408 research outputs found

    Word Importance Modeling to Enhance Captions Generated by Automatic Speech Recognition for Deaf and Hard of Hearing Users

    Get PDF
    People who are deaf or hard-of-hearing (DHH) benefit from sign-language interpreting or live-captioning (with a human transcriptionist), to access spoken information. However, such services are not legally required, affordable, nor available in many settings, e.g., impromptu small-group meetings in the workplace or online video content that has not been professionally captioned. As Automatic Speech Recognition (ASR) systems improve in accuracy and speed, it is natural to investigate the use of these systems to assist DHH users in a variety of tasks. But, ASR systems are still not perfect, especially in realistic conversational settings, leading to the issue of trust and acceptance of these systems from the DHH community. To overcome these challenges, our work focuses on: (1) building metrics for accurately evaluating the quality of automatic captioning systems, and (2) designing interventions for improving the usability of captions for DHH users. The first part of this dissertation describes our research on methods for identifying words that are important for understanding the meaning of a conversational turn within transcripts of spoken dialogue. Such knowledge about the relative importance of words in spoken messages can be used in evaluating ASR systems (in part 2 of this dissertation) or creating new applications for DHH users of captioned video (in part 3 of this dissertation). We found that models which consider both the acoustic properties of spoken words as well as text-based features (e.g., pre-trained word embeddings) are more effective at predicting the semantic importance of a word than models that utilize only one of these types of features. The second part of this dissertation describes studies to understand DHH users\u27 perception of the quality of ASR-generated captions; the goal of this work was to validate the design of automatic metrics for evaluating captions in real-time applications for these users. Such a metric could facilitate comparison of various ASR systems, for determining the suitability of specific ASR systems for supporting communication for DHH users. We designed experimental studies to elicit feedback on the quality of captions from DHH users, and we developed and evaluated automatic metrics for predicting the usability of automatically generated captions for these users. We found that metrics that consider the importance of each word in a text are more effective at predicting the usability of imperfect text captions than the traditional Word Error Rate (WER) metric. The final part of this dissertation describes research on importance-based highlighting of words in captions, as a way to enhance the usability of captions for DHH users. Similar to highlighting in static texts (e.g., textbooks or electronic documents), highlighting in captions involves changing the appearance of some texts in caption to enable readers to attend to the most important bits of information quickly. Despite the known benefits of highlighting in static texts, research on the usefulness of highlighting in captions for DHH users is largely unexplored. For this reason, we conducted experimental studies with DHH participants to understand the benefits of importance-based highlighting in captions, and their preference on different design configurations for highlighting in captions. We found that DHH users subjectively preferred highlighting in captions, and they reported higher readability and understandability scores and lower task-load scores when viewing videos with captions containing highlighting compared to the videos without highlighting. Further, in partial contrast to recommendations in prior research on highlighting in static texts (which had not been based on experimental studies with DHH users), we found that DHH participants preferred boldface, word-level, non-repeating highlighting in captions

    Machine Learning of Generic and User-Focused Summarization

    Full text link
    A key problem in text summarization is finding a salience function which determines what information in the source should be included in the summary. This paper describes the use of machine learning on a training corpus of documents and their abstracts to discover salience functions which describe what combination of features is optimal for a given summarization task. The method addresses both "generic" and user-focused summaries.Comment: In Proceedings of the Fifteenth National Conference on AI (AAAI-98), p. 821-82

    NLP Driven Models for Automatically Generating Survey Articles for Scientific Topics.

    Full text link
    This thesis presents new methods that use natural language processing (NLP) driven models for summarizing research in scientific fields. Given a topic query in the form of a text string, we present methods for finding research articles relevant to the topic as well as summarization algorithms that use lexical and discourse information present in the text of these articles to generate coherent and readable extractive summaries of past research on the topic. In addition to summarizing prior research, good survey articles should also forecast future trends. With this motivation, we present work on forecasting future impact of scientific publications using NLP driven features.PhDComputer Science and EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/113407/1/rahuljha_1.pd

    Advanced fuzzy matching in the translation of EU texts

    Get PDF
    In the translation industry today, CAT tool environments are an indispensable part of the translator’s workflow. Translation memory systems constitute one of the most important features contained in these tools and the question of how to best use them to make the translation process faster and more efficient legitimately arises. This research aims to examine whether there are more efficient methods of retrieving potentially useful translation suggestions than the ones currently used in TM systems. We are especially interested in investigating whether more sophisticated algorithms and the inclusion of linguistic features in the matching process lead to significant improvement in quality of the retrieved matches. The used dataset, the DGT-TM, is pre-processed and parsed, and a number of matching configurations are applied to the data structures contained in the produced parse trees. We also try to improve the matching by combining the individual metrics using a regression algorithm. The retrieved matches are then evaluated by means of automatic evaluation, based on correlations and mean scores, and human evaluation, based on correlations of the derived ranks and scores. Ultimately, the goal is to determine whether the implementation of some of these fuzzy matching metrics should be considered in the framework of the commercial CAT tools to improve the translation process

    Prosody-Based Automatic Segmentation of Speech into Sentences and Topics

    Get PDF
    A crucial step in processing speech audio data for information extraction, topic detection, or browsing/playback is to segment the input into sentence and topic units. Speech segmentation is challenging, since the cues typically present for segmenting text (headers, paragraphs, punctuation) are absent in spoken language. We investigate the use of prosody (information gleaned from the timing and melody of speech) for these tasks. Using decision tree and hidden Markov modeling techniques, we combine prosodic cues with word-based approaches, and evaluate performance on two speech corpora, Broadcast News and Switchboard. Results show that the prosodic model alone performs on par with, or better than, word-based statistical language models -- for both true and automatically recognized words in news speech. The prosodic model achieves comparable performance with significantly less training data, and requires no hand-labeling of prosodic events. Across tasks and corpora, we obtain a significant improvement over word-only models using a probabilistic combination of prosodic and lexical information. Inspection reveals that the prosodic models capture language-independent boundary indicators described in the literature. Finally, cue usage is task and corpus dependent. For example, pause and pitch features are highly informative for segmenting news speech, whereas pause, duration and word-based cues dominate for natural conversation.Comment: 30 pages, 9 figures. To appear in Speech Communication 32(1-2), Special Issue on Accessing Information in Spoken Audio, September 200

    Computational Language Assessment in patients with speech, language, and communication impairments

    Full text link
    Speech, language, and communication symptoms enable the early detection, diagnosis, treatment planning, and monitoring of neurocognitive disease progression. Nevertheless, traditional manual neurologic assessment, the speech and language evaluation standard, is time-consuming and resource-intensive for clinicians. We argue that Computational Language Assessment (C.L.A.) is an improvement over conventional manual neurological assessment. Using machine learning, natural language processing, and signal processing, C.L.A. provides a neuro-cognitive evaluation of speech, language, and communication in elderly and high-risk individuals for dementia. ii. facilitates the diagnosis, prognosis, and therapy efficacy in at-risk and language-impaired populations; and iii. allows easier extensibility to assess patients from a wide range of languages. Also, C.L.A. employs Artificial Intelligence models to inform theory on the relationship between language symptoms and their neural bases. It significantly advances our ability to optimize the prevention and treatment of elderly individuals with communication disorders, allowing them to age gracefully with social engagement.Comment: 36 pages, 2 figures, to be submite

    Unifying context with labeled property graph: A pipeline-based system for comprehensive text representation in NLP

    Get PDF
    Extracting valuable insights from vast amounts of unstructured digital text presents significant challenges across diverse domains. This research addresses this challenge by proposing a novel pipeline-based system that generates domain-agnostic and task-agnostic text representations. The proposed approach leverages labeled property graphs (LPG) to encode contextual information, facilitating the integration of diverse linguistic elements into a unified representation. The proposed system enables efficient graph-based querying and manipulation by addressing the crucial aspect of comprehensive context modeling and fine-grained semantics. The effectiveness of the proposed system is demonstrated through the implementation of NLP components that operate on LPG-based representations. Additionally, the proposed approach introduces specialized patterns and algorithms to enhance specific NLP tasks, including nominal mention detection, named entity disambiguation, event enrichments, event participant detection, and temporal link detection. The evaluation of the proposed approach, using the MEANTIME corpus comprising manually annotated documents, provides encouraging results and valuable insights into the system\u27s strengths. The proposed pipeline-based framework serves as a solid foundation for future research, aiming to refine and optimize LPG-based graph structures to generate comprehensive and semantically rich text representations, addressing the challenges associated with efficient information extraction and analysis in NLP
    corecore