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A B S T R A C T   

Extracting valuable insights from vast amounts of unstructured digital text presents significant challenges across 
diverse domains. This research addresses this challenge by proposing a novel pipeline-based system that gen-
erates domain-agnostic and task-agnostic text representations. The proposed approach leverages labeled property 
graphs (LPG) to encode contextual information, facilitating the integration of diverse linguistic elements into a 
unified representation. The proposed system enables efficient graph-based querying and manipulation by 
addressing the crucial aspect of comprehensive context modeling and fine-grained semantics. The effectiveness of 
the proposed system is demonstrated through the implementation of NLP components that operate on LPG-based 
representations. Additionally, the proposed approach introduces specialized patterns and algorithms to enhance 
specific NLP tasks, including nominal mention detection, named entity disambiguation, event enrichments, event 
participant detection, and temporal link detection. The evaluation of the proposed approach, using the MEAN-
TIME corpus comprising manually annotated documents, provides encouraging results and valuable insights into 
the system’s strengths. The proposed pipeline-based framework serves as a solid foundation for future research, 
aiming to refine and optimize LPG-based graph structures to generate comprehensive and semantically rich text 
representations, addressing the challenges associated with efficient information extraction and analysis in NLP.   

1. Introduction 

Within organizations, a vast amount of unstructured digital text 
presents challenges in gaining insights. However, by leveraging natural 
language processing (NLP) techniques, knowledge can be extracted by 
transforming the text into structured representations, such as vectors, 
tensors, and text graphs (Jin & Srihari, 2007; Osman & Barukub, 2020; 
Pham et al., 2022), or knowledge graphs (C. Liu & Yang, 2022; Martinez- 
Rodriguez et al., 2018; Vossen et al., 2016). These representations 
include semantic elements such as entities, events, event roles, and in-
teractions between these elements such as temporal, causal, identity, 
and type links (Abend & Rappoport, 2017). The goal of NLP techniques 
is to automate the generation of machine-comprehensible representa-
tions of text that empower a variety of post-processing tasks. The quality 
and effectiveness of the text representation directly impact the perfor-
mance of downstream applications, such as document summarization, 
knowledge graph construction, translation, and semantic search. Addi-
tionally, these representations serve as vital features for training ma-
chine learning models (Bethard & Martin, 2008; Cekinel & Karagoz, 

2022; Rink et al., 2010). 
A proper context helps to determine the accurate meaning and 

interpretation of a given text. Therefore, a proper context is required to 
effectively perform NLP tasks. In a broader sense, any informational 
entity that is required by an NLP task to effectively perform its opera-
tions would be considered as context. It may include partially annotated 
text documents or the availability of any meta-data describing a partic-
ular text document, or the presence of any utterance can also serve as a 
useful context for subsequent NLP tasks (Cambria & White, 2014). 
Moreover, the context can also be retrieved on demand from existing 
knowledge sources such as linguistics (Kipper et al., 2008; Miller, 1995; 
Palmer et al., 2005) or background knowledge (Fabian et al., 2007; 
Lehmann et al., 2015; Speer et al., 2017). However, existing approaches 
face challenges in effectively modeling and utilizing context, thereby 
limiting their ability to store, retrieve, and leverage contextual infor-
mation. (Glauber & Barreiro Claro, 2018). They also face challenges in 
achieving the desired extent or coverage of context, including linguistic 
factors, temporal and spatial information, common-sense knowledge, 
task-specific knowledge, and pragmatic information (Glauber & 
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Barreiro Claro, 2018). For example, the decoupling of syntactic and 
semantic representations hamper the systems’ ability to establish intri-
cate relationships and dependencies between them (Li et al., 2018; Tao 
et al., 2019; Tian et al., 2022). Consequently, the system’s reasoning and 
comprehension abilities suffer limiting its performance in tasks such as 
entity resolution, and semantic parsing (Li et al., 2018; Tian et al., 
2022). 

Text representations can be tailored to be either domain or task- 
specific, catering specifically to the contextual requirements of a 
particular task. On the other hand, they can also be created to work for 
any domain or task, making them adaptable for different post-processing 
jobs. Producing domain-agnostic and task-agnostic text representations 
is challenging and involves addressing various considerations. These 
include accommodating diverse requirements within a single represen-
tation, considering the depth and breadth of semantic elements, deter-
mining the appropriate data model and storage format, and managing 
the level of coupling between different components of the text repre-
sentation. These factors collectively contribute to the complexity and 
difficulty in achieving effective domain-agnostic and task-agnostic text 
representations. 

Systems, exemplified by (Martinez-Rodriguez et al., 2018; Vossen 
et al., 2016) have made attempts to generate domain-agnostic and task- 
agnostic text representations. These systems often rely on open infor-
mation extraction techniques to construct text representations stored in 
RDF-based triple stores. However, they create text representation that is 
more focused on data integration than linguistic analysis. Moreover, the 
underlying RDF format exhibits significant limitations (Purohit et al., 
2021), rendering these representations rigid, less flexible, and unsuit-
able for complex querying, traversal, and navigation. 

In contrast to the existing methods mentioned above, the proposed 
approach introduces graph-based linguistic analysis, a facet absent in 
current systems. Utilizing labeled property graphs (LPG) rather than 
traditional RDF-based triple stores, this research seamlessly incorporates 
nuanced context and meaning. This choice yields a more efficient 
format, greater query flexibility, and enhanced compatibility with pro-
gramming. LPG empowers us to model context extensively, enabling 
dynamic graph exploration for post-processing tasks. Moreover, the 
system’s graph-oriented design supports rule-based refinements, iden-
tifying and resolving inconsistencies often overlooked by other ap-
proaches, setting this research apart. The key contributions of this 
research project are as follows:  

• Designed and developed an NLP-based pipeline-based system for 
graph-based text representations to support advanced AI applica-
tions across various domains and tasks.  

• Developed an LPG-based text representation scheme incorporating 
syntax, semantics, and contextual information.  

• The proposed pipeline seamlessly integrates NLP components with 
LPG-based representations for linguistic analysis at each step of NLP 
processing.  

• Developed specialized patterns and algorithms to tackle various 
challenges in NLP analysis on graph-based representations such as 
temporal link detection, entity resolution, and entity instance 
creation. 

The paper is structured as follows: Section 2 provides background 
and discusses existing systems. Section 3 presents the proposed system’s 
overview and methodology. Section 4 covers implementation details. In 
Section 5, we evaluate system performance and identify improvements. 
In conclusion, Section 6 summarizes the research findings and highlights 
directions for future work. 

2. Background and related work 

This section offers an inclusive overview of text representation’s core 
aspects and automated methods for text representation generation. 

Firstly, the key features of text representation such as semantics, 
context, syntax-semantics integration, and NLP task applicability are 
discussed. Secondly, the autonomous extraction techniques and their 
advancements, considering the challenges and constraints associated 
with them are described. This section lays the theoretical groundwork 
for comprehending subsequent research issues identified in this 
research. 

2.1. Text representation schemes 

Sophisticated AI applications and advanced NLP tasks demand 
comprehensive text representations with rich context, as seen in 
question-answering (Lu et al., 2019), text summarization (Alwan & 
Onsi, 2016; Ribaldo et al., 2012), topic modeling (Gómez-Suta et al., 
2023; Gou et al., 2023; Yu & Xiang, 2023), semantic search (Habernal & 
Konopík, 2013; Lupiani-Ruiz et al., 2011; Sarica et al., 2020), and 
knowledge graph construction (Martinez-Rodriguez et al., 2018). 

To automate the creation of such representations, NLP techniques 
often employ a pipeline-based approach (Corcoglioniti et al., 2016; Z. 
Liu et al., 2023; Vossen et al., 2016) This approach involves distinct 
components operating at different linguistic levels (morphological, 
syntactic, and semantic analysis) to process raw text and generate 
desired outputs (Fig. 1). Components work sequentially, with each 
output serving as input for the next. Context is pivotal for constructing 
high-quality, semantic-rich text representations. Outputs from one 
pipeline component become the context for subsequent components, 
influencing downstream tasks. However, different components produce 
outputs in varied formats, yielding fragmented context representations 
(Fig. 2). Integrating such diverse contexts poses challenges. 

In the upcoming subsections, we offer explanations for the funda-
mental components (as depicted in Fig. 3) crucial for delineating text 
representations within the realm of NLP. Considering the nature of the 
represented content, semantic intricacies, modeling of contextual in-
formation, the interplay between syntax and semantics, and their 
adaptability across various NLP tasks, this research identifies various 
properties of a text representation scheme depicted in Fig. 3. 

2.1.1. Scope of semantics 
Text representation schemes can be categorized based on the scope 

of semantics they address (Abend & Rappoport, 2017). Lexical-level se-
mantic representations offer precise interpretations of individual words, 
considering relationships like synonyms, antonyms, and hypernyms. 
Examples include WordNet (Miller, 1995), a lexical database, and 
models like word embeddings, GloVe, BERT, and ELMo. These models 
enhance lexical semantics by capturing word meanings and contextual 
information. Incorporating lexical-level semantics benefits post- 
processing NLP tasks like Word Sense Disambiguation, Named Entity 
Recognition, and semantic search. 

Linguistic-level semantic representations correspond to the meaning 
of a particular sentence (Abend & Rappoport, 2013; Banarescu et al., 
2013). It requires sophisticated parsing algorithms that dissect sentences 
into constituent parts, enabling the assignment of meaningful categories 
to the entirety of the sentence. These tasks typically involve mapping 
sentence constituents (such as words, phrases, and clauses) to semantic 
expressions and combining them to form the semantic structure of the 
sentence (Allen et al., 2008). This process helps in capturing the re-
lationships and meaning of the words and constituents within the 
sentence. 

Unlike linguistic-level semantics, which centers on individual sen-
tences, text-level semantic representations capture the entire document’s 
overarching meaning and context. Vital for sentiment analysis, docu-
ment summarization, embeddings, and topic modeling, these represen-
tations provide comprehensive document comprehension and enable 
high-level analysis. They encode relationships across the document, 
revealing identical concepts, coreferences, and sentence connections. 
These representations might illustrate event timelines, activity 
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descriptions, and discourse relations. Additionally, they can assign topics 
or domains to the text document, enhancing contextual information. 

2.1.2. Linguistic scope 
Text representation schemes vary based on their linguistic scope, 

encompassing morphology, syntax, semantics, and pragmatics (Abend & 
Rappoport, 2017). Broader linguistic coverage enhances representation 
quality, improving comprehension, and contextual fulfillment, and 
supporting diverse NLP tasks (Table 1). 

The morphological structure involves morphemes—the smallest 
meaningful units—and linguistic features like inflectional forms, aiding 
tasks like part-of-speech tagging, lemmatization, and word 

segmentation. 
Syntactic representations capture phrase and sentence structure, 

incorporating grammatical relationships. They are pivotal for semantic 
quality (del Corro & Gemulla, 2013; Mutlu & Sezer, 2023; Wu & Weld, 
2010a). Syntactic analysis identifies dependencies, and augmenting 
tasks like semantic role labeling, relation extraction, summarization, 
and knowledge graph construction. Schemes like TEXTRUNNER (Yates 
et al., 2007) and ReVerb (Fader et al., 2011) use part-of-speech and noun 
phrase features for extraction, while WOE (Wu & Weld, 2010b) and 
OLLIE (Mausam et al., 2012) integrate dependency parsing in their 
syntactic analysis. Dependency parsing and part-of-speech tagging 
synergy further enhance extraction results (Wu & Weld, 2010a). 

Fig. 1. NLP Pipeline Components and Operations for Text Processing and Information Extraction at Different Linguistic Levels.  

Fig. 2. Illustration of an NLP Pipeline with Fragmented Context Representation. The figure demonstrates the sequential flow of components (C1, C2, C3, C4, C5) 
within the pipeline, where the output of each component serves as the contextual input for the subsequent component. 

Fig. 3. Characteristic of Text Representation.  
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Moreover, integrating syntax in text representation backs the syntax- 
semantics interface and supports semantic tracking. For example, Pre-
dPatt (Zhang et al., 2017) constructs a directed graph that encodes 
predicate, argument, and syntactic relations while preserving the syn-
tactical dependency relations within predicate and argument phrases. 
Lexical resources like PROPBANK, FRAMENET, and VERBNET also 
include syntactic structures. Semantic and syntactic correlations aid 
training, as seen in (Rink et al., 2010) for causal relation detection. 

Semantic-level representation emphasizes converting text to 
machine-understandable meaning (Koller et al., 2019). Techniques like 
semantic role labeling, predicate-argument structures, and distributed 
models (Word2Vec, GloVe) extract semantic elements such as entities, 
events, and temporal links (Abend & Rappoport, 2017). However, se-
mantic analysis only considers literal meaning, excluding contextual 
interpretation. Pragmatic analysis, considering contextual factors like 
speaker intention and implicature (Cambria & White, 2014), completes 
the understanding. Pragmatic structure affects literal meaning deter-
mined by morphology, syntax, and semantics, warranting explicit indi-
cation in text representation. 

2.1.3. Context modeling 
Contextual information plays a crucial role in text representation 

schemes, encompassing factors such as factuality, attribution, clausal 
modifiers, and non-local context. While basic approaches focus on 
extracting subject-predicate-object tuples without considering contex-
tual information, advanced techniques aim to incorporate such infor-
mation to enrich the representation. 

For instance, REVERB and WOE ignore contextual details like mo-
dality, polarity, factuality, and attribution, focusing solely on extracting 
tuples based on subject, predicate, and object. In contrast, approaches 
like OLLIE employ context analysis to incorporate additional informa-
tion by considering context signals in the sentence’s dependency parse 
(DP) and expanding the output representation with clausal modifiers 
and attribution. OpenIE4 extends this idea by utilizing Semantic Role 
Labeling (SRL) to mark temporal and spatial arguments as separate 
fields within the tuple. 

NestIE (Bhutani et al., 2016) introduces nested triples, connecting 
propositions through identifiers to incorporate contextual information. 
MinIE (Gashteovski et al., 2017) takes a different approach by mini-
mizing both relational and argument phrases while introducing 

contextual details such as polarity, modality, attribution, and quantities. 
Each proposition in MinIE is tagged with contextual metadata specifying 
the relevant information. GRAPHENE (Cetto et al., 2018) identifies the 
core proposition and adds contextual propositions linked through 
identifiers. 

Furthermore, contextual information can extend beyond local de-
pendencies and sequential order. Methods like (Qian et al., 2018) 
leverage non-local contextual information by capturing coreferences, 
and identical mentions, and considering text layout structures and 
arbitrary links, such as followed-by links in social media posts. Similarly, 
(Luan et al., 2019) model context using entity relations and coreference 
relations to enhance the representation. 

2.1.4. Syntax-semantics interface 
A fundamental consideration in text representation schemes is the 

establishment of a well-formed syntax-semantics interface, which is 
crucial for capturing the interactions between syntactic structure and its 
semantic counterpart. This interface involves parsing the syntactic 
constituents of a sentence, identifying the predicator and its argument 
spans, and assigning semantic expressions to each span. The process 
follows a bottom-up approach, guided by the principle of composition-
ality, where the compositions and their order are determined by the 
syntactic structure. However, compositional schemes encounter chal-
lenges when dealing with idiomatic phrases, multi-word expressions, and 
polysemous words. In these cases, the principles of construction grammar 
(Dunn, 2023; Jurafsky, 1990; Sansò, 2003) prove beneficial in com-
plementing the principle of compositionality. Construction grammar 
recognizes that some linguistic expressions, such as idiomatic phrases, 
cannot be fully understood by analyzing their parts in isolation. Instead, 
they are treated as holistic units or constructions, which have specific 
meanings and properties. By incorporating the insights from construc-
tion grammar, text representation schemes can effectively capture the 
semantics of idiomatic phrases by considering them as lexically specific 
constructions. 

The use of construction grammar allows for a more nuanced repre-
sentation of idiomatic phrases and their compositional properties. 
Rather than expecting the composition of syntactic expressions to yield 
the true meaning, construction grammar highlights the importance of 
treating idiomatic phrases as constructions with their own distinct 
meanings. 

2.1.5. Generality of text representation 
The generality of a text representation refers to its ability to capture 

and represent a wide range of textual content, regardless of the specific 
domain or task (Koller et al., 2019). A general text representation is 
designed to be versatile and adaptable, capable of accommodating 
diverse types of text and supporting various natural language processing 
(NLP) tasks. It aims to capture comprehensive and nuanced semantics, 
providing a foundation that can be applied to multiple domains and 
tasks without the need for extensive customization or reconfiguration. In 
contrast, a domain-specific text representation is tailored to a particular 
domain, focusing on capturing the specific characteristics and re-
quirements of that domain. Domain-agnostic implies its applicability 
across various domains, such as cybersecurity and healthcare, as it en-
capsulates semantic elements at a generic level. Similarly, it is task- 
agnostic, accommodating not only specific tasks like text summariza-
tion or topic labeling but a wide range of tasks. Examples of task-specific 
techniques include ontology learning (Ahmed et al., 2014; Ali et al., 
2017; Navigli et al., 2011), sentiment analysis, and opinion mining 
(Castillo et al., 2015; Takamura et al., 2007; Wang et al., 2011), as well 
as text summarization (Qian et al., 2018) (Alwan & Onsi, 2016; AlZahir 
et al., 2015; Balinsky et al., 2011; Erkan & Radev, 2004; Ribaldo et al., 
2012), are tailored to address particular tasks. 

2.1.6. Encoding models: tuple-based and graph-based representation 
Tuple-based representation of text semantics involves the encoding 

Table 1 
Mapping of NLP Tasks to Type of Linguistic Context and Elements. NOTE: The 
elements mentioned in each context level are not exhaustive and may vary based 
on the specific task and the approaches used for analysis.  

Type of Task Linguistic Scope Elements 

Named Entity 
Recognition 

Lexical Words, Terms, Named Entities 

Part-of-Speech 
Tagging 

Morphological Word Forms, POS Tags 

Dependency Parsing Syntactic Dependency Relations, Parse Trees 
Semantic Role 

Labeling 
Syntactic Predicates, Arguments, Roles 

Coreference 
Resolution 

Syntactic and 
Semantic 

Coreference Chains, Entity 
Mentions, Referential Relations 

Sentiment Analysis Semantic Sentiment Polarity, Opinion Words 
Named Entity 

Disambiguation 
Lexical and 
Semantic 

Named Entity Mentions, Entity 
Linking, Knowledge Bases 

Relation Extraction Syntactic and 
Semantic 

Entity Pairs, Relation Types, 
Relation Certainty 

Topic Modeling Lexical and 
Semantic 

Keywords, Topic Assignments, 
Topic Distributions 

Machine Translation Lexical and 
Syntactic 

Source Language Words, Target 
Language Words, Phrase 
Alignments 

Text Classification Semantic Class Labels, Document Features 
Question Answering Lexical, Syntactic, 

Semantic 
Questions, Candidate Answers, 
Answer Ranking  
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of linguistic information using subject-predicate-object propositions 
(Fader et al., 2011; Wu & Weld, 2010b; Yates et al., 2007) often as flat 
tuples. While certain schemes attempt to incorporate inter-proposition 
links through nested structures or identifier assignments such as 
OLLIE, NESTIE, KRAKEN (Akbik & Löser, 2012), EXEMPLAR (Mesquita 
et al., 2013), CLAUSEIE (del Corro & Gemulla, 2013), they often lack the 
flexibility and free-form structure required to effectively capture links 
across diverse elements. Consequently, their ability to represent con-
nections across various layers of linguistic abstraction is limited. 

Links within text representation schemes serve various purposes, 
including facilitating the interface between syntax and semantics, as 
seen in PROPS (Stanovsky et al., n.d.) and PredPatt, and establishing 
connections with external lexical resources or ontologies, as demon-
strated by (Kertkeidkachorn & Ichise, 2018). These links also enable 
comprehensive context modeling (Luan et al., 2019), even spanning 
across multiple documents (Bronselaer & Pasi, 2013), and establishing 
associations between entities, as exemplified by (Corcoglioniti et al., 
2016), NEWSREADER (Vossen et al., 2016). Their inclusion plays a vital 
role in enhancing the overall quality of the representation by incorpo-
rating additional semantic information (Qian et al., 2018) and enabling 
more robust analysis and inference (El-Kassas et al., 2020). 

Graph-based representation has gained prominence as a superior 
alternative to other text representation schemes, enabling effective 
encoding of the text’s meaning (Ali & Melton, 2019; Nastase et al., 2015; 
Osman & Barukub, 2020). It has emerged as a valuable intermediate 
representation in text analysis, allowing for subsequent post-processing 
operations. This representation excels in capturing the intricate lin-
guistic aspects of the text and is widely regarded as the preferred 
approach for modeling the semantic content (Abend & Rappoport, 
2017). Notably, PROPS and PredPatt employ a directed graph-based 
representation using dependency parse information to represent sen-
tences. In the study by (Bronselaer & Pasi, 2013) a graph model con-
siders the syntactic function of tokens, enabling multi-document 
summarization through operations such as graph union and vertex 
ranking. Likewise, (El-Kassas et al., 2020) employ a graph-based inter-
mediate representation to enhance document summarization. 

2.2. Autonomous solutions for building text representation 

The realm of text representation in Natural Language Processing 
(NLP) has undergone remarkable advancements driven by diverse 
methodologies. One notable avenue is the emergence of autonomous 
solutions designed to construct text representations in an automated 
manner (Gashteovski et al., 2020; Martinez-Rodriguez et al., 2018; 
Nastase et al., 2015; Stewart & Liu, 2020). These approaches aim to 
generate machine-interpretable renditions of textual data, harnessing a 
range of techniques and algorithms to capture syntactic, semantic, and 
contextual nuances. This automation facilitates more accurate and 
meaningful analysis, contributing to the evolution of NLP. 

These autonomous methods can exhibit domain-specific or domain- 
agnostic attributes. Domain-specific techniques are tailored to particular 
subject areas, often generating propositions by fitting structured tem-
plates aligned with domain-specific ontologies. In contrast, domain- 
agnostic techniques are versatile and unconstrained by domain bound-
aries. This research delves into domain-agnostic techniques, investi-
gating their potential for comprehensive text representation. 

Among these techniques, open information extraction (openIE) tools 
have been pivotal (Mausam et al., 2012; Niklaus et al., 2018). They 
operate by extracting patterns either manually crafted or learned from 
labeled data—to produce propositions in the form of tuples from sen-
tences. These tuples focus on predicates, subject arguments, and object 
arguments. However, in their early iterations, these techniques were 
limited to basic tuple extraction, lacking the richness of contextual de-
tails such as modality, polarity, factuality, and attribution. 

As openIE techniques evolved, they encompassed contextual anal-
ysis, producing tuples infused with contextual intricacies through 

frameworks like OLLIE (Mausam et al., 2012). Recent advancements, 
exemplified by OpenIE5, have expanded the capabilities further to 
generate n-ary relations within sentences. Additionally, techniques 
based on frame semantics assign roles to arguments, enhancing context 
through specific categorizations. These techniques, associated with se-
mantic role labeling (SRL) (Shi & Lin, 2019) based on schemes such as 
PropBank, FrameNet, or VerbNet, identify text spans in sentences and 
assign roles to them. 

However, a common limitation across these methods is their focus on 
individual sentences, with semantic scope restricted to the sentence 
level. To model interconnected propositions and capture broader 
context, these outputs necessitate post-processing steps for activities like 
coreference resolution, identification of identical mentions, and entity 
recognition. Techniques like PIKES (Corcoglioniti et al., n.d.) and 
NEWSREADER (Vossen et al., 2016) strive to consolidate these outputs, 
channeling results into standardized annotation formats such as NAF 
(Vossen et al., 2016). While this harmonizes representation compati-
bility, it primarily caters to data integration and does not address the 
intricacies of graph-based linguistic analysis. 

Existing graph-based linguistic analysis approaches have garnered 
significant interest for their focus on graph-based linguistic analysis and 
representation (Nastase et al., 2015; Osman & Barukub, 2020). How-
ever, these approaches often lack comprehensive semantic content that 
considers the specific domain or task they were tailored for, as they 
primarily concentrate on modeling the required semantic or syntactic 
elements. Approaches like PROPS and PredPatt employ directed graph- 
based representations, leveraging dependency parse information for 
sentence portrayal. However, these methods are confined to sentence- 
level extraction of predicate arguments. (Rink et al., 2010) provides a 
graph-based text representation that is constrained to sentence level and 
focuses on word senses and semantic frames, tailored towards detecting 
causal relations. However, it does not encompass a comprehensive range 
of other essential semantic elements, and it does not demonstrate lin-
guistic analysis specific to its representation. Likewise, techniques such 
as those presented by (Qian et al., 2018), focus on capturing non-local 
and non-sequential dependencies, but their scope remains limited to 
exposing these dependencies. Furthermore, (Luan et al., 2019) showcase 
graph-based linguistic analysis tailored to specific tasks like entity 
recognition and relation extraction. However, their applicability is 
constrained by a lack of comprehensive context, rendering them unfit 
for domain-agnostic and task-agnostic utilization. 

Additionally, it’s important to note that most existing approaches 
(Corcoglioniti et al., 2016; Martinez-Rodriguez et al., 2018; Mote-
shakker Arani et al., 2021; Vossen et al., 2016) rely on RDF for graph 
data representation. RDF, while widely used, presents several limita-
tions (Hofer et al., 2023; Purohit et al., 2021) in the context of complex 
textual data. It often results in sparse graphs with limited structural 
detail, particularly when handling intricate relationships within diverse 
real-world scenarios. This can lead to challenges in accurately repre-
senting and analyzing complex text-based knowledge. In contrast, the 
current literature didn’t explore the labeled property graphs (LPG) for 
text representation, which offers superior flexibility and adaptability, 
mitigating these RDF limitations for advanced knowledge representa-
tion. Moreover, LPG excels in executing scalable graph analytical tasks 
such as sub-graph matching, network alignment, and real-time knowl-
edge graph querying. It distinguishes itself with efficient storage, rapid 
traversal capabilities, and the versatility to model various real-world 
domains (Purohit et al., 2021). 

3. Overview of the proposed approach 

In this section, we will provide an overview of the proposed 
approach for generating domain and task-agnostic text representations, 
as illustrated in Fig. 4. This figure provides a visual representation of the 
key components and flow of the proposed graph-based approach. The 
proposed system constructs text representation that encompasses 
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various characteristics necessary for downstream applications. 
To ensure precise representation of the text, we utilize knowledge 

engineering techniques, leveraging semantic resources such as WordNet 
synsets or ConceptNet entries to assign nuanced meaning to each lexeme 
or token. We also employ predicate-argument structures to capture the 
meaning of sentence constituents and incorporate coreferences, iden-
tical mentions, and arbitrary links to enrich text-level semantics. Our 
linguistic scope covers morphological, syntactic, and semantic infor-
mation, enabling holistic text analysis. By establishing connections be-
tween semantic elements and their syntactic counterparts, we achieve a 
uniform syntax-semantics interface through graph-based links and 
token-level anchoring, ensuring precise alignment between graph 

elements and their corresponding tokens in the text. 
We also prioritize context modeling as a prominent feature of our 

system, harnessing rich contextual information to refine downstream 
NLP tasks effectively. The unified text representation enables the 
convenient and efficient fusion of outputs from different NLP tasks, 
enhancing overall system performance. 

Our system employs a powerful and flexible labeled property graph 
(LPG) format for graph representation, surpassing limitations commonly 
associated with RDF-based representations. The LPG format facilitates 
efficient querying, navigation, and traversal mechanisms, supporting 
subgraph querying and graph-based analytics. Its flexibility and exten-
sibility make it an optimal choice for seamless integration with object- 

Fig. 4. Overview of the Proposed Approach for Autonomous Construction of Domain and Task-Agnostic Text Representation.  

Fig. 5. Schematic Representation and Data Model for the Proposed Text Representation.  
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oriented programming paradigms. 
In the following sections, we present our approach from two distinct 

perspectives: the schematic representation or data model, and the or-
ganization of pipeline components. We will elaborate on the concepts 
discussed above in these sections. 

3.1. Schematic representation and data model for text representation 

In this section, we elaborate on our data model comprising three 
layers: Text, Syntax, and Semantics. We demonstrate how this model 
successfully achieves the desired text representation characteristics 
outlined in our proposed approach. These layers are designed to capture 
and organize the relevant information from the text, aligning with the 
desired characteristics of text representation. Fig. 5 illustrates a high- 
level conceptual data model that encompasses these layers. 

3.1.1. The text layer 
The basis of the first layer is the concept of a text document (TD) that 

consists of natural language text and its associated meta-data, including 
author, type, created date, and title. Additionally, the TD is structured 
and organized using text segments (TS), which are logical units of 
discourse such as sections or paragraphs. Each TS is categorized by a type 
attribute, indicating its function within the TD, such as introduction, 
elaboration, or conclusion. The TS node also includes a heading attribute 
and interacts with sentence nodes through a contains property. The 
hasSegment relationship connects TS with TD. A TS represents a cohesive 
group of sentences, with each segment containing one or more senten-
ces. For example, in a news article, each paragraph corresponds to a 
separate TS node, while in an email conversation, the TD may consist of 
only one TS node. 

A Sentence node represents a single sentence and is composed of a 
group of words, phrases, or clauses. It includes attributes such as mood 
(e.g., imperative, declarative, interrogative), sentiment (e.g., expressing 
emotions such as sadness or anxiety), and a text attribute that stores the 
raw text within the sentence’s scope. Each sentence contains multiple 
tokens. 

3.1.2. The syntax layer 
In proposed data model, the Syntax Layer is responsible for analyzing 

the morphological and sentence-level information of a text. This layer 
follows a bottom-up approach based on the principle of composition-
ality, which is essential for understanding language. The sentence is 
broken down into discrete units called tokens at the token level. These 
tokens are then combined to form meaningful syntactic units such as 
phrases and clauses that relate to a specific sentence. Each token is 
assigned a part-of-speech (POS) tag to represent a grammatical category. 
Tokens are connected within a sentence through relationships such as 
hasNext, which indicates adjacency, and isDependent, representing a 
lexical dependency. The isDependent relationship links a dependent word 
to its governing headword, reflecting the modification of meaning. To-
kens also contain attributes such as index, sent_index, next, previous, form, 
lemma, and synset, the latter of which can link to sense-making lexical 
resources like WordNet. Phrases are constituents in the sentence that 
reveal the constituency structure of the text. They can consist of a single 
word or a group of words, and each phrase has a headword that de-
termines its type, such as a noun phrase or verb phrase. Phrases have 
attributes that include type, headword, and modifier. Spans in our model 
represent a phrase or a clause within a sentence and can represent 
various types of mentions in the text, such as named entities, corefer-
ences, events, or role arguments. The relationship between spans and 
phrases is captured through the participatesIn property, connecting them 
to the accompanying tokens. Overall, the Syntax Layer provides a 
detailed representation of the syntactic structure of the text, enabling 
deeper analysis and understanding of linguistic relationships. 

3.1.3. The semantic layer 
In graph representation, the semantic representation layer encodes 

the semantic content of the text. This content is produced after semantic 
analysis operations and includes semantic components like events, 
predicates, their arguments, coreferences, semantic roles, temporal and 
spatial information, discourse relations, word senses, entities, and their 
role types. We propose a schematic representation that differentiates 
between mentions and instances of entities, events, and time expres-
sions. The semantic layer can be conceptually divided into the mark-
ables layer and the instance layer, where the markables refer to textual 
mentions or occurrences of an entity, event, or time expression, and the 
instance refers to the actual entity, event, or time expression. The pro-
posed schema includes semantic components such as predicates and 
arguments, named entities, numeric and nominal entities, temporal 
expressions, and coreferences. 

The predicate-argument relation is the most common way of 
expressing semantic content, and the predicate node is represented by a 
token that denotes the predicate term. The argument node contains the 
text span representing the participating argument and includes attri-
butes such as the role_label, which is the role type of the argument, and 
the argument property that links an argument with the predicate. An 
entity refers to a specific object, person, place, concept, or event that can 
be recognized and identified within a given context. The proposed data 
model supports the representation of various types of entities, including 
named entities (e.g., “John Smith,” “New York City”), nominal entities 
represented by bare or quantified nouns (e.g., “car,” “three apples”), and 
pronominal entities encompassing pronouns and wh-question words (e. 
g., “he,” “what”). These entities are captured as nodes in the graph, 
providing comprehensive context and enabling advanced analysis of 
text data. Entity nodes can make relationships with other entity nodes 
and also with other event nodes. Temporal expressions denote the time 
expression and follow the conventions of TimeML (Pustejovsky et al., 
2003) for expressing temporal expressions and their associations with 
events. Coreferences refer to text segments that refer to some other 
entity mentioned elsewhere in the text and describe the relationship 
between mentions in the text. Events represent text segments that 
denote occurrence in the real world, and event participants specify 
different entities participating in that event. 

3.1.4. Proposed data model: fulfilling characteristics of text representation 
The proposed data model effectively fulfills the desired characteris-

tics of text representation as discussed in the proposed approach. Let’s 
review how each characteristic is addressed: 

Structure and Organization: The Text Layer of the proposed data 
model captures the hierarchical structure and organization of the text 
document. It partitions the document into logical segments (TS) such as 
sections or paragraphs, each with a functional category. This allows for a 
clear and structured representation of the text, enabling easy navigation 
and comprehension. 

Syntactic Information: The Syntax Layer of the proposed data model 
captures the syntactic structure of the text at the lexical and sentence 
level. It represents tokens, phrases, and clauses, along with their re-
lationships. By assigning part-of-speech (POS) information to tokens and 
capturing syntactic dependencies, the model captures the grammatical 
structure of the text. This enables the extraction of syntactic features and 
aids in understanding the relationships between words and phrases. 

Semantic Content: The Semantic Layer of the proposed data model 
encodes the semantic content of the text in a graph representation. It 
captures various semantic components such as events, predicates, ar-
guments, coreferences, temporal information, and named entities. The 
model represents events as nodes, allowing for rich event semantics and 
relationships with other events and entities. Additionally, the model 
includes coreference edges to establish connections between mentions of 
entities. This enables the extraction of meaningful semantic information, 
facilitating a deeper understanding and analysis of the text. 

Contextual Information: The multi-layered structure of the proposed 
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data model captures contextual information at different levels. The Text 
Layer includes meta-data and headings, providing context about the text 
document. The Syntax Layer captures the syntactic relationships be-
tween words and phrases, contributing to the contextual understanding 
of the text. The Semantic Layer incorporates temporal expressions, 
discourse relations, and event-to-event relationships, enriching the 
contextual information available. This allows for a comprehensive rep-
resentation that considers the context in which the text is presented. 

Flexibility and Extensibility: The graph-based nature of the proposed 
data model, implemented using LPG, offers flexibility and extensibility. 
New entities, relationships, or attributes can be easily added to the 
model to accommodate domain-specific requirements or emerging 
standards. The model’s adaptability allows for the integration of addi-
tional linguistic resources or external knowledge bases, enhancing the 
richness and coverage of the text representation. 

3.2. Proposed method to generate a text graph 

The proposed approach offers a pipeline-based system to autono-
mously generate a text graph. The pipeline consists of different stages, 
each stage corresponds to a particular set of NLP tasks. These NLP tasks 
can be performed using publicly available state-of-the-art tools and 
techniques. The output of each stage is then converted into a graph 
representation by the proposed schema. The conversion process is spe-
cific to the tool/technique and depends on the mappings between data 
items in the output of the NLP tool and the schema of the textual graph. 
The stages of the pipeline are described in detail below: 

3.2.1. Document preprocessing 
In the data preprocessing phase, the text data undergoes cleaning 

and normalization to remove irrelevant information and address po-
tential errors or noise. This step involves tasks such as removing new-
lines and encoding reserved characters. Cleaning the text is crucial as it 
helps eliminate inconsistencies and prepare the data for further analysis. 
One important objective of this phase is to detect and correct errors, 
including spelling mistakes and grammatical errors. By applying 
appropriate techniques, the text is refined to enhance its accuracy and 
readability. Additionally, document-level meta-data is assigned and 
stored alongside the cleaned and normalized text data. Upon completion 
of this phase, a TextDocument node is created and stored in the graph. 
This node represents the processed and refined text, ready for subse-
quent analysis and extraction of meaningful insights. 

3.2.2. Segmentation 
During this phase, the system processes the stored text and performs 

segmentation, dividing it into its different constituents, such as para-
graphs and other sections of the document. This segmentation step helps 
create a structured representation of the document’s layout. The system 
models the layout representation by creating nodes for each constituent, 
such as for paragraphs or sections, and connects them with edges of 
different types to capture their relationships. This layout modeling en-
ables a hierarchical organization of the text and facilitates easy navi-
gation and comprehension. Furthermore, this phase involves storing 
metadata about each segment, providing additional information and 
context for the text document. The metadata may include details such as 
the segment type, position, length, or any other relevant information 
that enhances the understanding and analysis of the document structure. 
By performing document segmentation and layout modeling, the system 
establishes a structured text document representation, enabling effective 
organization, retrieval, and manipulation of the text content. 

3.2.3. Syntactic, lexical, and morphological analysis 
In this phase, morphological, lexical, and syntactic analysis tech-

niques are employed to capture word-level information, determine 
lexical meanings, and establish grammatical relationships between 
words in order to construct comprehensive text representations. The 

morphological analysis assigns word information to populate nodes with 
attributes such as POS, tense, verb_form, mood, pronoun_type, and case. 
The lexical analysis populates nodes with attributes related to lexical 
meaning and parts of speech. Syntactic analysis techniques like de-
pendency parsing or constituency parsing populate edges to capture 
grammatical relationships between words. These edges may include 
properties such as dependency type, directionality, and syntactic role. 
By populating nodes and edges with these important attributes and 
properties, the proposed approach provides a comprehensive context 
that enables a deeper understanding of the text structure and linguistic 
relationships. 

3.2.4. Entity mention detection and extraction 
An entity is a linguistic unit that represents an object or set of objects 

in the real world. The entity detection phase mainly focuses on detecting 
three types of entities: named entities or entities identified by proper 
names, nominal entities (represented by a bare noun or quantified 
noun), and pronominal entities which include all pronouns including the 
wh-question words. To identify nominal entities, we consider all the 
nouns that are not of the type named entity, value or numeric, or TIMEX. 
The entity’s whole extent would be stored including premodifiers and 
postmodifiers. 

We detect and extract named entities by running Named Entity 
Recognition and Classification (NERC) tools, which are responsible for 
identifying, extracting, and classifying named entities. These techniques 
may utilize analysis from the initial phases like POS tagging and de-
pendency parsing to identify entities from each sentence. This phase 
aims to detect and mark entities observed in the text with their syntactic 
type, headword, offsets, extent, and textual mentions. The outcome of 
this phase plays a crucial role in building the graph structure and 
improving its semantic representation. 

3.2.5. Discourse analysis and coreference resolution 
It includes the identification of all the expressions (words or phrases) 

in the text that refer to the same real-world entity. Here we are specif-
ically focusing on nominal coreference. We assign an Antecedent label to 
the proper noun mention of the entity and assign a Corefmention label to 
all the other referents. If the entity is nominal, then the first occurrence 
will be referred to by an Antecedent node. All the coreference nodes 
(referring to the same antecedent node) will be connected to their 
antecedent node via directed edges of type refersTo. 

In event coreferencing, we have verbal events and nominal events. In 
the case of nominal events, relations between coreference and ante-
cedent are exploited to detect the same events and refersTo link is 
established between the predicate mention and the event instance. For 
verbal events, we run coreferencing for verbal events to find identical 
event mentions. 

3.2.6. Resolving identical entity mentions and creating instances 
Once the comprehensive identification of various types of entity 

mentions is complete, we proceed to execute the entity linking and 
disambiguation (NED) phase. This phase’s objective is to link and 
disambiguate entity mentions that refer to the same underlying entity 
instance, and subsequently assign them unique labels and identifiers. 
This endeavor culminates in the creation of entity instance nodes and 
the establishment of “refersTo” edges between entity mentions and their 
respective instances. These instances might hold identifiers denoted by 
Knowledge Base identifiers (KBIDs) that correspond to unique entities in 
external knowledge bases like DbPedia or Wikidata. Existing Entity 
Linking and disambiguation tools such as DBpedia-spotlight (Daiber 
et al., 2013) or Entity-Fishing can be employed to assign KBIDs to entity 
mentions. The visual representation of this process is captured in Fig. 6, 
showcasing the integration of entity linking, disambiguation, and 
instance generation. 

The research proposed methodology harmonizes the outcomes of 
nominal mention detection, Named Entity Recognition and 
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Classification (NERC), entity linking, word sense disambiguation (WSD), 
and coreference analysis components. The overarching goal is to address 
any disparities in disambiguation and linking that may persist across 
entity mentions, thereby collating equivalent mentions into corre-
sponding instances. 

Entities with Knowledge Base Identifiers (KBIDs) can be readily 
grouped as identical mentions. For instance, consider the sentences: 
“The subprime mortgage crisis in the U.S.” and “Global stock markets 
fell today, in a mass sell-off stemming from the subprime mortgage crisis 
in the United States.” Here, both the entity mentions “the U.S.” and “the 
United States” share the same KBID, facilitating a seamless grouping. 
However, for entities that elude recognition by entity linking and 
disambiguation systems, we employ a combination of textual content 
and the synsetID (a Wordnet resource identifier) linked to their head-
word, as assigned by the WSD component. This approach accommodates 
nominal entities sharing identical textual spans and headword synsetIDs, 
marking them as identical mentions referring to the same entity 
instance. For example, consider the sentences: “The enthusiastic chef 
prepared a feast.” and “The enthusiastic chef showcased culinary skills.” 
These sentences both feature the entity “enthusiastic chef” mentioned 
twice, with shared text spans and matching synsetIDs for the headword 
“chef.” This shared criterion designates them as identical mentions. This 
process is summarized in Algorithm 1. 

The procedure commences with the retrieval of entity mention nodes 
from the labeled property graph (G), generated from Nominal Mention 
Detection, NERC, and NEL modules. It encompasses both nominal and 
named entity mentions. The subsequent steps distinguish between entity 
mentions with and without KBIDs. For each cluster of identical entity 
mentions, instances are created within the graph. 

Moreover, we augment NED results through coreference links. In 
some cases, NED may fail to disambiguate an entity mention, yet cor-
eference analysis can still link these to already disambiguated entities 
through COREF links. These links enable connecting missing entity 
mentions to entity instances using REFER_TO links. For example, 
consider the sentence “On Friday, the Fed entered into a $38 billion 
repurchase agreement of mortgage-backed securities, easing stock-
holder worries.” The named entity mention “The Fed” remained undis-
charged by NED, but coreference analysis identified it as referencing the 
entity mention “Federal Reserve” from a prior sentence, already 
disambiguated and KBID-assigned. 

Furthermore, inconsistencies can arise when the NED module assigns 
inaccurate KBIDs, while coreference links to a different entity equipped 
with a distinct KBID. To address this, we prioritize the coreference 
outcome and update the KBID to correspond with the coreference entity. 
For instance, consider the sentence: “Jim Cramer, of CNBC’s Mad 
Money, remarked that as many as seven million people will lose their 
homes from bad mortgages.” Here, the entity mention “Jim Cramer” is 
assigned the KBID “Jim_Cramer” with a confidence score of 0.70. In the 
subsequent sentence, “Last Friday, Cramer went on a tirade on CNBC’s 
Street Signs, saying that the ’Fed was asleep’ and called for them to 
lower rates immediately.” The entity mention “Cramer” receives a 
different and incorrect KBID “John_Cramer” with a confidence score of 

0.51 but is linked to “Jim Cramer” through a COREF edge. In such cases, 
our approach grants precedence to the coreference module while 
considering the confidence score assigned by the entity linking and 
disambiguation module. To elaborate on this process, Algorithm 2 de-
lineates the steps for rectifying discrepancies between coreference and 
antecedent links. This ensures a uniform assignment of KBIDs for 
interconnected entity mentions.  

Algorithm 1: Handling Identical Entity Mentions and Instance Formation 
Input: Labeled property graph G (output from Nominal Mention Detection, WSD, 

NERC and NEL modules) 
Output: Updated graph G with identical entity mentions linked to the same instances 
1.EM = {e | e ∈ G, e.type =’EntityMention’} /* Retrieve entity mention nodes from 

graph G:*/ 
2.For each node e in EM do 
3. If e.kbid = NULL and e.syntacticType = ‘NOMINAL’ then 
4. EM_identical = {m | m ∈ EM, m.text = e.text, m.headword.synsetID = e.headword. 

synsetID, m.id ∕= e.id, m.KBID 
IS NULL} /* Find EM_identical without KBID */ 
5. If EM_identical is not NULL then 
6. I = CreateNode(type = ’Instance’, text = e.text, id = GenerateNewID()) /* Create 

instance node I */ 
7. G = G∪{(m, refersTo, I) for m ∈ EM_identical} /* Create refersTo edges */ 
8. If e.kbid is not NULL then 
9. EM_identical = {m | m ∈ EM, m.text = e.text, m.id ∕= e.id, m.KBID = e.KBID} /* Find 

EM_identical with same 
KBID */ 
10. If EM_identical is not NULL then 
11. I = CreateNode(type = ’Instance’, text = e.text, id = GenerateNewID()) /* Create 

instance node I */ 
12. G = G ∪ {(m, refersTo, I) for m ∈ EM_identical} /* Create refersTo edges */ 
13.Return G /* return updated graph G with identical entity mentions linked to 

instances */   

Algorithm 2: Resolving inconsistencies using Coreference and Antecedent Links 
Input: Labeled property graph G (output from Coreference resolution module) 
Output: Updated graph G with resolved inconsistencies in coreference and antecedent 

links 
1:CR = {n | n ∈ G, n.type = ’Coreference’}, ANT = {n | n ∈ G, n.type = ’Antecedent’} /* 

Retrieve coreference and 
antecedent nodes from graph G */ 
2:For each S = {x | x is a coreference or antecedent node linked via coref edges} do /* 

Retrieve connected subgraph S 
consisting of coreference and antecedent nodes linked via coref edges */ 
3: EM_linked = {n | (c, refersTo, n) ∈ G, c ∈ S} /* Find entity mention nodes linked via 

refersTo edges within the subgraph */ 
4: inconsistent = False /* Initialize the inconsistency flag */ 
5: for each node e1 in EM_linked do 
6: for each node e2 in EM_linked do 
7: if KBID(e1)!= KBID(e2) then /* Check for inconsistencies in KBID assignments 

among linked entity 
mentions */ 
8: inconsistent = True 
9: break 
10. If inconsistent then 
11. KBID_correct = ResolveInconsistency(EM_linked) /* Determine the correct KBID 

based on context and 
other information */ 
13. G = G ∪ {n.KBID = KBID_correct for n ∈ EM_linked} /* Update KBIDs of entity 

mention nodes to resolve 
the inconsistency: */ 
14.Return G /* Return the updated graph */ 

Fig. 6. Entity Linking and Disambiguation: Resolving Entity References in Text.  
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3.2.7. Identification of headword 
Identification of the headword is important for natural language 

processing tasks. The headword is the most important word in the text, 
whether it’s a phrase or a clause. It provides the text span its semantic 
and syntactic meaning and hence determines the overall meaning of that 
text span. We assign a headword to each markable and store it as a node 
attribute. It helps us determine the phrase type or the most important 
word in the phrase or a clause. It is also useful in identifying text spans 
marked as different types. Based on the headword we compare two 
markables of different types referring to the same entity or event. For 
example, a predicate-argument having a text span of ‘Jim Cramer, of 
CNBC’s Mad Money’ is referring to a person entity Jim Cramer. There-
fore, we can link that predicate argument to the corresponding entity 
through the refersTo link because both have the same headword 
‘Cramer’. We used headwords to disambiguate between different en-
tities that might share similar words or phrases. Moreover, it can be used 
to better understand the association of words. We identify the headword 
by analyzing the isDependent edges between the tokens corresponding to 
the text span. For example, step 1 of Algorithm 3 specifies the pattern 
that determines the head of a predicate argument. The patterns check for 
the existence of the Token node which is part of the predicate-argument 
text and acts as a headword because it is not dependent on any other 
token node within the span of the argument text. 

3.2.8. Semantic role labeling 
The semantic role labeling (SRL) technique identifies the mentions of 

a predicate or action triggers in the text and identifies the roles different 
entities play in the text such as subject, object, etc. Usually, SRL helps 
identify the thematic roles of the arguments for each predicate. These 
arguments are identified and categorized through which the role of each 
of the arguments is determined. We followed the Propbank scheme for 
marking the predicate and classification of its arguments. There are two 
types of arguments, core arguments, and modifiers. The core arguments 
are represented as numbered arguments such as ARG0, ARG1, and 
ARG2. The core arguments provide a fundamental understanding of the 
underlying meaning of the predicate. It includes argument types such as 
agent (performer or experiencer), patient (direct object), and indirect 
object. The modifiers provide contextual information such as time, 
location, and manner. The predicate and its arguments are represented 
as nodes in the graph where each predicate node relates to the argument 
node through the participant edge. Moreover, in the SRL phase, we link 
each predicate’s arguments through refersTo edges with entity nodes i.e., 
entity instances, Timex nodes, and numeric values. We do this linking 
after analyzing the content of each argument node and deciding based 
on the syntactical structure of the content. The analysis and inspection of 
argument node content offer valuable context that benefits subsequent 
tasks such as event enrichment and Tlink identification. Our approach 
also enhances recall in temporal expression detection and enables the 
detection of causal links between events. Furthermore, it aids in iden-
tifying event-to-event links for various types, particularly when a 
predicate is found as the head of an argument. 

3.2.9. Temporal expression recognition and normalization (TERN) 
In this phase, temporal expressions such as dates, times, durations 

from the text are identified and extracted, and normalized. Each tem-
poral expression is stored as a TIMEX node in the graph. The TIMEX 
node has three main properties, i.e., type (namely duration, time, date, and 
set), textual_mention, and normalized_value as per the TimeML standard. 

3.2.10. Event detection 
This phase identifies and extracts events from the text. As discussed 

earlier, our approach to event detection and extraction has been mostly 
inspired by TimeML specifications. Any term for a situation that happens 

or occurs would be annotated as an event. We also include stative 
predicates that denote the states or circumstances of an entity. All verbs 
except auxiliary verbs and modals should be annotated as events. We 
also consider nominal events that are represented by nouns such as 
deverbal nouns, or nouns having an eventive property (e.g., accident, 
crash). Event attributes such as polarity, tense, modality, and aspect would 
also be extracted. The outcome of this phase will be an event node in the 
textual graph.  

Algorithm 3: Assign Headword To PredicateArguments 
Input: Graph G (labeled property graph) 
Output: Updated graph G with headword assignment for predicate arguments 
1.p = (a: Token | a.pos ∈ [’IN’])->(f: Argument) /* CYPHER query pattern */ 
2.q = (a)–[: isDependent]->()->(f) /* CYPHER query pattern */ 
3.pattern = p AND q WHERE ¬(∃((a) < -[:isDependent]- () –> (f))) /* define a graph- 

based CYPHER query pattern */ 
4.pattern_pobj = (a)–[x:isDependent]-> (c) WHERE x.type = ’pobj’ /* define a graph- 

based CYPHER query pattern to find pobj nodes linked with the headword*/ 
5.result = execute(pattern, G) 
6.for each p in result do 
7. f.head = a.text 
8. f.headTokenIndex = a.tok_index_doc 
9. f.syntacticType = ’IN’ 
10.for each pattern_pobj in pattern do 
11. f.pobj = c.text 
12. f.pobjIndex = c.tok_index_doc 
13. f.pobjFullText = substring(f.text, size(f.head) + 1) 
14.Return G /* Return the updated graph G */  

3.2.11. Interpreting the content of predicate arguments 
Interpreting the contents of predicate arguments for event and entity 

enrichment tasks is beneficial because it can provide valuable infor-
mation about the entities and events mentioned in the text. The objec-
tive of this task is to gain a better understanding of the entity and events 
in the text and how they interact with each other. We can determine 
which arguments refer to entities and events and then use their content 
as a context to enrich entities and events such as their types, roles, and 
temporal and causal relationships. The arguments may contain a word 
or a phrase or a clause. It is important to mark any presence of semantic 
content and its category inside an argument. This content can take on 
various forms such as values, dates, times, durations, or mentions of 
entities and events. We need to examine the contents of the argument to 
identify valuable clues that aid in understanding the type of relationship 
an entity or event may have with the associated content, such as tem-
poral or causal relations. 

To interpret the content of predicate arguments, we inspect the 
syntactic structure as well as any semantic content linked with the 
argument to interpret its content. The headword, the complement of the 
headword, and the type of syntactic link between them are marked and 
stored as attributes in the argument object. The most simple and 
straightforward way is when the headword has already been marked as a 
mention of either a named entity, nominal entity, or event. In that case, 
we can directly link the argument with the corresponding entity or event 
instance through a refersTo edge. For the pronominal values, we use the 
coreference links to establish links with the right entity. 

In cases where the headword is a preposition or subordinating 
conjunction, it is flagged as a signal in our data model. This indicates 
that its complement should be examined for potential references to 
entities or event instances. We have developed Algorithm 4 to facilitate 
this process, which outlines the steps involved in analyzing the com-
plement and identifying relevant references. By utilizing this algorithm, 
we enhance our ability to capture important information related to en-
tities and events in the text. 

The type of argument also gives us clues about the type of content so 
we can apply only those patterns that are suitable for that type of 
argument. For instance, Algorithm 5 focuses on analyzing arguments 
labeled as ’ARGM-TMP’ and specifically targets temporal information, 
such as signals related to time, date, or event duration. By applying a 
predefined pattern, the algorithm identifies temporal signals within the 
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content and assigns the syntactic type of the frame as ’EVENTIVE.’ This 
indicates that the temporal element being referenced is associated with 
an event. Similarly, ‘ARGM-CAU’ denotes a cause of the event 
mentioned in its argument predicate.  

Algorithm 4: Argument Content Analysis and Tagging Algorithm 
Input: Subgraph G representing the argument content with predicate and argument 

nodes 
Output: Updated subgraph G with tagged entities, signals, temporal elements, and 

events 
1.for each argument node a in G do: 
2. Identify the headword h of a. 
3. Mark h as the head of a. 
4.for each argument node a in G do: 
5. if h is a preposition or a marker, then 
6. Identify the pobj entity p corresponding to h 
7. Create an edge e from a to p with the label “refersTo”. 
8.for each argument node a in G do: 
9. Identify any temporal elements t within the argument content 
10. if t is found, then 
11. Create an edge e from a to t with the label “ refersTo ” 
12.for each argument node a in G do 
13. if h is a predicate or an event, then 
14. Identify the event node e corresponding to h 
15. Create an edge e from a to e with the label “ refersTo ” 
16.Return G /* the updated subgraph G */   

Algorithm 5: Assign Headword To PredicateArguments of type EVENTIVE 
Input: Labeled property graph G 
Output: Updated graph G with head assignment for predicate arguments of type 

EVENTIVE 
1:p = (s:Token where s.pos = ’IN’) < -[:isDependent {type: ’mark’}]-(a:Token where a. 

pos in [’VBD’])-[:participatesIn]- 
>(f:FrameArgument where f.type = ’ARGM-TMP’) /* define a graph-based CYPHER 

query pattern */ 
2:q = (a)-[:isDependent]->()–(f) 
3:pattern = p AND q WHERE NOT EXISTS ((a) < -[:isDependent]-()–(f)) /* define 

graph-based CYPHER query pattern */ 
result = execute(pattern, G) /* Execute the pattern-matching query p on graph G */ 
4;for each p in result do 
5: f.head = a.text 
6: f.headTokenIndex = a.tok_index_doc 
7: f.syntacticType = ’EVENTIVE’ 
8: f.signal = s.text 
9:Return G /* return the updated graph G */  

3.2.12. Event participant extraction 
In this phase, we aim to identify and classify the participants of the 

events such as agents, patients, beneficiaries, etc. As depicted in Fig. 7, 
we use the output of the semantic role labeling phase to identify and 
classify the event participants. In the context of event extraction and role 
identification, the predicate term usually refers to the event node and its 
corresponding arguments, which can be considered event participants. 
The core arguments (such as agent, patient, and instrument) provide the 
details of the event participants, and the modifiers are used to provide 

additional context such as temporal, causal, or spatial information about 
the event. This results in linking events with participants that could be 
entities, numerical values, or Timex nodes in the graph. those events 
that have no corresponding predicate entry for SRL, syntactic level in-
formation such as POS or typed dependencies could be exploited to 
extract the participants and additional context. For example, in a sen-
tence “Asian and European markets have become increasingly entangled in 
the subprime mortgage crisis in the U.S.”. The verbal SRL module was able 
to identify two predicates i.e., “become” and “entangled” and their 
corresponding arguments, but it was not able to identify the nominal 
predicate “crisis”. The event detection module has recognized the word 
“crisis” as an event. This module is designed to detect nonverbal events 
that complement verbal SRL output, like the Propbank parser. We can 
use dependency parse information encoded in the text graph to figure 
out the association of this event with the dependent prepositional phrase 
i.e., “in the U.S.”. The preposition “in” signals the presence of an argu-
ment of type location. We can further verify this by matching the entity 
type of pobj which must be referring to some location. 

3.2.13. Temporal linking 
In this phase, the identification of links between Timex nodes to 

specific event nodes or links between two event nodes or between two 
Timex nodes is determined. To achieve this, the temporal links are 
created between them, represented as TLINK edges in the textual graph. 
The TLINK establishes the temporal order between these elements by 
specifying the relType attribute of the TLINK edge. This phase includes 
subtasks such as:  

• The identification of temporal links between events and DCT nodes. 
The DCT node is created while extracting the meta-data about the 
documents. 

• Identification of temporal links between main events across senten-
ces. It establishes a temporal ordering between the events identified 
by the root element of the sentence.  

• Identification of temporal links between events within the same 
sentence. It includes specifying TLINKS between the main event and 
the subordinated event.  

• Identification of temporal links between Timex nodes and event 
nodes.  

• Identification of temporal links between two Timex nodes. 

4. Implementation 

The proposed LPG-based text representation system is developed 
following a pipeline-based approach, integrating various components 
and techniques to generate a comprehensive and semantically rich 
graph representation. The system was implemented in Python 3 and 
utilized the Neo4j graph database for efficient storage and querying of 
the LPG graph. Fig. 8 presents the layered architecture of the proposed 

Fig. 7. Event Participant Extraction: Semantic Analysis and Linking of Participants.  
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framework implementation. The implementation of our proposed 
approach employs cutting-edge third-party NLP components for diverse 
tasks, as indicated in Fig. 8. Table 2 displays benchmarking results for 
these third-party NLP components, showcasing their performance in 
constructing the proof-of-concept implementation. 

4.1. Document preprocessing and morphological/syntactic analysis 

The input documents are preprocessed, including cleaning and seg-
mentation into paragraphs using regex-based rules. After document 
preprocessing, morphological and syntactic analysis is performed using 
state-of-the-art NLP components. Token nodes are created for each word 
in the text, and morphological information such as part-of-speech tags 
and lemma are assigned as node properties. Additionally, a dependency 
parse-based graph representation is generated, capturing the syntactic 
relationships between the tokens. The resultant LPG graph includes 

edges representing the dependency relations, allowing for a detailed 
syntactic analysis of the text. To enhance word sense disambiguation, 
WordNet synsets are assigned to the tokens for further analysis. 

4.2. Named entity recognition (NER) and entity mention detection 

To identify entity mentions within the text, a combination of tech-
niques is used. The spaCy NER component is used to extract named 
entities and assign them specific labels such as ’CARDINAL’, ’DATE’, 
’ORDINAL’, ’MONEY’, ’TIME’, ’QUANTITY’, or ’PERCENT’. These en-
tities are considered value mentions and are marked accordingly. 
Furthermore, additional techniques such as pattern matching and rule- 
based methods are used to detect other types of entities, including 
named entities and nominal entities. 

4.3. Event trigger detection and extraction 

To identify event triggers within the text, a Docker service based on 
the EVITA component (Saurí et al., 2005) is used. This service employs 
various NLP techniques and models to detect event triggers and link 
them with corresponding predicate nodes in the LPG graph. The inte-
gration of event triggers enriched the graph representation with event- 
related information, enabling more detailed semantic analysis. 

4.4. Temporal expression detection and normalization 

Temporal expressions play a crucial role in understanding the tem-
poral relationships within the text. To detect and normalize temporal 
expressions, another Docker service based on Heideltime (Strötgen & 
Gertz, 2010) is developed. This service leverages Heideltime’s advanced 
techniques for temporal expression detection. In addition, the results 
from Heideltime with the Spacy NER output are combined to improve 
the recall and accuracy of temporal expression identification. The 
merging of these results enhances the temporal understanding of the text 
and enriches the LPG graph with temporal information. 

4.5. Semantic role labeling (SRL) and nominal coreference 

REST APIs are used to access the AllenNLP Semantic Role Labeling 
(Shi & Lin, 2019) and Nominal Coreference service (Lee et al., 2018). 

Fig. 8. Graph-based NLP Framework for Syntactic and Semantic Graph Generation from Text.  

Table 2 
Publicly available Benchmarking results of NLP modules.  

Module Tool/Technique Accuracy (F- 
score) 

Reference 

Tokenization English transformer 
pipeline (Roberta-base). 

1.0 (Honnibal 
et al., 2023) Part-of-speech 

tagging 
0.98 

Sentence 
segmentation 

0.90 

Labeled 
Dependencies 

0.94 

NERC 0.90 
SRL PropBank SRL 86.49 

(Ontonotes 5.0 
dataset) 

(Shi & Lin, 
2019) 

Nominal 
Coreference 

Higher-order coref with 
coarse-to-fine inference 
(with SpanBERT 
embeddings). 

0.79 (Lee et al., 
2018) 

Time Expression 
Detection and 
Normalization 

Heideltime 0.86 (Strötgen & 
Gertz, 2010) 

NEL DBPedia-spotlight 0.80 (Daiber 
et al., 2013) 

Event Detection Evita 0.80 (Saurí et al., 
2005)  
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The Semantic Role Labeling service identifies the predicate-argument 
structure within sentences, linking predicates with their corresponding 
arguments. This step further enriches the LPG graph by establishing 
relationships between events, entities, and their associated roles. Nom-
inal coreferences are identified and linked to their coreferential men-
tions, enabling the connection of mentions referring to the same entity. 

4.6. Entity mention refinement and linking 

To refine the results of an entity mention detection and extraction, a 
NERC Refinement module is developed that performs fusion and de- 
duplication. This module identifies duplicate named entity mentions 
by fusing the results from both the SpaCy NER and DBpedia-spotlight 
(Daiber et al., 2013) NER. Inconsistencies and duplicate entries are 
addressed, resulting in enhanced results for entity mention detection 
and extraction. Unique instances are created for each entity and linked 
with their respective entity mentions using the “refersTo” relationship, 
ensuring a coherent and accurate representation of entities in the LPG 
graph. 

4.7. Nominal mention detection 

The nominal mention detection component inspects the noun phra-
ses within predicate arguments to identify nominal mentions. These 
mentions are marked as nominal entity mentions, enriching the graph 
representation with additional semantic information. 

4.8. TLINK generation 

The temporal and causal link Detection and Extraction module is 
developed to generate TLINKs, which represent temporal relationships 
between events and temporal expressions. To achieve this, the temporal 
expressions and events are analyzed within the LPG graph, determining 
the temporal dynamics and enabling a deeper understanding of the 
temporal structure of the text. Throughout the implementation process, 
Docker services are used for hosting components such as EVITA for event 
trigger detection, Heideltime for temporal expression detection, and 
DBpedia Spotlight for entity linking. Additionally, custom modules and 
components are developed for headword marking, entity linking, and 
coreference resolution. These components played a vital role in refining 
and enhancing the results at various stages, ensuring a robust and ac-
curate representation of the text in the LPG graph. 

In summary, the integration of Neo4j as the LPG graph database, 
along with the utilization of state-of-the-art NLP modules and tools, 
facilitated the development of a powerful and scalable LPG-based text 
representation system. This system’s comprehensive analysis capabil-
ities enable a deeper semantic understanding of textual data, supporting 
various downstream applications and research tasks. 

5. Evaluation 

The evaluation of the proposed system focuses on measuring the 
system’s performance and accuracy in labeling the text captured as an 
LPG graph structure. The objectives of the evaluation include:  

• Performance Evaluation: To evaluate the overall performance of the 
proposed system in accurately identifying and labeling the different 
types of semantic elements. This includes assessing the precision, 
recall, and F1 score for each semantic constituent to gauge the sys-
tem’s effectiveness.  

• Comparison with Gold Standard: By comparing the proposed system’s 
output with the manually annotated gold standard dataset, to 
determine the level of agreement between the two. This allows us to 
assess the system’s ability to generate text representations that align 
with the expected annotations.  

• Identification of Limitations: To identify the limitations or challenges 
associated with the proposed research. This allows a better under-
standing of improvements or refinements required for future devel-
opment efforts. 

5.1. Dataset and evaluation metrics 

The evaluation of the proposed system is performed using the 
MEANTIME corpus (Minard et al., 2016) as the gold standard dataset. 
This corpus is a widely used manually annotated collection of Wikinews 
articles, comprising 120 news articles written in English. It offers se-
mantic annotations at various levels, including entity mentions, event 
mentions, time expressions, numerical expressions, coreference re-
lations, participant relations, and temporal relations. The MEANTIME 
corpus provides annotations for a range of semantic constituents, 
enabling a comprehensive evaluation of our system’s performance. 
These constituents include:  

• Entity Mentions: Annotations of nominal, pronominal, and named 
entities mentioned in the corpus.  

• Event Mentions: Annotations of events, representing occurrences or 
actions mentioned in the text. 

• Entity Instances: Annotations representing instances of specific en-
tities mentioned in the corpus.  

• Numeric Values: Annotations of numerical expressions, capturing 
quantitative information in the text.  

• Temporal Expressions: Annotations of time expressions, denoting 
specific dates, times, or temporal references.  

• Event Participants: Annotations of participants involved in events, 
providing information about their roles or relationships.  

• Nominal Coreferences: Annotations of coreferences between nominal 
entities, enabling the resolution of references to the same entity.  

• Temporal Links: Annotations of temporal relations, indicating the 
temporal order or dependency between events or time expressions. 

To evaluate the performance of the proposed system, standard 
evaluation metrics, including precision, recall, and F1 score are used. 
These metrics provide quantitative measures of the system’s accuracy 
and effectiveness in labeling the semantic elements within the MEAN-
TIME corpus. 

5.2. Methodology 

During the evaluation, the labels defined in the proposed data model 
are mapped to the corresponding MEANTIME tags to ensure consistency. 
The mappings of MEANTIME tags to related proposed data model labels 
are as follows:  

• Entity Mentions: The entity mention tag of the MEANTIME corpus is 
mapped to all markables denoting nominal, pronominal, and named 
entities.  

• Event Mentions: We consider event instances as event mentions, as the 
proposed system does not support recognizing events with multiple 
instances.  

• Entity Instances: The Proposed system uses the “ENTITY” label to 
represent entity instances.  

• Numeric Values: Numeric values are labeled as “VALUE” in both 
MEANTIME and in the proposed system.  

• Temporal Expressions: Temporal expressions are labeled as “TIMEX” 
in both MEANTIME and in the proposed system. 

• Event Participants: The proposed system establishes participant re-
lations using a participant edge with a type property referring to the 
Propbank argument type. 
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• Nominal Coreferences: Coreference relations are represented by the 
“refersTo” label in MEANTIME, denoting a refersTo edge between an 
entity and any other markable.  

• Temporal Links: Temporal relations are captured using the “TLINK” 
label for temporal links between events or temporal expressions. 

5.3. Evaluation results 

Table 3 displays the evaluation outcomes of the proposed system 
when compared to the MEANTIME dataset. Regarding entity mentions, 
the proposed system demonstrates a precision of 0.629, a recall of 0.773, 
and an F1 score of 0.694. These results indicate that the proposed system 
performs effectively in accurately identifying and extracting entity 
mentions from the text. In the case of event mentions, the proposed 
system achieves a higher precision of 0.783, indicating that it effectively 
identifies and extracts event mentions. However, the recall is slightly 
lower at 0.664, resulting in an F1 score of 0.719. This suggests that there 
is room for improvement in capturing all events mentioned in the text. 

The evaluation of entity instances shows a precision of 0.434, a recall 
of 0.751, and an F1 score of 0.550. While the precision is relatively low, 
the recall indicates that the proposed system can capture a significant 
number of entity instances. Improving precision in this aspect would be 
a focus for future enhancements. Numeric values are accurately recog-
nized by the proposed system, as indicated by a precision of 0.893 and 
recall of 0.993, resulting in an impressive F1 score of 0.940. This dem-
onstrates the effectiveness of the proposed system in identifying and 
extracting numeric values from the text. The performance of the pro-
posed system in temporal expression detection is commendable, with a 
precision of 0.966, a recall of 0.922, and an F1 score of 0.943. These 
results indicate that the proposed system is highly accurate in detecting 
temporal expressions in the text. In temporal expression normalization, 
the proposed system achieves a precision of 0.983, indicating accurate 
normalization of temporal expressions. However, the recall is lower at 
0.737, resulting in an F1 score of 0.842. This suggests that there is scope 
for improvement in capturing a higher number of normalized temporal 
expressions. 

For event participants, the proposed system achieves a precision of 
0.620 and a recall of 0.649, resulting in an F1 score of 0.634. These 
results indicate moderate performance in extracting event participants. 
The evaluation of temporal links shows a precision of 0.495, a recall of 
0.258, and an F1 score of 0.339. These results suggest that the proposed 
system’s performance in capturing temporal links between events or 
temporal expressions can be further improved. 

5.4. Discussion and analysis of results 

5.4.1. In this section, the strengths and weaknesses of the proposed system 
are discussed. Comparison with MEANTIME corpus 

One notable difference between the proposed system and the 
MEANTIME corpus is the treatment of nested entities. In the MEANTIME 
corpus, entities are annotated for both inner and outer spans, including 
nested entities (Agerri & Rigau, 2016). However, the proposed system 
currently does not detect nested entities, leading to lower recall in both 
entity mention detection and entity instances. This limitation can be 

addressed in future work to improve the proposed system’s performance 
in capturing nested entities. 

5.4.2. Entity linking and disambiguation 
The proposed approach solely relies on DBpedia-spotlight for entity 

linking, however, these results can be improved by employing a number 
of other Named Entity Linking (NEL) tools. One such approach is out-
lined in (Martinez-Rodriguez et al., 2018). 

5.4.3. Event participants detection 
The proposed system currently relies on verb-based Semantic Role 

Labeling (SRL) for detecting event participants. However, incorporating 
nominal SRL can significantly enhance the results by identifying par-
ticipants for nominal events that are currently being missed. This 
expansion in SRL coverage would contribute to a more comprehensive 
and accurate representation of event participants. 

5.4.4. Temporal links coverage 
In the proposed system evaluation, it is observed that the coverage of 

temporal links (tlinks) is limited. There are several cases that require 
further improvement. These include cases such as MEASURE relation 
type in tlinks, simultaneous tlinks, IBEFORE relationships, tlinks between 
main event mentions corresponding to the root element of parsed sen-
tences, tlinks between main event mentions and subordinate event 
mentions, and tlinks between timexes. Enhancing the coverage of these 
cases will be a focus for future work to achieve a more robust and 
comprehensive representation of temporal relations. 

The identification of strengths and weaknesses in the performance of 
the proposed system can offer valuable insights for its future develop-
ment and refinement. Future work will focus on addressing these limi-
tations and exploring techniques to improve entity mention detection, 
entity linking and disambiguation, event participants detection, and 
temporal links coverage. 

6. Conclusion & future work 

This research addresses the challenges associated with text repre-
sentation in natural language processing (NLP) tasks. A pipeline-based 
system is proposed that leverages LPG to unify context and enhance 
the quality of text representations. By incorporating lexical, syntactic, 
and semantic information into a comprehensive and expressive graph 
format, the proposed system improves the accuracy and comprehen-
siveness of text representations. The effectiveness of the proposed sys-
tem is demonstrated through the implementation of NLP components 
that operate on LPG-based representations. This research highlights the 
importance of unifying context and leveraging graph-based algorithms 
and patterns in NLP. By modeling rich context and employing graph- 
based techniques, the proposed system enables advanced analysis, 
manipulation, and reasoning on textual data. The evaluation of the 
proposed system is done using benchmark datasets i.e., MEANTIME 
corpus, which provides encouraging results, demonstrating its strengths 
and potential in various NLP applications. 

While the proposed system represents a significant advancement in 
text representation, there are several avenues for future research and 
improvement. Firstly, refinement of the LPG-based representation 
scheme by exploring techniques to capture even more nuanced semantic 
relationships and associations. This may involve investigating more 
sophisticated graph algorithms, pattern-matching methods, and infer-
ence techniques to extract valuable insights from textual data. Addi-
tionally, enhancement of the performance of the proposed system by 
conducting further experiments and evaluations on diverse datasets, 
comparing them with state-of-the-art approaches, and conducting user 
studies to assess their practical usefulness and effectiveness. This will 
help to identify areas for improvement and optimize the system for 
different NLP tasks and domains. Moreover, there is a potential to extend 
the proposed research to address specific challenges in NLP, such as 

Table 3 
Evaluation of the proposed system with MEANTIME corpus.  

Semantic Constituent Precision Recall F-1 Score 

Entity Mentions  0.629  0.773  0.693 
Event Mentions  0.782  0.663  0.718 
Entity Instances  0.434  0.750  0.550 
Numeric Values  0.893  0.993  0.940 
Temporal Expression Detection  0.965  0.921  0.943 
Temporal Expression Normalization  0.982  0.737  0.842 
Event Participants  0.619  0.649  0.634 
Temporal Links  0.494  0.257  0.338  
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document summarization, knowledge graph construction, multi-lingual 
translation, and semantic search. By leveraging the power of graph- 
based analysis and representation techniques, AI applications can be 
advanced by the development of more efficient and effective NLP sys-
tems. In conclusion, the proposed research presents a promising 
approach to text representation in NLP through the utilization of LPG- 
based unified context modeling. With further research and develop-
ment, it is anticipated that the proposed system to play a significant role 
in advancing various NLP applications and paving the way for more 
sophisticated and intelligent text analysis and understanding. 
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