute them, and we
have given mock-up implementations that demonstrate that this
approach is feasible.

The chief features of our approach are the automatic extraction
of a finite system of equations from the function definition and its
(cyclic) argument, a means for specifying an equation solver, and
an interface between the two. In many cases, such as an iterative
fixpoint on a codomain satisfying the ascending chain condition,
the process can be automated, requiring little extra work on the
part of the programmer.

We have also included some theoretical results that clarify and
slightly generalize some results of [2].

We have mentioned that mutable variables are essential for ma-
nipulating coalgebraic data. Current functional languages in the
ML family do not support mutable variables; thus true coalgebraic
data can only be constructed explicitly using let rec, not program-
matically. Moreover, once constructed, it cannot be changed. These
restrictions currently render coalgebraic datatypes all but useless.
One workaround is to simulate mutable variables with references,
but this is a supremely ugly alternative that flies in the face of al-
gebraic elegance. A future endeavor is to provide a smoother and
more realistic implementation of these ideas in an ML-like lan-
guage with mutable variables.
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A. Proof of Theorem 3.1
In this section we present a proof of Theorem 3.1 which extends a
result of [2]. In our proof, we make use of an explicit construction
of final coalgebras introduced by the second author in [10]. To
make this paper self-contained we recall the main definitions and
results from [10].

A.1 Directed Multigraphs
A directed multigraph is a structure G = (V, E, src, tgt) with
nodes V , edges E, and two maps src, tgt : E → V giving the
source and target of each edge, respectively. We write e : s → t
if s = src e and t = tgt e. When specifying multigraphs, we will
sometimes use the notation s n→ t for the metastatement, “There
are exactly n edges from s to t.”

A path is a finite alternating sequence of nodes and edges

s0 e0 s1 e1 s2 · · · sn−1 en−1 sn,

n ≥ 0, such that ei : si → si+1, 0 ≤ i ≤ n − 1. These are the
arrows of the free category generated by G. The length of a path
is the number of edges. A path of length 0 is just a single node.
The first and last nodes of a path p are denoted src p and tgt p,
respectively. As with edges, we write p : s → t if s = src p and
t = tgt p.
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Figure 1. A multigraph representing a single-sorted algebraic sig-
nature. Blue diamonds represent existential nodes and red squares
universal nodes.

A multigraph homomorphism ` : G1 → G2 is a map
` : V1 → V2, ` : E1 → E2 such that if e : s → t then
`(e) : `(s) → `(t). This lifts to a functor on the free categories
generated by G1 and G2.

A.2 Type Signatures
A type signature is a directed multigraph F along with a
designation of each node of F as either existential or universal.
The existential and universal nodes correspond respectively to
coproduct and product constructors. The directed edges of the
graph represent the corresponding destructors.

For example, consider an algebraic signature consisting of
a binary function symbol f , a unary function symbol g, and a
constant c. This would ordinarily be represented by the polynomial
endofunctor F = −2 +−+ 1, or in OCaml by

type t = F of t * t | G of t | C

We would represent this signature by a directed multigraph
consisting of four nodes {t, f, g, c}, of which t is existential and
f, g, c are universal, along with edges

t
1→ f t

1→ g t
1→ c f

2→ t g
1→ t.

The multigraph is illustrated in Fig. 1.

A.3 Coalgebras and Realizations
Let F be a type signature with nodes VF . An F -coalgebra is a
VF -indexed collection of pairs (Cs, γs), where the Cs are sets and
the γs are set functions

γs : Cs →

(P
src e=s Ctgt e, if s is existential,Q
src e=s Ctgt e, if s is universal.

A morphism of F -coalgebras is a VF -indexed collection of
set maps hs that commute with the γs in the usual way. This
corresponds to the traditional definition of an F -coalgebra for an
endofunctor F on SetV .

Coalgebras are equivalent to realizations. An F -realization is
a directed multigraph G along with a multigraph homomorphism
` : G→ F , called a typing, with the following properties.

• If `(u) is existential, then there is exactly one edge of G with
source u.
• If `(u) is universal, then ` is a bijection between the edges ofG

with source u and the edges of F with source `(u).

A homomorphism of F -realizations is a multigraph homomor-
phism that commutes with the typings.

THEOREM A.1 ([10]). The categories of F -coalgebras and F -
realizations are equivalent (in the sense of [12, §IV.4]).

A.4 Final Coalgebras
Realizations allow us to give a concrete construction of final
coalgebras that is reminiscent of the Brzozowski derivative on sets

of strings. Here, instead of strings, the derivative acts on certain
sets of paths of the type signature.

Let F be a type signature. Construct a realization RF , `F as
follows. A node of RF is a set A of finite paths in F such that

(i) A is nonempty and prefix-closed;

(ii) all paths in A have the same first node, which we define to be
`F (A);

(iii) if p is a path in A of length n and tgt p is existential, then there
is exactly one path of length n+ 1 in A extending p;

(iv) if p is a path in A of length n and tgt p is universal, then all
paths of length n+ 1 extending p are in A.

The edges of RF are defined as follows. Let A be a set of paths in
F and e an edge of F . Define the Brzozowski derivative of A with
respect to e to be

De(A) = {p | (src e) e p ∈ A},
the set of paths obtained by removing the initial edge e from paths
in A that start with that edge. If A is a node of RF and De(A) is
nonempty, we include exactly one edge

〈A, e〉 : A→ De(A)

in RF and take `F (〈A, e〉) = e. It is readily verified that
tgt 〈A, e〉 = De(A) satisfies properties (i)–(iv) and that
`F (De(A)) = tgt e, so `F is a typing.

THEOREM A.2. The realization RF , `F is final in the category of
F -realizations. The corresponding F -coalgebra as constructed in
Theorem A.1 is final in the category of F -coalgebras.

A.5 F -Algebras
An F -algebra is a VF -indexed collection of pairs (As, αs), where
the As are sets and the αs are set functions

αs : (
X

src e=s

Atgt e)→ As, if s is existential,

αs : (
Y

src e=s

Atgt e)→ As, if s is universal.

A morphism of F -algebras is a VF -indexed collection of set maps
hs that commute with the αs in the usual way. This corresponds to
the traditional definition of an F -algebra for an endofunctor F on
SetV .

A.6 Proof of the Theorem 3.1
An F -coalgebra-algebra morphism is a set function h : C → A,
where (C, γ) is an F -coalgebra and (A,α) is an F -algebra, such
that the following diagram commutes:

C A

FC FA

h

γ

Fh

α (7)

LEMMA A.3 (Lambek’s Lemma [11]). The structure map of the
initial F -algebra is invertible. The structure map of the final F -
coalgebra is invertible.

An F -realization G = (V, E, src, tgt, `) is well-founded if all
directed E-paths are finite. An F -coalgebra is well-founded if its
corresponding F -realization is.

LEMMA A.4. EveryF -coalgebra contains a maximal well-founded
subcoalgebra.
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Proof. Equivalently, everyF -realizationG = (V, E, src, tgt, `)
contains a maximal well-founded F -subrealization wf G. The
nodes wf V are the nodes of G from which there are no infinite di-
rected E-paths. The graph wf G is the induced subgraph on wf V .
Equivalently, the set of nodes of wf G is the smallest set of nodes
A ofG satisfying the closure condition: if allE-successors of s are
in A, then s ∈ A. 2

The induction principle for well-foundedG = (V, E, src, tgt, `)
is:

∀x (∀y ∈ n(x) P (y))→ P (x)

∀x P (x)
, (8)

where n is the successor function on G; that is, n(x) = {tgt e |
e ∈ E, src e = x}.

LEMMA A.5. Let RF = (V, E, src, tgt, `) be the final F -
realization. Then wf RF is an F -algebra.

Remark We will show in Corollary A.7 that wf RF is in fact the
initial F -algebra (up to isomorphism). To show initiality, we need
to show that there is a unique F -algebra morphism to any other
F -algebra. This will follow as a special case of Theorem 3.1(iv)
below.

Proof. By Lemma A.3, the structure map (γs | s ∈ VF ) of the
final F -coalgebra corresponding to RF is invertible, thus forms an
F -algebra. Translating back to the realization RF , this means that

• for every edge e ∈ EF such that src e is existential and every
node v of RF with `(v) = tgt e, there exists a unique node u
and edge d ofRF such that src d = u, tgt d = v, and `(d) = e;
and
• for every universal node s ∈ VF and tuple (ve | src e = s)

of nodes of RF such that `(ve) = tgt e, there exist a unique
node u and tuple of edges (de | src e = s) of RF such that
src de = u, tgt de = ve, and `(de) = e.

The existence and uniqueness of u in the above two cases assert the
closure of RF under the algebraic operations. The subrealization
wf RF is closed under these operations, because any node all of
whose immediate E-successors are in wf RF is also in wf RF ,
therefore wf RF is a subalgebra of RF . 2

We are now ready to present the proof of Theorem 3.1, which
we recall next, adding an extra item on parametric recursive
coalgebras to match the theorem of Adamek, Luecke and Milius.

THEOREM A.6. Let (C, γ) be an F -coalgebra. The following are
equivalent:

(i) C is well-founded.
(ii) The induction principle (8) is valid for C.

(iii) There is a unique coalgebra morphism C → wf RF .
(iv) There is a unique coalgebra-algebra morphism from C to any

F -algebra.
(v) There is a unique parameterized coalgebra-algebra morphism

from C to any F -algebra.

Proof. The equivalence of (i) and (ii) is a fundamental property
of relational algebra. The implication (i)⇒ (ii) requires the axiom
of dependent choice.

Assuming (i) and (ii), (iv) can be proved by defining a coalgebra-
algebra morphism by induction, using (8). Let (As, αs) be an ar-
bitrary F -algebra. Assume the coalgebra C is given in the form of
an F -realization G = (V, E, src, tgt, `). We must define maps
hs : `−1(s) → As for s ∈ VF satisfying condition (7). This is
equivalent to the following two conditions. Let s ∈ VF and u ∈ V
such that `(u) = s.

• If s is existential, let d be the unique edge with src d = u, let
v = tgt d, and let e = `(d). Then

hs(u) = αs(ine(htgt e(v))) ∈ As.

• If s is universal, for each e such that src e = s, let de be the
unique edge with u = src e and `(de) = e, and let ve = tgt de.
Then

hs(u) = αs(htgt e(ve) | src e = s) ∈ As.

The maps hs are uniquely defined by these equations due to the
well-foundedness of the E-successor relation on G.

By Lemma A.5, wf RF is an F -algebra, thus (iii) follows as a
special case of (iv).

To argue that (iii) implies (i), we observe that under any mor-
phism of F -realizations C → wf RF , an infinite path in C would
map to an infinite path in wf RF , which cannot exist by defini-
tion, since wf RF is well-founded. Thus C must be well-founded
as well.

We will now show (v)⇔ (iv).
We first show (v)⇒ (iv). Suppose that there is a unique parame-

terized coalgebra-algebra morphism fromC to any F -algebra. That
is, for any α′ : FA× C → A there is a unique h which makes the
following diagram commute:

C A

FC × C FA× C

h

〈γ, id〉

Fh× id

α′ (9)

We want to show that that there is a unique coalgebra-algebra
morphism from C to any F -algebra.

Take an arbitrary F -algebra α : A → FA and consider α′ =
α ◦ π1 : FA × C → A. Using diagram (9), we know that there
exists a unique h : C → A such that h = α◦π1◦(Fh×id)◦〈γ, id〉.
We show that h is a coalgebra-algebra morphism from C to A and,
moreover, that it is unique.

h
= α ◦ π1 ◦ (Fh× id) ◦ 〈γ, id〉 diagram (9)
= α ◦ Fh ◦ π1 ◦ 〈γ, id〉 π1 is a natural transf.
= α ◦ Fh ◦ γ π1 ◦ 〈f, g〉 = f

For uniqueness note that any other coalgebra-algebra morphism g
from C to A also makes diagram (9) commute, for α′ = α ◦ π1:

g
= α ◦ Fg ◦ γ definition of coalgebra-algebra

morphism
= α ◦ Fg ◦ π1 ◦ 〈γ, id〉 π1 ◦ 〈f, g〉 = f
= α ◦ π1 ◦ (Fg × id) ◦ γ π1 is a natural transformation

Hence, g = h.
For the converse implication, we need the following fact. Let

γ : C → FC be an F -coalgebra. Define G(X) = C × FX . Now
note that if (C, γ) is a well-founded F -coalgebra then (C, 〈γ, id〉)
is a well-founded G-coalgebra. Hence, we have that (i) for F
implies (i) for G which in turn (because we know, from what we
proved above, that (i) and (iv) are equivalent for a given functor)
implies (iv) for G. Now, assuming we have (iv) for G, (v) follows
trivially for F (note that diagram (9) for F is a coalgebra-algebra
morphism diagram for G). 2

COROLLARY A.7. The F -coalgebra wf RF is (up to isomor-
phism) the initial F -algebra.
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Proof. The structure wf RF is an F -algebra by Lemma A.5.
But it is also a well-founded F -coalgebra by definition. By the
equivalence of Theorem 3.1(i) and (iv), there is a unique F -algebra
morphism from wf RF to any F -algebra, thus wf RF is initial. 2
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