
Coinductive Soundness of Corecursive Type
Class Resolution

Frantǐsek Farka1,2, Ekaterina Komendantskaya3, Kevin Hammond2, and
Peng Fu3

1 University of Dundee, Dundee, Scotland
2 University of St Andrews, St Andrews, Scotland

{ff32,kh8}@st-andrews.ac.uk
3 Heriot-Watt University, Edinburgh, Scotland

{ek19,pf7}@hw.ac.uk,

Abstract. Horn clauses and first-order resolution are commonly used
for the implementation of type classes in Haskell. Recently, several core-
cursive extensions to type class resolution have been proposed, with the
common goal of allowing (co)recursive dictionary construction for those
cases when resolution does not terminate. This paper shows, for the first
time, that corecursive type class resolution and its recent extensions are
coinductively sound with respect to the greatest Herbrand models of
logic programs and that they are inductively unsound with respect to
the least Herbrand models.

Keywords: Resolution, Coinduction, Herbrand models, Type classes

1 Introduction

The type class mechanism is a popular way of implementing ad-hoc polymor-
phism and overloading in functional languages. It originated in Haskell [16, 6]
and has been further developed in dependently typed languages [5, 3]. For exam-
ple, it is convenient to define equality for all data structures in a uniform way.
In Haskell, this is achieved by introducing the equality class Eq:

class Eq x where
eq : : Eq x ⇒ x → x → Bool

and then declaring its instances as needed, e.g. for pairs and integers:

instance (Eq x, Eq y) ⇒ Eq (x, y) where
eq (x1 , y1) (x2 , y2) = eq x1 x2 && eq y1 y2

instance Eq Int where
eq x y = primtiveIntEq x y

Type class resolution is performed by the compiler and involves checking whether
the instance declarations are valid. For example, the following function triggers
a check that Eq (Int, Int) is a valid instance of the type class Eq:

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by St Andrews Research Repository

https://core.ac.uk/display/83960113?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

test : : Eq (Int , Int) ⇒ Bool
test = eq (1 ,2) (1 ,2)

It is folklore that type class instance resolution resembles SLD-resolution from
logic programming. In particular, an alternative view of the type class instance
declarations above would be the following two Horn clauses:

Example 1 (Logic program PPair).

κ1 : eq(x), eq(y) ⇒ eq(pair(x, y))
κ2 : ⇒ eq(int)

For example, given the query ? eq(pair(int, int)), SLD-resolution terminates
successfully with the following sequence of inference steps:

eq(pair(int, int))→κ1 eq(int), eq(int)→κ2 eq(int)→κ2 ∅

A proof witness (dictionary) is constructed by the Haskell compiler: κ1κ2κ2.
This is internally treated as an executable function.

Despite the apparent similarity of type class syntax and type class resolu-
tion to Horn clauses and SLD-resolution they are not exactly the same. On the
syntactic level, type class instance declarations correspond to a restricted form
of Horn clauses, namely ones that: (i) do not overlap (i.e. whose heads do not
unify); and (ii) do not contain existential variables (i.e. variables that occur
in the bodies but not in the heads of the clauses). On the algorithmic level,
(iii) type class resolution corresponds to SLD-resolution in which unification is
restricted to term-matching. Assuming that there is a clause B1, . . . Bn ⇒ A′, a
query ? A′ can be resolved with the clause only if A can be matched against A′,
i.e. a substitution σ exists such that A = σA′. For comparison, SLD-resolution
incorporates unifiers, as well as matchers, i.e. it proceeds in resolving the above
query and clause also in those cases when σA = σA′ holds.

These restrictions derive from a desire to guarantee computation of the prin-
cipal (most general) type in type class inference. Restrictions (i) and (ii) amount
to deterministic inference by resolution, in which only one derivation is possible
for every query. Restriction (iii) means that no substitution is applied to a query
during the inference, i.e. we prove the query in an implicitly universally quan-
tified form. It is a common knowledge that, similarly to SLD-resolution, type
class resolution is inductively sound, i.e. it is sound relative to the least Herbrand
models of logic programs [12]. Moreover, it is universally inductively sound, i.e.
if a formula A is proven by type class resolution, every ground instance of A
is in the least Herbrand model of the given program. In Section 3, we estab-
lish for the first time the universal inductive soundness of type class resolution.
Unlike SLD-resolution, type class resolution is inductively incomplete, i.e. it is
incomplete relative to least Herbrand models, even for the class of Horn clauses
restricted by the conditions (i) and (ii). For example, given a clause ⇒ q(f(x))
and a query ? q(x), SLD-resolution is able to find a proof (instantiating x with
f(x)), but type class resolution fails.

2

Lämmel and Peyton Jones have suggested [11] an extension to type class
resolution that accounts for some non-terminating cases of type class resolution.
Consider, for example, the following mutually defined data structures:
data OddList a = OCons a (EvenList a)
data EvenList a = Nil | ECons a (OddList a)

and the instance declarations that they give rise to in the Eq class:
instance (Eq a, Eq (EvenList a)) ⇒ Eq (OddList a) where

eq (OCons x xs) (OCons y ys) = eq x y && eq xs ys

instance (Eq a, Eq (OddList a)) ⇒ Eq (EvenList a) where
eq Nil Nil = True
eq (ECons x xs) (ECons y ys) = eq x y && eq xs ys
eq _ _ = False

The test function below triggers type class resolution in the compiler:
test : : Eq (EvenList Int) ⇒ Bool
test = eq Nil Nil

Such inference by resolution does not terminate. Consider the Horn clause rep-
resentation of the type class instance declarations:

Example 2 (Logic program PEvenOdd).

κ1 : eq(x), eq(evenList(x)) ⇒ eq(oddList(x))
κ2 : eq(x), eq(oddList(x)) ⇒ eq(evenList(x))
κ3 : ⇒ eq(int)

The non-terminating resolution trace is given by:

eq(evenList(int))→κ2 eq(int), eq(oddList(int))→κ3 eq(oddList(int))
→κ1 eq(int), eq(evenList(int))→κ3 eq(evenList(int))→κ2 . . .

As suggested by Lämmel and Peyton Jones [11], the compiler can terminate the
infinite inference process as soon as it detects the underlined cycle. Moreover,
it can construct the corresponding proof witness in a form of a recursive func-
tion. For the above example, such a function is given by the fixed point term
να.κ2κ3(κ1κ3α), where ν is a fixed point operator. The intuitive reading of such
a proof is that an infinite proof of the query ? eq (evenList(int)) exists, and
that its shape is fully specified by the recursive proof witness function above.
We will say that the proof is given by corecursive type class resolution.

It has not previously been observed in the literature that corecursive type
class resolution is not sound inductively. For example, eq(evenList(int)) is
not in the least Herbrand model of the corresponding logic program. However,
it is (universally) coinductively sound, i.e. it is sound relative to the greatest
Herbrand models. In particular, eq(evenList(int)) is in the greatest Herbrand
model of the program. We prove this new result in Section 4. Similarly to the

3

inductive case, corecursive type class resolution is coinductively incomplete. Con-
sider the clause κinf : p(x)⇒ p(f(x)). It may be given an interpretation by the
greatest (complete) Herbrand models, but corecursive type class resolution does
not give rise to infinite proofs for this clause.

As might be expected, the simple method of cycle detection used in core-
cursive type class resolution does not work for all non-terminating programs.
Consider the following example, which gives the definition of a data type Bush
(for bush trees), and the corresponding instance declaration of equality class:

data Bush a = Nil | Cons a (Bush (Bush a))

instance Eq a, Eq (Bush (Bush a)) ⇒ Eq (Bush a)
where

...

Type class resolution for data type Bush does not terminate, but it does not
exhibit cycles, either. Consider the Horn clause translation of the problem:

Example 3 (Logic program PBush).

κ1 : ⇒ eq(int)
κ2 : eq(x), eq(bush(bush(x)))⇒ eq(bush(x))

The derivation below shows that no cycles arise when we resolve the query
? eq(bush(int)) against the program PBush:

eq(bush(int))→κ2 eq(int), eq(bush(bush(int))→κ1 . . .→κ2

eq(bush(int)), eq(bush(bush(bush(int)))→κ1 . . .

Fu et al. [4] have recently introduced an extension to corecursive type class
resolution that allows implicative queries to be proved by corecursion and uses
the fixed point proof witness construction. For example, in the above program
the Horn formula eq(x) ⇒ eq(bush(x)) can be (coinductively) proven with the
recursive proof witness κ3 = να.λβ.κ2β(α(αβ)). If we add this Horn clause as
a third clause in our program, we obtain a proof of eq(bush(int)) by applying
κ3 to κ1. For this case, it is even more challenging to understand whether the
proof κ3κ1 of eq(bush(int)) is indeed sound: inductively, coinductively or in any
other sense. In Section 5, we establish, for the first time, coinductive soundness
for proofs of such implicative queries, relative to the greatest Herbrand models
of logic programs. As a consequence, proofs can be obtained by extending the
proof context with coinductively proven Horn clauses (e.g. like κ3 above) are
coinductively sound but inductively unsound. This result completes our study
of semantic properties of corecursive type class resolution.

Throughout this paper, we will use the formulation of corecursive type class
resolution as given by Fu et al. [4]. THis extends Howard’s simply-typed lambda
calculus [7] with a resolution rule and a ν-rule. The resulting calculus is general
and accounts for all previously suggested kinds of type class resolution.

4

Contributions of this paper

By presenting the described results, we answer three research questions:

(1) whether type class resolution and its two recent corecursive extensions [4,
10] are sound relative to the standard (Herbrand model) semantics of logic
programming;

(2) whether these new extensions are indeed “corecursive”, i.e. whether they are
better modelled by the greatest Herbrand model semantics rather than by
the least Herbrand model semantics; and

(3) whether the context update technique given in [4] can be brought back to
logic programming and can be re-used in its corecursive dialects such as
CoLP [14] and CoALP [9] or, even broader, can be incorporated into program
transformation techniques [2].

We answer questions (1) and (2) in the affirmative. The answer to question (3)
is less straightforward. The way the implicative coinductive lemmata are used in
proofs alongside all other Horn clauses in [4] indeed resembles a program trans-
formation method when considered from the logic programming point of view.
In reality, different fragments of the calculus given in [4] allow proofs for Horn
formulae which, when added to the initial program, may lead to inductively or
coinductively unsound extensions. We analyse this situation carefully, through-
out all of the technical sections that follow, thereby highlighting which program
transformation methods can be soundly borrowed from the existing work on
corecursive resolution.

2 Preliminaries

This section describes notation and defines the models that we use in the rest
of the paper. As is standard, a first-order signature Σ consists of the set F of
function symbols and the set P of predicate symbols, all symbols equipped with
an arity. Constants are function symbols of arity 0. We also assume a countable
set V of variables. Given Σ and V, we have the following standard definitions:

Definition 1 (Syntax of Horn formuale and logic programs).

First-order term Term ::= V | F(Term, . . . , T erm)
Atomic formula At ::= P(Term, . . . , T erm)

Horn formula (clause) CH ::= At, . . . ,At⇒ At
Logic program Prog ::= CH, . . . ,CH

We use identifiers t and u to denote terms and A,B,C to denote atomic formulae.
We use P with indicies to refer to elements of Prog. We say that a term or an
atomic formula is ground if it contains no variables. We assume that all variables
in Horn formulae are implicitly universally quantified. Moreover, the restriction
(ii) in Section 1 requires that there are no existential variables, i.e. given a clause

5

B1, . . . , Bn ⇒ A, if a variable occurs in Bi, then it occurs in A. We use the
common name formula to refer to both atomic formulae and to Horn formulae.
A substitution and the application of a substitution to a term or a formula are
defined in the usual way. We denote application of a substitution σ to a term t
or to an atomic formula A by σt and σA respectively. We denote composition of
substitutions σ and τ by σ ◦ τ . A substitution σ is a grounding substitution for
a term t if σt is a ground term, and similarly for an atomic formula.

2.1 Models of Logic Programs

Throughout this paper, we use the standard definitions of the least and greatest
Herbrand models. Given a signature Σ, the Herbrand universe UΣ is the set of
all ground terms over Σ. Given a Herbrand universe UΣ we define the Herbrand
base BΣ as the set of all atoms consisting only of ground terms in UΣ .

Definition 2 (Semantic operator). Let P be a logic program over signature
Σ. The mapping TP : 2BΣ → 2BΣ is defined as follows. Let I be a subset of BΣ.

TP (I) = {A ∈ BΣ | B1, . . . Bn ⇒ A is a ground instance of a clause in P ,
and {B1, . . . , Bn} ⊆ I}

The above operator gives inductive and coinductive interpretation to a logic
program.

Definition 3. Let P be a logic program.

– The least Herbrand model is the least set MP ∈ BΣ such that MP is a
fixed point of TP .

– The greatest Herbrand model is the greatest set M′
P ∈ BΣ such that M′

P

is a fixed point of TP .

In [12] the operators ↓ and ↑ are introduced, TP ↓ ω is proven to give the greatest
Herbrand model of P , and and TP ↑ ω the least Herbrand model of P . We will
use these constructions in our proofs. The validity of a formula in a model is
defined as usual. An atomic formula is valid in a model I if and only if for any
grounding substitution σ, we have σF ∈ I. A Horn formula B1, . . . , Bn ⇒ A is
valid in I if for any substitution σ, if σB1, . . . , σBn are valid in I then σA is
valid in I. We use notation P �ind F to denote that a formula F is valid inMP

and P �coind F to denote that a formula F is valid in M′
P .

Lemma 1. Let P be a logic program and let σ be a substitution. The following
holds:

a) If (⇒ A) ∈ P then both P �ind σA and P �coind σA
b) If, for all i, P �ind σBi and (B1, . . . , Bn ⇒ A) ∈ P then P �ind σA
c) If, for all i, P �coind σBi and (B1, . . . , Bn ⇒ A) ∈ P then P �coind σA

The proof of the lemma can be found in the existing literature [12] and follows
from the fact that both MP and M′

P are fixed points of the operator TP .

6

2.2 Proof Relevant Resolution

In [4], the usual syntax of Horn formulae was embedded into a type-theoretic
framework, with Horn formulae seen as types inhabited by proof terms. In this
setting, a judgement has the form Φ ` e : F , where e is a proof term inhabiting
formula F , and Φ is an axiom environment containing annotated Horn formulae
corresponding to the given logic program. This gives rise to the following syntax,
in addition to Definition 1. We assume a set of proof term symbols K, and a set
of proof term variables U .

Definition 4 (Syntax of proof terms and axiom environments).

Proof term E ::= K | U | E E | λU.E | νU.E
Axiom environment Ax ::= · | Ax, (E : CH)

We use notation κ with indicies to refer to elements of K, α and β with indices
to refer to elements of U , e to refer to proof terms in E, and Φ to refer to axiom
environments in Ax. Having a judgement Φ ` e : F , we call F an axiom if e ∈ K,
and we call F a lemma if e /∈ K is a closed term, i.e. contains no free variables. A
proof term e is in head normal form (denoted HNF(e)), if e = λα.κ e where α and
e denote (possibly empty) sequences of variables and proof terms respectively.
The intention of the above definition is to interpret logic programs, seen as sets
of Horn formulae, as types. Example 1 shows how proof term symbols κ1 and
κ2 can be used to annotate clauses in the given logic program. We capture this
intuition in the following formal definition:

Definition 5. Given a logic program PA consisting of Horn clauses H1, . . . ,Hn,
with each Hi having the shape Bi1, . . . , Bik ⇒ Ai, the axiom environment ΦA is
defined as follows. We assume proof term symbols κ1, . . . , κn, and define, for
each Hi, κi : Bi1, . . . , Bik ⇒ Ai.

Revising Example 1 we can say that it shows the result of translation of the pro-
gram PPair into ΦPair and ΦPair is an axiom environment for the logic program
PPair. In general, we say that ΦA is an axiom environment for a logic program
PA if and only if there is a translation of PA into ΦA. We drop the index A where
it is known or unimportant. The restriction (i) in Section 1 requires that axioms
in an axiom environment do not overlap. However, a lemma may overlap with
other axioms and lemmata. We refer the reader to [4] for complete exposition
of proof-relevant resolution. In the following sections, we will use this syntax
to gradually introduce inference rules for proof-relevant corecursive resolution.
We start with its “inductive” fragment, i.e. the fragment that is sound relative
to the least Herbrand models, and then in subsequent sections consider its two
coinductive extensions (sound relative to the greatest Herbrand models).

3 Inductive Fragment of Type Class Resolution

In this section, we introduce the inductive fragment of the calculus for the ex-
tended type class resolution introduced by Fu et al. [4]. We reconstruct the

7

standard theorem of universal inductive soundness for the resolution rule. The
resolution rule alone was not sufficient for some of the Fu et al.’s examples, It
was thus extended with a rule that allowed Horn formulae to be proved, i.e.
to prove lemmata. Both axioms and lemmata could be used as a part of a en-
vironment. In logic programming terms, programs were transformed by adding
already proven Horn formulae. We prove the soundness of this method relative to
the least Herbrand models, and show that it is not sound relative to the greatest
Herbrand models.

Definition 6 (Type class resolution).

if (e : B1, . . . , Bn ⇒ A) ∈ Φ
Φ ` e1 : σB1 · · · Φ ` en : σBn

Φ ` e e1 · · · en : σA (Lp-m)

If, for a given atomic formula A, and a given environment Φ, Φ ` e : A is derived
using the Lp-m rule we say that A is entailed by Φ and that the proof term e
witnesses this entailment. We define derivations and derivation trees resulting
from applications of the above rule in the standard way (cf. Fu et al. [4]).

Example 4. Recall the logic program PPair in Example 1. The inference steps
for eq(pair(int, int)) correspond to the following derivation tree:

ΦP air ` κ2 : eq(int) ΦP air ` κ2 : eq(int)
ΦP air ` κ1κ2κ2 : eq(pair(int, int))

The above entailment is inductively sound, i.e. it is sound with respect to the
least Herbrand model of PPair:

Theorem 1. Let Φ be an axiom environment for a logic program P , and let
Φ ` e : A hold. Then P �ind A.

Proof. By structural induction on the derivation tree and construction of the
least Herbrand model, using Lemma 1. ut

The rule Lp-m also plays a crucial role in the coinductive fragment of type class
resolution, as will be discussed in Sections 4 and 5. Now, we turn to discussion
of the other rule present in the work of Fu et al. [4]. The rule that allows Horn
formulae to be proved is:

Definition 7.

Φ, (β1 : ⇒ B1), . . . , (βn : ⇒ Bn) ` e : A
Φ ` λβ1, . . . , βn.e : B1, . . . , Bn ⇒ A

(Lam)

Example 5. To illustrate the use of the Lam rule, consider the following program:
Let P consist of two clauses: A⇒ B and B ⇒ C. Both the least and the greatest
Herbrand model of P are empty. Equally, no formula can be derived from the
corresponding axiom environment by the Lp-m rule. However, we can derive
A⇒ C by using a combination of the Lam and Lp-m rules. Let Φ = (κ1 : A⇒
B), (κ2 : B ⇒ C). The following is then a derivation tree for a formula A⇒ C:

8

Φ, (α : ⇒ A) ` α : A
Φ, (α : ⇒ A) ` κ1α : B

Φ, (α : ⇒ A) ` κ2(κ1α) : C
Lam

Φ ` λα.κ2(κ1α) : A ⇒ C

When there is no label on right-hand side of an inference step, the inference is
by the rule Lp-m. We follow this convention throughout the paper.

We can show that the calculus comprising the rules Lp-m and Lam is again
(universally) inductively sound.

Lemma 2. Let P be a logic program and let A, B1, . . . , Bn be atomic formulae.
If P, (⇒ B1), . . . , (⇒ Bn) �ind A then P �ind B1, . . . , Bn ⇒ A.

Proof. Let σ be an arbitrary substitution. Assume that, for all i, P �ind σBi. By
the definition of TP,(⇒B1),...(⇒Bn), for all i and for any τ grounding substitution,
(τ ◦ σ)Bi ∈ TP,(⇒B1),...(⇒Bn) ↑ 1 and from the above condition P, (⇒
B1), . . . (⇒ Bn) �ind A and the universal quantification of formulae there is
m such that A ∈ TP,(⇒B1),...(⇒Bn) ↑ (m + 1). Hence from the assumption
Φ �ind A. By definition of validity, P �ind B1, . . . , Bn ⇒ A. ut

Theorem 2. Let Φ be an axiom environment for a logic program P , and let
Φ ` e : F for a formula F by the Lp-m and Lam rules. Then P �ind F .

Proof. By structural induction on the derivation tree using Lemmata 1 & 2. ut

Related Program Transformation Methods For Fu et al. [4], the main
purpose of introducing the rule Lam was to increase expressivity of the proof
system. In particular, obtaining an entailment Φ ` e : H of a Horn formula H
enabled the environment Φ to be extended with e : H, which could be used in
future proofs. We show that transforming (the standard, untyped) logic programs
in this way is inductively sound. The following theorem follows from Lemma 2:

Theorem 3. Let Φ be an axiom environment for a logic program P , and let
Φ ` e : F for a formula F by the Lp-m and Lam rules. Given a formula F ′,
P �ind F ′ iff P, F �ind F ′.

Note, however, that the above theorem is not as trivial as it looks, in particular,
it would not hold coinductively, i.e. if we changed �ind to �coind in the statement
above. Consider the following proof of what seems to be a trivial formula A⇒ A:

Example 6. Using the Lam rule one can prove ∅ ` λα.α : A⇒ A:

(α : ⇒ A) ` α : A
Lam∅ ` λα.α : A ⇒ A

Indeed, M∅ = ∅ and by definition of validity, ∅ �ind A⇒ A. Assume a program
consisting of a single formula A⇒ B. Both the least and the greatest Herbrand
model of this program are empty. However, adding the formula A⇒ A to the pro-
gram results in the greatest Herbrand model {A,B}. Thus, M′

P 6=M′
P,(A⇒A).

9

4 Universal Coinductive Soundness

The Lp-m rule may result in non-terminating resolution. This can be demon-
strated by the program PEvenOdd and the query ? eq(evenList(Int)) from Sec-
tion 1. Lämmel and Peyton Jones observed [11] that in such cases there is a
cycle in the inference that can be detected. This treatment of cycles amounts
to coinductive reasoning and results in building a corecursive proof witness—or
(co-)recursive dictionary.

Definition 8 (Coinductive type class resolution).

if HNF(e)
Φ, (α : ⇒ A) ` e : A

Φ ` να.e : A (Nu’)

The side condition of Nu’ requires the proof witness to be in head normal form.
Since, in this section, we are working with a calculus consisting of the rules Lp-
m and Nu’, there is no way to introduce a λ-abstraction into a proof witness.
Therefore, in this section, we restrict ourselves to head normal form terms of the
form κ e.

Example 7. Recall the program PEvenOdd in Example 2. The originally non-
terminating resolution trace for the query ? eq(evenList(int)) is resolved using
the Nu’ rule as follows:

κ3 : eq(int)
` κ3 : eq(int)

α : ⇒ eq(oddList(int))
` α : eq(oddList(int))

ΦEvenOdd, α : ` κ1κ3α : eq(evenList(int))
κ3 : eq(int)

` κ3 : eq(int)
ΦEvenOdd, α : ` κ2κ3(κ1κ3α) : eq(oddList(int))

Nu’
ΦEvenOdd ` να.κ2κ3(κ1κ3α) : eq(oddList(int))

Note that we abbreviate formulae in the environment where these repeat by an
underscore and we use this notation in the rest of the paper.

We now come to the discussion of the coinductive soundness of the rule
Nu’, i.e. its soundness relative to greatest Herbrand models. We note that, not
surprisingly (cf. [13]), the rule Nu’ is inductively unsound. Given a program
consisting of just one clause A⇒ A, we are able to use the rule Nu’ to entail A
(the derivation will be similar, albeit a lot simpler than in the above example).
However, A is not in the least Herbrand model of this program. Similarly, the
formula eq(oddList(int)) proven above is not inductively sound, either. Thus,
the coinductive fragment of the extended corecursive resolution can only be coin-
ductively sound. When proving the coinductive soundness of the Nu’ rule, we
carefully choose the proof method by which we proceed. Inductive soundness of
the Lp-m rule was proven by induction on the derivation tree and the construc-
tion of the least Herbrand models by iterations of TP . Here, we give an analogous
result, where coinductive soundness is proven by structural coinduction on the
iterations of the semantic operator TP . Note that the principle of structural coin-
duction is applicable in our proof since the operator TP converges in ω steps. This

10

property of TP holds only for programs without existential variables, see [12].
This condition is, of course, satisfied for the “type class resolution” fragment
that we consider in this paper.

Theorem 4. Let Φ be an axiom environment for a logic program P , and let F
be an atomic formula. If Φ ` e : F by the Lp-m and Nu’ rules, then P �coind F .

Proof. The proof of coinductive soundness of the rule Lp-m can be reconstructed
by analogy with the proof of its inductive soundness from the previous section.
Thus, we consider only the coinductive soundness of the rule Nu’, i.e. the case
when e has the form να.e′, with e′ being a formula in the head normal form.
This condition implies that e′ is a proof term consisting of α and some κi, . . . , κj ,
where κi, . . . , κj are axioms in Φ. This means that the derivation tree leading to
the proof of F involved the derivation steps applying κi, . . . , κj to the coinductive
hypothesis (α : ⇒ F) in the environment.

Our proof proceeds by coinduction, with coinductive hypotheses: ∀n, if Φ `
e : F holds by derivation using the rules Lp-m and Nu’ (the latter applied last),
then F is in TP ↓ (n). Consider the construction of the greatest Herbrand model
for the program P . The set TP ↓ (0) by definition includes all formulae from
BΣ , including all ground instances of F . By the above derivation for F , we may
conclude that (a possibly more general form of) F is the head of some clause κj .
Thus, by the definition of TP ↓, (all ground instances of) F will be contained in
TP ↓ (1) (note that by construction TP ↓ (1) ⊆ TP ↓ (0)). The same reasoning
holds for all clause heads for κi, . . . , κj , whose ground instances, too, will be in
TP ↓ (1). By the derivation for Φ ` e : F , we know that it is sufficient to have F
and the formulae contained in the heads of κi, . . . , κj to entail F by Lp-m rule.
But then, by the definition of TP ↓, (ground instances of) F will be contained in
TP ↓ (2). We now apply the coinduction hypotheses to conclude that the same
construction can be repeated for (all ground instances of) F in TP ↓ (n), for all
n > 2. Thus, (all ground instances of) F will be in TP ↓ (ω), i.e. in the greatest
Herbrand model of this program. ut

Choice of Coinductive Models. Perhaps the most unusual feature of the se-
mantics given in this section is the use of greatest Herbrand models rather than
the greatest complete Herbrand models that is usual in the literature on coinduc-
tion in logic programming [12, 9, 14]. The greatest complete Herbrand models are
obtained as the greatest fixed point of the semantic operator T ′

P on the com-
plete Herbrand base, i.e. the set of all finite and infinite ground atomic formulae
formed by the signature of the given program. This construction is preferred in
the literature for two reasons. Firstly, T ′

P reaches its greatest fixed point in at
most ω steps, whereas TP may take more than ω steps in the general case. This is
due to compactness of the complete Herbrand base. Moreover, greatest complete
Herbrand models give a more natural characterisation for programs like the one
given by the clause κinf : p(x)⇒ p(f(x)). The greatest Herbrand model of that
program is empty, but its greatest complete Herbrand model contains the infinite

11

formula p(f(f(...)). However, restrictions (i) – (iii) imposed by type class reso-
lution mean that the greatest Herbrand models regain those same advantages
as complete Herbrand models. It was noticed by Lloyd [12] that restriction (ii)
implies that the semantic operator converges in at most ω steps. Restrictions (i)
and (iii) imply that proofs by type class resolution have universal interpretation,
i.e. they hold for all finite instances of queries. Therefore, we never have to talk
about programs for which only one infinite instance of a query is valid.

5 Universal Coinductive Soundness of Extended
Resolution

The class of problems that can be resolved by coinductive type class resolution
is limited to problems where a coinductive hypothesis is in atomic form. Fu
et al. [4] extended coinductive type class resolution with implicative reasoning
and adjusted the rule Nu’ such that this restriction of coinductive type class
resolution is relaxed:

Definition 9 (Extended coinductive type class resolution).

if HNF(e)
Φ, (α : B1, . . . , Bn ⇒ A) ` e : B1, . . . , Bn ⇒ A

Φ ` να.e : B1, . . . , Bn ⇒ A
(Nu)

The side condition of the Nu rule requires the proof witness to be in head normal
form. However, unlike coinductive type class resolution, extended coinductive
type class resolution also uses the Lam rule and a head normal term is of the
form λα.κe for possibly non-empty sequence of proof term variables α. First,
let us note that extended coinductive type class resolution indeed extends the
calculus of Section 4:

Proposition 1. The inference rule Nu’ is admissible in extended coinductive
type class resolution.

Further, this is a proper extension. The Nu rule allows queries to be entailed
that were beyond the scope of coinductive type class resolution. In Section 1, we
demonstrated a derivation for query ? eq(bush(int)) where no cycles arise and
thus the query cannot be resolved by coinductive type class resolution.

Example 8. Recall the program PBush in Example 3. The query ? eq(bush(int))
is resolved as follows:

ΦBush `
κ1 : eq(int)

(β : ⇒ eq(x))
` β : eq(x)

(β : ⇒ eq(x)) ` β : eq(x)
(α : eq(x) ⇒ eq(bush(x))), (β :) `

αβ : eq(bush(x))
(α :), (β :) ` α(αβ) : eq(bush(bush(x)))

ΦBush, (α :), (β :) ` κ2β(α(αβ)) : eq(bush(x))
Lam

ΦBush, (α :) ` λβ.κ2β(α(αβ)) : eq(x) ⇒ eq(bush(x))
Nu

ΦBush ` να.λβ.κ2β(α(αβ)) : eq(x) ⇒ eq(bush(x))
ΦBush ` (να.λβ.κ2β(α(αβ)))κ1 : eq(bush(int))

12

Before proceeding with the proof of soundness of extended type class reso-
lution we need to show two intermediate lemmata. The first lemma states that
inference by the Nu rule preserves coinductive soundness:

Lemma 3. Let P be a logic program, let σ be a substitution, and let A, B1, . . . ,
Bn, C1, . . . , Cm be atomic formulae. If, for all i, P,B1, . . . , Bn, (B1, . . . , Bn ⇒
σA) �coind σCi and (C1, . . . , Cm ⇒ A) ∈ P then P �coind B1 . . . Bn ⇒ σA.

Proof. Consider the construction of the greatest Herbrand model of the pro-
gram P . Assume the coinductive hypothesis, that whenever B1 to Bn are valid
in TP ↓ n then also σA is valid in TP ↓ n. By definition, TP ↓ 0 = BΣ and the
set TP ↓ 0 contains all ground instances of σA and B1 to Bn. We know from the
above conditions that having all instances of σA and B1 to Bn in the model there
is a sequence of iterations of TP that infers, for all i, all instances of σCi, i.e. for
any substitution τ if, for almost all n, {(τ ◦ σ)A, τB1, . . . , τBn} ⊆ TP ↓ n there
is m such that, for all i, (τ ◦ σ)Ci ∈ TP ↓ (n+m) and since (κ : C1, . . . , Cm ⇒
A) ∈ P then (τ ◦σ)A ∈ TP ↓ (n+m+1). We apply the coinductive hypothesis to
conclude that the same holds for almost all subsequent iterations of TP . Hence
whenever, for a substitution τ , all instances of τB1 to τBn are in the greatest
Herbrand model then also all instances of (τ ◦ σ)A are in the greatest Herbrand
models. Hence P �coind B1, . . . , Bn ⇒ A. ut

The other lemma that we need in order to prove coinductive soundness of ex-
tended type class resolution states that inference using Lam preserves coinduc-
tive soundness, i.e. we need to show the coinductive counterpart to Lemma 2:

Lemma 4. Let P be a logic program and A, B1, . . . , Bn atomic formulae. If
P, (⇒ B1), . . . (⇒ Bn) �coind A then P �coind B1, . . . , Bn ⇒ A.

Proof. As for the previous lemma, consider the construction of the greatest Her-
brand model of the program P . By definition, TP ↓ 0 contains all ground in-
stances of A. We know from the above conditions that having all the instances
of A and B1 to Bn in the model there is a sequence of iterations of TP that in-
fers all instances of A. We apply the coinductive hypothesis A and by the same
argument as above P �coind B1, . . . , Bn ⇒ A. ut

Now, the universal coinductive soundness of extended coinductive type class
resolution follows straightforwardly:

Theorem 5. Let Φ be an axiom environment for a logic program P , and let be
Φ ` e : F for a formula F by the Lp-m, Lam, and Nu rules. Then P �coind F .

Proof. By induction on the derivation tree using Lemmata 1, 3, & 4. ut

13

6 Related Work

The standard approach to type inference for type classes, that corresponds to
type class resolution as studied in this paper, was described by Stuckey and
Sulzman [15]. Type class resolution was further studied by Lämmel and Peyton
Jones [11], who described what we call coinductive type class resolution. The
description of extended calculus of Section 5 was first presented by Fu et al. [4].
Generally, there is a body of work that focused on allowing for infinite data
structures in logic programming. Logic programming with rational trees [1, 8]
was studied from both an operational semantics and a declarative semantics
point of view. Simon et al. [14] introduced co-logic programming (co-LP) that
also allows for terms that are irrational infinite trees and hence have infinite
proofs. Appropriate models of these paradigmata are the least Herbrand model
and stratified alternating fixed-point co-Herbrand model respectively. On the
other hand, corecursive resolution, as studied in this paper, is more expressive
than co-LP: while also allowing infinite proofs, closing of coinductive hypothesis
is less constrained.

7 Conclusions and Future Work

In this paper, we have addressed three research questions. First, we provided
a uniform analysis of type class resolution in both inductive and coinductive
settings and proved its soundness relative to (standard) least and greatest Her-
brand models. A feature of this paper is the choice of greatest Herbrand models
for coinductive analysis that is allowed by properties of type class resolution.
Secondly, we demonstrated on several examples that coinductive resolution is
indeed coinductive—that is, it is not sound relative to least Herbrand models.
Finally, we addressed the question of whether the methods listed in this paper
can be brought back to coinductive dialects of logic programming via soundness
preserving program transformations. As future work, we intend to establish the
completeness properties of extended type class resolution. Our conjecture is that
coinductive completeness of extended type class resolution can be established for
a certain fragment of described calculus.

Acknowledgements

This work has been partially supported by the EU Horizon 2020 grant “RePhrase:
Refactoring Parallel Heterogeneous Resource-Aware Applications - a Software
Engineering Approach” (ICT-644235), by COST Action IC1202 (TACLe), sup-
ported by COST (European Cooperation in Science and Technology), and by
EPSRC grant EP/K031864/1-2 “‘Coalgebraic Logic Programming for Type In-
ference”.

14

References

1. Colmerauer, A.: Equations and inequations on finite and infinite trees. In: FGCS.
pp. 85–99 (1984)

2. De Angelis, E., Fioravanti, F., Pettorossi, A., Proietti, M.: Proving correctness
of imperative programs by linearizing constrained horn clauses. TPLP 15(4-5),
635–650 (2015)

3. Devriese, D., Piessens, F.: On the bright side of type classes: instance arguments in
agda. In: Proc. of ICFP 2011, Tokyo, Japan, September 19-21, 2011. pp. 143–155

4. Fu, P., Komendantskaya, E., Schrijvers, T., Pond, A.: Proof relevant corecursive
resolution. In: Proc. of FLOPS 2016, Kochi, Japan, March 4-6, 2016 (2016)

5. Gonthier, G., Ziliani, B., Nanevski, A., Dreyer, D.: How to make ad hoc proof
automation less ad hoc. In: Proc. of the 16th ACM SIGPLAN international con-
ference on Functional Programming, ICFP 2011, Tokyo, Japan, September 19-21,
2011. pp. 163–175 (2011)

6. Hall, C.V., Hammond, K., Jones, S.L.P., Wadler, P.: Type classes in haskell.
ACM Trans. Program. Lang. Syst. 18(2), 109–138 (1996), http://doi.acm.org/
10.1145/227699.227700

7. Howard, W.: The formulae-as-types notion of construction. In: Seldin, J.P., Hind-
ley, J.R. (eds.) To H. B. Curry: Essays on Combinatory Logic, Lambda-Calculus,
and Formalism. pp. 479–490. Academic Press, NY, USA (1980)

8. Jaffar, J., Stuckey, P.J.: Semantics of infinite tree logic programming. Theor. Com-
put. Sci. 46(3), 141–158 (1986)

9. Komendantskaya, E., Johann, P.: Structural resolution: a framework for coinduc-
tive proof search and proof construction in horn clause logic. ACM Transcations
on Computational Logic submitted (2016)

10. Lämmel, R.: Scrap your boilerplate: prologically! In: Porto, A., López-Fraguas,
F.J. (eds.) Proc. of POPL 2009, September 7-9, 2009, Coimbra, Portugal. pp. 7–
12. ACM (2009)

11. Lämmel, R., Peyton Jones, S.L.: Scrap your boilerplate with class: extensible
generic functions. In: Proc. of ICFP 2005, Tallinn, Estonia, September 26-28, 2005.
pp. 204–215

12. Lloyd, J.W.: Foundations of Logic Programming, 2nd Edition. Springer (1987)
13. Sangiorgi, D.: On the origins of bisimulation and coinduction. ACM Trans. Pro-

gram. Lang. Syst. 31(4), 15:1–15:41 (May 2009)
14. Simon, L., Bansal, A., Mallya, A., Gupta, G.: Co-logic programming: Extending

logic programming with coinduction. In: Proc. of ICALP 2007, Wroclaw, Poland,
July 9-13, 2007. pp. 472–483 (2007)

15. Stuckey, P.J., Sulzmann, M.: A theory of overloading. ACM Trans. Program. Lang.
Syst. 27(6), 1216–1269 (2005)

16. Wadler, P., Blott, S.: How to make ad-hoc polymorphism less ad hoc. In: Proc. of
POPL ’89. pp. 60–76. ACM, New York, NY, USA (1989)

15

