14 research outputs found

    Macros

    Get PDF
    Funciones con un nĂşmero variable de argumentos. Formas especiales quote y quasiquote. Macros en Scheme. Ejemplos

    Teaching Programming Languages by Experimental and Adversarial Thinking

    Get PDF
    We present a new approach to teaching programming language courses. Its essence is to view programming language learning as a natural science activity, where students probe languages experimentally to understand both the normal and extreme behaviors of their features. This has natural parallels to the "security mindset" of computer security, with languages taking the place of servers and other systems. The approach is modular (with minimal dependencies), incremental (it can be introduced slowly into existing classes), interoperable (it does not need to push out other, existing methods), and complementary (since it introduces a new mode of thinking)

    Renamingless Capture-Avoiding Substitution for Definitional Interpreters

    Get PDF
    Substitution is a common and popular approach to implementing name binding in definitional interpreters. A common pitfall of implementing substitution functions is variable capture. The traditional approach to avoiding variable capture is to rename variables. However, traditional renaming makes for an inefficient interpretation strategy. Furthermore, for applications where partially-interpreted terms are user facing it can be confusing if names in uninterpreted parts of the program have been changed. In this paper we explore two techniques for implementing capture avoiding substitution in definitional interpreters to avoid renaming

    Open Educational Resources Textbook List

    Get PDF
    Discipline specific OER textbook list for departments at SHU, compiled by Zach Claybaugh and Chelsea Stone

    Open Educational Resource 2017 Textbook List

    Get PDF
    This is an updated, discipline specific OER textbook list for departments at Sacred Heart University, compiled by Zach Claybaugh and Chelsea Stone

    Expressing functional reactive programming in C++

    Get PDF
    Abstract. Most C++ programs are written in a straight-forward imperative style. While e.g. callbacks are employed either directly or through the observer pattern, the mental overhead of keeping program state congruent is high and increases with program size. This paper presents a translation of functional reactive programming into C++ terms. This paradigm originates from the Haskell language community and seeks to express easily how programs should react to new input. Concretely, an implementation of a reactive property class is presented, where property in this context is a class holding a value of a user-specified type. The property class provides a mechanism to bind to it an expression that takes an arbitrary number of inputs, some of which can be other instances of property classes. When any of these dependent properties is updated the expression is re-evaluated, so that a dataflow graph may be built using this type. The automatic re-evaluation reduces the boilerplate code necessary to update variables, which can lead to fewer programming errors and more concise programs. The implementation demonstrates that the core principles of functional reactive programming can be expressed in modern C++. Further, the implementation can be done in an idiomatic manner which appears familiar to C++ developers. At the same time, the implementation’s complexity highlights how much further the C++ meta-programming facilities must be developed to properly support facilities such as a functional reactive programming library implementation. A number of compile-time template metaprogramming utilities used in the implementation are also introduced

    Principal typings for interactive ruby programming

    Get PDF
    A novel and promising method of software development is the interactive style of development, where code is written and incrementally tested simultaneously. Interpreted dynamic languages such as Ruby, Python, and Lua support this interactive development style. However, because they lack semantic analysis as part of a compilation phase, they do not provide type-checking. The programmer is only informed of type errors when they are encountered in the execution of the program–far too late and often at a less-informative location in the code. We introduce a typing system for Ruby, where types will be determined before execution by inferring principal typings. This system overcomes the obstacles that interactive and dynamic program development imposes on type checking; yielding an effective type-checking facility for dynamic programming languages. Our development is embodied as an extension to irb, the Ruby interactive mode, allowing us to evaluate principal typings for interactive development

    1957-2007: 50 Years of Higher Order Programming Languages

    Get PDF
    Fifty years ago one of the greatest breakthroughs in computer programming and in the history of computers happened – the appearance of FORTRAN, the first higher-order programming language. From that time until now hundreds of programming languages were invented, different programming paradigms were defined, all with the main goal to make computer programming easier and closer to as many people as possible. Many battles were fought among scientists as well as among developers around concepts of programming, programming languages and paradigms. It can be said that programming paradigms and programming languages were very often a trigger for many changes and improvements in computer science as well as in computer industry. Definitely, computer programming is one of the cornerstones of computer science. Today there are many tools that give a help in the process of programming, but there is still a programming tasks that can be solved only manually. Therefore, programming is still one of the most creative parts of interaction with computers. Programmers should chose programming language in accordance to task they have to solve, but very often, they chose it in accordance to their personal preferences, their beliefs and many other subjective reasons. Nevertheless, the market of programming languages can be merciless to languages as history was merciless to some people, even whole nations. Programming languages and developers get born, live and die leaving more or less tracks and successors, and not always the best survives. The history of programming languages is closely connected to the history of computers and computer science itself. Every single thing from one of them has its reflexions onto the other. This paper gives a short overview of last fifty years of computer programming and computer programming languages, but also gives many ideas that influenced other aspects of computer science. Particularly, programming paradigms are described, their intentions and goals, as well as the most of the significant languages of all paradigms
    corecore