
Coinductive Soundness of Corecursive Type
Class Resolution

Frantǐsek Farka1,2, Ekaterina Komendantskaya2, and Kevin Hammond1

1 University of St Andrews, St Andrews, Scotland
{ff32,kh8}@st-andrews.ac.uk

2 Heriot-Watt University, Edinburgh, Scotland
ek19@hw.ac.uk

Abstract. Horn clauses and first-order resolution are commonly used to
implement type classes in Haskell. Several corecursive extensions to type
class resolution have recently been proposed, with the goal of allowing
(co)recursive dictionary construction where resolution does not termi-
nate. This paper shows, for the first time, that corecursive type class
resolution and its extensions are coinductively sound with respect to the
greatest Herbrand models of logic programs and that they are induc-
tively unsound with respect to the least Herbrand models. We establish
incompleteness results for various fragments of the proof system.

Keywords: Resolution · Coinduction · Herbrand models · Type classes
· Haskell · Horn clauses

1 Introduction

Type classes can be used to implement ad-hoc polymorphism and overloading
in functional languages. The approach originated in Haskell [16, 7] and has been
further developed in dependently typed languages [6, 3]. For example, it is con-
venient to define equality for all data structures in a uniform way. In Haskell,
this is achieved by introducing the equality class Eq:
class Eq x where

eq : : Eq x ⇒ x → x → Bool

and then declaring any necessary instances of the class, e.g. for pairs and integers:
instance (Eq x, Eq y) ⇒ Eq (x, y) where

eq (x1 , y1) (x2 , y2) = eq x1 x2 && eq y1 y2
instance Eq Int where

eq x y = primtiveIntEq x y

Type class resolution is performed by the Haskell compiler and involves check-
ing whether all the instance declarations are valid. For example, the following
function triggers a check that Eq (Int, Int) is a valid instance of type class Eq:
test : : Eq (Int , Int) ⇒ Bool
test = eq (1 ,2) (1 ,2)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by St Andrews Research Repository

https://core.ac.uk/display/84589276?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

It is folklore that type class instance resolution resembles SLD-resolution from
logic programming. The type class instance declarations above could, for exam-
ple, be viewed as the following two Horn clauses:
Example 1 (Logic program PPair).

κ1 : eq(x), eq(y) ⇒ eq(pair(x, y))
κ2 : ⇒ eq(int)

Then, given the query ? eq(pair(int, int)), SLD-resolution terminates success-
fully with the following sequence of inference steps:

eq(pair(int, int))→κ1 eq(int), eq(int)→κ2 eq(int)→κ2 ∅
The proof witness κ1κ2κ2 (called a “dictionary” in Haskell) is constructed by
the Haskell compiler. This is treated internally as an executable function.

Despite the apparent similarity of type class syntax and type class resolu-
tion to Horn clauses and SLD-resolution they are not, however, identical. At a
syntactic level, type class instance declarations correspond to a restricted form
of Horn clauses, namely ones that: (i) do not overlap (i.e. whose heads do not
unify); and that (ii) do not contain existential variables (i.e. variables that oc-
cur in the bodies but not in the heads of the clauses). At an algorithmic level,
(iii) type class resolution corresponds to SLD-resolution in which unification is
restricted to term-matching. Assuming there is a clause B1, . . . Bn ⇒ A′, then a
query ? A′ can be resolved with this clause only if A can be matched against A′,
i.e. if a substitution σ exists such that A = σA′. In comparison, SLD-resolution
incorporates unifiers, as well as matchers, i.e. it also proceeds to resolve the
above query and clause in all the cases where σA = σA′ holds.

These restrictions guarantee that type class inference computes the principal
(most general) type. Restrictions (i) and (ii) amount to deterministic inference
by resolution, in which only one derivation is possible for every query. Restric-
tion (iii) means that no substitution is applied to a query during inference,
i.e. we prove the query in an implicitly universally quantified form. It is com-
mon knowledge that (as with SLD-resolution) type class resolution is inductively
sound, i.e. that it is sound relative to the least Herbrand models of logic pro-
grams [12]. Moreover, in Section 3 we establish, for the first time, that it is also
universally inductively sound, i.e. that if a formula A is proved by type class
resolution, every ground instance of A is in the least Herbrand model of the
given program. In contrast to SLD-resolution, however, type class resolution is
inductively incomplete, i.e. it is incomplete relative to least Herbrand models,
even for the class of Horn clauses that is restricted by conditions (i) and (ii).
For example, given a clause ⇒ q(f(x)) and a query ? q(x), SLD-resolution is
able to find a proof (by instantiating x with f(x)), but type class resolution
fails. Lämmel and Peyton Jones have suggested [11] an extension to type class
resolution that accounts for some non-terminating cases of type class resolution.
Consider, for example, the following mutually defined data structures:
data OddList a = OCons a (EvenList a)
data EvenList a = Nil | ECons a (OddList a)

which give rise to the following instance declarations for the Eq class:

2

instance (Eq a, Eq (EvenList a)) ⇒ Eq (OddList a) where
eq (OCons x xs) (OCons y ys) = eq x y && eq xs ys

instance (Eq a, Eq (OddList a)) ⇒ Eq (EvenList a) where
eq Nil Nil = True
eq (ECons x xs) (ECons y ys) = eq x y && eq xs ys
eq _ _ = False

The test function below triggers type class resolution in the Haskell compiler:
test : : Eq (EvenList Int) ⇒ Bool
test = eq Nil Nil

However, inference by resolution does not terminate in this case. Consider the
Horn clause representation of the type class instance declarations:
Example 2 (Logic program PEvenOdd).

κ1 : eq(x), eq(evenList(x)) ⇒ eq(oddList(x))
κ2 : eq(x), eq(oddList(x)) ⇒ eq(evenList(x))
κ3 : ⇒ eq(int)

The non-terminating resolution trace is given by:
eq(evenList(int))→κ2 eq(int), eq(oddList(int))→κ3 eq(oddList(int))

→κ1 eq(int), eq(evenList(int))→κ3 eq(evenList(int))→κ2 . . .
A goal eq(evenList(int)) is simplified using the clause κ2 to goals eq(int) and
eq(oddList(int)). The first of these is discarded using the clause κ3. Resolution
continues using κ1 and κ3, resulting in the original goal eq(evenList(int)). It
is easy to see that such a process could continue infinitely and that this goal
constitutes a cycle (underlined above).

As suggested by Lämmel and Peyton Jones [11], the compiler can obviously
terminate the infinite inference process as soon as it detects the underlined cycle.
Moreover, it can also construct the corresponding proof witness in a form of a
recursive function. For the example above, such a function is given by the fixed
point term να.κ2κ3(κ1κ3α), where ν is a fixed point operator. The intuitive
reading of such a proof is that an infinite proof of the query ? eq (evenList(int))
exists, and that its shape is fully specified by the recursive proof witness function
above. We say that the proof is given by corecursive type class resolution.

Corecursive type class resolution is not inductively sound. For example, the
formula eq(evenList(int)) is not in the least Herbrand model of the corre-
sponding logic program. However, as we prove in Section 4, it is (universally)
coinductively sound, i.e. it is sound relative to the greatest Herbrand models. For
example, eq(evenList(int)) is in the greatest Herbrand model of the program
PEvenOdd. Similarly to the inductive case, corecursive type class resolution is
coinductively incomplete. Consider the clause κinf : p(x)⇒ p(f(x)). This clause
may be given an interpretation by the greatest (complete) Herbrand models.
However, corecursive type class resolution does not yield infinite proofs.

Unfortunately, this simple method of cycle detection does not work for all
non-terminating programs. Consider the following example, which defines a data
type Bush (for bush trees), and its corresponding instance for Eq:

3

data Bush a = Nil | Cons a (Bush (Bush a))
instance Eq a, Eq (Bush (Bush a)) ⇒ Eq (Bush a) where { ... }

Here, type class resolution does not terminate. However, it does not exhibit
cycles either. Consider the Horn clause translation of the problem:

Example 3 (Logic program PBush).
κ1 : ⇒ eq(int)
κ2 : eq(x), eq(bush(bush(x)))⇒ eq(bush(x))

The derivation below shows that no cycles arise when we resolve the query
? eq(bush(int)) against the program PBush:

eq(bush(int))→κ2 eq(int), eq(bush(bush(int))→κ1 . . .→κ2

eq(bush(int)), eq(bush(bush(bush(int)))→κ1 . . .
Fu et al. [5] have recently introduced an extension to corecursive type class
resolution that allows implicative queries to be proved by corecursion and uses
the recursive proof witness construction. Implicative queries require the language
of proof terms to be extended with λ-abstraction. For example, in the above
program the Horn formula eq(x) ⇒ eq(bush(x)) can be (coinductively) proven
with the recursive proof witness κ3 = να.λβ.κ2β(α(αβ)). If we add this Horn
clause as a third clause to our program, we obtain a proof of eq(bush(int))
by applying κ3 to κ1. In this case, it is even more challenging to understand
whether the proof κ3κ1 of eq(bush(int)) is indeed sound: whether inductively,
coinductively or in any other sense. In Section 5, we establish, for the first
time, coinductive soundness for proofs of such implicative queries, relative to the
greatest Herbrand models of logic programs. Namely, we determine that proofs
that are obtained by extending the proof context with coinductively proven Horn
clauses (such as κ3 above) are coinductively sound but inductively unsound. This
result completes our study of the semantic properties of corecursive type class
resolution. Sections 3 and 5 summarise our arguments concerning the inductive
and coinductive incompleteness of corecursive type class resolution.

Contributions. By presenting the described results, we answer three research
questions:

(1) whether type class resolution and its two recent corecursive extensions [5,
11] are sound relative to the standard (Herbrand model) semantics of logic
programming;

(2) whether these new extensions are indeed “corecursive”, i.e. whether they are
better modelled by the greatest Herbrand model semantics rather than by
the least Herbrand model semantics; and

(3) whether the context update technique given in [5] can be reapplied to logic
programming and can be re-used in its corecursive dialects such as CoLP [14]
and CoALP [10] or, even broader, can be incorporated into program trans-
formation techniques [2].

We answer questions (1) and (2) in the affirmative. The answer to question (3)
is less straightforward. The way the implicative coinductive lemmata are used

4

in proofs alongside all other Horn clauses in [5] indeed resembles a program
transformation method when considered from the logic programming point of
view. In reality, however, different fragments of the calculus given in [5] allow
proofs for Horn formulae which, when added to the initial program, may lead
to inductively or coinductively unsound extensions. We analyse this situation
carefully, throughout the technical sections that follow. In this way, we highlight
which program transformation methods can be soundly borrowed from existing
work on corecursive resolution. We will use the formulation of corecursive type
class resolution given by Fu et al. [5]. This extends Howard’s simply-typed λ-
calculus [8, 4] with a resolution rule and a ν-rule. The resulting calculus is general
and accounts for all previously suggested kinds of type class resolution.

2 Preliminaries

This section describes our notation and defines the models that we will use in
the rest of the paper. As is standard, a first-order signature Σ consists of the set
F of function symbols and the set P of predicate symbols, all of which possess
an arity. Constants are function symbols of arity 0. We also assume a countable
set V of variables. Given Σ and V, we have the following standard definitions:

Definition 1 (Syntax of Horn formuale and logic programs).
First-order term Term ::= V | F(Term, . . . , T erm)

Horn formula (clause) CH ::= At, . . . ,At⇒ At
Atomic formula At ::= P(Term, . . . , T erm)

Logic program Prog ::= CH, . . . ,CH

We use identifiers t and u to denote terms and A,B,C to denote atomic formulae.
We use P with indicies to refer to elements of Prog. We say that a term or an
atomic formula is ground if it contains no variables. We assume that all variables
in Horn formulae are implicitly universally quantified. Moreover, restriction (ii)
from Section 1 requires that there are no existential variables, i.e. given a clause
B1, . . . , Bn ⇒ A, if a variable occurs in Bi, then it also occurs in A. We use the
common term formula to refer to both atomic formulae and to Horn formulae.
A substitution and the application of a substitution to a term or a formula are
defined in the usual way. We denote application of a substitution σ to a term t
or to an atomic formula A by σt and σA respectively. We denote composition of
substitutions σ and τ by σ ◦ τ . A substitution σ is a grounding substitution for
a term t if σt is a ground term, and similarly for an atomic formula.

2.1 Models of Logic Programs

Throughout this paper, we use the standard definitions of the least and greatest
Herbrand models. Given a signature Σ, the Herbrand universe UΣ is the set of
all ground terms over Σ. Given a Herbrand universe UΣ we define the Herbrand
base BΣ as the set of all atoms consisting only of ground terms in UΣ .

5

Definition 2 (Semantic operator). Let P be a logic program over signature
Σ. The mapping TP : 2BΣ → 2BΣ is defined as follows. Let I be a subset of BΣ.
TP (I) = {A ∈ BΣ | B1, . . . Bn ⇒ A is a ground instance of a clause in P ,

and {B1, . . . , Bn} ⊆ I}

The operator gives inductive and coinductive interpretation to a logic program.

Definition 3. Let P be a logic program.

– The least Herbrand model is the least set MP ∈ BΣ such that MP is a
fixed point of TP .

– The greatest Herbrand model is the greatest set M′P ∈ BΣ such that M′P
is a fixed point of TP .

Lloyd [12] introduces the operators ↓ and ↑ and proves that TP ↓ ω gives the
greatest Herbrand model of P , and that TP ↑ ω gives the least Herbrand model
of P . We will use these constructions in our own proofs. The validity of a formula
in a model is defined as usual. An atomic formula is valid in a model I if and
only if for any grounding substitution σ, we have σF ∈ I. A Horn formula
B1, . . . , Bn ⇒ A is valid in I if for any substitution σ, if σB1, . . . , σBn are valid
in I then σA is valid in I. We use the notation P �ind F to denote that a formula
F is valid in MP and P �coind F to denote that a formula F is valid in M′P .

Lemma 1. Let P be a logic program and let σ be a substitution. The following
holds:

a) If (⇒ A) ∈ P then both P �ind σA and P �coind σA
b) If, for all i, P �ind σBi and (B1, . . . , Bn ⇒ A) ∈ P then P �ind σA
c) If, for all i, P �coind σBi and (B1, . . . , Bn ⇒ A) ∈ P then P �coind σA

The proof of the lemma can be found in the existing literature [12] and follows
from the fact that both MP and M′P are fixed points of the operator TP .

2.2 Proof Relevant Resolution

In [5], the usual syntax of Horn formulae was embedded into a type-theoretic
framework, with Horn formulae seen as types inhabited by proof terms. In this
setting, a judgement has the form Φ ` e : F , where e is a proof term inhabiting
formula F , and Φ is an axiom environment containing annotated Horn formulae
that correspond to the given logic program. This gives rise to the following
syntax, in addition to that of Definition 1. We assume a set of proof term symbols
K, and a set of proof term variables U .

Definition 4 (Syntax of proof terms and axiom environments).
Proof term E ::= K | U | E E | λU.E | νU.E

Axiom environment Ax ::= · | Ax, (E : CH)

6

We use the notation κ with indices to refer to elements of K, α and β with
indices to refer to elements of U , e to refer to proof terms in E, and Φ to refer to
axiom environments in Ax. Given a judgement Φ ` e : F , we call F an axiom if
e ∈ K, and we call F a lemma if e /∈ K is a closed term, i.e. it contains no free
variables. A proof term e is in guarded head normal form (denoted gHNF(e)),
if e = λα.κ e where α and e denote (possibly empty) sequences of variables
α1, . . . , αn and proof terms e1 . . . em respectively where n and m are known
from the context or are unimportant. The intention of the above definition is
to interpret logic programs, seen as sets of Horn formulae, as types. Example 1
shows how the proof term symbols κ1 and κ2 can be used to annotate clauses
in the given logic program. We capture this intuition in the following formal
definition:

Definition 5. Given a logic program PA consisting of Horn clauses H1, . . . ,Hn,
with each Hi having the shape Bi1, . . . , Bik ⇒ Ai, the axiom environment ΦA is
defined as follows. We assume proof term symbols κ1, . . . , κn, and define, for
each Hi, κi : Bi1, . . . , Bik ⇒ Ai.

Revisiting Example 1, we can say that it shows the result of translation of
the program PPair into ΦPair and ΦPair is an axiom environment for the logic
program PPair. In general, we say that ΦA is an axiom environment for a logic
program PA if and only if there is a translation of PA into ΦA. We drop the index
A where it is known or unimportant. Restriction (i) from Section 1 requires that
axioms in an axiom environment do not overlap. However, a lemma may overlap
with other axioms and lemmata—only axioms are subject to restriction (i). We
refer the reader to [5] for complete exposition of proof-relevant resolution. In the
following sections, we will use this syntax to gradually introduce inference rules
for proof-relevant corecursive resolution. We start with its “inductive” fragment,
i.e. the fragment that is sound relative to the least Herbrand models, and then
in subsequent sections consider its two coinductive extensions (which are both
sound with respect to the greatest Herbrand models).

3 Inductive Soundness of Type Class Resolution

This section describes the inductive fragment of the calculus for the extended
type class resolution that was introduced by Fu et al. [5]. We reconstruct the
standard theorem of universal inductive soundness for the resolution rule. We
consider an extended version of type class resolution, working with queries given
by Horn formulae, rather than just atomic formulae. We show that the resulting
proof system is inductively sound, but coinductively unsound; we also show that
it is incomplete. Based on these results, we discuss the program transformation
methods that can arise.

Definition 6 (Type class resolution).
if (e : B1, . . . , Bn ⇒ A) ∈ Φ Φ ` e1 : σB1 · · · Φ ` en : σBn

Φ ` e e1 · · · en : σA (Lp-m)

7

If, for a given atomic formula A, and a given environment Φ, Φ ` e : A is derived
using the Lp-m rule we say that A is entailed by Φ and that the proof term e
witnesses this entailment. We define derivations and derivation trees resulting
from applications of the above rule in the standard way (cf. Fu et al. [5]).

Example 4. Recall the logic program PPair in Example 1. The inference steps
for eq(pair(int, int)) correspond to the following derivation tree:

ΦP air ` κ2 : eq(int) ΦP air ` κ2 : eq(int)
ΦP air ` κ1κ2κ2 : eq(pair(int, int))

The above entailment is inductively sound, i.e. it is sound with respect to the
least Herbrand model of PPair:

Theorem 1. Let Φ be an axiom environment for a logic program P , and let
Φ ` e : A hold. Then P �ind A.

Proof. By structural induction on the derivation tree and construction of the
least Herbrand model, using Lemma 1. ut

The rule Lp-m also plays a crucial role in the coinductive fragment of type class
resolution, as will be discussed in Sections 4 and 5. We now discuss the other
rule that is present in the work of Fu et al. [5], i.e the rule that allows us to
prove Horn formulae:

Definition 7.
Φ, (β1 : ⇒ B1), . . . , (βn : ⇒ Bn) ` e : A

Φ ` λβ1, . . . , βn.e : B1, . . . , Bn ⇒ A
(Lam)

Example 5. To illustrate the use of the Lam rule, consider the following program:
Let P consist of two clauses: A⇒ B and B ⇒ C. Both the least and the greatest
Herbrand model of P are empty. Equally, no formulae can be derived from the
corresponding axiom environment by the Lp-m rule. However, we can derive
A⇒ C by using a combination of the Lam and Lp-m rules. Let Φ = (κ1 : A⇒
B), (κ2 : B ⇒ C). The following is then a derivation tree for a formula A⇒ C:

Φ, (α : ⇒ A) ` α : A
Φ, (α : ⇒ A) ` κ1α : B

Φ, (α : ⇒ A) ` κ2(κ1α) : C
Lam

Φ ` λα.κ2(κ1α) : A⇒ C

When there is no label on the right-hand side of an inference step, inference uses
the Lp-m rule. We follow this convention throughout the paper.

We can show that the calculus comprising the rules Lp-m and Lam is again
(universally) inductively sound.

Lemma 2. Let P be a logic program and let A, B1, . . . , Bn be atomic formulae.
If P, (⇒ B1), . . . , (⇒ Bn) �ind A then P �ind B1, . . . , Bn ⇒ A.

8

Proof. By induction on construction of MP . ut

Theorem 2. Let Φ be an axiom environment for a logic program P and F a
formula. Let Φ ` e : F be by the Lp-m and Lam rules. Then P �ind F .

Proof. By structural induction on the derivation tree using Lemmata 1 & 2. ut

Inductive Completeness and Incompleteness of the Proof System Lp-
m + Lam. In principle, one can consider two different variants. Extending the
standard results of [12], our first formulation is:

Inductive Completeness-1: if a ground atomic formula F is in MP , then
ΦP ` e : F is in the Lp-m + Lam proof system.

Such a result can be proved, as in [12], by straightforward induction on
the construction of MP . Such a proof will be based solely on the properties
of the rule Lp-m and on the properties of the semantic operator TP that is
used to construct the least Herbrand models. An alternative formulation of the
completeness result, this time involving implicative formulae and hence the rule
Lam in the proof, would be:
Inductive Completeness-2: if MP �ind F then ΦP ` e : F is in the Lp-m +
Lam proof system.

However, this result would not hold for either system Lp-m or Lp-m + Lam.
Consider the following examples.

Example 6. Let Σ be a signature consisting of a unary predicate symbol A, a
unary function symbol f and a constant function symbol g. Let P6 be a program
given by the following axiom environment:

κ1 : ⇒ A(f(x))
κ2 : ⇒ A(g)

The least Herbrand model of P6 is MP 6 = {A(g), A(f(g)), A(f(f(g))), . . . }.
Therefore, P �ind A(x). However, neither κ1 nor κ2 matches A(x) and there is
thus no way to construct a proof term e satisfying:

· · · Lp-m
P ` e : A(x)

We demonstrate the incompleteness of the proof system Lp-m + Lam through
the following example:

Example 7. Let Σ be a signature consisting of the unary predicate symbols A
and B, and a constant function symbol f. Consider a program P7 given by the
following axiom environment: κ1 : ⇒ A(f)

κ2 : ⇒ B(f)
The least Herbrand model is MP 7 = {A(f), B(f)}. Therefore P �ind B(x) ⇒
A(x). However, any proof of B(x)⇒ A(x) needs to show that:

· · ·
(P, α : ⇒ B(x)) ` e : A(x)

Lam
P ` λα.e : B(x)⇒ A(x)

where e is a proof term. This proof will not succeed since no axiom or hypothesis
matches A(x).

9

Related Program Transformation Methods. For Fu et al. [5], the main
purpose of introducing the rule Lam was to increase expressivity of the proof
system. In particular, obtaining an entailment Φ ` e : H of a Horn formula H
enabled the environment Φ to be extended with e : H, which could be used in
future proofs. We show that transforming (the standard, untyped) logic programs
in this way is inductively sound. The following theorem follows from Lemma 2:

Theorem 3. Let Φ be an axiom environment for a logic program P , and let
Φ ` e : F for a formula F by the Lp-m and Lam rules. Given a formula F ′,
P �ind F ′ iff P, F �ind F ′.

Note, however, that the above theorem is not as trivial as it looks, in particular,
it would not hold coinductively, i.e. if we changed �ind to �coind in the statement
above. Consider the following proof of the formula A⇒ A:

Example 8. Using the Lam rule, one can prove ∅ ` λα.α : A⇒ A:

(α : ⇒ A) ` α : A
Lam∅ ` λα.α : A⇒ A

Assume a program consisting of a single formula A ⇒ B. Both the least and
the greatest Herbrand model of this program are empty. However, adding the
formula A⇒ A to the program results in the greatest Herbrand model {A,B}.
Thus, M′P 6=M′P,(A⇒A).

4 Coinductive Soundness of Corecursive Type Class
Resolution

The Lp-m rule may result in non-terminating resolution. This can be demon-
strated by the program PEvenOdd and the query ? eq(evenList(Int)) from Sec-
tion 1. Lämmel and Peyton Jones observed [11] that in such cases there may be
a cycle in the inference that can be detected. This treatment of cycles amounts
to coinductive reasoning and results in building a corecursive proof witness—i.e.
a (co-)recursive dictionary.

Definition 8 (Coinductive type class resolution).

if gHNF(e)
Φ, (α : ⇒ A) ` e : A

Φ ` να.e : A (Nu’)

The side condition of Nu’ requires the proof witness to be in guarded head
normal form. Since, in this section, we are working with a calculus consisting
of the rules Lp-m and Nu’, there is no way to introduce a λ-abstraction into a
proof witness. Therefore, in this section, we restrict ourselves to guarded head
normal form terms of the form κ e.

Example 9. Recall the program PEvenOdd in Example 2. The originally non-
terminating resolution trace for the query ? eq(evenList(int)) is resolved using
the Nu’ rule as follows:

10

κ3 : eq(int)
` κ3 : eq(int)

κ3 : eq(int)
` κ3 : eq(int)

α : ⇒ eq(evenList(int))
` α : eq(evenList(int))

ΦEvenOdd, α : ` κ1κ3α : eq(oddList(int))
ΦEvenOdd, α : ` κ2κ3(κ1κ3α) : eq(evenList(int))

Nu’
ΦEvenOdd ` να.κ2κ3(κ1κ3α) : eq(evenList(int))

Note that we abbreviate repeated formulae in the environment using an under-
score. We will use this notation in the rest of the paper.

We can now discuss the coinductive soundness of the Nu’ rule, i.e. its sound-
ness relative to the greatest Herbrand models. We note that, not surprisingly
(cf. [13]), the Nu’ rule is inductively unsound. Given a program consisting of
just one clause: κ : A ⇒ A, we are able to use the rule Nu’ to entail A (the
derivation of this will be similar to, albeit a lot simpler than, that in the above
example). However, A is not in the least Herbrand model of this program. Simi-
larly, the formula eq(oddList(int)) that was proved above is also not inductively
sound. Thus, the coinductive fragment of the extended corecursive resolution is
only coinductively sound. When proving the coinductive soundness of the Nu’
rule, we must carefully choose the proof method by which we proceed. Inductive
soundness of the Lp-m rule was proven by induction on the derivation tree and
through the construction of the least Herbrand models by iterations of TP . Here,
we give an analogous result, where coinductive soundness is proved by structural
coinduction on the iterations of the semantic operator TP .

In order for the principle of structural coinduction to be applicable in our
proof, we must ensure that the construction of the greatest Herbrand model is
completed within ω steps of iteration of TP . This does not hold in general for
the greatest Herbrand model construction, as was shown e.g. in [12]. However,
it does hold for the restricted shape of Horn clauses we are working with. It
was noticed by Lloyd [12] that Restriction (ii) from Section 1 implies that the
TP operator converges in at most ω steps. We will capitalise on this fact. The
essence of the coinductive soundness of Nu’ is captured by the following lemma:

Lemma 3. Let P be a logic program, let σ be a substitution, and let A, B1,
. . . , Bn be atomic formulae. If, ∀i ∈ {1, . . . , n}, P, (⇒ σA) �coind σBi and
(B1, . . . , Bn ⇒ A) ∈ P then P �coind σA.

The proof of the lemma is similar to the proof of the Lemma 4 in the next section
and we do not state it here. Finally, Theorem 4 states universal coinductive
soundness of the coinductive type class resolution:

Theorem 4. Let Φ be an axiom environment for a logic program P and F a
formula. Let Φ ` e : F be by the Lp-m and Nu’ rules. Then Φ �coind F .

Proof. By structural induction on the derivation tree using Lemmata 1 & 3. ut

Choice of Coinductive Models. Perhaps the most unusual feature of the
semantics given in this section is the use of the greatest Herbrand models rather
than the greatest complete Herbrand models. The latter is more common in the

11

literature on coinduction in logic programming [10, 12, 14]. The greatest com-
plete Herbrand models are obtained as the greatest fixed point of the semantic
operator T ′P on the complete Herbrand base, i.e. the set of all finite and infinite
ground atomic formulae formed by the signature of the given program. This
construction is preferred in the literature for two reasons. Firstly, T ′P reaches its
greatest fixed point in at most ω steps, whereas TP may take more than ω steps
in the general case. This is due to compactness of the complete Herbrand base.
Moreover, greatest complete Herbrand models give a more natural characterisa-
tion for programs like the one given by the clause κinf : p(x) ⇒ p(f(x)). The
greatest Herbrand model of that program is empty. However, its greatest com-
plete Herbrand model contains the infinite formula p(f(f(...)). Restrictions (i) –
(iii), imposed by type class resolution, mean that the greatest Herbrand models
regain those same advantages as complete Herbrand models. It was noticed by
Lloyd [12] that restriction (ii) implies that the semantic operator converges in
at most ω steps. Restrictions (i) and (iii) imply that proofs by type class reso-
lution have a universal interpretation, i.e. that they hold for all finite instances
of queries. Therefore, we never need to talk about programs for which only one
infinite instance of a query is valid.

5 Coinductive Soundness of Extended Corecursive Type
Class Resolution

The class of problems that can be resolved by coinductive type class resolution
is limited to problems where a coinductive hypothesis is in atomic form. Fu
et al. [5] extended coinductive type class resolution with implicative reasoning
and adjusted the rule Nu’ such that this restriction of coinductive type class
resolution is relaxed:

Definition 9 (Extended coinductive type class resolution).

if gHNF(e)
Φ, (α : B1, . . . , Bn ⇒ A) ` e : B1, . . . , Bn ⇒ A

Φ ` να.e : B1, . . . , Bn ⇒ A
(Nu)

The side condition of the Nu rule requires the proof witness to be in guarded
head normal form. However, unlike coinductive type class resolution, extended
coinductive type class resolution also uses the Lam rule and a guarded head
normal term is of the more general form λα.κe for a possibly non-empty sequence
of proof term variables α. First, let us note that extended coinductive type class
resolution indeed extends the calculus of Section 4:

Proposition 1. The inference rule Nu’ is admissible in the extended coinduc-
tive type class resolution.

Furthermore, this is a proper extension. The Nu rule allows queries to be entailed
that were beyond the scope of coinductive type class resolution. In Section 1, we
demonstrated a derivation for query ? eq(bush(int)) where no cycles arise and
thus the query cannot be resolved by coinductive type class resolution.

12

Example 10. Recall the program PBush we defined in the Example 3. The query
? eq(bush(int)) is resolved as follows:

ΦBush `
κ1 : eq(int)

(β : ⇒ eq(x))
` β : eq(x)

(β : ⇒ eq(x)) ` β : eq(x)
(α : eq(x)⇒ eq(bush(x))), (β :) `

αβ : eq(bush(x))
(α :), (β :) ` α(αβ) : eq(bush(bush(x)))

ΦBush, (α :), (β :) ` κ2β(α(αβ)) : eq(bush(x))
Lam

ΦBush, (α :) ` λβ.κ2β(α(αβ)) : eq(x)⇒ eq(bush(x))
Nu

ΦBush ` να.λβ.κ2β(α(αβ)) : eq(x)⇒ eq(bush(x))
ΦBush ` (να.λβ.κ2β(α(αβ)))κ1 : eq(bush(int))

Before proceeding with the proof of soundness of extended type class reso-
lution we need to show two intermediate lemmata. The first lemma states that
inference by the Nu rule preserves coinductive soundness:

Lemma 4. Let P be a logic program, let σ be a substitution, and let A, B1, . . . ,
Bn, C1, . . . , Cm be atomic formulae. If, for all i, P,B1, . . . , Bn, (B1, . . . , Bn ⇒
σA) �coind σCi and (C1, . . . , Cm ⇒ A) ∈ P then P �coind B1 . . . Bn ⇒ σA.

Proof. Consider the construction of the greatest Herbrand model of the pro-
gram P and proceed by coinduction with coinductive hypothesis: for all n,
B1, . . . , Bn ⇒ σA is valid in TP ↓ n. Assume that, for a grounding substitu-
tion τ , for all i, τBi ∈ TP ↓ n. Then also (τ ◦ σ)A ∈ TP ↓ n. For the definition
of the semantic operator, it follows from the monotonicity of the operator itself,
and from the assumptions made by the lemma that (τ ◦ σ)Ci ∈ TP ↓ n. Since
C1, . . . , Cn ⇒ A ∈ P also (τ ◦σ)A ∈ TP ↓ (n+1). If the assumption does not hold
then from the monotonicity of TP it follows that, for all i, τBi 6∈ TP ↓ (n + 1).
Therefore, B1, . . . , Bn ⇒ σA is valid if TP ↓ (n + 1). We apply the coinductive
hypothesis to conclude that the same holds for all subsequent iterations of TP .
Hence whenever, for a substitution τ , all instances of τB1 to τBn are in the
greatest Herbrand model then also all instances of (τ ◦ σ)A are in the greatest
Herbrand model. Hence P �coind B1, . . . , Bn ⇒ A. ut

The other lemma that we need in order to prove coinductive soundness of ex-
tended type class resolution states that inference using Lam preserves coinduc-
tive soundness, i.e. we need to show the coinductive counterpart to Lemma 2:

Lemma 5. Let P be a logic program and A, B1, . . . , Bn atomic formulae. If
P, (⇒ B1), . . . (⇒ Bn) �coind A then P �coind B1, . . . , Bn ⇒ A.

Now, the universal coinductive soundness of extended coinductive type class
resolution follows straightforwardly:

Theorem 5. Let Φ be an axiom environment for a logic program P , and let be
Φ ` e : F for a formula F by the Lp-m, Lam, and Nu rules. Then P �coind F .

Proof. By induction on the derivation tree using Lemmata 1, 4, & 5. ut

13

Coinductive Incompleteness of the Proof System Lp-m + Lam + Nu.
In Section 3, we considered two ways of stating inductive completeness of type
class resolution. We state the corresponding result for the coinductive case here.
As both the notions of completeness are shown not to hold we discuss them in
the reversed order than the inductive completeness, first the more general case
and then the more restricted one:

Coinductive Completeness-2: if M′P �coind F then ΦP ` e : F in the
Lp-m + Lam + Nu proof system.

Recall Examples 6 and 7, and the programs P6 and P7. We demonstrated
that, in general, there are formulae that are valid in MP but do not have
a proof in P . The same two examples will serve our purpose here. For ex-
ample, the greatest Herbrand model of the program P6 is M′P = MP =
{A(g), A(f(g)), A(f(f(g))), . . .}. Therefore, for an atomic formula A(x), P �coind
A(x). However, it is impossible to construct a proof:

· · · Lp-m
P ` e : A(x)

The rules Lp-m and Lam are not applicable for the same reasons as in the induc-
tive case and the rule Nu is not applicable since A(x) is not a Horn formula.

Moreover, a more restricted formulation in the traditional style of Lloyd [12]
does not improve the situation:

Coinductive Completeness-1: if a ground atomic formula F is in M′P ,
then ΦP ` e : F in the Lp-m + Lam + Nu proof system. Such a result does
not hold, since there exist coinductive logic programs that define corecursive
schemes that cannot be captured in this proof system. Consider the following
example [5]:

Example 11. Let Σ be a signature with a binary predicate symbol D, a unary
function symbol s and a constant function symbol z. Consider a program P11
with the signature Σ given by the following axiom environment:

κ1 : D(x, s(y))⇒ D(s(x), y)
κ2 : D(s(x), z)⇒ D(z, x)

Let us denote a term s(s(. . . s(x) . . .)) where the symbol s is applied i-times as
si(x). By observing the construction ofM′P we can see that, for all i, if D(z, si(x))
then D(si(x), z) ∈ M′P and also D(z, si−1(x)) ∈ M′P . Therefore D(z, z) ∈ M′P .
However, there is no proof of D(z, z) since any number of proof steps resulting
from the use of Lp-m generates yet another ground premise that is different from
all previous premises. Consequently, the proof cannot be closed by Nu. Also,
no lemma that would allow for a proof can be formulated; an example of such
a lemma would be the above D(z, si(x)) ⇒ D(z, si−1(x)). This is a higher order
formula and cannot be expressed in a first order Horn clause logic.

Related Program Transformation Methods. We conclude this section with
a discussion of program transformation with Horn formulae that are entailed by
the rules Lam and Nu. From the fact that the Nu’ rule is inductively unsound,
it is clear that using program transformation techniques based on the lemmata
that were proved by the Lam and Nu rules would also be inductively unsound.

14

However, a more interesting result is that adding such program clauses will not
change the coinductive soundness of the initial program:
Theorem 6. Let Φ be an axiom environment for a logic program P , and let
Φ ` e : F for a formula F by the Lp-m, Lam and Nu rules such that gHNF(e).
Given a formula F ′, P �coind F ′ iff (P, F) �coind F ′.
The above result is possible thanks to the guarded head normal form condition,
since it is then impossible to use a clause A⇒ A that was derived from an empty
context by the rule Lam. It is also impossible to make such a derivation within
the proof term e itself and to then derive A by the Nu rule from A ⇒ A. The
resulting proof term will fail to satisfy the guarded head normal form condition
that is required by Nu. Since this condition guards against any such cases, we
can be sure that this program transformation method is coinductively sound and
hence that it is safe to use with any coinductive dialect of logic programming,
e.g. with CoLP [14].

6 Related Work

The standard approach to type inference for type classes, corresponding to type
class resolution as studied in this paper, was described by Stuckey and Sulz-
man [15]. Type class resolution was further studied by Lämmel and Peyton
Jones [11], who described what we here call coinductive type class resolution.
The description of the extended calculus of Section 5 was first presented by Fu
et al. [5]. Generally, there is a body of work that focuses on allowing for infinite
data structures in logic programming. Logic programming with rational trees [1,
9] was studied from both an operational semantics and a declarative semantics
point of view. Simon et al. [14] introduced co-logic programming (co-LP) that
also allows for terms that are rational infinite trees and hence that have infinite
proofs.Corecursive resolution, as studied in this paper, is more expressive than
co-LP: while also allowing infinite proofs, and closing of coinductive hypotheses
is less constrained in our approach.

7 Conclusions and Future Work

In this paper, we have addressed three research questions. First, we provided a
uniform analysis of type class resolution in both inductive and coinductive set-
tings and proved its soundness relative to (standard) least and greatest Herbrand
models. Secondly, we demonstrated, through several examples, that coinductive
resolution is indeed coinductive—that is, it is not sound relative to least Her-
brand models. Finally, we addressed the question of whether the methods listed
in this paper can be reapplied to coinductive dialects of logic programming via
soundness preserving program transformations.

As future work, we intend to extend our analysis of Horn-clause resolution
to Horn clauses with existential variables and existentially quantified goals. We
believe that such resolution accounts to type inference for other language con-
structs than type classes, namely type families and algebraic data types.

15

Acknowledgements. This work has been supported by the EPSRC grant
“Coalgebraic Logic Programming for Type Inference” EP/K031864/1-2, EU
Horizon 2020 grant “RePhrase: Refactoring Parallel Heterogeneous Resource-
Aware Applications - a Software Engineering Approach” (ICT-644235), and by
COST Action IC1202 (TACLe), supported by COST (European Cooperation in
Science and Technology).

References

1. Colmerauer, A.: Equations and inequations on finite and infinite trees. In: FGCS.
pp. 85–99 (1984)

2. De Angelis, E., Fioravanti, F., Pettorossi, A., Proietti, M.: Proving correctness
of imperative programs by linearizing constrained horn clauses. TPLP 15(4-5),
635–650 (2015)

3. Devriese, D., Piessens, F.: On the bright side of type classes: instance arguments in
agda. In: Proc. of ICFP 2011, Tokyo, Japan, September 19-21, 2011. pp. 143–155
(2011)

4. Fu, P., Komendantskaya, E.: Operational semantics of resolution and productivity
in horn clause logic. Formal Aspects of Computing pp. 1–22 (2016)

5. Fu, P., Komendantskaya, E., Schrijvers, T., Pond, A.: Proof relevant corecursive
resolution. In: Proc. of FLOPS 2016, Kochi, Japan, March 4-6, 2016 (2016)

6. Gonthier, G., Ziliani, B., Nanevski, A., Dreyer, D.: How to make ad hoc proof
automation less ad hoc. In: Proc. of ICFP 2011, Tokyo, Japan, September 19-21,
2011. pp. 163–175 (2011)

7. Hall, C.V., Hammond, K., Jones, S.L.P., Wadler, P.: Type classes in haskell. ACM
Trans. Program. Lang. Syst. 18(2), 109–138 (1996)

8. Howard, W.: The formulae-as-types notion of construction. In: Seldin, J.P., Hind-
ley, J.R. (eds.) To H. B. Curry: Essays on Combinatory Logic, Lambda-Calculus,
and Formalism. pp. 479–490. Academic Press, NY, USA (1980)

9. Jaffar, J., Stuckey, P.J.: Semantics of infinite tree logic programming. Theor. Com-
put. Sci. 46(3), 141–158 (1986)

10. Komendantskaya, E., Johann, P.: Structural resolution: a framework for coinduc-
tive proof search and proof construction in horn clause logic. ACM Transcations
on Computational Logic submitted (2015)

11. Lämmel, R., Peyton Jones, S.L.: Scrap your boilerplate with class: extensible
generic functions. In: Proc. of ICFP 2005, Tallinn, Estonia, September 26-28, 2005.
pp. 204–215 (2005)

12. Lloyd, J.W.: Foundations of Logic Programming, 2nd Edition. Springer (1987)
13. Sangiorgi, D.: On the origins of bisimulation and coinduction. ACM Trans. Pro-

gram. Lang. Syst. 31(4), 15:1–15:41 (May 2009)
14. Simon, L., Bansal, A., Mallya, A., Gupta, G.: Co-logic programming: Extending

logic programming with coinduction. In: Proc. of ICALP 2007, Wroclaw, Poland,
July 9-13, 2007. pp. 472–483 (2007)

15. Stuckey, P.J., Sulzmann, M.: A theory of overloading. ACM Trans. Program. Lang.
Syst. 27(6), 1216–1269 (2005)

16. Wadler, P., Blott, S.: How to make ad-hoc polymorphism less ad hoc. In: Proc. of
POPL ’89. pp. 60–76. ACM, New York, NY, USA (1989)

16

