10,113 research outputs found

    A framework for realistic 3D tele-immersion

    Get PDF
    Meeting, socializing and conversing online with a group of people using teleconferencing systems is still quite differ- ent from the experience of meeting face to face. We are abruptly aware that we are online and that the people we are engaging with are not in close proximity. Analogous to how talking on the telephone does not replicate the experi- ence of talking in person. Several causes for these differences have been identified and we propose inspiring and innova- tive solutions to these hurdles in attempt to provide a more realistic, believable and engaging online conversational expe- rience. We present the distributed and scalable framework REVERIE that provides a balanced mix of these solutions. Applications build on top of the REVERIE framework will be able to provide interactive, immersive, photo-realistic ex- periences to a multitude of users that for them will feel much more similar to having face to face meetings than the expe- rience offered by conventional teleconferencing systems

    Publishing Time Dependent Oceanographic Visualizations using VRML

    Get PDF
    Oceanographic simulations generate time dependent data; thus, visualizations of this data should include and realize the variable `time'. Moreover, the oceanographers are located across the world and they wish to conveniently communicate and exchange these temporal realizations. This publication of material may be achieved using different methods and languages. VRML provides one convenient publication medium that allows the visualizations to be easily viewed and exchanged between users. Using VRML as the implementation language, we describe five categories of operation. The strategies are determined by the level of calculation that is achieved at the generation stage compared to the playing of the animation. We name the methods: 2D movie, 3D spatial, 3D flipbook, key frame deformation and visualization program

    A Framework for Realistic 3D Tele-Immersion

    Get PDF
    Meeting, socializing and conversing online with a group of people using teleconferencing systems is still quite different from the experience of meeting face to face. We are abruptly aware that we are online and that the people we are engaging with are not in close proximity. Analogous to how talking on the telephone does not replicate the experience of talking in person. Several causes for these differences have been identified and we propose inspiring and innovative solutions to these hurdles in attempt to provide a more realistic, believable and engaging online conversational experience. We present the distributed and scalable framework REVERIE that provides a balanced mix of these solutions. Applications build on top of the REVERIE framework will be able to provide interactive, immersive, photo-realistic experiences to a multitude of users that for them will feel much more similar to having face to face meetings than the experience offered by conventional teleconferencing systems

    A Framework for Realistic 3D Tele-Immersion

    Get PDF
    Meeting, socializing and conversing online with a group of people using teleconferencing systems is still quite different from the experience of meeting face to face. We are abruptly aware that we are online and that the people we are engaging with are not in close proximity. Analogous to how talking on the telephone does not replicate the experience of talking in person. Several causes for these differences have been identied and we propose inspiring and innovative solutions to these hurdles in attempt to provide a more realistic, believable and engaging online conversational experience. We present the distributed and scalable framework REVERIE that provides a balanced mix of these solutions. Applications build on top of the REVERIE framework will be able to provide interactive, immersive, photo-realistic experiences to a multitude of users that for them will feel much more similar to having face to face meetings than the experience offered by conventional teleconferencing systems

    Towards a flexible open-source software library for multi-layered scholarly textual studies: An Arabic case study dealing with semi-automatic language processing

    Get PDF
    This paper presents both the general model and a case study of the Computational and Collaborative Philology Library (CoPhiLib), an ongoing initiative underway at the Institute for Computational Linguistics (ILC) of the National Research Council (CNR), Pisa, Italy. The library, designed and organized as a reusable, abstract and open-source software component, aims at solving the needs of multi-lingual and cross-lingual analysis by exposing common Application Programming Interfaces (APIs). The core modules, coded by the Java programming language, constitute the groundwork of a Web platform designed to deal with textual scholarly needs. The Web application, implemented according to the Java Enterprise specifications, focuses on multi-layered analysis for the study of literary documents and related multimedia sources. This ambitious challenge seeks to obtain the management of textual resources, on the one hand by abstracting from current language, on the other hand by decoupling from the specific requirements of single projects. This goal is achieved thanks to methodologies declared by the 'agile process', and by putting into effect suitable use case modeling, design patterns, and component-based architectures. The reusability and flexibility of the system have been tested on an Arabic case study: the system allows users to choose the morphological engine (such as AraMorph or Al-Khalil), along with linguistic granularity (i.e. with or without declension). Finally, the application enables the construction of annotated resources for further statistical engines (training set). © 2014 IEEE

    Automatic annotation of tennis games: An integration of audio, vision, and learning

    Get PDF
    Fully automatic annotation of tennis game using broadcast video is a task with a great potential but with enormous challenges. In this paper we describe our approach to this task, which integrates computer vision, machine listening, and machine learning. At the low level processing, we improve upon our previously proposed state-of-the-art tennis ball tracking algorithm and employ audio signal processing techniques to detect key events and construct features for classifying the events. At high level analysis, we model event classification as a sequence labelling problem, and investigate four machine learning techniques using simulated event sequences. Finally, we evaluate our proposed approach on three real world tennis games, and discuss the interplay between audio, vision and learning. To the best of our knowledge, our system is the only one that can annotate tennis game at such a detailed level

    Analysis domain model for shared virtual environments

    Get PDF
    The field of shared virtual environments, which also encompasses online games and social 3D environments, has a system landscape consisting of multiple solutions that share great functional overlap. However, there is little system interoperability between the different solutions. A shared virtual environment has an associated problem domain that is highly complex raising difficult challenges to the development process, starting with the architectural design of the underlying system. This paper has two main contributions. The first contribution is a broad domain analysis of shared virtual environments, which enables developers to have a better understanding of the whole rather than the part(s). The second contribution is a reference domain model for discussing and describing solutions - the Analysis Domain Model

    Mobile learning: benefits of augmented reality in geometry teaching

    Get PDF
    As a consequence of the technological advances and the widespread use of mobile devices to access information and communication in the last decades, mobile learning has become a spontaneous learning model, providing a more flexible and collaborative technology-based learning. Thus, mobile technologies can create new opportunities for enhancing the pupils’ learning experiences. This paper presents the development of a game to assist teaching and learning, aiming to help students acquire knowledge in the field of geometry. The game was intended to develop the following competences in primary school learners (8-10 years): a better visualization of geometric objects on a plane and in space; understanding of the properties of geometric solids; and familiarization with the vocabulary of geometry. Findings show that by using the game, students have improved around 35% the hits of correct responses to the classification and differentiation between edge, vertex and face in 3D solids.This research was supported by the Arts and Humanities Research Council Design Star CDT (AH/L503770/1), the Portuguese Foundation for Science and Technology (FCT) projects LARSyS (UID/EEA/50009/2013) and CIAC-Research Centre for Arts and Communication.info:eu-repo/semantics/publishedVersio
    • 

    corecore