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Abstract 

In the translation industry today, CAT tool environments are an indispensable part of the 

translator’s workflow. Translation memory systems constitute one of the most important 

features contained in these tools and the question of how to best use them to make the 

translation process faster and more efficient legitimately arises. This research aims to examine 

whether there are more efficient methods of retrieving potentially useful translation 

suggestions than the ones currently used in TM systems. We are especially interested in 

investigating whether more sophisticated algorithms and the inclusion of linguistic features in 

the matching process lead to significant improvement in quality of the retrieved matches. The 

used dataset, the DGT-TM, is pre-processed and parsed, and a number of matching 

configurations are applied to the data structures contained in the produced parse trees. We 

also try to improve the matching by combining the individual metrics using a regression 

algorithm. The retrieved matches are then evaluated by means of automatic evaluation, based 

on correlations and mean scores, and human evaluation, based on correlations of the derived 

ranks and scores. Ultimately, the goal is to determine whether the implementation of some of 

these fuzzy matching metrics should be considered in the framework of the commercial CAT 

tools to improve the translation process. 

Key words 

translation memories, CAT tools, fuzzy matching, similarity metrics 
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1. Introduction 

Ever since they entered into usage in the mid 1980s (Seal, 1992), the importance of 

translation memory systems in the translation process has steadily grown. Today, they are an 

indispensable technology in the translator's workflow (Lagoudaki, 2009; Simard and Fujita, 

2012). Despite their widespread usage, as well as the fact that they have been present in the 

translation industry and successfully integrated into CAT tool environments for a reasonably 

long time, relatively little improvement has been made in their core functioning (Simard and 

Fujita, 2012; Reinke, 2013). They have recently attracted a lot of attention from research 

communities and a large number of papers were written on different topics related to TMs, 

from surveying translators’ opinions on and expectations from TM systems (Lagoudaki, 2009; 

Moorkens and O’Brien, 2016; Federico et al., 2012; Parra Escartín, 2015), to evaluating and 

improving similarity metrics for searching the memories (Hodász and Pohl, 2005; Pekar and 

Mitkov, 2007; Baldwin, 2010; Bloodgood and Strauss, 2014; Simard and Fujita, 2012; Gupta 

et al., 2014b; Vanallemeersch and Vandeghinste, 2015a; Gupta et al., 2016), to the ethical 

aspects and copyright issues concerning storing and reusing both the original source text and 

its translated counterpart (Pym, 2003; Blésius, 2003; Drugan and Babych, 2010). Moreover, 

the usefulness of TMs as high-quality, human-produced parallel corpora had been overlooked 

as a valuable resource for improving machine translation and it is only relatively recently that 

the MT researchers recognised their benefits and started using them in developing MT 

systems (Simard and Fujita, 2012). These two translation technologies are strongly linked in 

both theory and practice, and most available CAT tools already offer some, computationally 

more or less sophisticated, possibility of combining the use of TM and MT systems in their 

environments (Lagoudaki, 2009; Reinke, 2013). 

However, despite ample research, a number of problems pertaining to TM systems and CAT 

tools on the whole remain unsolved in the commercial products used in the translation 

industry. The aim of this research is to examine the possible improvement of one such issue – 

the similarity metrics used for searching through the translation memories and retrieving the 

relevant matches to be offered to translators as translation suggestions for a particular 

segment. Although it has never been publicly disclosed, it is widely believed that most CAT 

tools use some variant of edit distance (Bloodgood and Strauss, 2014; Simard and Fujita, 

2012; Koehn and Senellart, 2010; Christensen and Schjoldager, 2010; He et al., 2010), a fairly 

simple, but relatively efficient similarity metric often used for a variety of data comparison 

purposes. However, the metric’s limitations become painstakingly obvious when it is applied 
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to morphologically rich languages, as it has problems dealing with inflectional phenomena 

and, at least in its basic implementation, does not allow for changes in word order. At a more 

profound level, since the metric only searches for exact overlap in sequences of word forms, it 

cannot account for semantic similarity of the segments as perceived by human translators 

(Gupta et al., 2014b). Consequently, although the metric performs very well on highly similar 

sentences, it cannot cope with segments whose similarity lies in aspects which are less 

straightforward than exact words. 

In this research, the described rudimentary implementation of edit distance is used as the 

baseline against which the performance of a number of different similarity metrics is tested. 

The aim is to examine whether the shortcomings of edit distance can be overcome by using 

different similarity algorithms and including different levels of linguistic knowledge in the 

matching process. The potential improvements in the matching process should lead to more 

useful translation suggestions being offered to translators, hence speeding up the translation 

process. To measure this “usefulness”, the matches retrieved by the similarity metrics are 

automatically evaluated using evaluation metrics, but a number of them were also given to 

human evaluators in the form of a survey1, since the quality of the performance of metrics 

should primarily be estimated by the end users of TM systems. Should some of the metrics 

prove to perform better than the widely used edit distance, their implementation in the CAT 

tools should ultimately be considered in order to improve matching and hence further enhance 

and speed up the translation process2. 

2. Theoretical background and related research 

As already mentioned, the research on translation memory systems has been done from 

various perspectives and with various aims in mind. In this section we give an overview of a 

number of papers dealing with topics closely related to our own. On the other hand, we put 

the aims of our research and the used approach into perspective by discussing a number of 

concepts and notions within the wider theoretical context of translation studies. 

2.1. Introduction to translation memory systems 

According to Reinke (2013), the importance of translation memories has become especially 

prominent in the context of the rapidly expanding translation market, making TMs “the major 

language technology” in the translation industry (Reinke, 2013: 27). Translation memories are 

                                                 
1 We would like to hereby thank the translators who took the survey for their efforts and useful feedback. 
2 This research was done within the framework developed for the purposes of the SCATE project, carried out at 

KU Leuven's Centre for Computational Linguistics. Its methodology was largely based on the approach used in 

the paper Assessing linguistically aware fuzzy matching in translation memories (2015) by Tom Vanallemeersch 

and Vincent Vandeghinste. 
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aligned parallel corpora comprised of translation units (TU), that is, source segments coupled 

with their translations. In other words, TMs are databases containing previously translated 

texts, fragmented and aligned at sentence level3, so that they can be searched, edited and, 

ultimately, reused in future translation tasks (Sikes, 2007). When the translator is translating a 

new text, a similarity algorithm searches through the TM and retrieves from it the segments 

whose similarity with the currently translated segment is estimated at a value above some 

required threshold4. These matches can be identical to the translated segment (exact matches) 

or display a certain degree of similarity (fuzzy matches), based on which the translator 

chooses whether to accept them as translation suggestions and post-edit them, or discard them 

and translate from scratch. The possibility of referring to verified existing translations has 

proved extremely useful in localization industry and the translation of specialised texts, as it 

significantly increases the speed of the process due to the repetitive character of these texts 

(Lagoudaki, 2009; Reinke, 2013; Christensen and Schjoldager, 2010). According to recent 

reports, most translators consider TM systems useful and gladly rely on them in translation 

(Moorkens and O’Brien, 2016; Zhechev and van Genabith, 2010). Moreover, with the 

growing demand for quick translation of large amounts of text changing the make-up of the 

translation process itself, the workload often exceeds the capacities of a single translator and 

calls for well-coordinated translation projects. In this case, TMs are useful for ensuring 

consistency among the translators and help project managers partition the text more logically 

when distributing the workload (Parra Escartín, 2015).  

In this research, we focus on another domain which has greatly profited from the advent of 

TM systems – legal translation in the context of the European Union. Due to its particular 

nature and norms, legal translation has recently attracted a lot of attention from different 

research communities, with a number of terminological and lexical resources and tools being 

developed to facilitate the translation process and increase its consistency (Biel and Engberg, 

2013). Within this domain, the translation of the EU legislative texts constitutes a marked 

phenomenon, due to the unprecedented multilinguality of its context (Felici, 2010). The great 

number of languages and large amounts of text have made TM systems particularly important 

in the translation of EU documents, and it is around these texts that we focus our research. As 

legal language typically displays a high degree of formulaicity and standardization in 

                                                 
3 It is in principle so that TUs consist of a source and target sentence and in literature are therefore often referred 

to as sentence pairs. However, as the granularity of aligned text can vary from smaller units (e.g. headings, table 

or list contents) to larger chunks of text (e.g. the source sentence is split up into two sentences on the target side), 

it is more accurate to use the more general term segment instead of sentence when speaking of TUs. 
4 The general practice in the translation industry seems to be setting the fuzzy match threshold at 70 percent. 
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terminology and structure (Biel and Engberg, 2013), the decision to use this particular dataset 

will inevitably have some implications for the expected research outcomes. Most notably, 

although the lexical aspect of texts unquestionably carries significant weight in all types of 

translation (Simard and Fujita, 2012), in legal translation it becomes even more pronounced 

due to the strictness of expression. The possible effects of this general restriction in language 

variability are further discussed later in the context of fuzzy matching. 

Finally, although the value of TM systems in the translation industry is indisputable, we 

must address an issue implicitly built into the very core of their functioning, and that is the 

problematic nature of text segmentation and the hazardous effect it might have on the 

integrity of the translation (Pym, 2006). As sentences in Indo-European languages generally 

do contain well-rounded grammatical units and express “complete thoughts” (Timonera and 

Mitkov, 2015: 17), splitting the text at sentence level for the purposes of translation seems 

justified. However, a lot of information is also contained in the surrounding text and TM 

systems are currently unable to utilise the stylistic, discursive and contextual information in a 

suitable way to improve their performance and overall translation quality. 

2.2. Translation suggestion usefulness – fuzzy matching metrics 

One of the fundamental features of TM systems are the matching algorithms used to retrieve 

translation suggestions from the TMs. Similarity algorithms generally have a broad scope of 

application and a great number of them have been developed for different purposes and in 

different scientific disciplines. In this subsection, we introduce a number of similarity 

algorithms which can be used in the context of fuzzy matching, and discuss some of their 

advantages and drawbacks. 

Despite the immense variety in ways of establishing similarity between two compared 

segments, commercial TM systems persist with using some variation of edit distance, such as 

Levenshtein distance (Levenshtein, 1966). In its basic form, this metric is a simple equally-

weighted edit distance, which means that it only counts the number of editing operations, 

substitutions, insertions and deletions, performed on words to turn one string into another5. 

An obvious drawback to this metric is that it does not allow for word crossings, i.e. it 

calculates the minimum edit distance matrix given a fixed word order. One way of 

overcoming this problem is using bag-of-words metrics, such as percent match (cf. 

Bloodgood and Strauss, 2014; Baldwin, 2010), which count the shared elements regardless of 

                                                 
5 Alternatively, the operations can be assigned different costs. Substitution is then usually “costlier”, as it 

involves both deletion and insertion (Jurafsky and Martin, 2009). The most frequently used implementations are 

run at word or character level. 
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their position in the segments. The problem with this metric is that it counts each appearance 

of a particular word as overlap. This usually results in assigning too much weight to highly 

frequent words, such as function words, whereas their usefulness in a translation situation is 

generally of limited extent6. One possible way of dealing with this problem would be to use 

linguistic information and give more weight to certain parts of speech or generally content 

words. Another approach would be to combine the metric with IDF weights7 (Bloodgood and 

Strauss, 2014) to tone down the importance of often recurring function words in matching. 

Generally speaking, there are endless possibilities in constructing different weighting 

schemes, which can be integrated with the matching algorithms to effectively give 

prominence to certain desired features, making the metrics less coarse and absolute in 

handling the complexity of language phenomena. However, weights do not solve the inherent 

risk of bag-of-words approaches: placing focus on single elements can potentially excessively 

fragment the text and fail to reflect the dependency relations implicitly contained in word 

order. As the translator would presumably want the fuzzy match to share more than a number 

of sporadic words with the sentence he or she is translating, it might be desirable to somehow 

match larger phrasal structures. Hence, the assumption behind ngram-based approaches8 is 

that higher-order ngrams are preferred over shorter spans, as they constitute more meaningful 

overlapping units and preserve the grammaticality within the matched phrases. In their study, 

Bloodgood and Strauss (2014) tested the usefulness of preserving the local context in fuzzy 

matches by creating a weighted version of ngram precision in which translators could 

themselves set the preferred length of matching spans. Human evaluators judged this metric to 

work very well when shorter ngrams were allowed to contribute more to the final match 

score, as these matches retained a degree of coherence without sacrificing too much of the 

variability and flexibility in matching. 

Regardless of their differences, all of these three approaches use language independent 

metrics run on surface form of the tokens contained in the compared segments. Moreover, the 

pointed out problems and solutions were generally discussed with respect to languages which 

are less morphologically diverse and have a stricter word order. Considering the fact that TM 

systems should perform well for a variety of different languages, the metrics described above 

                                                 
6 A typical illustration of this is the frequently recurring articles. For example, if the article the appears once in a 

short query segment and multiple times in the matching segment, this might suffice to estimate it as a good 

match, although in reality it is highly unlikely that it constitutes a useful translation suggestion. 
7 Inverse document frequency (IDF) is calculated across the corpus and assigns weights to words based on 

frequency of their occurrence. The underlying assumption is that translating the words with lower frequency will 

be more valuable and they are hence given more prominence in the matching process. 
8 In our research framework, ngrams are word units, i.e. unigrams denote single words, and higher-order ngrams 

are units consisting of multiple (n) words. 
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might lack the flexibility needed to account for phenomena in highly flectional languages. 

One simple way of dealing with this would be to run the matching process on units below 

word-level, for instance on single characters or shorter sequences of characters. Alternatively, 

we can try to improve the performance of the metrics by including linguistic features in the 

matching process. For instance, the same string-based metrics can be applied to different 

matching items, containing various types of linguistic information, such as stems or lemmas, 

part-of-speech tags, dependency structures or head-word chains (cf. Vanallemeersch and 

Vandeghinste, 2015a). Taking this idea of linguistically aware matching further, we can opt 

for metrics which do not compare strings, but tree structures and the data contained in them. 

There is a large variety of those metrics as well, such as tree edit distance (Klein, 1998) and 

various metrics drawing on the information contained in tree and subtree alignment (Jiang et 

al. 1995; Liu and Gildea, 2005; Zhechev and van Genabith, 2010; Vanallemeersch and 

Vandeghinste 2015a). However, what should be kept in mind is that using tree-based metrics 

is inevitably far more complex and computationally heavy than measuring string-based 

similarity, with the very generation and storage of parse tree structures already being 

expensive in terms of time and memory. Therefore, attempts have been made to “flatten” the 

complex parse trees into the more easily manageable string form, while retaining all 

information contained in the nodes. One of the approaches proposes using Prüfer sequences 

(Prüfer, 1918) to convert the information contained in trees into a string form (Li et al., 2008) 

and assigning different values to the different types of overlapping items when comparing two 

such segments (Vanallemeersch and Vandeghinste, 2015a). 

Apart from syntactic linguistic features, similarity metrics can also be applied to semantic 

information. For instance, in order to improve the recall and provide translators with better 

and lexically more diverse fuzzy matches, Gupta et al. (2016) propose using a large 

paraphrase database alongside the basic edit-distance algorithm. In their approach, they create 

an additional TM augmented with paraphrased structures. Both TMs are used in matching, 

with the matches from the original TM generally given advantage to in score ties. This seems 

like a viable framework, since they do not make the matching algorithm itself more complex 

and the matching remains fast. The paraphrase tables are relatively easy to develop as a 

resource from parallel corpora, but more linguistic features would be required for a successful 

integration of paraphrases when working with highly flectional languages and, as is always 

the case with “general” linguistic resources, these paraphrases should ultimately be somehow 

constrained with regard to their adequacy in particular domains and contexts. Several other, 

more complex matching algorithms aimed at semantic similarity are discussed in the 
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following subsection on evaluation metrics. We should also mention that there have been 

numerous attempts at intelligently combining multiple metrics (Gupta et al., 2014b; Bär et al., 

2012, Vanallemeersch and Vandeghinste, 2015a), in order to maximise their strengths and 

smooth out their faults. 

In another recent approach, Timonera and Mitkov (2015) propose chunking the TM 

segments into phrases or clauses and doing sub-segment matching. Although this approach 

significantly increases the recall, the question of how useful that is in practice actually points 

to two inherent limitations of TM systems. First, fragmenting a text into even smaller units 

than the default sentence level highlights that these systems remain primarily intended for the 

translation of highly repetitive specialised texts (Reinke, 2013). Second, it brings out the 

somewhat paradoxical nature of the fuzzy matching task itself: its goal is to provide the 

translator with a segment in the target language based on a comparison done on the source 

side. As particular expressions, norms and structural features can vary to different extents 

between languages, the sub-segment similarity on the source side need not be present to the 

same extent on the target side9, emphasising the fact that TM systems work better for 

structurally similar language pairs (Parra Escartín, 2015). To address the latter issue, the 

matching process should ideally be constrained by taking into account the target side of the 

TU (cf. Ma et al., 2011). As for the former, it certainly stands to reason to include linguistic 

features and resources in matching instead of restricting the text and its complex language 

phenomena to surface forms. However, to what extent we use these features is not a 

straightforward question, as translation is relatively bound by concrete lexical choices in the 

source text. Moreover, the usefulness of the translation suggestion also depends on a number 

of external factors, such as the purpose of the text, the type of text, the relevant norms, the 

target audience and a whole range of other phenomena influencing the decisions made by the 

translator in particular contexts. These notions have been extensively discussed within a 

number of theoretical frameworks in translation studies, but as the current CAT tools can take 

these circumstances into account only to a very limited extent10, we will not elaborate on them 

further. They are, however, taken at least partially into account in the form of human 

                                                 
9 To illustrate this, we can give the example of compounds in Germanic languages or flectional endings in Slavic 

languages. A high-scoring match in analytic languages such as English can hence still elicit a substantial amout 

of post-editing on the target side, or even render the offered match unusable. 
10 For instance, working with the translators from the European Parliament, we have been told that their 

translation process is “contextualised” in terms of inter-textual references by instructing the system to prioritise 

certain relevant reference documents over others when searching through the TMs. This is a simple way to 

indirectly ensure the consistency important in this particular type of translation. We are not familiar with any 

other features which would enable the situational context to influence the matching process being implemented 

in the current CAT tools. 
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judgment of the metrics’ performance, with the subjective factor of individual translators’ 

preferences further complicating the image. 

2.3. Translation quality – automatic evaluation metrics 

Unlike in research on machine translation, the question of quality is not as central when 

dealing with translation memories, since the output of TM systems is human-produced 

translation and therefore should, at least nominally, unquestionably be of high quality. The 

reason why we give an overview of the metrics aimed at estimating translation quality is 

twofold: first, as they are used to evaluate the performance of the matching metrics, we 

consider it important to discuss the underlying assumptions about translation quality these 

metrics are built on; second, as noted by Simard and Fujita (2012), with only slight 

adaptations made to the algorithms, metrics for automatic evaluation of MT can themselves 

be used as fuzzy matching metrics in TM systems11. Unfortunately, the question of how to 

define translation quality is in no respect a straightforward issue. As Koby et al. (2014) 

jokingly note, it is already impossible to strictly define translation and quality, let alone 

formulate an absolute definition of translation quality. We might add that it is one thing to 

broadly define it through contemplative discussion in theory12, and entirely another to find a 

plausible way of formalising and quantifying it in practice. As this matter is crucial for the 

research and system development in the field of translation technology, considerable effort 

has gone into constructing a reliable automatic evaluation framework which would reflect the 

vague idea of quality as perceived by humans. To be able to handle the broad scope of the 

notion in some formal way, the evaluation metrics have inevitably had to reduce it to a certain 

aspect (Banarjee and Lavie, 2005), their features then being attuned to (more or less 

successfully) capturing particular ways in which these phenomena are supposedly reflected in 

text13. 

Although often vigorously disputed, BLEU (Papineni et al., 2002) is currently the most 

frequently used automatic evaluation metric (Lo and Wu, 2011). This metric constitutes a 

fairly flat, though computationally efficient method of comparing segments based on lexical 

similarity through a combination of ngram precision and a brevity penalty. To put it simply, 

BLEU compares the two segments by measuring the proportion of the matching ngrams to the 

total number of ngrams in the evaluated segment. As it does not directly take into account this 

                                                 
11 To distinguish between the algorithms used as fuzzy matching metrics and as evaluation metrics, the subscript 

“T“ is added when referring to the latter, denoting the target side. 
12 House (2000) notes that for an assessment of translation quality, you need a translation theory, emphasizing 

that there are no absolute parameters for the estimation of quality. 
13 The aspects of quality that we discuss in this section (fluency, adequacy, accuracy) are used in the sense as 

defined in the framework of White et al. (1993). 
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same proportion in the reference segment, BLEU uses the brevity penalty to account for this 

lack of recall, i.e. it assigns penalties for differences in length between the compared 

segments. The quality measured by BLEU is defined in terms of fluency, represented 

indirectly by overlaps in higher-order ngram spans, and adequacy, reflected in shorter ngram 

overlaps. Leaving aside the question of BLEU’s efficiency in measuring the phenomena it 

purports to capture, comparing segments at this flat level effectively requires a diversity of 

references that a query is compared to, in order to account for the possible lexical variation. A 

step towards resolving this was taken by METEOR (Banarjee and Lavie, 2005). METEOR is 

an edit-distance-based metric which measures similarity on surface lexical forms and their 

stemmed versions, but also makes provision for the fact that the same meaning could be 

expressed in various ways by incorporating models for identifying synonyms (usually built 

from WordNet14 or similar resources) and paraphrases in the compared segments. The 

modules are weighted in the final score calculation, the assumption being that having an exact 

match is better than having a synonymous or paraphrased alternative15. Although METEOR 

proved to correlate much better with human judgment (Denkowski and Lavie, 2014), an 

obvious drawback is its inapplicability to under-resourced languages, as well as relative 

inflexibility in handling variation in word order because of the penalties assigned to word 

crossings. There are a number of other edit-distance-based evaluation metrics, aimed at 

estimating quality in terms of adequacy by measuring the cost of edits, or “error rate”, such as 

WER, PER and TER16 (Snover et al., 2006). TER reportedly correlates rather well with 

human judgment of quality (Lo and Wu, 2011), and its basic principle can be paraphrased as 

an equally-weighted count of all the edits made to convert a query segment into a reference 

segment (insertion, substitution, deletion, phrasal shifts, changes in punctuation and 

miscapitalisation), normalised across the length of the reference. Most automatic evaluation 

metrics also have human-targeted variants, which utilise manual annotation or pooled human 

feedback on translation quality to more profoundly tune the metrics’ parameters. 

Much like with the fuzzy matching metrics, there have been attempts to move beyond the 

lexical level and measure similarity on more abstract linguistic units, using for instance 

syntactic trees or semantic roles. Approaches aimed at semantic similarity can include shallow 

                                                 
14 https://wordnet.princeton.edu/  
15 This makes sense if we consider the fact that not all synonyms are mutually exchangeable in all contexts. To 

take an example from the article, the words computer and workstation will be marked as overlap, but given a 

score of only 0.3 (Denkowski and Lavie, 2005). However, METEOR’s statistical approach does not make it fully 

capable of dealing with phenomena pertaining to the register and stylistic features of a text. 
16 Although its original name is Translation Edit Rate, edit is frequently exchanged for error by analogy to word 

error rate (WER) and position-independent word error rate (PER). Either way, it is important to note that these 

metrics indicate higher similarity by lower scores, i.e. the fewer the errors/edits, the better the match. 

https://wordnet.princeton.edu/
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semantic knowledge as a feature in aggregate metrics such as ULC (Giménez and Màrquez, 

2007) or be entirely based on matching on semantic roles (Lo and Wu, 2011; Vanallemeersch 

and Vandeghinste, 2015b). According to the creators of the recently developed MEANT 

metric (Lo and Wu, 2011), the quality of translation essentially lies in the accuracy of the 

representation of the basic event structure. The metric thus transposes the notion of semantic 

similarity from the lexical level to semantic frames, which are used in comparisons. Although 

the paper reports positive results, the metric is not yet fully automated and its application 

requires resources and tools such as semantic parsers which are not available for a great 

number of languages. Needless to add, handling meaning from any perspective often poses 

problems which cannot be uniformly resolved, and modelling meaning through the strict 

computational framework is far from being a straightforward task. Whether the fact that the 

translation correctly conveys the essential relations of “who did what to whom” (Lo and Wu, 

2011: 220) suffices to evaluate it as good could be disputed, but this approach presents an 

interesting broadening of the view on how to capture semantic similarity. 

On the other hand, modelling syntactic knowledge seems to be, at least nominally, a slightly 

easier task and various resources and tools have been developed for a larger number of 

languages. Therefore, many researchers have tried to enhance their systems by incorporating 

syntactic information to improve the identification of shared constructions, grammaticality 

and word order variation (Liu and Gildea, 2005; Owczarzak et al., 2007). The idea of creating 

a weighted combination of multiple levels of similarity has also been explored in the sphere of 

automatic evaluation. For example, LAYERED (Gautam and Bhattacharyya, 2014) combines 

a lexical, syntactic and semantic layer, while BEER (Stanojević and Sima’an, 2014) is based 

on the permutation of tree nodes, but also takes into account the lexical layer. BEER draws on 

similar lexical resources as METEOR, but unlike the latter, it matches on more fine-grained 

character-based ngram orders and distinguishes between content and function words in 

matching. These different layers of linguistically aware and unaware features are combined 

using logistic regression. 

However advanced these metrics may be, their limitations as valid estimators of quality in 

research similar to this one quickly come to light and their output should always be 

interpreted with a pinch of salt. For instance, studies have shown that metrics which capture a 

particular linguistic aspect, such as semantic similarity, correlate badly with evaluation 

metrics insusceptible to such features (Simard and Fujita, 2012). On the other hand, research 

has also shown that using similarly functioning algorithms both for matching and for 

evaluation results in self-selection bias, i.e. the evaluation metrics tend to correlate best with 
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essentially similar matching metrics and rate their performance higher (Simard and Fujita, 

2012; Vanallemeersch and Vandeghinste, 2015a; Wolff et al., 2016). These two phenomena 

seem logical, but they are not always equally obvious. After all, the matching metrics on the 

source side and the evaluation metrics on the target side are ultimately applied to different 

language systems (Simard and Fujita, 2012). One way of obtaining more legitimate results is 

to use multiple evaluation metrics, with the tested setup ideally showing improvement 

according to all criteria. 

Automatic evaluation is indeed indispensable in research and it is of unquestionable value 

when there is no other recourse. However, it is indisputable that TM and MT systems should 

ultimately be evaluated by the end users to obtain a more realistic image of the quality of their 

performance. As human evaluation is time-costly, noisy and expensive, it is inconvenient for 

large-scale evaluation tasks or for rough estimations of relative improvement at the 

development stage of the research, which frequently leads to the qualitative analysis and 

human judgment being entirely omitted from studies. On the other hand, how to approach and 

quantify the phenomena one wishes to measure constitutes an interesting and complex topic in 

its own right, the discussion of which lies beyond the scope of this research. Just as an 

illustration, at the next stage of this research, that is, should the implementation of particular 

metrics be considered, a more elaborate investigation of their performance could be conducted 

by measuring the gains in speed and reduction in post-editing effort. Approaches such as 

those proposed by Federico et al. (2012) or Green et al. (2013) would enable us to more 

directly quantify the actual usefulness of the retrieved matches in practice. However, for the 

purposes of our research, a much simpler task of ranking the offered matches should suffice to 

see how well the individual metrics correlate with the human judgment of usefulness. We 

present our approach in more detail in the section on methodology. 

3. Aims and hypotheses 

Before we proceed to describe the experimental setup, we give a short overview of the 

research aims and hypotheses, based on the above discussed notions and findings of previous 

research. In a general sense, the main aim of this research is to investigate whether there are 

more efficient ways of performing fuzzy matching than the surface-level edit-distance 

methods currently used in the translation industry. The hypothesis we build our experiment 

around is that algorithms which calculate similarity scores in a slightly more sophisticated 

way correlate better with the human judgment of usefulness. Another hypothesis is that 

augmenting the matching process with various types of linguistic information also leads to the 
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retrieval of more useful matches. Hence, algorithms of varying complexity are applied to the 

dataset in a number of configurations, to see whether some of them are more successful in 

capturing the notion of similarity as perceived by humans and in estimating the quality of 

matches as translation suggestions. The research primarily aims for improvement in the 

matching process in the lower scoring ranges, as the assumption is that some of these matches 

might still be useful, but the surface-level metrics fail to identify these aspects of similarity to 

the query segment. The only restriction to the expected outcomes of the research is imposed 

by the nature of the used dataset: as we are working with legislative EU texts, the added value 

of lexical and syntactic flexibility might be slightly less than in some other types of text, but 

these features are still expected to contribute to the improvement in the matching process. 

Ultimately, the practical purpose of the research is to examine whether an implementation of 

the tested matching algorithms should be considered in order to improve the translation 

workflow, should they prove to consistently perform significantly better than the metric 

currently used in the commercial CAT tools. 

4. Methodology 

The way in which we construct the experimental setup largely builds on the work done 

within the framework of the SCATE project17, and the research itself was primarily 

envisioned as an extension of the research on fuzzy matching metrics presented in the paper 

by Vanallemeersch and Vandeghinste (2015a), aimed at examining whether using linguistic 

features leads to improvement in matching on the Europarl dataset (Koehn, 2005) for the 

language pair English-Dutch. Apart from the already discussed differences in the expected 

outcomes with regard to the used dataset, the used approaches differ in several other 

instances, the most important one being the inclusion of human evaluation. 

4.1. Fuzzy matching metrics 

As can be seen in the literature overview, there is a wide variety of similarity algorithms 

which can be used for fuzzy matching. In this subsection, we will give an overview of the 

basic functioning of the algorithms we opted for in this research18. 

4.1.1. Individual fuzzy matching metrics 

As already mentioned, the current commercial TM systems are believed to use some 

variation of edit distance as the similarity algorithm. If we are looking to investigate the 

possible improvements of these systems, it stands to reason to take this metric as our baseline 

                                                 
17 https://www.arts.kuleuven.be/ling/ccl/projects/scate 
18 For brevity sake, the formulae of the matching algorithms can be found in Appendix I. In order to obtain 

comparable results, all metrics are normalised to give a score ranging from 0 (no overlap) to 1 (exact match). 
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in the research. We use a very basic implementation of Levenshtein distance: it compares the 

segments based on surface word forms, assigns each substitution, deletion or insertion the cost 

of 1 and does not allow for word-crossings when calculating the minimal distance matrix. The 

coarseness of this metric is visible from its very description, but the reason why it is still 

widely used in TM systems is presumably because it is fast and performs well on segments 

with a high percentage of similarity, which makes it a surprisingly strong baseline to test 

against. Other two surface-form metrics that we used are Percent match (PM) and Ngram 

precision (NGP) (Bloodgood and Strauss, 2014). The idea behind using them is to examine 

the usefulness of matches retrieved by a fairly rudimentary bag-of-words metric (PM) and a 

metric trying to take into account the local context of larger structures by identifying longer 

stretches of overlapping ngrams (NGP). The first one hence increases recall, whereas the 

second one aims for precision. PM very freely calculates the percentage of elements in the 

query found in the TM segment and is normalised only across the length of the query, which 

means that it can give a high score to a fuzzy match regardless of the matching segment 

length19. In contrast to that, NGP looks for overlapping sequences of elements of length 1 up 

to N, and its normalization enables us to control the segment length preference by changing 

the value of the Z parameter20. Aiming for higher precision, we decided to match on higher-

order ngrams and a lower value for Z (set at 0.3). As the SCATE framework provides the 

possibility of running these three metrics on different elements of string-structured data, we 

also made linguistically informed variants of these metrics, applying them to lemma 

sequences, part-of-speech tags and Prüfer sequences. The parameters for running the metrics 

(such as weighting schemes and ngram lengths) were set experimentally by using the hill-

climbing algorithm. Based on the number of varied parameters, the hill climber was applied 

with two or three random initializations to 10.000 segments from the training dataset, and the 

parameters were optimised for five best matches using mean TERT score21. The final 

configurations used in matching are presented in Appendix I22. 

                                                 
19 For instance, if the query is a phrase consisting of two words and both of those words (not even necesarrily 

constituting the same phrase) are found in a TM segment which is a long sentence, this metric will give this 

match a high score.  
20 By setting this parameter to a higher value, we effectively allow the algorithm to retrieve longer matches.  
21 Although it is arguably always better to determine optimal parameters experimentally rather than setting them 

intuitively and arbitrarily, there are a number of limitations to this approach which need to be kept in mind. First 

of all, the dataset the algorithm was run on is relatively small and consists of random segments extracted from 

the training set, so we can hardly claim its representativeness for the entire corpus. TER was also arbitrarily 

chosen as the optimization metric. Nevertheless, we estimated that this approach would suffice for the purposes 

of this stage of the research. 
22 We mark these metric variants with subscripts, e.g. LEVLEM1DEF, PMPOS3DEF, NGPPRUF4PRUF. 
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The rest of the metrics we applied were run with default settings. The first among them is 

another edit-distance metric, TER23 (Snover et al., 2006). However, as the score it assigns is 

based on the cost of shifts and its value in theory has no upper boundary, to enable 

comparison with other matching metrics and mitigate the correlation to automatic evaluation, 

we use the inverted score, normalised to give back results ranging from 0 to 1 

(Vanallemeersch and Vandeghinste, 2015a). Two more MT evaluation metrics are used as 

fuzzy matching metrics on the source side: METEOR (Banarjee and Lavie, 2005) and BEER 

(Stanojević and Sima’an, 2014)24. These metrics incorporate lexical semantic knowledge and, 

as mentioned before, BEER also makes use of syntactic information through node 

permutation. This leads us to the last metric we applied to the dataset – Shared Partial 

Subtrees (SPS), a metric which compares pairs of parse trees by identifying the overlapping 

subtree structures the trees share (Vanallemeersch and Vandeghinste, 2015a). The final score 

is calculated on the optimal combination of all shared subtrees, which are in turn individually 

scored based on the number of nodes, as well as on word relevance and the lexical and non-

lexical similarity of the nodes. 

4.1.2. Combination of fuzzy matching metrics 

As a final step, we decided to combine the above metrics to see if the matching can be 

improved by their combined impact. As mentioned in the literature overview, this idea is not 

new, as a number of different models have been developed both for the purposes of retrieval 

in TM systems and of evaluation in MT systems25. These models vary in complexity and the 

number of features, and in terms of that, our model is fairly simple and naïve. Its logic 

resembles that behind the log-linear model constructed by Bär et al. (2012) and regression 

trees constructed by Vanallemeersch and Vandeghinste (2015a), inasmuch as it uses pre-

calculated scores by the metrics as feature values and takes the predicted value as the new 

fuzzy match score. After testing a number of setups, we opted for the Random Forest 

Regressor26. This is a very simple, but efficient ensemble learning method which uses a 

number of regression trees as the base algorithms and outputs their mean prediction. The fact 

that it averages out the result of multiple trees and that it trains different trees on different 

parts of the training dataset reduces the variance and makes the model less prone to 

                                                 
23 The used version is 0.7.25 (see http://www.cs.umd.edu/˜snover/tercom). 
24 The used version for METEOR is 1.5 (see http://www.cs.cmu.edu/ ˜alavie/METEOR) and 1.0 for BEER (see 

Stanojević and Sima'an, 2014).  
25 Apart from the ones already described combinations of metrics, we can also mention VERTa (Comelles et al., 

2014) and the Asiya toolkit (Giménez and Màrquez, 2010). 
26 We use the implementation made available in Python's scikit-learn library (see http://scikit-

learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html). 
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overfitting, i.e. the final model should be better at generalizing on unseen test data than 

individual regression trees. In our case, the individual regression trees try to predict the 

evaluation score of the translation of the match by combining the scores of individual metrics 

for the source match. Highly intuitively, each tree splits the features and simply follows the 

branch containing the features which enable it to perform the prediction task better. Ideally, 

the individual trees in the forest should not be correlated, and this is partially achieved 

through the method of bagging, which entails taking a number of random samples from the 

training data, so that the individual trees are ultimately trained on different subsets of the data. 

In the Random Forest implementation used here, we used bootstrap sampling with 

replacement, which means that the same feature can be selected multiple times. A random 

subset of features is chosen at each split to avoid giving too much prominence to a single set 

of features and reduce the correlation between the trees. We trained our model on the matches 

retrieved for 10,000 segments by the individual metrics and used the metric scores as values 

of the features in training. The value the model predicts is the evaluation score of the 

translation of the match calculated by METEORT
27. In addition to the individual metric 

scores, we added the features produced by a word2vec model28 trained on the entire dataset 

without any additional text pre-processing. The model takes textual input and produces vector 

representations of words whose linear relationships in the vector space reportedly reflect the 

semantic and syntactic similarity between particular words. The vectors of individual words 

are averaged to obtain vector representations of segments29. The idea behind using the output 

of this model as an additional feature was that these representations might encode similarity 

of sentences which other metrics are unable to account for, and hence provide added value in 

predicting the evaluation score. 

4.2. Automatic evaluation metrics 

In order to evaluate the performance of the tested metrics on the source side, we apply 

automatic evaluation metrics to measure the similarity between the target side of the query 

                                                 
27 The potential model parameters were roughly estimated using out-of-bag scores (i.e. by comparing the mean 

prediction errors on training subsets using the trees that did not include this particular subset). The optimal 

number of trees was found to be 700 and a maximum of 30 percent features was used at each split. The model 

was evaluated using 10-fold cross-validation. 
28 We used the implementation provided in Python's gensim library (see 

https://radimrehurek.com/gensim/models/word2vec.html). The minimal number of times a word has to occur in a 

corpus to be included in the dictionary was kept at 5 and the number of dimensions was limited to 100. The 

architecture it uses is continuous bag-of-words (CBOW). 
29 This approach of accumulating the vectors of individual words produced by the word2vec model in order to 

derive a vectorised sentence representation is a simple way to approximate the calculation of similarity at 

sentence level. Training the more advanced Sent2vec or Doc2vec models instead would probably yield more 

reliable results. Additional pre-processing of text is presumably also desired. 
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TU (the reference translation) and the target side of the retrieved fuzzy match TU. These 

similarity scores are then correlated to the scores produced by the original fuzzy matching 

metrics on the source side, to approximate the actual usefulness of the translation suggestions 

given to the translator by a certain metric run on the source side of the TM. Keeping in mind 

the self-selection bias and the relatively low scores some metrics are assigned by the faulty 

automatic evaluation methods, we apply four different evaluation metrics to the target side: 

TER, Ngram precision, METEOR and Shared partial subtrees. Out of those four, the matching 

configurations of TERT and SPST are the same as on the source side. As for NGPT, its 

parameters are set so as to in a way simulate the performance of BLEU at sentence-level. 

Hence, a high penalty is set for length by decreasing Z to 0. On the other hand, in order to use 

METEOR’s synonym and paraphrase modules on the target side, we needed to develop the 

resources for it to use. As the Swedish version of WordNet30 is not publicly available, we 

tried to develop a resource from the available version of the Swesaurus31. However, the 

relations between the items it contains are too simplistic and scarce to be integrated in 

METEOR’s framework, and we were unfortunately unable to use this module. The paraphrase 

database was easier to develop and, as the research deals with EU texts, we created a parallel 

corpus from other available EU resources, more specifically from the English-Swedish 

versions of the Europarl (Koehn, 2005), EMEA (Tiedemann, 2009) and JRC-Acquis 

(Steinberger et al., 2006) parallel corpora. We then used this large parallel corpus to train the 

standard phrase-based statistical machine translation system Moses32 (Koehn et al., 2007). As 

a by-product of the training process, Moses outputs phrase tables containing lexical 

probabilities that a particular construction could be considered as a paraphrase of another. 

These tables were used to create a paraphrase database using the Parex tool33. The database 

was filtered at the lexical probability threshold of 0.05 to reduce noise in the tables. Hence, 

METEORT was run using the exact, stem and paraphrase module. 

By choosing relatively diverse metrics for automatic evaluation, we hope to reduce the bias 

and obtain more realistic results. The assumption is that comparing the correlations between 

metrics based on subtrees, ngram spans, weighted edit distance and edit distance with shallow 

semantic knowledge could be interesting as each of those features is also present in some of 

the matching metrics, but not in others. Moreover, as we use human evaluation for this 

                                                 
30 http://www2.lingfil.uu.se/ling/swn.html 
31 https://spraakbanken.gu.se/resource/swesaurus 
32 In doing this, the standard procedure for training was followed (Koehn et al., 2007), with the training, tuning 

and testing steps all included to increase the quality of the obtained lexical probabilities.  
33 Denkowski and Lavie (2010), Bannard and Callison-Burch (2005), see https://github.com/lixiangnlp/parex. 
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research, the scores assigned by the evaluation metrics themselves can also be put into 

perspective. Before we describe the methods for human evaluation, we first discuss the 

dataset and lay out the experiment procedure. 

4.3. Data pre-processing and application of metrics 

The dataset used in research is the publicly available translation memory for Acquis 

Communitaire provided by the Directorate-General for Translation of the European 

Commission (Steinberger et al., 2012). There are several practical reasons for choosing this 

corpus. First of all, the assumption is that this TM would provide a well-maintained and 

reliable dataset in terms of cleanness, reduced noise and alignment quality, but also in terms 

of translation quality control. As already mentioned, opting to do research with the DGT-TM 

also seems relevant in the light of the growing importance of TM systems and terminological 

resources in the complex phenomenon of translation in the context of unique multilingualism 

that the EU provides (Biel and Engberg, 2013; Felici, 2010). Finally, our initial idea was to 

conduct research for several language pairs, which made the multilingual DGT corpus a 

convenient choice. In the experiment, we use the English-Swedish TM, with English used as 

the source and Swedish as the target side, reflecting the default situation in the context of 

DGT translation. As a part of pre-processing, we cleaned, filtered and then parsed the data. 

For the English side we used Stanford parser (Klein and Manning, 2003), to which we also 

added lemmas. On the target side, we used the Swedish labelling pipeline efselab34. Both 

resulting parse trees were converted into the same type of xml format, nodes containing Prüfer 

sequences were added to them, and the monolingual parse trees were parallelised and aligned 

at both word and node level. The resulting parallel treebank comprised a total of nearly three 

million segment pairs. 

This amount of data greatly exceeds our needs, but we still divide it into the training and test 

set to avoid overlap in the data used for different purposes. To speed up the rate of match 

retrieval, we index and filter the data using Approximate query coverage (Vanallemeersch and 

Vandegihnste 2015a), a metric which uses a suffix array (Manber and Myers, 1993) to 

identify segments which are likely to meet the minimal threshold set in fuzzy matching35. The 

fuzzy matching metrics are applied to these filtered results and their performance is tested for 

different ranges of similarity scores according to the baseline36. We use a subset of 10,000 

                                                 
34 https://github.com/robertostling/efselab 
35 To enhance speed while still retaining as many potentially useful matches as possible, we set the filtering 

threshold to a value of 0.2. Other settings used in running Approximate query coverage are given in Appendix I. 
36 The main division line we base our results on in the automatic evaluation part is 0.7. The upper range hence 

denotes matches of 70 percent overlap and higher, while the lower range denotes matches below that score. 
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segment pairs as queries and compare them to the TM created from the entire test set (around 

1.1 million segment pairs), applying the filter to ensure the queries would not be compared to 

themselves. The evaluation metrics are then applied to the target side of the retrieved matches 

and the two scores are correlated. As already mentioned, it is primarily the matching process 

in the lower similarity range that is the main focus of this research. As all the tested metrics, 

including the baseline, are expected to perform similarly, and reasonably well, in the highest 

fuzzy match range (approximately up to 80 percent overlap (Reinke, 2013)), we are interested 

to test the performance in the lower range where there is much more variation. The aim is to 

see if some of the metrics would more successfully reflect the human judgment of usefulness 

in this lower range, measured both in terms of ranking and score. The matches used in human 

evaluation were extracted from the range between 40 and 75 percent overlap. The upper 

bound was set slightly above the default similarity threshold, whereas the lower bound was 

decided by means of a manual analysis of a number of matches, as it led us to conclude that 

matches below this threshold would hardly be considered useful by translators in any context. 

4.4. Human evaluation 

For the human evaluation part, we created a survey using the on-line LimeSurvey 

platform37, which was taken by six native Swedish speakers with training in translation38. We 

initially extracted a subset of 5,400 segment pairs from the above described dataset. As 

ranking fuzzy matches constitutes a demanding and laborious task, we had to further pre-

process and restrict the data for human evaluation to facilitate this process. For instance, the 

segments chosen for ranking were filtered on length and similarity to other chosen segments, 

to ensure that the obtained set is relatively diverse and that the segments contained in it were 

long enough to be interesting and not so long as to hinder efficient comparison by human 

evaluators. After filtering, the dataset was further restricted to around 60 sets, consisting of 

the query and a maximum of six highest-scoring corresponding fuzzy matches. To facilitate 

the comparison, we marked the matching parts between the query and the source side of the 

respective matches using the baseline metric. Of course, this matching metric is coarse and 

faulty and the translators were warned that the mark-up was merely a reference point. 

Keeping in mind the similarity range from which these matches were extracted, it would be 

an extremely difficult task for the evaluators to produce a full ranking of the matches, since 

there would hardly be many straightforward cases of particular matches being significantly 

                                                 
37 An example of a survey question can be found in Appendix II. 
38 Three evaluators were professional translators working at the European Parliament and three were master 

students at Stockholm's Institute for Interpreting and Translation Studies. 



 22 

better or worse than others. Therefore, we applied a tournament strategy to further cut down 

the number of matches which need to be ranked by the translators and to circumvent the need 

for their explicit ordering. The implementation of the tournament strategy developed for the 

SCATE project was based on the approach proposed by Pighin et al. (2012) and it enabled us 

to break down a full-ranking task into pair-wise comparisons, from which a global ranking of 

matches could be derived later on. In this approach, the matches in each set are organised into 

a tournament bracket configuration, which combines them in a way that establishes clear 

relationships of dominance between the matches and effectively enables the production of full 

rankings from relative ternary decisions: the first match is better, the second match is better or 

both matches are equally (un)useful as translation suggestions. For instance, if there are six 

fuzzy matches, the pre-terminal nodes of the tournament tree will contain three pair-wise 

comparisons. We constantly move to higher-level brackets by combining a random sentence 

from one of the lower brackets with a sentence from the other, until there is only one bracket 

left. In principle, this means that to derive a ranking of n matches, the translator needs to 

perform n (or n+1 for an uneven number of matches) comparisons. Other filters are applied in 

the process to further reduce the ranking effort. The comparison results are used to build a 

connected graph and automatically derive a full ranking from the relative pair-wise ranks. To 

reduce bias, the comparisons were presented to translators in random order. 

This approach was found to be faster, less laborious and more consistent in terms of 

achieving higher interrater agreement than approaches using explicit many-to-many 

comparisons directly resulting in full ranking (Green et al. 2013). The survey consists of two 

parts: a short section with general information questions about the translators’ preferences and 

experience with CAT tools, and the fuzzy match evaluation part, split into two sub-sections, 

each comprising a total of 100 pair-wise comparisons. On the obtained data, agreement 

between all annotators is calculated using Fleiss’ kappa, and Cohen’s kappa and weighted 

kappa coefficients39 are calculated between each two annotators. The scores produced by 

fuzzy matches on the subset are correlated to the average human evaluation derived from the 

survey results using Pearson correlation. The ranking of matches produced by the metrics is 

correlated to the normalised human ranking using Spearman’s rank correlation coefficient. All 

results of automatic and human evaluation are presented in tables in Appendices III. and IV. 

and discussed in the following section. 

 

                                                 
39 If translators prefer opposing matches, weight is 2; if one translator chose a match and the other marked both 

as equal, weight is 1. 
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5. Results and discussion 

In this section we present and discuss the most relevant results of the experiment. First we 

look at automatic metrics, their correlation to the fuzzy matching metrics and mean evaluation 

score, and then discuss the results of human evaluation. 

5.1. Automatic evaluation 

As expected, added features rarely proved to be of significant value in the upper range of 

similarity overlap where the baseline is strong. Very few metrics succeeded in beating the 

baseline, and the margin of improvement is most of the time so slight that it is barely 

significant. Below we present the table with the metrics which performed better than the 

baseline on at least one criterion. 

 
METT 

corr 

METT 

mean 

NGPT 

corr 

NGPT 

mean 

SPST 

corr 

SPST 

mean 

TERT 

corr 

TERT 

mean 

BASELIN

E 
0.4491 0.7516 0.4373 0.6574 0.4527 0.7554 0.4702 0.2342 

BEER 0.5005 0.7585 0.5036 0.6663 0.4634 0.7590 0.4223 0.2341 

METEOR 0.3564 0.7555 0.3666 0.6637 0.3442 0.7527 0.3123 0.2390 

NGPWORD1

DEF 
0.473 0.7552 0.4913 0.6636 0.3701 0.7543 0.3153 0.2386 

TER 0.4439 0.7521 0.4323 0.6574 0.4643 0.7562 0.4913 0.2324 

ALL 0.4428 0.7523 0.4541 0.6589 0.4058 0.7557 0.4289 0.2344 

Table 1: Automatic evaluation of the fuzzy matching metrics in the similarity range above or equal to 0.7. 

Best results are bolded. All correlations and none of the mean scores are statistically significant. 

As can be seen from the table, BEER achieves better results than the baseline according to all 

evaluation metrics except for TERT. What is also important to note is that TERT displays the 

strongest self-selection bias, as TER on the source side correlates best with it and achieves the 

best mean score. Apart from BEER, it is easy to notice that the individual metrics which 

achieve similar or slightly better results than the baseline in this fuzzy match range all share 

some of its features: METEOR and TER are essentially based on edit distance, the 

combination of metrics (ALL) uses both of these metrics along with the baseline as features 

and was optimised on METEORT evaluation scores, and the source side NGP metric was also 

run on surface word forms. It is also interesting to note that METEOR, although it uses 

similar lexical resources as BEER, correlates poorly with all evaluation metrics, including 

METEORT. This leads us to conclude that lexical variability, and more generally linguistic 

features, does not provide added value in the highest matching range, as matching on surface 

forms seems to be preferred in this dataset. Apart from the similarities between the better-

scoring metrics and the baseline, it is interesting to note that a degree of self-selection bias is 

indeed present in automatic evaluation, with only SPST not selecting itself among the better 



 24 

scoring metrics. With regard to this, the improvement over the baseline achieved by BEER 

indeed seems quite remarkable. Unfortunately, we can only speak of improvements on the 

correlation criteria with legitimacy, as none of the improvements in the mean evaluation 

scores are statistically significant40. Next we look at the range of matches whose similarity 

overlap is below 70 percent. 

 

METT 

corr 

METT 

mean 

NGPT 

corr 

NGPT 

mean 

SPST 

corr 

SPST 

mean 

TERT 

corr 

TERT 

mean 

BASELINE 0.6735 0.3372 0.5928 0.2502 0.6667 0.3640 0.6162 0.8687 

BEER 0.6328 

0.3499

* 0.6031 

0.2650

* 0.6002 0.3650 0.4198 0.9962 

LEVLEM1DEF 0.6477 0.3347 0.5559 0.2466 0.6553 0.3643 0.6202 0.8681 

METEOR 0.6967 

0.3534

* 0.6723 

0.2752

* 0.5601 0.3531 0.3619 1.0049 

NGPWORD1DEF 0.7277 
0.3546

* 0.7004 
0.2764

* 0.6087 0.3576 0.3587 1.0018 

NGPLEM4DEF 0.6732 0.3358 0.6402 

0.2614

* 0.5902 0.3517 0.3935 0.9530 

PMWORD1DEF 0.5577 0.3111 0.4862 0.2204 0.5116 0.3494 0.5956 

0.7750

* 

PMLEM3DEF 0.6175 0.3220 0.5497 0.2379 0.5869 0.3534 0.5934 

0.8259

* 

PMPOS3DEF 0.4872 0.3008 0.4237 0.2149 0.4756 0.3410 0.5540 

0.8084

* 

PMPRUF2DEF 0.4738 0.3018 0.4135 0.2142 0.4736 0.3436 0.5358 

0.7930

* 

SPS 0.5625 0.3196 0.4919 0.2281 0.5804 0.3653 0.5415 

0.8095

* 

TER 0.6533 0.3155 0.5841 0.2235 0.6607 0.3666 0.7075 

0.7443

* 

ALL 0.7663 

0.3524

* 0.7255 

0.2687

* 0.7089 

0.3705

* 0.6566 

0.8395

* 

Table 2: Results for fuzzy matching metrics in the similarity range below 0.7. Best results are bolded and 

statistically significant mean scores are marked with an asterisk. All correlations are statistically significant. 

One thing that we notice straight away is the greater number of fuzzy matching metrics which 

performed better than the baseline according to some measure of quality in this lower range. 

The combination of metrics consistently correlates best with all evaluation metrics except for 

TERT and always outperforms the baseline. However, it is interesting to note that most of the 

metrics in the table only achieved improvement in the mean TERT score, which is not even 

necessarily reflected by their correlation with TERT. Most notably, the different variants of 

Percent match seem to be favoured by TERT in this range. For the rest, we can notice that 

using linguistic information in matching arguably gets a more prominent role in this range, 

                                                 
40 We measure the statistical significance of mean scores through bootstrap resampling: we take a number of 

query subsets and compare the mean evaluation scores of the best matches retrieved by the metrics and the 

baseline at the 95 percent confidence interval. We also calculate the p-value across the entire test set. The first 

measurement is somewhat more fine-grained, but essentially both measurements give the same results.  
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with metrics run on partial subtrees and sequences of lemmas, POS tags and even Prüfer 

representations all outperforming the baseline. Looking at both tables, we can establish that 

similar trends are displayed by the first three evaluation metrics across both ranges of fuzzy 

match score, since the same five fuzzy matching metrics are again selected as the top 

performing ones. TERT again displays a very strong self-selection bias, setting apart TER on 

the source side as by far the best performing metric. We also notice a drop in BEER’s 

performance in the lower range across all evaluation metrics, as well as a general increase in 

correlations between METEOR and the first three metrics. Most importantly, we see that the 

baseline is still rather strong in this range, with only the combination of all metrics 

consistently outperforming it on all criteria. 

Moreover, we notice the link between the evaluation results produced by the first two 

metrics, METEORT and NGPT, and the latter two, SPST and TERT. According to the first two 

evaluation metrics, BEER, METEOR and NGP on words perform better than the baseline. 

Additionally, NGPT selects the lemmatised version of NGP, which reinforces the existence of 

self-selection bias visible also in METEORT’s selection of METEOR. The links between 

SPST and TERT are less obvious, but unlike the first two evaluation metrics, their mean scores 

indicate SPS and TER as the metrics outperforming the baseline. This division into two 

groups highlights the fact that it is unacceptable to use a single evaluation metric score as the 

sole estimator of quality, but unfortunately also suggests that none of the tested fuzzy 

matching metrics were good enough to obtain significantly improved results according to all 

evaluation metrics. Notably, BEER comes closest to achieving this goal, outperforming the 

baseline according to all evaluation metrics apart from TERT in the higher range. However, it 

only beats the baseline according to the first two metrics in the lower range, as the 

improvement in mean SPST is not statistically significant. On a similar note, the 

improvements achieved by NGP on lemmas and variants of the PM should be interpreted with 

some caution, considering that they were rated highly only by NGPT and TERT respectively. 

From all four metrics, TERT’s results are most difficult to interpret. It clearly favours the 

naïve unigram approach of the PM variants to higher-order ngrams of NGP. On the other 

hand, while correlating extremely well with TER and the baseline, it correlates pronouncedly 

poorly with METEOR as another edit-distance metric. That the self-selection bias is not 

always straightforwardly displayed is also visible in the fairly good TERT score of SPS. Given 

these results, the drop in performance of the combination of metrics when evaluated with 

TERT is not surprising. Overall, we note that the combination does seem to perform fairly 

consistently – its performance is similar to that of the baseline in the range above 70 percent 
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overlap and it outperforms the baseline across all evaluation metrics in the range below 70 

percent. 

5.2. Human evaluation 

We now turn to the human evaluation of the metrics in the range between 75 and 40 percent 

overlap, to see if some of the metrics correlate better with the human judgment of usefulness 

than the baseline. First we need to mention that the interrater agreement between the six 

evaluators is relatively poor. The agreement is only 0.169 and falls into the category of slight 

agreement according to the kappa interpretation scale (Landis and Koch, 1977). Similarly, 

weighted and unweighted Cohen’s kappa coefficients between each two annotators range 

from no agreement to fair agreement, but it is interesting to note that there is somewhat better 

agreement between the three professional translators. As the number of participants in the 

survey was not very large, we decided not to partition them further by taking into account the 

years of their professional experience, but the answers of the three professional translators 

were given slightly more weight in calculating the average scores41. Keeping the overall 

agreement in mind, let us now look at the correlations between human evaluation and the 

fuzzy matching metrics. 

 Spearman Pearson 

BASELINE 0.3880 0.2087 

BEER 0.4183 0.2407 

LEVLEM1DEF 0.3971 0.2182 

LEVLEM6IGN 0.3416 0.2377 

LEVPOS4DEF 0.3464 0.1816 

LEVPRUF4DEF 0.3088 0.1464 

METEOR 0.3934 0.1996 

NGPWORD1DEF 0.4081 0.2164 

NGPLEM3DEF 0.3768 0.2466 

NGPPOS4DEF 0.3620 0.1938 

NGPPRUF4PRUF 0.3577 0.1575 

PMWORD1DEF 0.4260 0.3373 

PMLEM3DEF 0.4210 0.3100 

PMPOS3DEF 0.3960 0.2403 

PMPRUF2DEF 0.4142 0.2270 

SPS 0.3483 0.1955 

TER 0.3758 0.1146 

ALL 0.3897 0.2407 

Table 3: Correlations between human evaluation and all tested metrics based on rank (Spearman’s rho 

correlation coefficient) and score (Pearson correlation coefficient). The best results are bolded and the 

insignificant correlations with a p-value above 0.05 are in italics. 

                                                 
41 We produced the answers of the “average evaluator” by taking the mode of the answers provided by the 

evaluators for each question. Giving “weight” to the answers of the professional translators hence simply meant 

that the mode of their answers was taken when the six answers had no mode. In the few cases when even the 

three of them gave completely different answers, the answer was set to 3, i.e. “both equal”. 
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Looking at the table, it is easy to notice that the correlations overall are not very high, with the 

metrics generally correlating with the human judgement of usefulness better according to the 

criterion of rank. Although score correlations are quite low, the higher correlation in rank is in 

most cases reflected by an increase in the correlation in score. However, looking at examples 

such as NGP on lemmas, we notice that the relationship is not straightforward, as its score 

correlation is higher and rank correlation lower than the baseline’s. Apart from the fact that 

the correlations are relatively low, we must not forget that the values used for correlation were 

derived from local pair-wise comparisons of matches and not assigned directly by the 

evaluators, as acquiring explicit ranks and scores would make the already demanding task 

even more taxing. Keeping in mind these restrictions, along with the already mentioned low 

interrater agreement, it is questionable with which degree of certainty we can draw 

conclusions from the obtained results. Even so, there are a couple of things which are 

interesting to note. First of all, the metric which appears to correlate best with the human 

judgement of usefulness according to both rank and score is the simplest one of all the tested 

metrics – Percent match on words. What is more, Percent match on lemmas is in the second 

place according to both rank and score. The performance of these rudimentary bag-of-words 

metrics also comes as a surprise because they did not correlate particularly well with the four 

automatic evaluation metrics. On the other end of the scale, TER scores correlate extremely 

poorly with the human judgement, and the situation is not much better with METEOR, even 

though both of these metrics were favoured by some of the metrics in the automatic 

evaluation and their complexity leads us to intuitively assume that they would perform better. 

Looking at the metrics with linguistic features, matching on POS-tags and Prüfer sequences 

using Levenshtein and NGP again scores poorly, but both of these matching items outperform 

the baseline when used in PM. On the other hand, all lemmatised versions of metrics have 

higher Pearson correlations with human judgment than the baseline. Another thing to note is 

the relatively poor performance of the combination of the metrics – although it outperforms 

the baseline, it does not perform as well as on the dataset in the automatic evaluation part. 

Finally, however tentative our conclusions may be, let us point out that nine of the tested 

configurations correlate with human judgment better than the baseline according to rank, and 

ten of them outperform the baseline according to score. 

5.3. Discussion 

Given the great variability of the obtained results, we take a closer look at the dataset and 

the matches retrieved by the metrics. 
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5.3.1. Qualitative analysis of matches 

We first take the best and worst performing individual metrics from the automatically 

evaluated ranges and examine their output. We take 50 random sentences and extract the best 

matches retrieved by BEER and PM on POS-tags, as well as the best matches according to 

METEOR and PM on Prüfer sequences for the higher and lower range respectively. The 

results of the analyzed metrics across all evaluation metrics are given in the tables below for 

reference. 

 
METT 

corr 

METT 

mean 

NGPT 

corr 

NGPT 

mean 

SPST 

corr 

SPST 

mean 

TERT 

corr 

TERT 

mean 

BASELINE 0.4491 0.7516 0.4373 0.6574 0.4527 0.7554 0.4702 0.2342 

BEER 0.5005 0.7585 0.5036 0.6663 0.4634 0.7590 0.4223 0.2341 

PMPOS3DEF 0.0657 0.7299 0.0380 0.6298 0.1118 0.7356 0.1960 0.2542 

Table 4: Results for the matches in the range higher than or equal to 70 percent. 

 

METT 

corr 

METT 

mean 

NGPT 

corr 

NGPT 

mean 

SPST 

corr 

SPST 

mean 

TERT 

corr 

TERT 

mean 

BASELINE 0.6735 0.3372 0.5928 0.2502 0.6667 0.3640 0.6162 0.8687 

METEOR 0.6967 0.3534* 0.6723 0.2752* 0.5601 0.3531 0.3619 1.0049 

PMPRUF2DEF 0.4738 0.3018 0.4135 0.2142 0.4736 0.3436 0.5358 

0.7930

* 

Table 5: Results for the matches in the range below 70 percent. 

As expected, in the higher range most of the retrieved best scoring matches were the same for 

both metrics, and in this sense the extreme difference in correlations seems unjustified. The 

difference in mean scores is much less pronounced and according to the manual analysis can 

mainly be attributed to the fact that PM does not take into account the length of the matching 

sentence, which the evaluation metrics penalise when calculating the score on the target side: 

QUERY Movement certificates EUR.1 or EUR-MED issued retrospectively 

MATCHBEER Movement certificates EUR.1 issued retrospectively 

MATCHPM 
Movement certificates EUR.1 or EUR-MED issued retrospectively shall be endorsed with 

the following phrase in English 

As the second match contains two elements more than the first one, i.e. the percentage of 

query elements found in the match is higher, PM chooses this match as the better one. The 

ability to identify overlap regardless of the segment length and word order certainly might 

have its advantages in some cases, but generally these matches might require substantial post-

editing, especially if the words are strewn across the sentence. Moreover, even if the 

overlapping words are sequential in the source side match, this continuity might be disrupted 

on the target side in languages (and domains) with freer word order. The longer the match is, 

the less likely it is that such a match will be useful as a translation suggestion. On the other 
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hand, looking already at the above example, where the two additional elements recognised by 

PM are a conjunction and a term, we might also intuitively claim that not all elements should 

carry equal weight. Interestingly enough, in terms of the latter comment, adding features such 

as IDF weights to PM does not seem to necessarily yield better results (Vanallemeersch and 

Vandeghinste, 2015a), whereas in terms of the former we have to keep in mind that all 

versions of PM outperformed the baseline according to human evaluation. 

 In the lower range, we look at the matches retrieved by METEOR as it is among the best 

scoring metrics according to METEORT and NGPT, but scores less well with SPST and 

extremely poorly according to TERT. We also look at PM with Prüfer sequences, as its 

performance is below the baseline according to all criteria, except for the mean TERT score, 

which is significantly better than the baseline’s. Even in this small extracted subset, there are 

matches whose scores are so low that both best sentences retrieved by the metrics seem 

random to us and are useless as translation suggestions, so setting a bottom threshold to limit 

the overlap range might have yielded more realistic results in automatic evaluation. The 

suggestions made by the PM metric are again generally longer and this could have an 

unfavourable effect on its evaluation by the automatic metrics. On the other hand, there is 

again a significant number of overlapping sentences retrieved by both metrics, and sometimes 

the PM metric actually retrieves a slightly better suggestion according to our subjective 

judgment: 

QUERY 

Commission Decision 2005/392/EC of 17 May 2005 amending Decision 2004/233/EC as 

regards the list of laboratories authorised to check the effectiveness of vaccination against 

rabies in certain domestic carnivores is to be incorporated into the Agreement. 

MATCHMET 
amending Decision 2004/233/EC as regards the list of laboratories authorised to check the 

effectiveness of vaccination against rabies in certain domestic carnivores 

MATCHPM 

Commission Decision 2005/656/EC of 14 September 2005 amending Decision 2004/233/EC 

in terms of the laboratories authorised to check the effectiveness of vaccination against rabies 

in certain domestic carnivores is to be included in the Agreement 

However, low scoring matches such as these are even more pronouncedly subject to the 

external factor of translator’s preference: whether he or she will rather take over the entire 

METEOR match and fill in the missing parts, take the PM match and edit the differences, 

combine the useful parts of both or use neither because the time he or she needs to translate 

from scratch is shorter than time needed for post-editing a poor match is influenced by a 

number of factors. These matters are briefly addressed in the next subsection. 

The second approach to doing manual analysis focused on the matches ranked by the 

translators in the survey. We extract the matches whose baseline score differs radically from 

the evaluation score, i.e. the segments where the source side match got a much higher score 
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than the target side match and vice versa. We begin with two very simple examples 

illustrating the latter case. 

 

Q1 
SS Insurance corp. and pension funds 

TS Försäkringsföretag och pensionsinstitut 

M11 
SS Insurance corporations and pension funds and pension funds 

TS Försäkringsföretag och pensionsinstitut 

M21 
SS Insur. corporations and pension funds 

TS Försäkringsföretag och pensionsinstitut 

Q2 
SS Transport, storage and communications 

TS Transport, maganisering och kommunikation 

M2 
SS Transports, storage and communication 

TS Transport, maganisering och kommunikation 

According to the baseline, both of the matches in the first example get a score of 0.5 and the 

match in the second example gets a score of 0.6. While both scores are below the standard 0.7 

threshold, we notice that the matches on the target side are in fact exact matches. However, in 

practice, the translators would not even be offered these perfect translation suggestions 

because of the mistakes and minor differences on the source side greatly affecting the 

calculated fuzzy match score. In this small dataset, the cases where the source side got a much 

higher score than the target side are more frequent more diverse: 

Q1 
SS The modalities of the certificate shall be decided by the Steering Committee. 

TS Villkoren för intyget skall fastställas av styrkommittéen. 

M11 

SS The financing of the PE shall be decided by the JIC. 

TS 
Finansieringen av periodiska utvärderingar ska beslutas av den gemensamma kommittéen för 

genomförandet av avtalet. 

M21 
SS The convocation of such conference shall be decided by the Council. 

TS Rådet skall besluta om sammankallandet av en sådan konferens. 

Q2 
SS The proceedings shall be circulated after each meeting. 

TS Protokoll skall skickas ut efter varje möte. 

M2 
SS The decisions and recommendations shall be circulated to the Parties. 

TS Besluten och rekommendationerna ska spridas till parterna. 

Q3 
SS 

The health certificate must be presented to the competent veterinary authorities at the request 

of the latter; 

TS Detta hälsointyg skall på begäran kunna visas upp för de behöriga veterinärsmyndigheterna. 

M3 

SS 
The signed certificate must be forwarded to the competent authority at the place of physical 

check. 

TS 
Det undertecknade intyget måste överlämnas till behörig myndighet på den plats där den 

fysiska kontrollen genomförs. 

In the first two examples, we notice that if we were only to look at the source side query and 

the respective target side matches, it would be difficult to see the reason why these would be 

offered as potential translation suggestions at all. On the source sides of these matches, we see 

continuous strings of overlap, but these are either not particularly valuable or not even present 

on the target side. This highlights the fact that Levenshtein on words is not a good estimator 

of quality for lower score ranges and that attempting to improve the system by lowering this 
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metric's threshold to increase the recall probably would not yield satisfactory results. The last 

segment is a good illustration of how linguistic differences affect the segment's usefulness: 

the already sparse overlapping elements on the source side are rendered useless on the target 

side by being agglutinated into compounds. That is, the overlapping certificate is translated as 

hälsointyg and intyget, whereas authorities become veterinärsmyndigheterna and myndighet 

respectively. The issue of how to deal with these phenomena can be considered from the 

opposite point of view, i.e. how do we take into account the fact that myndighet and 

myndigheterna only differ in number and definite form, and that a hälsointyg is still in fact a 

type of intyg. Here, however, we focus on the flectional phenomena and the agglutination 

process resulting in higher post-editing effort and consequently reducing the usability of the 

match. 

5.3.2. Translators’ notion of usefulness 

As the explicit investigation of translators’ preferences and expectations from TM systems 

is not the focus of this research, we will only briefly discuss this matter in relation to the 

General information section included in the survey. More precisely, we will look at the mean 

ratings of the features the translators (in theory) consider important in fuzzy matches. The 

translators were asked to rate the importance of five features characterizing the offered 

matches on a scale from 1 (not important) to 5 (very important). These features highlight the 

aspects that the tested metrics are purportedly better at capturing than the baseline. According 

to the average rating, the most important characteristic (4.33) is for the match to contain 

specific terminology or named entities. This is a surface-level feature that the baseline can 

capture, but we might expect its lemmatised variant to be more successful at it, and maybe 

even NGP or PM on words or lemmas, since the former should be better at capturing phrase-

like ngram structures and the latter should do well with identifying smaller units inside 

sentences, as it does not take into account word order in score calculation. The next feature 

referred to editing effort in terms of preferring longer continuous overlapping spans and 

shorter sentences in cases where matching phrases are discontinuous. It got an average rating 

of 3.67 and implies preferring NGP to PM metrics. All edit-distance-based metrics should 

also perform well on this task. 

Next we have two features aimed at phenomena which are above the lexical level: matches 

which share the same meaning or the same syntactic patterns with the query, but differ in the 

actual wording. As the lack of an adequate way to deal with semantics is frequently pointed 

out as the main disadvantage of TM and MT systems in general, it is somewhat surprising that 

it only got a rating of 3.0. On the other hand, the importance of overlap in syntactic patterns is 
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expectedly low (2.33) if we consider the nature of the translation task. The computationally 

more sophisticated among the tested metrics (e.g. BEER, METEOR, SPS and maybe TER42) 

are expected to perform better than the baseline in capturing these two aspects, but the idea 

was that even the simpler metrics run on POS-tags and Prüfer sequences might produce 

interesting results. Finally, the last feature does not give advantage to any particular metric 

over the baseline, but was rather used as an indication of the translator’s habit in terms of 

balancing precision and recall. The importance of the percentage of overlap got a rating of 

4.17, and if we look at the values the translators gave for the threshold they usually use in 

translation (mostly around 6543), this effectively favours metrics whose output has higher 

precision. Looking at the translators’ answers and the correlation table with the fuzzy 

matching metrics, it does stand to reason that the string-based, surface-level metrics still get 

the upper hand, regardless of our initial intuitive assumption being different. However, the 

good performance of the high-recall PM metrics is still somewhat surprising. 

Finally, several notes and comments are in order regarding the experimental setup itself, 

which qualitative analysis of the data and the survey results have brought into to focus. 
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Figure 1: Pearson correlations between the fuzzy matching metrics and human evaluation and automatic 

evaluation metrics. 

The Pearson correlations presented in the figure above were calculated on the small subset 

evaluated by the translators in the survey44. The first thing we notice is that, apart from 

METEOR and some of the PM variants, it is mostly the same metrics which outperform the 

                                                 
42 The implementation used in this research does not use any additional lexical resources.  
43 It is interesting to mention that the translator who gave 80 as the preferred threshold value gave us feedback on 

the survey, saying that he apologises if his answers were not of much use, as he really only uses nearly perfect 

matches and the rest translates quicker from scratch. This again highlights the fact that the results of research 

such as this one are highly relativised when taking into account the actual preferences of individual end users. 
44 The full correlations table can be found in Appendix IV. 
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baseline according to human evaluation and the first three automatic metrics. However, 

important to note here is the fact that the correlations of the first three automatic metrics are 

generally much higher than those displayed by TERT and human evaluation. If we hence 

conclude that TERT scores might indeed be a better approximation of the human notion of 

usefulness, the question arises if the combination of metrics would correlate better with 

human judgment had we used TERT in training the regression model. This need not be the 

case, as TERT consistently strongly correlates best with itself, which would probably result in 

the model giving a lot of prominence to this feature. To get more realistic results, we would 

then probably have to exclude TER as a feature, something we did not find necessary in the 

current model setup, with the correlation between METEOR and METEORT being much less 

pronounced. Generally speaking, considering using a combination of the target side metrics 

maybe would have been better for model training, as this would hopefully also make the 

model less tuned to this particular dataset, than retrospectively opting for a different single 

evaluation metric after manually analysing the results and output. This brings us to another 

point which came out of our qualitative analysis, and that is the idea of using the target side of 

the dataset to somehow inform the matching process on the source side. This would make 

sure that the similarity measured on the source side is actually retained on the target side, 

since it is this similarity the translator is ultimately interested in. However, this brings out a 

number of problematic underlying assumptions when doing computational research. Namely, 

when doing research with extensive amounts of data, one has to assume that the data, after 

filtering and pre-processing, is perfect. This is of course hardly the case and problems are 

likely to arise at every level, from crude mistakes such as misalignment and faulty 

segmentation, to more sophisticated mistakes produced by parsers and the matching 

algorithms themselves. Naturally, the potential risk of something going wrong only increases 

the more complex we make the matching process and the more languages we include. 

6. Conclusion 

In this thesis we examined the idea that the inclusion of linguistic features in fuzzy 

matching might improve the functioning of the existing TM systems. The intuitive 

assumption is that establishing and measuring similarity between two segments of text based 

only on the exact word forms and word order is insufficient to capture many levels of 

similarity as perceived by humans. Considering that most commercial TM systems still seem 

to use some variants of the simple surface-level edit-distance matching metric, we tested 

whether metrics run on different elements than word forms or using additional linguistic 
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resources could retrieve better translation suggestions according to both automatic and human 

evaluation. As all metrics regardless of their complexity and specific features perform 

similarly in the highest fuzzy match range (approximately up to 80 percent overlap), the 

research was focused on the improvement of the performance of the metrics in the matching 

range below the 70 percent threshold, i.e. on the matches translators would not even be 

offered as suggestions in a default translation situation. 

The fuzzy matching framework developed within the SCATE project enabled us to include 

a diversity of linguistic features contained in the created parse trees in the matching process: 

lemmas, part-of-speech tags, subtree structures and tree structures “flattened” into Prüfer 

sequences. We also experimented with additional synonym and paraphrase resources. To 

diversify the metrics even more, we experimented with a number of weighting schemes and 

ngram orders, before setting the final matching configurations. Looking at the results, BEER 

is arguably the one metric which stands out, as its correlations and mean evaluation scores 

generally exceed the baseline’s. The combination of metrics created using the Random Forest 

Regressor also performs well according to the automatic metrics, achieving by far the best 

results in the lower fuzzy match range. However, its correlation with the human judgment is 

much lower, although it still exceeds the baseline. Overall, more metrics outperform the 

baseline according to human evaluation, with the different variants of the simple Percent 

match metric correlating strikingly well with human scores and ranks. The poor correlations 

of METEOR and TER are also surprising, but we should keep in mind the limitations 

pertaining to this part of the research: the small number of evaluators, the limited amount of 

work that the humans can be expected to perform in comparison to the size of the entire 

dataset and, most importantly, the low agreement between the evaluators. The obtained results 

show that the notion of usefulness of matches in this range is highly dependant on individual 

preferences. It would therefore be somewhat strained to claim that using POS-tags or Prüfer 

sequences generally improves the quality of fuzzy matching, especially as Levenshtein and 

NGP run on these match items correlate with human judgment worse than the baseline. 

According to automatic evaluation, it is primarily the more sophisticated among the tested 

metrics that come close to (or outperform) the baseline in the matching range above 70 

percent overlap. More metrics are successful at beating the baseline in the lower range, with 

the PM variants achieving significant improvement on the mean TERT score. This would lead 

us to conclude that using linguistic features really does have added value in cases where the 

baseline performs poorly. However, the bias towards favouring the similarly functioning 

source side metric is to various degrees visible in all evaluation metrics apart from SPST, so 
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we would once again like to point out BEER as the only individual metric to more 

consistently achieve improved results over the baseline. Incidentally, it does in a way prove 

the worth of linguistic features in matching, as alongside using character-based ngrams, 

BEER also uses syntactic features in the form of node permutations and information on the 

distinction between content and function words, as well as a number of lexical resources to 

identify similarity in meaning. 

This brings us back to a number of problematic issues mentioned at the beginning of the 

thesis. First of all, as mentioned in the literature overview, BEER was primarily developed as 

an MT evaluation metric and not as a fuzzy matching metric. This is important because speed 

can be sacrificed to a much greater extent in MT evaluation in order to ultimately obtain 

better results. BEER is computationally extremely heavy and, in practice, if the match is not 

offered to a translator almost instantaneously, it will hardly be very useful, no matter how 

good a translation suggestion it may constitute, and most definitely will not result in speeding 

up the translation process. This problem could be partly resolved by the pre-processing, 

indexation and matching being done before the translation begins, but this would put a 

considerable amount of strain on the preparatory step, and the on-line updating of translation 

memories and other CAT tool features (such as termbases and MT systems) would have to 

somehow be dealt with. This drastic drop in speed when using more sophisticated similarity 

algorithms might be one of the reasons why CAT tools still persist with using edit distance. 

Another reason might lie in the fact that using linguistic information in matching requires 

language-specific resources and tools. On that note, BEER might work well for English, but 

the lexical resources it draws on have been developed for very few languages. Moreover, not 

all languages can be easily integrated into a framework based on parse trees, even if there are 

parsers available for them. Even though English and Swedish belong to the same language 

family and share a similar linguistic tradition, and even though both languages are well-

covered in terms of the developed resources and tools, we still encountered numerous issues 

in trying to incorporate them into a single framework. Not only is the format of the output of 

particular parsers specific, the very logic on which the parsers are built may be very different, 

which might give rise to a number of obstacles when trying to apply the same approach to two 

different languages. 

At this point we must also mention that the entire setup should be further tested on a 

different language pair, as it would be especially interesting to see if using linguistic features 

might have a more significant impact when doing matching on morphologically rich 

languages. Unfortunately, even though we intended to examine this matter as well by 
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including Croatian in the research, a number of setbacks and issues regarding the integration 

of Croatian into the framework made it impossible to carry out this plan. This initial idea of 

having three languages also resulted in the fact that we only did research with a single dataset, 

as the DGT-TM is available for all three languages and the uniformity of the domain of the 

corpus the tests are run on would give some consistency to the obtained results. It is therefore 

still very much a question if the individual metrics and their combination would be equally 

(un-)successful if applied, for instance to corpora whose language is much less restrained than 

the legal language of the DGT dataset45. More particularly, we might wonder whether a 

metric such as METEOR would perform better on types of text more prone to lexical 

diversity, or would a tree-based metric such as SPS perform worse on texts with much freer 

syntax structure. All these issues remain as points for further investigation. 

Regarding our research, we can conclude that Levenshtein on word sequences provides a 

fairly strong baseline for this dataset. Although some of the tested metrics are built on very 

interesting, and generally highly intuitive ideas, very few of them succeeded in beating the 

baseline in the highest matching range, which at this point still makes their implementation in 

the CAT tools “uncalled for”, as they would potentially make the matching process 

considerably slower and more complex because of the language-specific features, while not 

making it significantly better. In the lower range, more metrics outperformed the baseline 

according to a number of measurements of quality, but the question still remains whether the 

translators would truly consider them useful as translation suggestions in an actual translation 

situation and how the slightly, or considerably, lower-scoring metrics could best be integrated 

into the CAT tool environments to utilise their advantages and reduce the post-editing effort. 

Despite some promising results, the question of fuzzy matching and automatic evaluation 

metrics still very much remains an unsolved problem, but we can hope that the matter will 

soon start getting more attention in the commercial sphere, instead of just be a matter of 

interest to the research community.  

 

 

 

 

                                                 
45 The findings of Gupta et al. (2014b), who used an SVM model to calculate and combine a wide variety of 

linguistic and non-linguistic similarity features, back this claim, as they acheived significant improvement over 

the baseline on Europarl, but their model did not beat the baseline on the DGT dataset. Same goes for Gupta et 

al. (2016), who report the added value of the paraphrase resources they enhanced the matching metric with in 

their experiment was much lower for the DGT dataset. 
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Appendices 

Appendix I. 

Matching algorithms and configurations 

Formulae for the calculation of similarity between the query (Q) and the source side of the 

match (S), or the query and its reference translation (R) in case of MT evaluation metrics. The 

formulae which are not given here can be found in the references given in thesis. 

Levenshtein distance: 

LEV(Q,Si) = 1 – (ΔLEV(Q,Si) / max (|Q|,|Si|)) 

Percent match: 

PM (Q,Si) = |Qunigrams| ∩ |Si,unigrams| / |Qunigrams| 

Ngram precision: 

NGP = Σn=1
N (|Qn-grams ∩ Si,n-grams|) / ( Z * |Qn-grams| | (1-Z) * |Si,n-grams|)/N 

Normalised TER: 

TER(Q,R) = 1 – (log(1+ΔTER(Q,R) / |R|))/3) 

METRIC MATCH ITEM 
WEIGHTING 

SCHEME 
SPECIAL PARAMETERS 

Approximate 

query coverage 
word part sequences, 1 default 

threshold: 0.2 

nbest: 50 

Baseline 

(Levenshtein) 
words, 1 default / 

BEER words, 1 default all modules for EN 

Levenshtein lemmas, 1 default / 

Levenshtein lemmas, 6 ignore case / 

Levenshtein POS-tags, 4 default / 

Levenshtein Prüfer sequences, 4 default / 

METEOR words, 1 default all modules for EN 

Ngram precision words, 1 default N = 4, Z =0.3 

Ngram precision lemmas, 4 default N = 4, Z =0.3 

Ngram precision POS-tags, 4 default N = 4, Z =0.3 

Ngram precision Prufer sequences, 4 Prüfer weights N = 4, Z =0.3 

Percent match words, 1 default / 

Percent match lemmas, 3 default / 

Percent match POS-tags, 3 default / 

Percent match Prüfer sequences, 2 default / 

Shared 

partial subtrees 
parse default / 

TER words, 1 default / 

METEORT words, 1 default 
exact, stem, paraphrase modules 

for SE 

Ngram precisionT words, 2:1 default N=4, Z =0 

Shared 

partial subtreesT 
parse default / 

TERT words, 1 default / 

Table 1: All filtering, matching and evaluation configurations. 
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Appendix II. 

An example from the main group of survey questions. 

*The agenda shall be adopted by the Trade Committee at the beginning of each meeting. 

 

This question is mandatory. 

  < The > budget < shall be adopted by > < the > Commission. 

            Budgeten ska antas av kommissionen. 

  < The > final < agenda shall be adopted > < at the beginning of each meeting. > 

                      Den slutliga dagordningen skall antas i början av varje sammanträde. 

  Both equal 

 

Appendix III. 

Automatic evaluation of the data 

 
METT 

corr 

METT 

mean 

NGPT 

corr 

NGPT 

mean 

SPST 

corr 

SPST 

mean 

TERT 

corr 

TERT 

mean 

BASELINE 0.4491 0.7516 0.4373 0.6574 0.4527 0.7554 0.4702 0.2342 

BEER 0.5005 0.7585 0.5036 0.6663 0.4634 0.7590 0.4223 0.2341 

LEVLEM1DEF 0.2948 0.7442 0.2569 0.6465 0.3475 0.7514 0.4006 0.2392 

LEVLEM6IGN 0.2801 0.7447 0.2541 0.6481 0.3076 0.7507 0.3349 0.2411 

LEVPOS4DEF 0.0737 0.7320 0.0479 0.6325 0.1242 0.7372 0.2103 0.2518 

LEVPRUF4DEF 0.1934 0.7484 0.1837 0.6524 0.2477 0.7512 0.2581 0.2380 

METEOR 0.3564 0.7555 0.3666 0.6637 0.3442 0.7527 0.3123 0.2390 

NGPWORD1DEF 0.473 0.7552 0.4913 0.6636 0.3701 0.7543 0.3153 0.2386 

NGPLEM4DEF 0.3131 0.7438 0.2909 0.6475 0.3106 0.7480 0.3132 0.2456 

NGPPOS4DEF 0.0897 0.7320 0.0691 0.6325 0.1275 0.7357 0.1980 0.2544 

NGPPRUF4PRUF 0.2442 0.7486 0.2399 0.6540 0.2714 0.7502 0.2550 0.2415 

PMWORD1DEF 0.3556 0.7433 0.3455 0.6469 0.3344 0.7463 0.3378 0.2425 

PMLEM3DEF 0.2966 0.7418 0.2654 0.6437 0.3164 0.7482 0.3436 0.2434 

PMPOS3DEF 0.0657 0.7299 0.0380 0.6298 0.1118 0.7356 0.1960 0.2542 

PMPRUF2DEF 0.1536 0.7442 0.1432 0.6469 0.2114 0.7485 0.2240 0.2415 

SPS 0.2198 0.7474 0.1962 0.6513 0.2840 0.7537 0.2913 0.2370 

TER 0.4439 0.7521 0.4323 0.6574 0.4643 0.7562 0.4913 0.2324 

ALL 0.4428 0.7523 0.4541 0.6589 0.4058 0.7557 0.4289 0.2344 

Table 2: Automatic evaluation for the range above or equal to 70 percent overlap. 
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METT 

corr 

METT 

mean 

NGPT 

corr 

NGPT 

mean 

SPST 

corr 

SPST 

mean 

TERT 

corr 

TERT 

mean 

BASELINE 0.6735 0.3372 0.5928 0.2502 0.6667 0.3640 0.6162 0.8687 

BEER 0.6328 0.3499* 0.6031 0.2650* 0.6002 0.3650 0.4198 0.9962 

LEVLEM1DEF 0.6477 0.3347 0.5559 0.2466 0.6553 0.3643 0.6202 0.8681 

LEVLEM6IGN 0.6396 0.3197 0.5905 0.2438 0.6182 0.3493 0.5279 0.8900 

LEVPOS4DEF 0.4930 0.3112 0.4238 0.2309 0.5059 0.3431 0.5032 0.8970 

LEVPRUF4DEF 0.5202 0.3136 0.4676 0.2332 0.5351 0.3435 0.4709 0.9096 

METEOR 0.6967 0.3534* 0.6723 0.2752* 0.5601 0.3531 0.3619 1.0049 

NGPWORD1DEF 0.7277 0.3546* 0.7004 0.2764* 0.6087 0.3576 0.3587 1.0018 

NGPLEM4DEF 0.6732 0.3358 0.6402 0.2614* 0.5902 0.3517 0.3935 0.9530 

NGPPOS4DEF 0.5385 0.3158 0.4863 0.2383 0.5067 0.3398 0.4049 0.9453 

NGPPRUF4PRUF 0.5585 0.3202 0.5334 0.2432 0.5183 0.3412 0.3306 0.9635 

PMWORD1DEF 0.5577 0.3111 0.4862 0.2204 0.5116 0.3494 0.5956 0.7750* 

PMLEM3DEF 0.6175 0.3220 0.5497 0.2379 0.5869 0.3534 0.5934 0.8259* 

PMPOS3DEF 0.4872 0.3008 0.4237 0.2149 0.4756 0.3410 0.5540 0.8084* 

PMPRUF2DEF 0.4738 0.3018 0.4135 0.2142 0.4736 0.3436 0.5358 0.7930* 

SPS 0.5625 0.3196 0.4919 0.2281 0.5804 0.3653 0.5415 0.8095* 

TER 0.6533 0.3155 0.5841 0.2235 0.6607 0.3666 0.7075 0.7443* 

ALL 0.7663 0.3524* 0.7255 0.2687* 0.7089 0.3705* 0.6566 0.8395* 

Table 3: Automatic evaluation for the range below 70 percent overlap. 

 

Appendix IV. 

Pearson correlations on the human-evaluated subset 

 
HUM 

corr 

METT 

corr 

NGPT 

corr 

SPST 

corr 

TERT 

corr 

BASELINE 0.2087 0.3637 0.3189 0.4092 0.3731 

BEER 0.2407 0.5565 0.4836 0.5116 0.2748 

LEVLEM1DEF 0.2182 0.3714 0.3220 0.4170 0.3777 

LEVLEM6IGN 0.2377 0.4820 0.4963 0.4543 0.3233 

LEVPOS4DEF 0.1816 0.2435 0.2729 0.2676 0.2010 

LEVPRUF4DEF 0.1464 0.1274 0.1416 0.1612 0.1120 

METEOR 0.1996 0.6293 0.5579 0.4987 0.2101 

NGPWORD1DEF 0.2164 0.6331 0.5946 0.5054 0.2623 

NGPLEM4DEF 0.2466 0.5986 0.6043 0.4950 0.2880 

NGPPOS4DEF 0.1938 0.3547 0.3874 0.3106 0.1566 

NGPPRUF4PRUF 0.1575 0.2732 0.2787 0.2246 0.0937 

PMWORD1DEF 0.3373 0.3464 0.2681 0.3895 0.4518 

PMLEM3DEF 0.3100 0.5383 0.5044 0.5221 0.4427 

PMPOS3DEF 0.2403 0.2189 0.2121 0.2368 0.2691 

PMPRUF2DEF 0.2270 0.0519 0.0297 0.1209 0.1822 

SPS 0.1955 0.2640 0.2121 0.3403 0.2481 

TER 0.1146 0.1568 0.0899 0.3515 0.5412 

ALL 0.2407 0.3789 0.3369 0.3383 0.2028 

Table 4: Pearson correlations between the fuzzy matches and the human and automatic 

evaluation. Results which are higher than the baseline are bolded, statistically insignificant 

results (p>0.05) are in italics. 


