
Principal Typings for Interactive Ruby
Programming

A Thesis Submitted to the

College of Graduate Studies and Research

in Partial Fulfillment of the Requirements

for the Degree of Master of Science

in the Department of Computer Science

University of Saskatchewan

 Saskatoon, Saskatchewan, Canada

by

Andriy Hnativ

 Copyright Andriy Hnativ, December 2009. All rights reserved.

 i

Permission To Use

In presenting this thesis in partial fulfillment of the requirements for a Postgraduate

degree from the University of Saskatchewan, I agree that the Libraries of this University

may make it freely available for inspection. I further agree that permission for copying of

this thesis in any manner, in whole or in part, for scholarly purposes may be granted by

the professor or professors who supervised my thesis work or, in their absence, by the

Head of the Department or the Dean of the College in which my thesis work was done. It

is understood that any copying or publication or use of this thesis or parts thereof for

financial gain shall not be allowed without my written permission. It is also understood

that due recognition shall be given to me and to the University of Saskatchewan in any

scholarly use which may be made of any material in my thesis.

Requests for permission to copy or to make other use of material in this thesis in whole

or part should be addressed to:

Head of the Department of Computer Science

176 Thorvaldson Building

110 Science Place

University of Saskatchewan

Saskatoon, Saskatchewan, Canada

S7N 5C9

 ii

Abstract

A novel and promising method of software development is the interactive style of

development, where code is written and incrementally tested simultaneously. Interpreted

dynamic languages such as Ruby, Python, and Lua support this interactive development

style. However, because they lack semantic analysis as part of a compilation phase, they

do not provide type-checking. The programmer is only informed of type errors when they

are encountered in the execution of the program–far too late and often at a less-

informative location in the code. We introduce a typing system for Ruby, where types

will be determined before execution by inferring principal typings. This system

overcomes the obstacles that interactive and dynamic program development imposes on

type checking; yielding an effective type-checking facility for dynamic programming

languages. Our development is embodied as an extension to irb, the Ruby interactive

mode, allowing us to evaluate principal typings for interactive development.

 iii

Acknowledgements

I am sincerely thankful to my supervisor, Dr. Christopher Dutchyn, for his invaluable

advices and ideas, and substantial support in many ways throughout my research.

Also, greatest thanks to my lab mates from Software Lab for being part of the great

working environment.

Finally, biggest gratitude to all of those who helped me in any way during the completion

of the project.

 iv

Table of Contents

Permission to Use ... i
Abstract.. ii
Acknowledgements .. iii 
Table of contents .. iv 
List of Figures.. vii
List of Tables .. ix
List of Symbols .. x
Chapter 1. Introduction ... 1 
Chapter 2. Background .. 11 

2.1 Ruby.. 11 
2.1.1 Classes and Modules.. 12 
2.1.2 Functions.. 14 
2.1.3 Variables .. 16 
2.1.4 Assignments... 19 
2.1.5 Iteration .. 19 
2.1.6 Conditionals ... 21 
2.1.7 Types.. 22 
2.1.8 Exceptions.. 23 
2.1.9 Constants.. 24 
2.1.10 Reflection... 24 
2.1.11 Other .. 25 

2.2 Type Inference .. 25 
2.2.1 Constraint Generation .. 28 
2.2.2 Solving Type Constraints... 29 

2.3 Principal Typings .. 33 
2.4 Type Inference for Dynamic Languages... 38 

2.4.1 Psyco .. 39 
2.4.2 Starkiller... 39 
2.4.3 Brett Cannon’s System .. 39 

2.5 Summary ... 40 
Chapter 3. Typing for Ruby... 41 

3.1 Challenges for Typing Ruby... 42 
3.1.1 Variables Shift Type .. 43 
3.1.2 Control-flow Statements Branches are not Required to be Type-consistent ... 43 
3.1.3 Ruby Exceptions Occur in Unpredictable Places .. 45 
3.1.4 Reflection Constructs are Impossible to Type ... 45 

 v

3.2 Errors... 46 
3.2.1 Branches in Control-flow Statements are not Type-consistent........................ 46 
3.2.2 Local/Global/Instance Variable Changes Type ... 48 
3.2.3 Numbers of Targets and Values in Multiple Assignment Are Different 48 
3.2.4 Inappropriate Use of Break, Redo, Next Statement... 48 
3.2.5 Function Called with Wrong Parameters... 49 
3.2.6 Parameterized Types May Only Contain Values of a Single Type 50 
3.2.7 Classes, Modules, and Constants Redefined to Another 50 
3.2.8 Ordinary Functions Called as Class/module Functions 50 

3.3 Situations Containing Assumptions.. 51 
3.3.1 Use of Functions Before Declarations ... 51 
3.3.2 A Global/Instance/Class Variable is used Before Definition 52 
3.3.3 Reference to an Undefined Class/Constant.. 52 
3.3.4 Functions are not Type-consistent ... 53 
3.3.5 Definitions of Functions with the Type Inconsistent to Expected................... 53 

3.4 Related Ruby-Typing Work.. 54
3.4.1 DRuby.. 39 
3.4.2 Kristensen’s Master Thesis .. 39 
3.4.3 Duby... 39

3.4 Types in Ruby ... 55 
3.4.1 Fixed Types.. 57 
3.4.2 Container (parametric) Types .. 57 

3.5 Constraints for Ruby code .. 58 
3.5.1. Function Constraints ... 59 
3.5.2 Colon Node Constraints... 59 
3.5.3 Creation of Singletons Constraints. ... 60 

3.6 Summary ... 61 
Chapter 4. Implementation .. 62 

4.1 Data Types .. 64 
4.1.1 Type ... 65 
4.1.2 FixedType .. 65 
4.1.3 Unary Type .. 66 
4.1.4 Binary Type ... 66 
4.1.5 Module ... 67 
4.1.6 Raw Module... 67 
4.1.7 Raw Class... 67 
4.1.8 TypeVariable.. 67 
4.1.9 Function ... 68 
4.1.10 Block .. 69 

4.2 Managing Constraints ... 69 
4.2.1.3 MainRubin class .. 71 

4.3 Algorithms .. 72 
4.3.1 Generate constraints... 72 
4.3.2 Unify Two Types ... 76 

 vi

4.3.3 Unify Two Fixed Types ... 79 
4.3.4 Solve Constraints ... 80 
4.3.5 Solve a Constraint .. 81 

4.4 Summary ... 88 
Chapter 5. Evaluation... 90 

5.1 Challenges... 91 
5.1.1 Errors.. 92 
5.1.2 Informational Messages ... 99 
5.1.3 Comparison of Rubin to Other Systems .. 102 

5.2 Application to Third Party Systems.. 104 
5.2.1 Project name: Mechanize... 105 
5.2.2 Project name: TMail .. 107 
5.2.3 Project name: webgen .. 109 
5.2.4 Summary of Rubin’s Application to the Real-World Development.............. 110 

5.3 Summary ... 111 

Chapter 6. Conclusions and Future work .. 113 
References.. 116 
Appendix A. Bugs Descriptions of Evaluated Ruby Projects 120 

A.1 Project name: Mechanize ... 120 
A.2 Project name: TMail... 121
A.3 Project name: Webgen ... 121

Appendix B. Rubin’s User Manual ... 122 
Overview .. 120 
Obtaining the System.. 121
Installation... 121
Deinstallation .. 120
Use .. 121
Ambiguous Cases.. 120
Ruby Statements that Rubin Understands... 121
Messages (type errors and warnings) emitted by Rubin... 121
Summary of Ruby Built-ins that are Checkable ... 120
User Manual Appendix: List of Supported Functions .. 121 

 vii

List of Figures

Figure 1.1 Computing the overall payroll expense of a company 2 
Figure 1.2 Mistakenly adding names instead of salaries .. 3 
Figure 1.3 Many related functions with an error hidden deep in the code 5 
Figure 1.4 Function arguments out of order ... 8

Figure 2.1 Example of a class function .. 13 
Figure 2.2 Example of a singleton function ... 14 
Figure 2.3 Example of a function with an arbitrary number of arguments........... 15 
Figure 2.4 Example of function scoping... 15 
Figure 2.5 Example of function aliasing and removal .. 15 
Figure 2.6 Example of instance variables .. 17 
Figure 2.7 Example of class variables .. 18 
Figure 2.8 Example of global variables.. 18 
Figure 2.9 Example of guarded iteration... 20 
Figure 2.10 Example of bounded iteration .. 21 
Figure 2.11 Example of conditionals .. 22 
Figure 2.12 Example of exceptions ... 24 
Figure 2.13 Example of constants... 24 
Figure 2.14 A function to compute reciprocal for a number 26 
Figure 2.15 A polymorphic function .. 27 
Figure 2.16 Constraint generation algorithm.. 30 
Figure 2.17 Unification resolution algorithm .. 31 
Figure 2.18 Example of constraints resolution.. 33 
Figure 2.19 Behaviour of principal types system. ... 35 
Figure 2.20 Behaviour of principal typings system .. 35 
Figure 2.21 Use of a reference to a function still not written..................................... 36 
Figure 2.22 Continuation of code in Figure 2.21... 36 
Figure 2.23 Alternative implementation of myToString... 37

Figure 3.1. Example of slack ... 43 
Figure 3.2 Example of slack for a conditional expression... 43 
Figure 3.3 Example of slack for a loop.. 44
Figure 3.4 Example of slack for exceptions .. 45 
Figure 3.5 Example of Ryby's reflection... 46
Figure 3.6 Ruby type hierarchy... 56 
Figure 3.7 Simplified Ruby type hierarchy .. 57

Figure 4.1 The diagram of how Rubin works .. 64 
Figure 4.2 Hierarchy of Rubin’s supported types.. 64 
Figure 4.3 Constraints Generation Algorithm ... 74 
Figure 4.4 Compare type tables of different branches of control-flow statements. 76 

 viii

Figure 4.5 Unification of two final types.. 77 
Figure 4.6 Unification of final type and a type variable... 77 
Figure 4.7 Unification two type variables .. 78 
Figure 4.8 Two types unification algorithm .. 78 
Figure 4.9 Two fixed types unification... 79 
Figure 4.10 Two primitive types unification.. 80 
Figure 4.11 Two unary types unification ... 80 
Figure 4.12 Two binary types unification.. 80 
Figure 4.13 Solve constraints algorithm .. 811 
Figure 4.14 Constraint resolution algorithm... 84 
Figure 4.15 Colon node constraint resolution algorithm ... 85 
Figure 4.16 Singleton constraint resolution algorithm... 85 
Figure 4.17 Algorithm handle unsolvable constraint ... 85 
Figure 4.18 Solve function constraint with an implicit receiver................................ 86 
Figure 4.19 Solve initialization constraint ... 86 
Figure 4.20 Search common type for the two types.. 86 
Figure 4.21 Algorithm to sieve functions ... 87 
Figure 4.22 Constraints and functions unification algorithm.................................... 88 

 ix

List of Tables

Table 2.1 Environment generated at line 8 of Figure 2.21 .. 36 
Table 2.2 Environment generated at line 11 of Figure 2.22 .. 37 
Table 2.3 Environment generated at line 11 of Figure 2.23 .. 37

Table 5.1 Comparison of Error Message Reporting.. 103 

 x

List of Symbols

P set of primitives
TV set of type variables
FT set of fixed types
UT set of unary types
BT set of binary types
PT set of proc/block types
RC set of raw classes

α, β, γ, … type variables

x ∈ S x is a member of S
x ∉ S x is not a member of S
A < B A is a subclass of B

α*β*γ  χ notation of a function expecting three arguments of types α, β, and

γ, and returning a value of type χ

α  β type variable α is bound to another type variable β

α := e type variable α is bound to final type/ expression e

A ⊃ B class A contains constant B

a ← b assign b to a in a substitution

 1

Chapter 1

Introduction

 Historically, software has been developed using a top-down approach, where the

software system design is divided into smaller pieces, each piece is implemented

separately, and then combined into the final system [26, 48]. During the last decade, new

ways to develop software have become popular. One reason is that the top-down

approach has a number of drawbacks: inability to do integration testing early in the

development process, inability to dynamically change the code, and a possible risk of

rewriting large parts of the application due to changes in specification, are three of them

[31, 44]. These drawbacks mean that when troubles are found, it is more expensive and

difficult to discover their true causes and make changes to correct them. The system will

require very frequent maintenance and replacement of important parts [9].

 One of these new ways is called incremental development, where a system is built

little by little incrementally until it is done. One little increment is implemented, inserted

into the overall system, and tested, and this process is repeated until the system is

complete [6, 20]. This means that each new little addition to the system is tested on every

level of integration step by step, until they are tested together with a complete system [9].

 One style of incremental development is interactive programming – a style of

programming offering access to the code under development, interactive evaluation of the

code under development, and access to intermediate execution states [12, p. 101].

Developers benefit by writing the pieces of the code without unnecessary analysis of the

code as part of the end program, as the pieces of code are built independently. This

provides a greater opportunity to experiment and to try out different ideas. Also

programmers can combine interactive development with testing. They can write a

procedure; then run and test it; then write another procedure that will use the completed

one. They may tinker with different language constructs for writing a procedure at the

same time, and when they are satisfied with the result, save the final version that will be

integrated with the previously written and tested code. Thus using interactive

 2

programming they can make the maintenance phase of the software development more

efficient as well.

 Incremental development and interactive development used together offer many

other advantages for programmers. The main ones are:

• focus on the code,

• early detection of errors,

• better program planning,

• and better control and understanding of problems.

First, interactive incremental style of development brings much convenience to

programmers, as they keep their attention focused on coding and are not distracted by

mechanical tasks such as saving files, updating source code, invoking a compiler, and

reopening source files. To see this, consider the following example in Ruby. Imagine that

a programmer writes a Ruby program to read data from a database, and later to process

this data1. In this procedure the programmer connects to a MySQL database with the

name database1, and using an SQL select query she extracts entries of two fields from

the table named employees – names of the employees that are strings, and their

salaries that are numbers. Later, she calculates the sum of all the employees’ salaries.

This process is shown in Figure 1.1.

1: def calcSum ()
2: require 'mysql' # connect MySQL library
3: dbh = Mysql.real_connect("127.0.0.1", "user",

"password", "database1")
4: sql = "SELECT name, salary FROM employeesSalaries"
5: employees = dbh.query(sql)
6: sum=0
7: employees.each do |employee|
8: sum+=employee[1]
9: end
10: return sum
11: end
Figure 1.1 Computing the overall payroll expense of a company

1 An SQL query in Ruby returns an array with one entry for each row in the table. Each
row’s array is a further array containing fields in the order given in the SELECT query.

 3

If the programmer is writing the code interactively, in order to test this function, she will

just need to type the following short line in the interpreter2:

 >> calcSum

This will output the result of the defined function, allowing the programmer to check the

correctness of her function. If the programmer was not using interactive development

techniques, in order to test the function she would need to write a complete program,

compile it, and run it, that would take much more time and effort.

 The second benefit of the incremental interactive development is the fact that it

gives programmers additional early opportunities to find errors they committed. This is a

benefit because usually the earlier an error is found, the easier it is for developers to

correct it. Another manifestation of this benefit is that programmers are less likely to rely

on or propagate broken code.

 To see this, consider a slightly changed example from Figure 1.1. Imagine that the

programmer made an error on the line 8 of Figure 1.2, where he, instead of adding

salaries of employees that are located in the second field of the database, adds their

names.

1: def calcSum ()
2: require 'mysql' # connect MySQL library
3: dbh = Mysql.real_connect("127.0.0.1", "user",

"password", "database1")
4: sql = "SELECT name, salary FROM employeesSalaries"
5: employees = dbh.query(sql)
6: sum=0
7: employees.each do |employee|
8: sum+=employee[0] # Error – 0 instead of 1
9: end
10: return sum
11: end
Figure 1.2 Mistakenly adding names instead of salaries

2 The initial >> prompt signifies the root level of the interaction session – the level where
code can be executed and tested.

 4

 If the programmer follows an incremental interactive development style, she will

test the defined function immediately, and she will get an error message from the

interpreter that her code tries to add numbers to strings, that is not allowed. In this case, it

will be a trivial task to correct the error. If the programmer did not follow this style, she

might not be able to find this error immediately. By the time the error is discovered, she

might have extended this function, for example, to calculate average, minimum, and

maximum salaries as well, making the needed corrections more onerous.

 The third benefit of the incremental interactive development is that it improves

project planning: the code starts off working the way the programmers expect and stays

working through the entire development process. Programmers need not wait until the

whole program is written to find out if some parts of the program work. This allows

subsets of code to be made available to end-users for testing and further requirements

analysis, therefore saving time and cost for maintenance. These savings are significant;

as Pressman noted, historically 603 percent of software life-cycle costs occur during the

maintenance phase [29, p. 805]. To see this, consider again the example shown in Figure

1.2. If the programmer corrected the error at once, her function would be available for

integration testing or use. Later, she will not need to come back to this code as she has

tested it and ensured that it works correctly already.

 Another important benefit of the incremental interactive development is that it

helps to locate the actual source of many problems. The source of the error will typically

be in the most recently changed or added code; that is usually small. A programmer will

not need to look through thousands of lines of code to find the cause of the problem.

 To show this benefit, consider a slightly abstract example of many mutually related

functions. Imagine that the programmer spends a lot of time developing eight functions

given in Figure 1.3.

 Imagine that the programmer did not follow incremental interactive development

and did not thoroughly test each function both alone and integrated with other defined

functions. If she called the function f8 after line 24 in Figure 1.3, she would get the

following message from the interpreter:

3 The oft-quoted 80% figure for Pressman’s study is apparently a shibboleth, which he
himself repaired with the 60% figure after a 1993 study by Hanna [14].

 5

TypeError: String can't be coerced into Fixnum
 from (irb):2:in `+'
 from (irb):2:in `f1'
 from (irb):5:in `f2'
 from (irb):8:in `f3'
 from (irb):11:in `f4'
 from (irb):14:in `f5'
 from (irb):17:in `f6'
 from (irb):20:in `f7'
 from (irb):23:in `f8'

 from (irb):25

1: def f1 a,b
2: a+b
3: end
4: def f2 a,b
 # some code
5: f1 (a,b)
6: end
7: def f3 a,b
8: f2 (a,b)
 # some code
9: end
10: def f4 a,b
11: f3 (a,b)
 # some code
12: end
13: def f5 a
14: f4 (5,a) # The function f4 expects the first argument to be a number
 # some code
15: end
16: def f6 a
 # some code
17: f5(a)
 # some code
18: end
19: def f7 a
 # some code
20: f6(a)
21: end
22: def f8 a
 # some code
23: f7(a)
 # some code
24: end
25: f8("string")
Figure 1.3 Many mutually related functions with an error hidden deep in the code

 6

Here the error message consists of many lines, making it not easy to understand and find

a root cause of the problem. In this example the real cause of the problem can be found in

the body of the function f5, where a programmer constraints the argument of this

function to be an integer, because f4 forces it to have the same type as 5. If instead of 5

the programmer wrote “hello”, the code would be correctly typed. But as it can be

seen from the error message above, the function f5 was mentioned by the interpreter

only in the middle in the list of all the functions that were called. To understand the true

source of the error, the programmer will need to examine all of functions that were used,

as the original source of this problem is hidden deep in this body of code. This kind of

message is difficult to understand as it involves many functions.

 In general, in order to understand the meaning of the lengthy message, a

programmer would need to keep many functions and relations between them in her head,

a large cognitive burden. If the programmer followed the incremental interactive

development style and tested each function right after their definitions, she would get a

similar message after the definition of the function f5, thus she would be able to find and

correct the source of the problem at once.

 All the above-mentioned benefits of the incremental development—focus on the

code, early detection of errors, better program planning, and better control and

understanding of problems—make it an increasingly popular technique as different

developers search for ways to use it. Because of the benefits that they provide, the

languages that support interactive programming (eg. Python, Ruby and Lua) are

becoming increasingly popular among developers.

 Unfortunately, interactive facilities for these sorts of languages are far from perfect.

These facilities have drawbacks that do not allow a programmer to realize the whole

potential of these languages. One of these drawbacks is that many kinds of common

errors will not be recognized by the language interpreter, therefore will not be signaled to

a programmer until a late stage of the software development. In many cases, even with

the interactive mode, it is impossible to run the code as soon as it is written, as the

function under development may rely on some other functions not defined yet. Therefore

programmers will continue writing new code while having not corrected old code. This

leads to the same problems as the traditional development style.

 7

 Consider an example where the current interpreter fails to work in a convenient

way for programmers. We will change the code from Figure 1 to contain a social

insurance number (SIN) of employees instead of salaries in the database, and to display

the SIN in a formatted way. The changed code is shown in Figure 1.4. Here, the

programmer has provided arguments in the wrong order to the function displayEmp

resulting in a runtime value error.

When writing this kind of code, a programmer will not gain the benefits of the

incremental interactive development as only after line 27 can the first function be called

and tested. Therefore, only at that point will the type error be reported by the Ruby

interpreter. In Figure 1.4 we show that the function was called only at line 143 to show

the fact that the programmer did not realize she made an error, as no error message was

reported to him. If a programmer tries to call this function before the remaining

procedures are written, she will get a message from a Ruby interpreter that tested

procedure relies on pieces of code that are not yet defined4.

When the programmer tests the listEmployees function at the line 143, the

Ruby interpreter reports an error:

 NoMethodError: undefined method `/' for "Harry Gerrard":String
 from (irb):33:in `printSIN'
 from (irb):21:in `displayEmp'
 from (irb):18:in `listEmployees'
 from (irb):143

Note that this kind of error can be observed much earlier, after the second

function definition is finished at line 17. The error is at line 10, when the programmer

provided arguments for the function displayEmp in the wrong order. Line 8 shows,

that the second field of the database contains integer type by adding it to another integer

value that is stored in the variable sum, while line 15 anticipates it (as it was passed as a

second parameter) to be a string, as it will be used in the addition operation with another

string. Further, we also believe that the error message received is not particularly

informative; the programmer may spend a lot of time locating the cause of the error.

4 It is possible to test with stub functions, but often those functions do not represent the
future implementations of the corresponding functions correctly.

 8

To summarize, the error message about the error committed at line 8 in Figure 1.4

was reported too late – at runtime – rather than as early as possible. Not reporting errors

in a timely fashion exacerbates coding difficulty. It makes locating the root cause harder.

Even worse, the error may get carried down into additional code, making the repair larger

and more time consuming, similar to that seen in Figure 1.4.

1: def calcSum
2: require 'mysql'
3: dbh = Mysql.real_connect("127.0.0.1", "user",

"password", "database1")
4: sql = "SELECT name, salary FROM employeesSalaries"
5: employees = dbh.query(sql)
6: sum=0;
7: employees.each do |employee|
8: sum+=employee[1]
9: end
10: displayEmp (employee[0], employee[1])
11: puts sum
12: end
13: def displayEmp (SIN, name)
14: printSIN SIN # nnn-nnnn-nnn
15: printName “name: ”+name
16: end

17: def printSIN SIN

display SIN as nnn-nnnn-nnn
18: a1= SIN%1000
19: SIN /=1000
20: a2= SIN %10000
21: SIN /=10000
22: a3= SIN %1000
23: printf "#{a3}-#{a2}-#{a1}\n"
24: end

25: def printName name
26: puts name
27: end

many lines of code elided

143: >> listEmployees
Figure 1.4 Function arguments out of order

Also, it is worthwhile remembering that a programmer often must write many

complicated test cases to completely exercise a piece of code, and accordingly, to spend

 9

much time developing and running those test cases. Immediate checks whether the code

contains consistent types can be done by the interpreter in many cases.

 Clearly, one source of coding difficulty in the interactive languages like Ruby,

Python, and Lua is the absence of a type system. Types [25] are restrictions put on the

expressions that show how the results of expressions can be used. If the expression does

not have restrictions, it can be used in all possible operations. Type errors indicate the

situations where expression results will be used incorrectly. All the error examples shown

in this chapter are instances of type errors, that can be recognized earlier than with

current interpreters by using types.

 We describe a typing system for the interactive language Ruby. Having typing in

the language brings advantage, as the operations that are allowed for different types are

known in advance, for example, we know that bitwise operations can be performed for

integers and not for strings, and code can be checked before the execution to notify the

programmer of inconsistencies. As a result, the development process will be enhanced, as

a programmer will not need to search as deeply for errors when she learns that something

is wrong with her code. This should lead programmers to correct code faster, and prevent

them from relying on erroneous code as often. For example, for the code in Figure 1.3

and Figure 1.4, a type checker will report error messages right after the incorrect code is

written, thus urging the programmers to correct them at once before proceeding with

other coding.

 At first glance, the easiest way to add a typing system to interactive languages is to

look at the type systems for traditional, compiled, languages, and put the similar systems

into interactive languages. For interactive programming languages, we believe there is a

potentially more effective approach that supports the distinctiveness of interactive

development. Code in traditional languages can be compiled only after the program is

complete, thus a situation of using fragments of code (functions and variables in

particular) before their definition is not possible for them. In contrast, this case can occur

for interactive languages, as we saw previously in this chapter (Figure 1.4 in particular),

and is in fact quite common for them. Thus interactive languages appear to require a

different, more sophisticated, type system that can handle incomplete and evolving

programs. A principal typings system provides this facility, by carrying incomplete type

 10

information until it can be resolved and checked.

 We choose to explore this facility with the Ruby programming language [10],

because

• Ruby is a widely-used programming platform, which offers the

opportunity to evaluate the principal types inference on a large body of

production code.

• Ruby contains most of the essential constructs found in other dynamic

languages, such as Javascript, Python, Lua, and Scheme.

As an exemplar of dynamically-typed languages, success with Ruby will inform the

development of interactive development environments for the entire range of dynamic

languages. The challenges and techniques for typing Ruby described in this thesis will

apply for other dynamic languages.

Thesis Statement

Principal typings improve the interactive software development process for
Ruby by supplying

• specific and targeted
• informational and error-reporting

 messages to the programmer at an earlier stage of development.

The rest of the thesis is organized as follows. Chapter 2 gives a general background

of type inference and basic type inference algorithms (Section 2.1), the novelty of

principal typings (Section 2.2), and some features of Ruby, including examples of

dubious programming constructs (Section 2.3). In Chapter 3, we provide detailed

information about typing Ruby, what approaches have been attempted, and what

challenges Ruby presents. Chapter 4 discusses the implementation details of our system,

Rubin; here we give information of tools used, data structures, and key algorithms used.

Chapter 5 evaluates our system. A summary and a discussion of possible future work

conclude this document in Chapter 6.

 11

Chapter 2

Background

In the previous chapter, we explored interactive incremental development. We

mentioned that there are some problems with this style that can be corrected by adding

typing to the languages that support this style. Before we delve into typing and type

inference systems for interactive languages, we lay the groundwork to understand these

systems.

This chapter contains four topics. First, we will talk about some specifics of Ruby,

language that we chose to do our research for. Next, we will discuss type inference, and

the most popular algorithm of type inference, the Hindley-Milner-Damas algorithm.

Third, we will explain the notion of principal typings, and shows, where they can be

beneficial to use. Finally, we will turn our attention to some work related to ours that has

been done for other interactive programming languages.

2.1 Ruby

 Ruby is a dynamically-typed object-oriented language that supports interactive

programming. Ruby has several benefits that assure the growth of the popularity of this

language. In addition to being extendible, portable, and interactive, the key benefit of

Ruby is that it is clean. It means that the language is concise, much more succinct than

many other popular languages (including Java and C++). One main reason for this is that

Ruby does not have type annotations for the variables and functions. As a result of this

conciseness, many agree that the language is very productive [8, 30]. Many programmers

who switched to Ruby from other languages (from Java or even C) noticed an increase in

their coding productivity [30]. The explanation for this benefit is said to be that Ruby

requires fewer lines of code to solve the same problem. Among other things, fewer lines

may mean fewer bugs, less coding time, and less cost to build an application.

 12

 We will use Ruby as our prototypical dynamically-typed, interactively-developed

programming language. During the remainder of the thesis, we will examine a number of

examples of code, using standard Ruby constructs. Here, we provide a brief overview of

each of those constructs. We begin with classes and functions, then briefly discuss

different kinds of variables, and finish with control-flow constructs and other

fundamental features of Ruby.

2.1.1 Classes and Modules

 Ruby is a completely object-oriented language: everything in it is an object.

Objects are categorized by classes, which are templates for similar data structures. Like

Java or C#, a special class called Object is the root of all classes. All other classes

inherit from it, thus all classes have some methods inherited immediately, for example,

to_s, a method to provide a string representation of an object, is immediately available

to all classes. Moreover, the Ruby interpreter starts the interaction session in the body of

the Object class; hence, all instance variables defined at the root interaction level will

be instance variables of the class Object. Ruby supports single inheritance and

prohibits overloading; only a few built-in functions like +, insert, are overloaded.

 Class declarations begin with the class statement giving the name of the class,

and finish with a matching end. To create an instance of a class, programmers must use

the new keyword. This method invokes the constructor of a class, a block of code, the

purpose of which is a creation of a class’s instance. Ruby provides default constructors

for all classes. These default constructors do not expect any arguments supplied when

they are called, and do nothing more than creation of an object with default field values.

Ruby has a number of predefined classes: Integer – supports operations on integers,

String – supports operations on strings, Regexp – supports operations on regular

expressions, etc.

 Ruby also has a concept of modules – constructs similar to classes, but without an

ability of being instantiated and being inherited from. Modules however can be mixed

into classes by the include construct. In this case, those classes will have all the

functionality of the modules available inside them.

 13

 As a side note, modules are distinct from files that are textually included by the

require keyword. The require keyword provides a way of modularizing code, so

duplicated operations can be contained in a single shared file. Modules have a different

purpose; that of mixing functionality into classes.

 Classes may declare methods that can be accessed only after the class instantiation.

The exception is a set of class methods (for modules: module functions), which can be

called with the name of a class/module as a receiver. There are several ways to define a

class/module function; the most common of them is to put a keyword self and a dot in

front of a function’s name in its declaration. In Figure 2.1 the function class_fun is a

class function, and it can be called with the name of its class as the receiver. The function

not_class_fun is an instance method, hence calling it with the name of its class as

the receiver is not allowed: it must be called with the name of the class’s instance as the

receiver.

class A
 def self.class_fun
 print “I am a class function”
 end
 def not_class_fun
 print “I am not a class function”
 end
end
A.class_fun # correct
A.not_class_fun # not correct
Figure 2.1 Example of a class function

 Ruby supports a notion of singleton functions – functions, that are present for

usually one instance of a class. Singleton functions are defined in the same way as

ordinary ones, but with the name of the necessary instance of a class in front of the

function’s name. In Figure 2.2 the programmer defines a singleton function identify

for the variable c, which is an instance of the String class. Then he will be able to call

this instance function for the variable c; for all other instances of the class String this

function will not be available.

 14

c=String.new
d=String.new
def c.identify
 print "I am the variable c"
end
c.identify # prints "I am the variable c"
d.identify # Error
Figure 2.2 Example of a singleton function

 Classes and modules definitions create new scopes for variables. This means that

methods of some inner class will not have access to the variables of the outer class. Also

both classes and modules can be nested within others.

2.1.2 Functions

Ruby, as most other popular programming languages, allows programmers to reuse

code by writing functions5. Ruby has a rich set of built-in libraries with a myriad of

functions. For example, Ruby supports all popular arithmetic operations (+, -, *, /, %

(modulo), div), comparison operators (==, >, <), etc. There are many libraries of

functions developed by many programmers specifically for Ruby. For example, the

MySQL library provides an interface for Ruby to work with MySQL databases.

Functions are defined using the def keyword. Unlike Java, Ruby supports default

arguments, but they must come after all other arguments. There is also a way to specify

that the function will accept an arbitrary number of arguments. This is done by replacing

the last formal parameter with a * prefix. This argument will behave as an array

containing all other arguments provided.

Figure 2.3 shows definition of the function fun that will accept an arbitrary number

of arguments. Whenever this function is called, all the arguments provided may be

accessed as elements of the array p.

5 As Ruby is a pure object-oriented language, all Ruby functions are actually methods on
objects.

 15

def fun(*p)
 ...
end
fun # correct
fun(25) # correct
fun(25,"hello", 45, 67) # correct
Figure 2.3 Example of a function with an arbitrary number of arguments

Ruby functions return either values of expressions specified after the return

keywords, or expressions that were evaluated last in bodies of those functions. Function

definitions introduce new scopes. That means, for example, that local variables, defined

at the same level as a current function, will not be accessible from inside of another

function’s definition (as in Figure 2.4 the variable a is not accessible from the body of

the function cannot_see_a).

a=8
print a # correct, 'a' is accessible here
def cannot_see_a
 c=a # Error, 'a' is not accessible here
end
b=lambda {|d| d+a} # correct, 'a' is accessible here
b.call(2) # call of a lambda-function
Figure 2.4 Example of function scoping

There are many possible operations with functions. For example, each function

can be duplicated (using the alias keyword), or can be destroyed using the undef

keyword. In Figure 2.5, the function will_be_undefined was created, duplicated

into the function remains, and afterwards removed.

def will_be_undefined
 ...
end
alias remains will_be_undefined # function ‘foo1’ created with the very

 # same functionality as foo
undef will_be_undefined
will_be_undefined # Error
remains # Correct
Figure 2.5 Example of function aliasing and removal

 16

Ruby also supports anonymous functions (so called lambda functions or procs).

Unlike ordinary functions, anonymous ones do not introduce new scopes, thus they have

access to local variables of the outer scope. They behave like usual values, so any

variable can be an anonymous function. In order to call a function of this kind,

programmers must apply the call method.

 Figure 2.4 shows the scoping difference between ordinary functions and lambda

functions. The ordinary function cannot_see_a in this example does not have an

access to the variable a defined in the same scope, and the lambda function, that is stored

in the variable b, can access the variable a.

2.1.3 Variables

All variables can be discriminated by two properties: scope and extent. The former

defines where the variable is visible, where it may be accessed and changed. The latter

describes the lifetime of that variable. Based on this information, Ruby contains four

different kinds of variables: instance, class, global, and local variables.

• instance variables: These are fields forming an object which is the instance of a

class. Instance variables are visible within each method of the class, and throughout the

body of the class as well. They last for the lifetime of the object. All instance variables in

Ruby are private. Ruby identifies instance variables with a @ prefix.

 Figure 2.6 gives an example of instance variables. There are two instance variables in

the class Rectangle: @width and @height. As this example shows, they can be

accessed from inside Rectangle’s methods (like from the method perimeter), but

cannot be seen from outside of the class definition.

 17

class Rectangle
 @width=0 # this is an instance variable
 @height=0 # this is an instance variable
 def perimeter
 2*@width+2*@height # the only way to access instance variables –

 # through class methods
 end
end
r = Rectangle.new
print r.@a # error – cannot access instance variable this way
Figure 2.6 Example of instance variables

• class variables: These are similar to instance variables with the difference that

class variables are associated with the class rather than any particular instance of the

class, and are the same across all object instances (class variables in Ruby are similar to

class static variables in Java or C++) [10]. Ruby class variables exist not only for classes

in which they are defined, but are shared with all their descendant classes. Ruby identifies

class variables with a @@ prefix.

Figure 2.7 provides an example of class variables. As this example shows, whenever

a programmer changes a value of a class variable for one instance of the class or its

subclass, instBase1 in the example, the other instances will change the value of the

corresponding variable too.

• global variables: These are variables which are visible everywhere and which last

from the time they are first created, throughout the remaining lifespan of the entire

program. Ruby distinguishes these variables with a prefix $.

Figure 2.8 shows typical usage of global variables. This example shows that global

variables can be accessed from a variety of scopes; in fact, they can be accessed from any

scope.

 18

class BaseClass
 @@var = 1 # this is a class variable
 def change_var
 @@var+=1
 end
 def var
 @@var
 end
end
class SubClass < BaseClass # ‘SubClass’ is a subclass of
 ... # ‘BaseClass’
end
instBase1 = BaseClass.new
instBase2 = BaseClass.new
instSub = SubClass.new
print instBase1.var # outputs 1
print instBase2.var # outputs 1
print instSub.var # outputs 1
instSub.change_var
print instBase1.var # outputs 2
print instBase2.var # outputs 2
print instSub.var # outputs 2
Figure 2.7 Example of class variables

$s # Error, the global variable $s wasn't initialized yet
$s=7
print $s # prints "7"
def globVarVal
 $s
end
globVarVal # returns 7
Figure 2.8 Example of global variables

• local variables: These are variables, which are visible only within one scope that

is current when they are created. These variables do not have any prefixes. Function

formals are local variables for the scope inside the function’s body.

Figure 2.4 shows, how the local variables can be used; they can be accessed from the

same scope where they were created (printing the value of the variable a), but the

programmer’s attempt to access a local variable from a different scope will fail (reference

to the variable a from the body of the function cannot_see_a).

 19

2.1.4 Assignments

Ruby assignments are written with the assignment operator, =. One interesting

feature of Ruby assignment operator is that it supports multiple assignments, when

several values are assigned to several targets in one assignment operator. For example,

after only one line of code:

a, b, c = 1, ”hello”, [2.3, 4.5]

the variable a will contain 1, the variable b will contain string “hello”, and the variable

c will contain array with float values.

When multiple assignments are used, the Ruby interpreter matches elements from

the list of targets (the list on the left side of the = operator) to the corresponding elements

(elements with the same ordering number) from the list of values (the list on the right side

of the = operator). If there are more values that targets, excessive values are ignored. If

there are more targets than values, excessive targets are still created, but they will have a

null value.

2.1.5 Iteration

Ruby has an extensive support of loops. Almost all common loops (for and

while in particular) are present here. For all Ruby iteration constructs a new scope for

the body of the iteration is not introduced. However, the variables created inside the body

of an iteration statement will not be accessible after that statement (as with the variable a

in Figure 2.9).

The execution of all iteration statements can end:

• normally: after condition to continue iteration is not true anymore

• abruptly: as a result of one of the following statements: break, next, or

redo.

The break statement in Ruby is similar to break statements in other popular

languages: if the Ruby interpreter encounters this statement during the execution of a

code, it terminates the smallest enclosing loop immediately. The next statement is

 20

similar to continue in C++ or Pascal: if the Ruby interpreter encounters this statement

during the execution of a code, it terminates the current iteration of the loop, and starts a

new one. The redo statement is similar to the next statement, but it restarts the loop

iteration again rather that continuing on to the next iteration. Usage of any of these three

statements outside of a loop is not allowed.

Ruby has two kinds of iteration constructs: guarded iteration and bounded

iteration.

2.1.5.1 Guarded Iteration:

 Just as with most imperative languages, Ruby includes the standard guarded

iteration constructs: while and until. They differ in what the guard tests for: in a

while loop, the guard tests for continuation, an until loop guards for termination. In

other words, while runs until its condition is true, while until runs until its condition

is not true.

 Figure 2.9 shows an example of the while loop usage. The loop’s body contains a

reference to the outer local variable x, which is allowed. However, an attempt to access

the variable a created inside of the loop will not be successful.

x=10 # ‘a’ not defined
while (x>5)
 print x # ‘x’ is accessible, and on the first iteration is equal to 10
 x=x-1
 a=x
end
print a # Error – variable ‘a’ is not visible here
Figure 2.9 Example of guarded iteration

2.1.5.2 Bounded iteration:

 Ruby supports non-guarded iteration loops: loops that run constructs in their bodies

a certain specified number of times. Constructs of this kind are called with a block: a

special piece of Ruby code that can accept arguments, and can be passed around. Blocks

are similar to lambda-functions, but they cannot be explicitly called, unlike lambda

functions are called with the call method). Bounded iteration uses blocks with a

variable that represents the current iteration. This variable can be used, for example, to

access specific elements in an array, for example, for in-order printing. We show this

 21

case in Figure 2.10.

 One example of bounded iteration is the each method. It is used to iterate through

all elements of some container. For example, in Figure 2.10 calling the each function to

the array a starts iteration through each of the elements of this array, one at each

iteration. In our example, execution of the each statement prints all the elements of the

array a, each on a separate line.

a=[1,2.3]
a.each { |index| print a[index] + "\n" } # prints:

 # 1
 # 2.3

Figure 2.10 Example of bounded iteration

2.1.6 Conditionals

Ruby supports most common conditionals:

• if: evaluates a body expression if condition is true

• unless: evaluates a body expression if condition is false

• case: evaluates options when a matching condition is true

All of them also accept an else block, and if statement can accept elsif blocks as

well. then statement is acceptable, but not necessary.

 All of these three conditional statements do not introduce new scopes. Any

variables created inside the body of the single branch that is evaluated will be accessible

after the conditional.

 Figure 2.11 shows the usage of if conditional statement in Ruby. In it, the value of

the variable d after the conditional will be determined based on the value of the

previously defined variable a.

 22

a=7 # d and b do not exist
if a>6 # this condition is true, so this branch will be executed
 d=4
elsif a<6 # not executed
 d=5
 b=5
else # a==b; not executed
 d=6
 b=6
end
puts d # will print either 4
puts b # Error – b was not created
Figure 2.11 Example of conditionals

2.1.7 Types

In the next chapter we will explore the complexity of Ruby types in detail. Here, we

note that Ruby supports the normal range of simple values:

• integers

• floats

• strings – String keyword.

Ruby also supports more complicated values like:

2.1.7.1 Array [36]

Ruby arrays are very similar to arrays in other popular languages. Ruby has a built-

in class, Array, and programmers have several options how to create an array.

They can either call a constructor of the Array class

a=Array.new

or they can use square brackets to specify that they want to create arrays.

a=[element1, element2]

As in many other languages to access a specific element of the array, Ruby

programmers use square brackets [] with the index of the element.

a[0] # returns the first element in the array ‘a’

2.1.7.2 Range [38]

Ruby Ranges represent intervals—sets of discrete values with a start and an end.

Ranges may be constructed using the s..e and s...e literals (the latter does not

 23

include the last element inside the range), or using the Range::new construct.

When used with a bounded iterator, ranges return each value in the sequence.

2.1.7.3 Hash [37]

Ruby hashes are associative arrays, similar to those of other modern languages. As

for arrays and ranges, there are two ways to create a hash: construct them using {}

literals (for example, {“a” => 1, “b” => 2}), or call the constructor Hash.new. To

get a value for a specific key of the hash programmers must use square brackets [],

just like arrays.

2.1.7.4 Symbol [5, 39]

Symbol objects represent names and some strings inside the Ruby interpreter. They

are generated by prefixing a colon with an identifier (:name or :”string”), and

by to_sym methods present for many classes [39]. Symbols are similar to strings,

but they are memory efficient [5]. Internally symbols are stored as integers, so the

maximum space that one symbol takes in memory is never bigger than the space

taken by an integer. Symbols are similar to interned strings in Java [13, 15]: the

same identifier points to the same memory location.

All values have many built-in standard operators: strings, for example, can be

concatenated using the concat method; one hash can be blended with another using the

update method, and so on. For a complete list of all built-in methods for Ruby types,

we refer the reader to [35].

2.1.8 Exceptions

Exceptions in Ruby are handled in a similar manner as Java, except that try-

catch-finally block in Java is spelled as begin-rescue-ensure block in

Ruby. Figure 2.12 shows an example of exception handling. The programmer tries to

open a file. If there was any runtime error during this process, for example, if the file was

not found, the rescue block will be triggered. The ensure block always is evaluated

last, regardless of whether any exception was raised.

 24

begin
 file = File.open(“1.txt”) # .. process
rescue
 # .. handle an exception
ensure
 # .. always runs
end
Figure 2.12 Example of exceptions

2.1.9 Constants

Constants usually indicate values that are not supposed to change their values or

types. For example, Ruby classes are constants. Ruby distinguishes constants with an

uppercase first letter in their names.

Ruby is a very flexible language regarding constants. Programmers can access

constants from any scope, using :: operator to change scopes. In Figure 2.13, a constant

C from the class B is accessed from the root level.

class A
 class B
 C=3
 end
end
v=A::B::C # v is equal to 3
Figure 2.13 Example of constants

2.1.10 Reflection

Reflection is a way to access and possibly modify the program directly at runtime.

For example, a programmer may want to create an instance of a class depending upon the

parameter passed to a function. This parameter could be the name of the class instance of

which will be created.

Another example of Ruby’s reflection is the eval statement. It takes only one

parameter that is a string, and treats it as if it were real program syntax to be evaluated.

There are many other things one can do with reflection, and for thorough

information, refer to [42, 45]. In my experience, reflection is not used heavily for most

Ruby projects; hence most Ruby programmers can avoid learning this part of the

language.

 25

2.1.11 Other

There are some other Ruby constructs worth mentioning here:

 output methods

Most common among them are:

 puts: output with the carriage return

 print: output without the carriage return

 printf: formatted output

 input methods

 Probably the most common method is gets – it reads a user’s input to a

string that is its single parameter

 comments

 Ruby allows programmers to write comments for their code by putting them

after the # symbol.

The constructs described in this section are the most heavily used Ruby constructs. The

next piece of background we explore is typing of programming languages, and a

particular technique of typing called type inference.

2.2 Type Inference

 Types are sets of allowable operations for values. They are used to put restrictions

on values so programmers and compilers know how the values are permitted to be used.

Each value is represented by a set of bits in memory; types inform programs and

programmers how those sets of bits should be treated. [7, 18, 25]

 Probably most common types are numbers (integers and floats) and strings. Arrow

types constitute a particular subclass of types: types that represent functions. We will

distinguish those types with  symbol, where elements mentioned on the left side of the

arrow will indicate function parameters, and the single element on the right side that will

indicate the return value. For example, the notation a*b*c  r describes a function

expecting three arguments of types a, b, and c, and returning a value of type r.

 26

 The rules for forming judgments about types are formalized as a type system. The

analyzer that keeps track of types and checks that the rules are obeyed is called a type

checker. Type systems are usually conservative and terminating, as this way they can

guarantee the type safety for the programs.

 Some kinds of type systems are present in almost every programming language.

Arguably, the most common type systems are static type systems, systems that ensure

type safety (correctness in using types) of the code before runtime, that is, no type errors

will be encountered at runtime [25]. Most systems of this sort enforce safety by requiring

programmers to indicate and adhere to future restrictions for values using static type

annotations – a set of keywords that identify types. For example, if a programmer wants

to use a variable with the name iCount in Java, he needs to define it along with its type,

before he will be able to use it.

int iCount; // definition

iCount=0; // use

 Often languages are more liberal and do not require type annotations to be

annotated by the programmer. Still, many of them guarantee the type safety of accepted

programs. The process that allows this to happen is called type inference—the process of

finding types for expressions from the code itself without annotations [18].

 Consider the Ruby code given in Figure 2.14. What is its type?

1: def reciprocal a
2: return 1.div(a)
3: end
Figure 2.14 A function to compute reciprocal for a number

 We know at first glance that the function reciprocal takes one argument and

returns some value6. But using a type inference algorithm we can determine the type of

the function to be

Number  Number

6 This is an important observation as not all functions return values, and not all functions
take arguments.

 27

This type signature means that the function takes one argument, which must have a

Number type, and returns a Number value. Indeed, in Ruby the predefined function

div for integers (in the example the function is called with receiver equal to 1, which is

an integer) accepts only a number, and returns a number as the result. We have inferred

the type of reciprocal.

 Type inference is built on two important concepts: constraints and type variables.

To motivate the latter, consider another example:

1: def identity x
2: return x
3: end
Figure 2.15 A polymorphic function

 The function identity is polymorphic, meaning it accepts many types– the type

of the return value is restricted to the same as the type of the argument. That type may be

string, or integer, or any other type. This kind of code cannot be typed using simple types

like integers or strings. Instead, type variables, variables that represent unknown types for

expressions, provide us an ability to precisely type this kind of code, because they can

represent the substitution of types before they are determined.

 Initially, we might believe that the argument and result types for identity might

be different, and so require two type variables. In our example there may be two type

variables – one to represent the type of the single argument, and another one to represent

the return type of the function. So the function identity will be of a type7:

δ := identity

δ := α  β

 But, examining the function’s body, it is clear that both of these type variables will

have the same type – the type of the argument x. There is a constraint implicit in this

code, that the return type of this function must be the same as the type of the argument.

We write this as

7 We will adopt the convention that type variables will be denoted by lower-case Greek
letters: α, β, γ, …

 28

δ := α  β

and

α  β

 This requirement for types in different positions to be the same is an example of a

typing constraint. There are two fundamental kinds of constraints. The first one is

illustrated in the Figure 2.15, when one type variable is connected to another, yielding the

same type for both – those are represented with the symbol  . There is another kind of

constraint, when a type variable is bound to an expression8, with a notation :=9. For

example, looking at the piece of code

a=”start”

we observe that the variable a has a type string, so the constraint will be

α := String,

where α is a type variable that represents the variable a.

 Type inference has been implemented for some compiled programming languages

without type annotations (for example, Haskell [24], ML [27, 28], and F# [22]). The most

common implementation of type inference is the Hindley-Milner-Damas (HM(X))

algorithm [7]. A modern presentation of HM(X) comprises two stages – constraint

generation, and constraint solving.

 2.2.1 Constraint Generation

 Given a program, the type inferencer walks the entire abstract syntax of a program

and emits constraints based on the expressions of the program. For example, if we have a

piece of code a+b, the type of the expression b is the same as the type of the expression

8 Sometimes the type expression is self-describing: if we have an expression 3, it is easy
to see that it is of integer type.
9 There are constraints coming from self-identifying types too, but they can be resolved at
once.

 29

a, as both those variables are involved in the addition operation (which usually assumes

that both operands must have the same type10 or that the types are compatible).

 Two types are compatible if either they are the same, or one of them is a subtype of

another. For example, type Number is compatible to a type Integer or a type Float,

but the types Integer and Float are not compatible with each other.

 Constraints are generated by assignments, statements, bindings, and primitives.

Below we give a schematic example of each, and associated constraints. The algorithm

for constraint generation is described in pseudo code in Figure 2.16.

 In the pseudo-code given in Figure 2.16 we showed the most important classes of

expressions. Others are generated similarly to those shown.

2.2.2 Solving Type Constraints

 The general approach to solve type constraints is Robinson’s unification resolution

algorithm [33]. It takes all the constraints and either

a) generates substitution for these constraints.

 or

b) shows discrepancies between the constraints. This case means that the

programmer made a type error or errors in his code.

 Robinson developed the unification resolution algorithm [33]. Our presentation

closely follows Krishnamurthy [18]. He describes the unification algorithm as shown in

Figure 2.17. It starts with an empty substitution. Then all constraints are pushed onto a

stack. After that the algorithm pops constraints off the stack one by one, and creates

substitutions for each of them. This process is repeated until the stack is empty; in this

case the algorithm returns the substitution.

10 The technique to convert expressions of an unacceptable type to an acceptable one
before an operation is applied is called coercion [2].

 30

For each expression e, recursively in the code,
 if e is a variable reference to variable v,
 if v already has a type variable α assigned
 then emit α := e
 else
 generate a fresh type variable β
 emit β := e
 end
 elseif e is a constant
 compute type t for constant
 generate a fresh type variable α
 emit α := t
 emit α := e
 elseif e is a primitive of type t
 generate a fresh type variable α
 emit α := t
 emit α := e
 elseif e is a application of e1.f(e2)
 generate four fresh type variables: α,β,γ,δ
 emit α := e1
 emit β := e2

 emit δ := f
 emit f := α,β  γ
 emit γ := e
 elseif e is an assignment of e1=e2
 generate two fresh type variables: α,β
 emit α := e1
 emit β := e2
 emit α  β
 emit β := e
 # other cases are handled similarly
 end
Figure 2.16 Constraint generation algorithm

 Substitution binds identifiers to constants or to other identifiers. In the end it

contains the solution of the constraints, by looking up an expression in the environment

yielding its type.

 31

1) for all constraints, Ci
 push them onto a stack

2) while the stack of constraints not empty

 a) pop the constraint between X and Y off the stack

 b) if X and Y are the same type variable then
 continue with the next constraint

 c) else if X is a type variable then
 S[X ← Y] (extend the substitution to bind Y to X)
 Ci = Ci[Y/X] (replace Y with X in all constraints)

11

 d) else if Y is a type variable then
 S[Y ← X]
 Ci = Ci[X/Y]

 e) else if X is an expression then
 # Y must be a type
 S[X ← Y]
 Ci = Ci[Y/X]

 f) if X is of the form X1 * . . . * Xn → Xr, and
 Y is of the form Y1 * . . . * Yn → Yr then
 push constraints Xi=Yi (for each 1 ≤ i ≤ n) on stack
 push constraint Xr=Yr on stack

 g) else # X and Y do not unify
 report an error and halt12

3) return the substitution S
Figure 2.17 Unification resolution algorithm

 Consider the example which demonstrates how the algorithm works. Imagine that

for a piece of code below we want to find the type of the overall expression.

(“string” + y)

11 Replace X with Y means replacement of all occurrences of X by Y both on the stack of
constraints and in the substitution. Note, that creation of a new variable does not destroy
variables from other scopes with the same name, it just shadows them.
12 In practice many implementations do not halt and continue the unification resolution
algorithm to report all inconsistencies. Note, that a decision must be made of what type to
use for inconsistent statements, which may lead to different error messages later.

 32

It contains three expressions:

• a reference to a variable, y

• literal string, “string”

• the entire sum expression (“string” + y)
The algorithm generates the following constraints:

α := ”string”
β := y
γ := (”string” + y)
δ := +
δ := α*β  γ

There is a collection of predetermined constraints that were defined in advance. Among

them we had a constraint about the primitive + that

+ := x*x  x

After constraint generation, the algorithm pushes all the constraints onto the stack, and

performs a resolution. In Figure 2.18 we showed the succession of steps.

Step Stack Substitution

2e)

α := ”string”
β := y
γ := (”string”+y)
δ := +
δ := α*β  γ
+ := x*x  x

2e)

β := y
γ := (”string”+y)
δ := +
δ := ”string”*β  γ
+ := x*x  x

α := ”string”

2e)

γ := (”string”+y)
δ := +
δ := ”string”*y  γ
+ := x*x  x

α := ”string”
β := y

2e)

δ := +
δ := ”string”*y  (”string”+y)
+ := x*x  x

α := ”string”
β := y
γ := (”string”+y)

2e)

+ := ”string”*y  (”string”+y)
+ := x*x  x

α := ”string”
β := y
γ := (”string”+y)
δ := +

 33

2f)

”string”*y  (”string” + y) :=
x*x  x

α := ”string”
β := y
γ := (”string”+y)
δ := +
+ := ”string”*y 
(”string”+y)

2f)

”string” * y  (”string”+y)

:=”string”*”string”  ”string”

α := ”string”
β := y
γ := (”string”+y)
δ := +
+ := ”string”*y 
(”string”+y)
x := ”string”

Figure 2.18 Example of constraints resolution

At this step it is seen that the type of the expression is String.

 The algorithm described in this section is simple and suitable for most cases.

Unfortunately, it is not sufficient for interactive development as we show in the next

section.

2.3 Principal Typings

 The Hindley-Milner-Damas system described in the previous section has a useful

property called principal types [7, 18]. That is, every expression is assigned its most

general type – type that any other type is more specific. For example the type of the

function identity in Figure 2.15 will be α  α . This function has an interesting type

– it is polymorphic. Its type can be either String  String, or Integer 

Integer, in general

Any type α  Same type α

depending on the argument provided when identity is called. A programmer will not

be able to assign a more general type for the expression than that derived by the type

inference system [4, 7, 17, 18]. That is, any type that could be assigned must be a subtype

of the inferred, most general type: a type that would be consistent with it.

 34

 The essence of principal types can be seen in the following logic judgment [7, 17]:

 Γ t : τ

This sequent states that given a set of type assignments in the environment Γ, the

expression t has most general type τ. The environment Γ contains prior assumptions that

help determine the type of t. That is, when typing some expression t, the system looks

into Γ and based on the information there, determines the most general type for t or

produces error messages. Hence, Γ is an input to the type inference algorithm, usually in

the form of constraints or substitutions.

 Consider Figure 2.14 on page 26. Among others, we have the following constraint

in the environment:

δ := div

δ := Number*Number  Number

Based on the line 2 of the figure, the system tries to determine the type of the following

expression

 r=1.div(a)

By constraint resolution, it types both variables r and a as Numbers.

 Principal types identify the most general type for expressions, but the need for Γ as

input means that when checking t, all dependent code (code that t relies on) must be

available to the type inferencer. Hence the type inferencer can either annotate program in

sequence or as a whole block at once. Note that this condition applies to the compiled

languages; hence HM (X) is sufficient for them13.

 As Ruby is an interactive language, we need a different type system, because not all

of the code will be immediately available.

 Interactive programming requires a type system that would be able to type code in

any order as well as to produce types for well-structured code fragments. Such a type

system exists; it is called principal typings.

13 Separate compilation is not a problem, as type inferencer can store type information of
different sources in special files, and apply this information whenever necessary.

 35

 Despite the similarity of the name to the one of the previous algorithm, principal

typings is fundamentally different from principal types. The fundamental difference is the

input/output behavior of the typing algorithm. Recall that principal types take an

environment and an expression as inputs to yield a type for that expression, as shown in

Figure 2.19.

 Γ

Figure 2.19. Behaviour of principal types system.

Principal typings only take the expression and gives an environment and the principal

type of the expression [17].

 t Γ, τ

Figure 2.20 shows the behaviour of such systems.

Figure 2.20. Behaviour of principal typings system

 Typing of each expression creates a new environment containing restrictions and

bounds that this expression requires from other code in order to be well-typed. As

programs are interactively developed, these environments can be merged and compared

to ensure that new code is compatible with old code. This allows a language with

principal typings to infer types for the program code in any order. Also, it is not

necessary to have the complete program, it is possible to type only well-formed

fragments of the program and later to type-check their combination, emitting further

Principal Types
t

τ

Principal Typings t
 τ

Γ

 36

restrictions or errors.

 Consider an example of Ruby code where principal types property fails but

principal typings infer correct types. The code in Figure 2.21 contains a function to

compute factorials, and shows a use of that function later in the code.

1: def fact a
2: if a==0
3: 1
4: else
5: a*fact(a-1)
6: end
7: end

8: s=myToString (fact(7))
 Figure 2.21. Use of a reference to a function still not written

 After line 7, both principal types and principal typings will determine the type of

the function fact to be Integer  Integer. But at line 8 systems that have only

principal types will report an error that the function myToString is not defined yet (it

is not present in the environment). A system with principal typings will just report that

the expression myToString must have a type Integer  α. The principal typings

system will generate the following environment:

Table 2.1 Environment generated at line 8 of Figure 2.21
Name type

fact : Integer  Integer

myToString : Integer  α

s : α

Later the system can check this environment against these constraints when

myToString is actually defined.

9: def myToString x
10: x.to_s
11: end

Figure 2.22 Continuation of code in Figure 2.21

 37

 Now consider line 11 at Figure 2.22. During the function definition of

myToString, principal typings will create another environment where myToString

will be present.

Table 2.2 Environment generated at line 11 of Figure 2.22
Name type

myToString : β  String

 Comparing this environment to the one in Table 1, there is no discrepancy:

α := Integer

β := String

If there had been a discrepancy, then a type error describing the discrepancy would be

reported.

 This behaviour is what we need for Ruby because a programmer who uses

interactive mode writes code such as function definitions that is not immediately

executed and that uses some currently undefined expressions.

 The principal typings algorithm can recognize and report precise type problems to a

programmer. For example, consider that the programmer wrote the binary function

definition in Figure 2.23 instead of that in Figure 2.22.

1: def myToString x,y
2: x.to_s+y.to_s
3: end
Figure 2.23 Alternative implementation of myToString that needs two arguments

 At this point, the programmer made an error: in Figure 2.18, the function

myToString is called with only one argument, while the function definition expects

two. A principal typings algorithm will create an environment for the second definition:

Table 2.3 Environment generated at line 11 of Figure 2.23
Name type

myToString : α*β String

 38

In comparing environments, the principal typings algorithm detects this error, and can

generate error message:

Warning: function myToStrong defined for 2 arguments,

previously called with 1.

 The principal typing algorithm is also useful in other places. For example, separate

compilation, where the whole system is divided into several modules that are compiled at

different times, and each module may use external variables from other modules. Using

principal typing we can infer the types of the program variables without forcing the

programmer to specify the types of the external variables of the imported modules.

 This algorithm is exactly what we need to develop the type checker for incremental

development in Ruby. It is intended to work in such places where a principal types

property would fail – in particular, for fragmented code.

 Other researchers have considered typing for interactive languages. Their work

will be shown in the next section.

2.4 Type Inference for Dynamic Languages

 There were several projects trying to implement type inference for dynamic

languages. Python is the most deeply studied, and we review the relevant work below14.

It is important to note that none of the projects described below are focused on the

interactive development approach supported by this thesis [3, 32, 41]. It is important to

recognize that all projects listed in this subsection were developed primarily to improve

performance. As a result, they do not need to type-check the entire language, in particular

they do not need to cover complex cases, just common ones which offer greatest

opportunity for performance enhancement. In our case we are considering interactive

development, hence we need to cover all cases.

14 We will defer discussion of the related work in Ruby – our target language – to the next
section.

 39

2.4.1 Psyco

 Psyco [32], implemented by Armin Rigo, is a just-in-time compiler. It increases the

performance of Python programs, up to a 40x depending on the particular application,

almost to the speed of their C equivalent, but only for i386 processors. Psyco does this by

finding locally-defined integers and strings that are unchanging from compile-time to

runtime. Psyco substitutes the main eval loop of Python by its own, which can create

several specialized versions of the machine code for different kinds of data: it is doing

this by using the actual run-time data that the Python program manipulates. It works

entirely at runtime, so it cannot be used for a static analysis.

2.4.2 Starkiller

 Starkiller [41], by Salib, uses the Cartesian Product algorithm [1] to infer the types

for Python source code. The type inference algorithm also handles data polymorphism in

addition to parametric polymorphism, thus improving precision. Starkiller does almost

complete type inference for Python avoiding only a few limitations like exception

handling and reflection like the eval statement. However, in order to infer types, the

complete modules must be provided, in contrast to our requirement to handle fragmented

programs. One feature is an external type description language that enables extension

programmers to document how foreign code interacts with Python. This enables

Starkiller to analyze Python code that interacts with foreign code written in C, C++, or

Fortran. Salib’s primary aim was performance improvement, and numeric benchmarks

show that Starkiller-compiled code performs almost as well as hand-coded C and

substantially better than alternative Python compilers.

2.4.3 Brett Cannon’s System

 Brett Cannon’s master’s thesis [3] studies localized type-inference of atomic (our

simple types) types in Python. Just as with our project, Cannon implemented a type

inference algorithm without changing the semantics and syntax of the base language. He

worked with Python, we work with Ruby. As with the other projects described here, he

 40

explored whether more type information at compile-time from type inference would

improve Python execution performance. Unlike our goals, he was interested in using

types for optimization purposes rather than to aid the programming process, so he did not

consider interactive development and neglected complex type-checking cases.

Unfortunately, he was unable to achieve a 5% performance improvement with his type

inference.

2.5 Summary

 In this chapter we gave a background of Ruby – a dynamic language that we use for

our research. Next, as we presented in this chapter, types are an important concept in

programming languages. Types and type checking ensure a better safety of applications.

We described type inference, a way to type-check programs, and showed how principal

typings can support interactive development. Also we discussed several projects that tried

to add typing to dynamic languages. We next turn our attention to the challenges Ruby

poses for type inference.

 41

Chapter 3

Typing for Ruby

 In the previous chapter we showed several benefits of Ruby language. Those

benefits (cleanness, extendibility, portability and interactivity) ensure its popularity

grows. But as we saw previously, the Ruby interpreter cannot assist in identifying coding

issues in a timely way, so programmers require great discipline to benefit from

incremental development style advantages described in the first chapter (focus on the

code, early detection of errors, better program planning, and better control and

understanding of problems). Some kinds of errors are reported only at runtime, as there is

no type checking before code execution. To make incremental development effective, in

other words, to get all the benefits that the incremental interactive development style

offers, it is valuable to notify a programmer of type errors as early as possible. One

approach to do it is to add typing to Ruby. Then type consistency will be checked much

earlier, and errors may be reported earlier than those produced by the current interpreter.

Moreover, the system with typing will be able to provide guidance and advices to

programmers of how the types should be used.

 There are several techniques to add typing to Ruby. One of them is to add optional

static type annotations to the language15. For example, if a programmer wants to define a

procedure that takes two integers as parameters, and returns their greatest common

divisor, instead of the current version

def gcd (a, b)

he may need to write the code given next; she will have to indicate types for each

argument (like in the example below type descriptions that follow :) as well as the return

type for the function (type after the arrow symbol )

15 This approach was proposed for Python by the creator of that language Guido van
Rossum [34].

 42

def gcd (a: int, b: int)  int

 Another possible syntax is the one shown below. In it, a programmer will have to

declare the function (as in the example with the decl keyword) indicating the type of

this function before actually defining it.

 decl gcd: def (int,int)  int

 def gcd (a, b)

 Both these approaches have certain drawbacks. First, they take away the cleanness

of the language – the code with annotations contains much more symbols. Second, these

type annotations are optional; a programmer will not benefit from code lacking these

annotations, for example, third-party packages and libraries. As a result, we believe that

this approach is not suitable for our research.

3.1 Challenges for Typing Ruby

 Type inference is another approach, but most efforts have concentrated on principal

types rather than principal typings. For example, type-inferenced languages such as ML,

F#, and Haskell, have compilers and cannot support interactive development fully. They

do not require principal typings. On the other hand, Ruby has semantics that makes it

much more difficult to apply type inference, and contains interactive features that do not

allow one to infer the types for all valid code.

 As the exemplar language for interactively-developed, dynamic languages, we

concentrate on Ruby; but the techniques and challenges apply to other languages equally

well.

 Before providing a comprehensive list of situations of Ruby type-unsafe code, we

provide four examples to demonstrate the impossibility to type-check all possible Ruby

code. Some of these illustrate the concept of slack in a type system – code that executes

correctly but violates the additional restrictions imposed by a type discipline.

 43

3.1.1 Variables Shift Type

Ruby allows a programmer to make one variable store values of different types within

one scope during different phases of development.

1: def foo(c=4) # c is a number
2: d=c
3: c=”hi” # c is a string in the same scope
4: ret=c
5: end
Figure 3.1. Example of slack

 In Figure 3.1 the variable c is used in one scope to store different types: at the

beginning of the function’s body it is an integer, while in the end it is a string. This

complicates type inference16 by not making it possible to know the type and sets of

operations allowable for not only this variable, but also all other variables related to it (in

our example, variables d and ret).

3.1.2 Branches of Control-flow Statements are not Required to be Type Consistent

 Ruby permits inconsistent types for variety of things across different control paths.

In Ruby, different branches of the control-flow statements may bind the same variable to

values of different types.

1: if y>0
2: x=2 # x is an integer
3: elsif y<0
4: x=”str” # x is a string in the same scope
5: else
6: x=2.3 # x is a float in the same scope
7: end
Figure 3.2 Example of slack for a conditional expression

 The statement in Figure 3.2 is valid in Ruby, but it generates an unsolvable problem

to the type inference system. After running this code, the variable x will have one of the

16 There is a simple and clarifying technique to avoid this slack: fresh variables. Using
newly-defined variable in place of c will avoid this dubious programming practice.

 44

following types: Integer, Float or String. Without exact knowledge of the

runtime value of the variable y it is impossible to determine the type of the variable x. Of

course, any programmer relying on this polymorphism of x is setting himself up for

failure as after the statement she will not be able to know how to use this variable, and

whether her use of the variable is correct.

 The problem arises not only with the conditional statements, but also with other

control-flow statements. In the case of loops, a variable with some particular name may

have different types in the different places of the loop. The unique issue is that before

runtime it is usually not known how a loop will terminate if the body of this loop contains

one of the following statements:

• break

• next

• redo

All of these statements change the control flow of the program. In the case of the break

statement the loop is terminated in the place where this statement occurred, so after the

body of the loop the variables will have the same types as they had at the point of the

break statement. In the case of the next and redo statements the program skips all

the code inside the body of the loop after that statement and starts a new iteration at the

beginning of the loop. Unusual case is that if the next and redo statements occurred in

the last iteration of the loop, there will be the same effect as with the break statement.

Here is an example of the loop written in Ruby that shows these problems:

1: while i>0
2: i-=1;
3: c=4; # c is an integer
4: if func1(c)>10
5: break
6: end
7: if func2(c)>0:
8: c=”String” # c is a string in the same scope
9: next
10: end
11: c=[c,d] # c is an array in the same scope
12: end
Figure 3.3 Example of slack for a loop

 45

 After this for loop that is present in Figure 3.3 the variable c can be either an array

(if the loop terminates normally) or an integer (if the loop terminates by the break

statement on the line 5) or a string (if the variable d was greater than zero in the last

iteration of the loop and the next statement on the line 9 was executed). Again, having

inconsistent results leads to potential future errors when type assumptions are violated: a

dubious decision on the part of the programmer.

3.1.3 Ruby Exceptions Occur in Unpredictable Places

 Exception handling is also an interesting case, as we do not know until the runtime

which particular exception will be raised, as the body of the try statement can contain

those statements that can raise more than one possible exception. Indeed, an exception

may not be raised at all. Unlike Java, Ruby programmers do not indicate potential

exceptions that methods might throw. Moreover, sometimes we do not know what exact

statements of the try block can raise the particular exception, so we cannot draw the

possible paths of the program execution. Consider this example shown in Figure 3.4.

1: begin
2: eval string
3: a=1 # a is a number
4: rescue SyntaxError, NameError => boom
5: print "String doesn't compile: " + boom
6: a="String" # a is a string in the same scope
7: ensure
8: print "Error running script: " + bang
9: a=[] # a is an array in the same scope
10: end
Figure 3.4 Example of slack for exceptions

It is uncertain which type the variable a will have after the execution of this block of

code: it can be either an integer if no exception occurred, or either a string or an array

depending on what particular exception was raised.

3.1.4 Reflection Constructs are Impossible to Type

 In the previous chapter we briefly discussed a notion of reflection in Ruby, one

example is a dynamic generation of code. As the code is generated dynamically, it is not

 46

available before runtime, thus it is impossible to type-check it before the code is run.

Consider the example in Figure 3.5.

1: string1 = gets

2: x=eval string1

Figure 3.5 Example of Ruby’s reflection

This example shows execution of code based on user input. Thus the code presents an

impossible task for a type system to type-check it.

 In summary, Ruby poses challenges for type inference and checking: many of the

dubious constructs are confusing or error-prone. A discipline of type checking will help a

programmer to write clearer and less problematic code, as well as next programmers who

will be reusing the previous code.

 Despite some difficulties that will not allow us to cover the complete language, we

will be able to type many parts of Ruby and identifying type unsafe code, thus helping

programmers in many cases. There are two basic cases possible for the code that is type

unsafe:

• errors – cases where the programmer is not consistent

• assumptions – reliance on yet undefined code.

We will discuss both of these cases, showing possible situations, and explaining why

these situations are erroneous or dangerous. We will start our discussion with errors.

3.2 Errors

Nine situations given below show a code that is problematic, but this will not become

evident until runtime. Although in many of these cases a code is valid and acceptable by

Ruby interpreter, each example is type-unsafe, and it is impossible to accurately identify

the error.

3.2.1 Branches in control-flow Statements are not Type-consistent. As mentioned

before, in order for programs to be type-safe, all branches of control-flow statements

must be type-consistent. If they are not, the code is not type-safe. Here several cases are

possible.

 47

a. Variable Created with Differing Types: If a previously undefined variable is

created with different types in different branches of a control-flow statement, then

the programmer may not rely on the variable containing values of a known type

after the conditional. In the example below, the variable f in the then branch

will be an integer; in the else branch it will be a string. These are different

types, leading to inaccurate programmer assumptions in the code depending on

the result.

‘f’ is not defined
if a>0
 f=9
else
 f="6"
end
’f’ has ambiguous type

b. Variable not Created in All Branches: If a variable does not exist, and is

created/assigned in only one branch, then an error occurs because the programmer

cannot assume, after the conditional, that the variable exists and is initialized.

Consider the following code, where the variable d is not yet created. The variable

was created in one of the different branches of a control-flow statement, but not in

the other, leading the programmer to unexpected results if they use d.

neither ‘f’ or ‘d’ are defined
if a>0
 f=9
else
 d=6
end
either ‘f’ or ‘d’ is created, not both

c. Function Returning Different Types: Functions can return from differ places in

their body code, and hence may return values of different types. In these cases, the

programmer cannot reliably depend on knowing the result type. This is illustrated

in the example below. Based on the integer argument arg, the function

 48

diffReturn may return either an integer or a string, thus making this function

not type safe.

def diffReturn arg
 if arg>0
 return 3 # integer return
 end
 return "" # string return
end
‘diffReturn’ returns either an integer or a string

3.2.2 Local/Global/Instance Variable Changes Type: If a variable is already known to

contain a value of a given type, and is later assigned a value of a differing type, the

programmer may not know the variables type anymore. In the example below, the

variable b was initialized with a string; later, in the body of the while statement, it is

reassigned to contain an integer. As these are different types, this situation is unsafe.

b="" # ‘b’ is a string
...
b=5 # ‘b’ is redefined as an integer

3.2.3 Number of Targets Does not Match Number of Values in Multiple Assignment:

Ruby language does allow programmers to assign values to many variables at the same

time by listing the necessary targets on the left of the = operator, and all the according

values on the according positions on the right of the = operator. The number of targets

should match the number of values except in unusual circumstances. If they don’t, the

statement may unintentionally assign wrong values to targets. In the example below the

programmer assigns two values to three targets, and this situation appears to be unsound.

a,b,c=1,2 # type of ‘c’ is null

3.2.4 Inappropriate Use of Break, Redo, Next Statement: By Ruby specification, any

of the following statements – break, next, redo – must strictly be used inside the

loops. Any other usage of them is prohibited. In the example below the break statement

is used outside any loop, which will cause an error when the function

funWithBadBreak is run.

 49

def funWithBadBreak
 break # illegal outside loop
end

3.2.5 Function Called with Wrong Parameters: Here several cases are possible: there

may be an incorrect number of arguments, one or more arguments may be of the wrong

type, or an expected block may be omitted.

a. First, we consider the case when a function is called with a wrong number

of arguments. In the example below the built-in function concat, which

expects one argument, but is called with two arguments.

“hi”.concat(“\n”,”.”) # wrong number of arguments

The same case applies to lambda procedure. In the example below the

nullary lambda function stored in variable a is called with one argument

instead of two, which is a type error.

a=lambda{2}
a.call(2) # wrong number of arguments

b. Second, a function may be called with arguments of the wrong types. In

the example below, the built-in function concat, which expects one

string argument, is called with one integer argument. In this case the

function’s argument clashes with the function’s expected type, and this is

an error.

“hi”.concat(3) # wrong type of the argument

c. Some functions expect to be applied to blocks, permitting co-routine

execution via the yield statement. Neglecting to supply a block to one

of these functions is an error. In the example below, the function apply

must be provided with a block when called; the programmer omits the

block, making her code fail.

 50

def apply
 yield
end
apply # needs block

3.2.6 Parameterized Types May Only Contain Values of a Single Type: Ruby

supports parameterized types – containers of values of other types; for example, arrays,

ranges (one value type) and hashes (two value types – key and value). In the example

below, two hashes h1 and h2 used in the update operation clash: h1 is a

Hash[Integer => String], and h2 is a Hash[String => Integer]. This

code is erroneous.

h1={1=>”one”}
h2={"two"=>2}
h1.update(h2) # type clash

3.2.7 Classes, Modules, and Constants Redefined to Another: Once a name is bound

to a class, it cannot be reassigned to a module, and vice versa. In the code below, a

constant with the name Aclass was defined as a class. Later in the same body of code

the programmer tries to redefine it as a module. Ruby does not permit this construction.

class AClass
...
end
...
module AClass # redefine class as a module
...
end

3.2.8 Ordinary Functions Called as Class/Module Functions: Recall from the previous

chapter that Ruby has a concept of class/module functions, ones that can be called with

the name of their class/module as a receiver. Calling ordinary functions this way is not

allowed. In the example below, the programmer calls the ordinary function ordfun as a

class one. Ruby will report an error if the programmer tries to run the function wrap.

 51

class A
 def ordfun
 end
end
def wrap
 A.ordfun # ‘ordfun’ is not a class function
end

3.3 Situations containing assumptions

The situations below do not indicate that a programmer necessarily committed

errors in her code or that she was inconsistent. However, they indicate that the code

written so far is incomplete, i.e. in order to make the code be executable the programmer

must correctly and consistently complete the remaining code. We provide five examples

of such situations.

3.3.1 Use of Functions Before Declarations: Ruby allows programmers to reference

functions before their declarations under the condition that before using the referencing

code, the programmer will need to define the referenced function. In the following

example, the function gcd is called inside the body of the function lcm before it is

declared. If the programmer calls the function lcm right away, she will get an error; that

is why this situation is potentially dangerous.

def lcm a,b
 a*b/gcd(a,b) # ‘gcd’ not defined
end

Similar situations can occur if programmers use undefined functions for other

purposes; for example, if they try to create duplicates using the alias keyword. In the

example below, the programmer tries to make a duplicate of the function euclid that

was not yet defined at that point. If she calls the function duplicatingFun she will

get an error, as it is an error according to Ruby specifications to duplicate undefined

functions.

 52

function ‘euclid’ not defined
def duplicatingFun
 alias gcd euclid
end

Recall that Ruby allows definitions to be forgotten. Un-defining a function that

has not yet been declared is not allowed. In the example below, the programmer attempts

exactly that – undefine the function und that was not defined at that point, and this

situation is incorrect.

function ‘und’ not defined
def undefiningFun
 undef und
end

3.3.2 A Global/Instance/Class Variable is Used Before Definition: Ruby allows

programmers to use all kinds of variables except local ones before their declarations with

the condition that before using the code that references these variables the programmer

under need to define the missing variables. In the example below the programmer creates

the function geta for the class A that relies on its instance variable, @a, which was not

defined. Until the programmer defines this variable, she will not be able to run this

function.

class A
 def geta
 @a # ‘@a’ not defined17
 end
end

3.3.3 Reference to an Undefined Class/Constant: Ruby allows programmers to use in

their code names of classes and constants that do not exist yet under the condition that

before using that code the programmer will need to create them. In the example below,

the function callConst relies on the constant B from the class A. If the class A is not

visible, its constants will not be visible either.

17 Recall that classes can be extended in other code sections: Ruby implements open
classes, so @a may be defined later.

 53

def callConst
 A::B # ‘A’ not visible
end

3.3.4 Functions are not Type-consistent: Principal types systems have constant

environments, meaning that they do not allow programmers to change types of functions.

Unlike them, principal typings systems allow programmers to change functions

definitions and signatures. In the code below, the programmer changes the function

currentValue to make it return string instead of integer. The problem is that the

previously written code relies on the old definition of this function, so if the programmer

tries to reference this code, she will fail.

def currentValue
3
end
...
currentValue +5 # ‘currentValue’ must return number
...
def currentValue
""
end

3.3.5 Definitions of functions with the Type Inconsistent to the One that it was Used

Before: As we mentioned earlier, if a programmer wants to run a block of code that uses

an undefined function, she needs to define that function, and this function must be able to

accept the parameters that were provided, when it was called. In the example below, the

parameters of the defined function callLater do not match those provided when the

function was called, and this is a potential error.

def fun a
 callLater # ‘callLater’ must be without arguments
end
def callLater b # ‘callLater’ expects one argument
 b=""
end

 54

3.4 Related Ruby-Typing Work

 Several researchers investigated applying types to interactive languages, but none

of them could solve the challenges tackled by our research – none of their systems were

able to type fragmented code, or programs entered in independent order18. [11, 19, 23]

3.4.1 DRuby

 Michael Furr et. al. [11] aimed to integrate static typing into Ruby. Their interpreter

annotated Ruby code. In order to do that, they developed a new parser for the language.

Also they created the Ruby Intermediate Language in order to translate the entire source

language into this subset. To complete the system, researchers developed a type

annotation language and a type inference system. Their system is called DRuby. They

applied it to a suite of small benchmarks, and found that most of their benchmarks are

statically typeable. Unlike our system, they altered the language syntax to support

annotations; our work attempts to handle an unaltered syntax.

3.4.2 Kristensen’s Master Thesis

 Kristensen [19] accomplished another related work for his master’s thesis in

Aalborg University. The goal was to show that his Ecstatic tool can infer precise and

accurate types for arbitrary Ruby programs. By implementing the Cartesian Product

Algorithm he confirms that the algorithm can be retrofitted for a new language, as

originally it was developed for the Self language. He was also able to devise a method for

handling Ruby core and foreign code both implemented in C by utilizing RDoc—the

embedded documentation generator for the Ruby programming language. Using Ecstatic,

a number of experiments were performed that illuminated the degree of polymorphism

employed in Ruby programs. The author also presents an approach for unit testing a type

inference system. Again, unlike our work, his work focuses on precision and accuracy of

complete programs, different from our focus on interactive coding.

18 Here, independent order means declarations given outside of a recursively-scoped
complete module, or not in topological order of increasing dependency.

 55

3.4.3 Duby

 Charles Nutter developed a system called Duby [23], which uses type inference to

help a Ruby compiler achieve better performance. The resulting system was nearly two

orders of magnitude faster than the fastest JRuby production systems and at least an order

of magnitude faster than the fastest incomplete, experimental implementations of Ruby.

His aim was to investigate the performance issues of Ruby. As he says, the Duby

benchmark result shows how fast a Ruby-like language can be. Nutter did not set a goal

for his system to work for code fragments; our system must check fragmentary programs

as they are interactively tested.

 None of the projects mentioned above can be used to infer types in interactive

mode; that is how this work differs from theirs.

3.4 Types in Ruby

Although Ruby is a dynamically typed language, it does not mean that it lacks a

type system at all. Ruby still supports many types, but unlike those in Java or C, types in

Ruby are determined at runtime. This section provides basic information of Ruby’s latent

types.

Ruby is a pure object-oriented language. That means that unlike many other

popular languages, Ruby does not have a concept of primitive types – all Ruby types are

based on classes. This, however, does not mean that Ruby does not support such popular

in other languages types as integers or strings – variables, for example, can be of type

integer or type string; but, in Ruby’s case, they would be instances of built-in Integer

class or String class respectively.

Figure 3.6 and Figure 3.7 contain a class hierarchy of Ruby basic built-in types. It

was taken from [43]. In addition, there are function types that are not shown in this

figure.

 56

Figure 3.6 Ruby type hierarchy

These can be divided into three most important groups of types in Ruby. We

called them fixed types, unary types, and binary types. In Figure 3.7 we provide the

simplified diagram that focuses on the most interesting types for type inference. There are

others (e.g., Struct), but they are not problematic for type inference because they are

simple structures of types that we handle; we will concentrate on the types shown in

Figure 3.7, as we believe they are most common Ruby platform types, most similar to

popular types in other languages, and most suitable for our discussion. It is important to

recognize that we will support user-defined classes, allowing us to manage third-party

and directly developed code.

 57

Figure 3.7 Simplified Ruby type hierarchy

3.4.1 Fixed Types

Fixed types are a subset of types that are primarily distinguished by the type of

one component – basic value. For example, the difference between literals “three” and

3 is only value, thus both of these literals will have a fixed type. Most popular types -

String, Integer, Float - are fixed types.

3.4.2 Container (parametric) Types

Those include unary and binary types. Unary types are a subset of types that are

primarily distinguished by the type of one extra component – inner value – in addition to

their basic type. Examples of them are Arrays and Ranges. For example, in order to be

the same, two unary types must not only have the same basic value (for example, both be

arrays), but also have the same inner values.

 a=[1,2]
 b=[“”]

Although both a and b are arrays, they are of different types because a is an array of

integers, and b is an array of strings.

Binary types are a subset of types that are primarily distinguished by the type of

two extra components – inner value and key value – in addition to their basic type. The

most straightforward example of this kind of types are Hashes. For example, in order to

 58

be the same types, two binary types must have not only the same basic value (for

example, both be hashes) and inner values (the condition that is sufficient for unary

types), but also have the same key values. Consider this example

a={1=>2}
b=[“one” => 2]

Although both a and b are hashes and they both have the same inner types (integers),

they are different types because a is a hash from integers to integers, and b is a hash from

strings to integers.

3.5 Constraints for Ruby code

In the previous chapter we gave a general background of constraints. We

explained their purpose in a general type-inference system in particular. In this subsection

we give information about what constraints we needed specifically for Ruby. This gives a

high-level description of the constraints arising from Ruby constructs. The details of our

implementation are given in the next chapter.

There are basically two kinds of constraints arising in Ruby19:

• ones that bind two type variables together (represented by the symbol )

• ones that bind expressions to their types/variables (symbol :=)

The first kind says that a type of the first variable must be the same as a type of the

second one. This kind of constraints is generated, among other things, by the assignment

operator “=”. An example of it is:

a=b

there is a constraint that the variable a must have the same type as the variable b. Hence

the type variables for the expressions a and b must also be constrained to be equal.

The second kind of constraints are ones that bind expressions to their types. There

are many possible Ruby expressions that can and must be classified as constraints, as

19 Recall that there are constraints arising from self-identifying types as well, but as they
can be resolved at once, they require no further discussion.

 59

there are many possible kinds of expressions. We decided to divide constraints of the

second kind further into the following three categories:

3.5.1. Function Constraints. Constraints that represent calls of functions.

In order to be solvable, constraints of this kind must contain the following information:

• name of the called function,

• number of arguments provided,

• types variables for the receiver and arguments20, and

• type variable for the return value .

Consider the following example:

2+3

This piece of code creates one function constraint:

Name “+”

Number of arguments 2

Type return Tvret # not determined

Type - receiver Tvrec := int

Type - argument 1 Tvarg1 := int

The constraint shown above was created for the method + with one receiver and

one argument provided: values 2 and 3.

3.5.2 Colon Node Constraints. Constraints that represent colon nodes use.

For example: A::B::C::D is the example of the colon node us.

Recall that colons represent nested scopes: each element with the name that is in

the sequence must be an inner element for the element with name of the previous symbol

in the sequence. In our example, the element with the name B (or to be more precise, a

class with the name B) must be an inner class for the element (or the class) with the name

A.

20 Recall that all Ruby functions are actually methods.

 60

Constraints of this kind will have a container that will store the sequence of called

constants.

Container of constants A ⊃ B ⊃ C ⊃ D

The constraint shown above was created for the method colon node with a vector

of all constants provided, that are stored in the same order of their appearance in the code.

3.5.3 Creation of Singletons Constraints. Constraints that represent creation of

singleton functions.

Remember that singleton functions are those that will exist only for one specific

instance of a class. In the example below the programmer creates a singleton function

singFunc.

a=String.new
…
def a.singFunc b
 3+b
end

After the code shown above, the variable a, that is a string, will have an access to the

function singFunc. Other instances of the class String will not be able to see this

function.

Constraints of this kind will have information about a defined function

(singFunc in our example) and a variable that represents a receiver (a, that before the

definition of singFunc was of the type String).

Receiver of singleton  Tvrec 

Singleton function  singFunc: Number  Number 

The singleton constraint shown above contains a type variable, that corresponds to the

receiver variable a, and the function singFunc that will be accessible for the receiver.

 61

3.6 Summary

Overall, types for Ruby are complex entities. They need to handle a variety of

contentious cases, and identify correct and incorrect code precisely and clearly. Other’s

have explored this topic, but not from the viewpoint of empowering interactive

development. Hence, we have laid the groundwork in this chapter to explore how

constraints and principal types can meet the challenges of typing Ruby code. In the next

chapter we will talk about the implementation details of the system with principal typings

for Ruby that is developed to meet the challenges of an interactive development.

 62

Chapter 4
Implementation

In previous chapters we explored the benefits of type inference and reviewed a

variety of challenges that Ruby poses for it. We identified an innovative type system,

principal typings, that promises to support type inference for interactive Ruby

programming. To demonstrate this facility, we implemented a type inference system for

Ruby with principal typings. This chapter provides details of the developed system.

Our implemented system is called Rubin. It performs type-checking immediately

after the abstract syntax tree of the Ruby code is constructed. The system extends the

JRuby interpreter, jirb, version 1.1.2. It consists of 23 independent classes, which are

located in the org.jruby.ast package (rubin subpackage), and 25 lines of Java code,

which were inserted into two existing Java classes –

org.jruby.parser.ParserSupport and org.jruby.RubyNameError – to

provide the connection between jirb and Rubin.

The package, org.jruby.ast, which most of our implemented classes were

inserted into, was designed to provide classes necessary for abstract syntax tree creation

and analysis. This package contains descriptions of all possible nodes that the AST can

contain. All nodes inherit from the basic abstract class org.jruby.ast.Node.

We chose to add our files into this package, as the purpose of them is the same as

the purpose of the files in the package: they perform abstract tree analysis. Our files fit

appropriately into the org.jruby.ast package, because they have the same functional

requirements as those inside this package.

Our system contains 11 data types for type inference and 67 methods. Overall,

Rubin takes approximately 10,000 lines of Java code21. This chapter summarizes the

fundamental classes and operations of Rubin.

21 Lines of code are measured using wc(1), and so include blank lines and comments.

 63

The general diagram of how Rubin works is shown in Figure 4.1. Rubin steps in

immediately after an abstract syntax tree is created and type-checks it.

1. Rubin performs constraint generation for the new code, creating a new

table of constraints as an output.

2. Then Rubin starts a constraint resolution process, trying to resolve

constraints from the new table with those imposed by tables from old code

constructs. As conflicting constraints are recognized, Rubin reports error

messages and warnings as necessary.

3. Last, Rubin returns to the normal interpretation stage.

Figure 4.1 The diagram of how Rubin works

 64

4.1 Data Types

We will start our description with the details of the data structures that implement

Rubin. Most of these (except Constraint22) represent different Ruby types.

In this section we will discuss the purposes and implementation details of each of

these. We will start our discussion with Type – the root type for all other type structures;

then we will describe each of the nine subclasses of Type, each corresponding to a Rubin

supported type. These are shown in Figure 4.2 using UML notation.

Figure 4.2 Hierarchy of Rubin’s supported types

Additionally, we will describe the Constraint data structure, a special structure

to represent the constraints required for type inference. This data structure does not

represent any Ruby type, hence it is not shown in Figure 4.2. We will finish our

discussion with the MainRubin class that connects all other data structures together and

provides some additional utilities for them.

22 We will use the Monaco font for Java code, reserving Courier fonts for Ruby

code, just as we did earlier.

 65

4.1.1 Type (org.jruby.ast.Type)

Every object that represents a type (either a type variable, or any kind of

determined type – a final type (any determined type: predefined classes like Integer,

String, Array, are automatically available), a function type, or an anonymous

function type) is an instance of the abstract class Type, which defines general operations

supported by all types. Among these operations are assign, the procedure for unifying

one type to another type, and getType, the procedure to return a current type for final

types, or the last type in a chain of bound types for type variables.

4.1.2 Fixed Type (org.jruby.ast.FixedType)

The goal of a type inferencer is to infer as many final types as possible.

FixedType (FT) is a data type for describing final types such as String and Integer

classes in Ruby, including those classes defined by Ruby programmers. In essence they

represent values of classes.

Each fixed type has a name, that is stored in the field name and can be accessed

with the method getName, and a super class, that is stored in the field superClass.

This variable will contain Ruby’s Object class if a Ruby class type does not have an

explicit super class identified.

Each fixed type has several hash tables from Strings to Types. The table

instVars stores all instance variables of FT, classVars stores all class variables of it,

and constants stores all its constants. Each class can also have a scope of inner

classes, classes, that are defined in the body of a current FT – they are stored in the table

innerClasses. Similar structures for inner modules are stored in the table

innerModules. The table methods is used to store all the methods of a given fixed

type. There is an additional table to store singleton functions that is called

singletonMethods.

Each of the hash tables supports the standard operation has that determines

whether an essence with some name is present in the table, and the standard method get

that returns a value for a given key from a table. As there may be several functions with

 66

one name for one class, the table methods has an additional method, numberOf, that

returns a number of occurrences of functions with a provided name in that table.

Finally, each fixed type has a field, type, that gives information of the kind of

type it represents. For example, the kind of type of 3 is FixedType (FT) (as 3 is an

instance of the class Integer, which is a fixed type); the type of [3] is UnaryType

(UT) and not FixedType (despite the fact that UnaryType is a subtype of FT);

analogically, the type of {3 => “three”} is BinaryType (BT), and not UT or FT.

4.1.3 Unary Type (org.jruby.ast.UnaryType)

UnaryType (UT) is a data type for describing parametric types: types, that are

distinguished not only by names but also by a single type parameter. The kind of type

comprises such types as Range and Array, including those defined by programmers.

Unary types are subclasses of fixed types that have the additional field, value, for

describing that single parameter of parametric types, mentioned in the first sentence of

this subsection. For example, Array [Integer] is not the same type as Array

[String]: the field value of the former will contain a type Integer, while the same

field of the latter will contain the type String.

4.1.4 Binary Type (org.jruby.ast.BinaryType)

BinaryType (BT) is a data type for describing binary parametric types: types,

that are distinguished by names and two type parameters. This kind of type comprises

such types as Hash, including those defined by programmers. Binary types are

subclasses of unary types that have an additional field, key, for describing types of keys,

those additional parameters that distinguish binary types from unary types. For example,

Hash [Integer => String] is not the same type as Hash[Integer =>

Integer]: the field key of the former will contain a type String, while the same

field of the latter, the type Integer .

 67

4.1.5 Module (org.jruby.ast.ModuleType)

Module is a data type for representing modules defined by programmers in type

inference constraints. This data structure is similar to FixedType, except that it does not

have a field superClass. However, we chose Module not to be a superclass of

FixedType, because they are logically different (modules, for example, can be mixed in

inside classes, while classes cannot).

4.1.6 Raw Module (org.jruby.ast.RawModule)

Ruby raw modules describes modules as themselves, in contrast to instances of a

Ruby module, that are represented by Module. Each raw class has a field,

instanceModule, that describes the type for instance of that raw module, and a method

getModule that returns that Java class.

4.1.7 Raw Class (org.jruby.ast.RawClass)

Raw Class is a data type for describing raw classes, or representations of Ruby

classes as themselves, in contrast to instances of a Ruby class, that are represented by

FIxedType. This is necessary to differentiate a piece of code like: A.foo from a piece

of code like A.new.foo. In both cases A is the name of a class, but for the first case a

receiver of the function foo is a Ruby class A, while for the second it is an object of the

class A. Each raw class has a field, instanceType, that describes the type for instance

of that raw class, and a method getFT that returns that Java class.

4.1.7 TypeVariable (org.jruby.ast.TypeVar)

The primary data structure for implementing principle typings is the

TypeVariable (tvar) type structure. It contains the necessary information to enable

Rubin to have initially unspecified types, and complete them at a later time. The

completing type is stored in the inner field, which can be queried using the

getInnerType method and updated with the setInnerType method. Updating is the

key operation. If a type variable already has an assigned inner type, assignment is

 68

delegated to that inner type. Otherwise inner will be null before the assignment, and

become set to the assigned type. The inner types for a chain of tvars may terminate at a

type that is not a tvar. In this case, assignment is considered an error unless the assigned

type and the inner type are compatible; as we mentioned earlier, two types are compatible

if either they are the same, or one of them is a subtype of another. Otherwise the chain

will terminate at another type variable. The last type in the chain of tvars that the current

one is bound to, is called the ultimate inner type.

This data structure contains an additional method, getType, that returns the

ultimate inner type for a type variable. It will be either another tvar when the type for this

type variable is not determined, or a final type when the type for this type variable is

known.

Type variables are fundamental data structures for type inference, as the overall

process of type inference is nothing more than checking and determining tvars’ type

assignments.

4.1.8 Function (org.jruby.ast.FunctionType)

Function is a construct to represent function types, they can appear as right-

hand side values of constraints. A name of a function is stored in the field name, and can

be accessed by the method getName. The number of arguments is represented by the

variable NumOfArgs. Each function has a vector vcTvars of type variables and a vector

of constraints that are filled when the system evaluates the body of a function and

generates both type variables and constraints. The information about any expected

argument block is stored in argblock. By default this field is equal to null if a

function does not expect any block. The boolean isPrivate indicates whether a

function is set as private; the boolean isModule, in turn, indicates whether a function

is defined as a module function, so it can be called with a module’s name as a receiver.

The field isClass provides a corresponding functionality for class functions – the

functions that can be called with the name of their class as a receiver.

 69

4.1.9 Block (org.jruby.ast.BlockType)

Block is a Java class for describing properties of blocks, including lambda-

functions and Ruby procs. This data structure resembles Function, but, unlike

functions, blocks cannot have another block provided when it is called, so Block does

not contain an argblock field. Also blocks do not have the fields isModule, isClass,

isPrivate, as blocks, unlike functions, cannot be class blocks, module blocks, or

private blocks respectively. Other fields and methods are essentially similar to those of

Function. Again like for Module and FixedType data structures, Block is not a

superclass for Function, as they have substantial behavioural differences (blocks, for

example, have access to the variables of the outer scope, while functions do not), and

Ruby programmers do not consider blocks as superclasses of functions.

4.2 Managing Constraints

Now we are prepared to discuss a class that does not represent inner Ruby type.

This fundamental data structure implemented for Rubin is the one to represent

constraints, appropriately named Constraint (org.jruby.ast.Constraint).

Recall that there are the two kinds of constraints:

• ones that bind two type variables (), and

• ones that bind expressions to tvars or final types (:=).

We never construct any constraints of the first kind, because we unify the two

variables immediately. For this purpose we used the function unify; the exact process of

unification is shown and described later in this chapter. Hence, our constraint structure

needs to represent the second kind of constraint only.

Consider the second type of constraints. As we mentioned previously, there are many

possible kinds of expressions that must be bound into constraints. For each of the

different kinds of expressions, the Constraint data structure has matching fields and

methods that provide necessary support for them.

 70

Three special cases require careful presentation.

a) Function constraints

Constraint stores all type variables that represent types involved in it (a type of

receiver, represented by a special type variable, rec, types of arguments, and return type)

in a vector vcTvars. A type variable rec represents a receiver. Constraint also has a

field, NumOfArgs, that stores the number of arguments provided for a function when this

constraint was generated. This number gives the expected arity of the function.

We say that a function constraint is explicit if it was created for a function call with

an explicit receiver Any function constraint that is not explicit is called implicit. For

example:

a.foo # explicit rec == class of ‘a’

foo # implicit rec == current class

b) Colon node constraints

If a Constraint deals with colon nodes, i.e. nested classes, it stores names of

classes in an instance vector vcConstants. It relies on the findClass function from

the MainRubin class (section 4.3.1) to search for a class or constant with a specific name

in a given scope.

c) Singleton

When a method is defined for specific instances rather than an entire class, a special

constraint must be constructed. It relies on the setSingleton function from the

MainRubin class to change a receiver of a constraint, so it will still be an instance of a

particular class, but with an access to more functions than other instances of the same

class. A function to be added to the receiver class is stored in the fun field of

Constraint.

 71

Each constraint has a field isCol that if set to true indicates that this is a colon

node constraint, isSingleton indicates that this is a singleton constraint. If both of

these are set to false (the default), a constraint is a function constraint. Also Constraint

data type has the field isSolvable, that is set to false only if Rubin determines that a

constraint cannot be solved. For example, if the programmer called a non-existing

function at the root level.

The Constraint structure is a necessary data type for a type inference: the type

system keeps information in this structure of all the assumptions for a piece of Ruby

code.

4.2.1 MainRubin class (org.jruby.ast.MainRubin)

MainRubin class is the class that binds all other Rubin classes together. It has

access to many Rubin tables (environments) that store type information for the code.

There are different tables for different scopes of the code, as well as different tables for

different kinds of variables and functions: the method lookup provides a functionality

to look into a current table, table for the scope of the code being currently evaluated, and

all other accessible tables from the current scope.

Rubin relies on the class MainRubin to get many utilities necessary for type

inference. The most important of the utility methods in this class are:

• lookup (String → piece) – searches for a class/function/variable

with a given name in a current environment (table),

• putToTable (FT/function/variable → boolean) – puts a

given class/function/variable into a current environment,

• removeFromTable (FT/function/variable → boolean) –

removes a given class/function/variable from a current environment,

• setSingleton (Tvar, Function → boolean) – extends the type

of a given type variables with a singleton function,

• setAsModuleFun (Function → boolean) – establishes a given

function as a module function,

 72

• setAsClassFun (Function → boolean) – establishes a given

function as a class function.

As we mentioned before, 25 additional lines of Java code were inserted into two

existing Java classes of jirb: method switchModes() to

org.jruby.RubyNameError, and method createRootTable() to

org.jruby.parser.ParserSupport. The first one turns Rubin on and off, and

switches the mode, while the second one creates an initial table with predefined

functions.

4.3 Algorithms

Next we describe the essential algorithms comprising Rubin. In particular, we will

elaborate on the following algorithms:

1. an algorithm to generate constraints,

2. an algorithm to unify two types in general,

3. an algorithm to unify two final types,

4. an algorithm to solve constraints.

4.3.1 Generate constraints

We will start with the first fundamental procedure for the type inference, and it is

the procedure of constraints generation. In order to generate constraints, the system

analyzes each node in the abstract syntax tree, and creates constraints for each of them.

These constraints will be solved later; with every new node at the root interaction level,

the system tries to solve the newly-generated and previously-unsolved constraints.

The system behaves differently for each different node of an abstract syntax tree.

If a node is an assignment node, the system binds the types of left and right hand

expressions of that assignment. For conditionals and loops the system generates

constraints for all nodes and generates type tables for all possible branches, and finally

compares those tables. If it finds discrepancies, it emits an informative message to the

programmer describing the problem. When a new entity, variable, function, class,

 73

module, is created, the system puts it into a corresponding scope. For example, if a

function innerFun is created inside of the body of the function outerFun, then

innerFun will be put into the scope of the function outerFun. When entities are

referenced, the system searches them in the corresponding scopes, and if they are not

there, or their types are not compatible, the system generates a message to a programmer.

The constraints are generated for function calls, singleton functions, and constant

calls, whether names of a class/module, or ordinary constants that contain primitive

types, etc.

The function GenCns generates constraints and inserts them into a list of

constraints (loc), and returns the type of the checked node. It uses the function Lookup

to search for a function/ class/module/variable in all accessible tables.

Below, in Figure 4.3 and Figure 4.4, is pseudo-code showing how the system

generates constraints and merges tables.

 74

GenCns (AST_NODE node): type

 bodytype = type of structure the node is located in23

 IF node ∈ ReturnNode THEN

 IF bodytype ∈ function THEN

 Unify (bodytype.return, GenCns (node.value))

 RETURN bodytype.return

 ELSE

 Report an error # ‘return’ cannot be called for class/module
 RETURN null24

 ENDIF

 ELSIF node ∈ Assignment THEN

 t = generate fresh tvar

 Unify (t, GenCns (node.value))

 Unify (t, GenCns (node.left)) # immediate constraint solve
 IF Lookup (node.left.name)!=null THEN

 Unify (Lookup (node.left.name), t)

 ELSE

 PutToTable (node.left.name → t)

 ENDIF

 RETURN Lookup (node.left.name)

 ELSIF node ∈ VarNode THEN

 RETURN Lookup (node.name)

 ELSIF node ∈ PrimitiveNode25 THEN

 RETURN Lookup (node.name)

 ELSIF node ∈ AliasNode THEN

 IF Lookup (node.second.name)!=null THEN

 PutToTable (node.first.name →

 Duplicate(node.second))
Figure 4.3 Constraints Generation Algorithm (continued on the next page)

23 This kind is either a function or a class/module.
24 null is an instance of the fixed type.
25 PrimitiveNode includes any of the primitive types – Integer, String, etc.

 75

 ELSE

 Report a warning # the aliased function not defined
 ENDIF

 RETURN null

 ELSIF node ∈ UndefNode THEN

 IF Lookup (node.name)!=null THEN

 RemoveFromTable (node.name)

 ELSE

 report a warning # referenced function not defined
 ENDIF

 RETURN null

 ELSIF node ∈ Condition || node ∈ Loop THEN

 Vector tablesToCompare;

 FOR each branch

 FOR each node n ∈ branch

 GenCns (n)

 ENDFOR

 tablesToCompare.add (current table)

 ENDFOR

 table.put(CompareTables (tablesToCompare))

 ELSIF node ∈ FunctionCall || node ∈ ColonNode

|| node ∈ SingletonNode THEN

 loc.put (GenCns (node))

 ELSIF node ∈ Declaration26 THEN

 FOR each node n in the declaration

 GenCns (n)

 ENDFOR

 putToTable (node)

 ENDIF

END

Figure 4.3 Constraints Generation Algorithm (continued from the prev. page)

26 Declarations can be of functions, classes, or modules.

 76

CompareTables (Vector tables): Table

 table1= tables[0]

 FOR each table2 in tables

 FOR each c ∈ table1

 IF c ∉ table2

 Report an error # branches not compatible
 ENDIF

 ENDFOR

 FOR each c ∈ table2

 IF c ∉ table1

 Report an error # branches not compatible
 IF !table1.contains(c.name)

 table1+=c

 ENDIF

 ENDIF

 ENDFOR

 table1.merge(table2) # all elements from table2 not present in table1
will be added to table 1

 ENDFOR

 RETURN table1

END
Figure 4.4 Compare type tables of different branches of control-flow statements

4.3.2 Unify Two Types

Unification is the algorithm for type-checking and inference. Below we describe

the unification of two instances of Type. The purpose of the algorithm is to make sure

that the two types are compatible. This algorithm generates substitution, described in

Chapter 3. Substitution is handled automatically, because if unification was correct and

did not encounter any errors, both type variables involved in the unification will point at

the same type.

In Figure 4.5, we give pseudo-code for unifying two types – A and B, that are

given as parameters. If both A and B are final types, then the procedure

unifyFinalTypes, that deals with the unification of two fixed types, is called. It

checks whether these two types are compatible, as described later.

 77

Figure 4.5 Unification of two final types

If one of the inputs’ (A or B) ultimate inner types is a final type, and the other’s is

a type variable, then the former will become the inner type for the latter. This case is

shown in Figure 4.6.

Figure 4.6 Unification of final type and a type variable

If the ultimate inner types of both parameters are type variables, then one will

become an inner type for another, as it shown in Figure 4.7.

 78

Figure 4.7 Unification two type variables

In pseudo-code the overall unification algorithm is given in Figure 4.8.

Unify (Type A, Type B): boolean

IF A ∈ TV THEN

 IF A.inner == null THEN

 A.inner = B

 RETURN true

 ELSE

 C = A.getType()

 IF C.inner == null THEN

 C.inner = B #(put B on the place of C, so A.inner == B
 ELSE

 RETURN Unify (C, B)

 ENDIF

 ENDIF

ELSE # (A is a final type) - A ∈ FT
 IF B ∈ TV THEN

 RETURN Unify (B, A)

 ELSE

 RETURN UnifyFixedTypes (A, B)

 ENDIF

ENDIF

END
Figure 4.8 Two types unification algorithm

 79

4.3.3 Unify Two Fixed Types

Sometimes it is necessary to unify two final (already determined) types. For

example, if two expressions have determined types, and they are used in an operation that

requires them to have equal types, those final types must be unified. The problem is that,

as we discussed earlier, final types can be different – fixed, unary, and binary – and each

of them requires a different unification procedure.

The procedure UnifyFinalTypes attempts to unify two fixed types.

• If those two types are of different kinds, e.g. one of them is fixed, and

another one is unary type, then the types are not compatible and the

system returns an error.

• If both types are fixed, then if both types have the same name, then they

are the same and therefore compatible; otherwise an error is returned.

• If the names are different, the types still can be compatible in the case

when the first provided type is a subtype of the second. If it is not, then the

types are not compatible.

When unifying two unary types, the sequence of actions is the same, but as unary

types are additionally characterized by their inner types, those inner types must also be

compatible. Comparison of two binary types poses another restriction: both key types

must have compatible types. These algorithms are displayed in Figures 4.9-4.12.

UnifyFixedTypes (Type A, Type B): boolean

IF A.type != B.type THEN

 Report an error # Error, types not compatible
RETURN FALSE

ELSIF A.type ∈ FT THEN # are primitive types
 RETURN SolveFixedType (A, B)

ELSIF A.type ∈ UT THEN

RETURN SolveUnaryType (A, B)

 ELSIF A.type ∈ BT THEN

 RETURN SolveBinaryType (A, B)

 ENDIF

END
Figure 4.9 Two fixed types unification

 80

SolveFixedType (FixedType A, FixedType B):boolean

 RETURN ((A.name==B.name) || (A.type is subtype of B.type))

END
Figure 4.10 Two primitive types unification

SolveUnaryType (UnaryType A, UnaryType B):boolean

 RETURN (SolveFixedType(A,B) && Unify(A.value,B.value))

END
Figure 4.11 Two unary types unification

SolveBinaryType (BinaryType A, BinaryType B):boolean

 RETURN (SolveUnaryType(A,B) && Unify(A.key, B.key))

END
Figure 4.12 Two binary types unification

4.3.4 Solve Constraints

 After each new AST node is created at the root level, Rubin tries to solve both

new constraints generated for the new node, and re-examine the old ones that were not

solved previously. All constraints are stored in the list of constraints. During each stage

of constraint resolution, Rubin examines constraints in this list, one by one. If any of the

constraints can be solved, Rubin solves it, deletes it from the list, and starts new

examinations of constraints from the list from the beginning, as solving one constraint

could provide a new information necessary to solve some other, previously unsolvable,

constraints, that could not be solved before. If Rubin determines that the constraint is

never solvable, it reports a typing-error message, deletes this constraint from the list, and

continues the current iteration of walking through the list. This process is repeated, until:

• no constraint was solved, or

• the list of constraints is empty.

In the first case the list is retained for the future analysis; the second case implies that all

created constraints are solved.

In Figure 4.13, we give pseudo-code for the described procedure.

 81

SolveConstraints (<Constraints> list): void

 FOR each constraint ∈ list

 IF SolveConstraint (constraint)

 delete constraint from the list

 restart the loop

 ELSIF !constraint.isSolvable

 report a typing error
 delete constraint from the list

 ENDIF

 ENDFOR

END

Figure 4.13 Solve constraints algorithm

Recall from section 4.2.1 that this constraint is either recognized as unsolvable if

it was created at the root level, or the system defers resolution of this constraint until

more information becomes available by adding it to a queue of the defined constraints.

The function FalseConstr given in Figure 4.17 is provides this functionality by

setting the flag to false.

4.3.5 Solve a Constraint

Our next algorithm will allow us to solve one constraint. A procedure to solve a

single constraint is one of the fundamental parts of the type inference process.

As there are three kinds of constraint, the system first determines the kind of

constraint to be solved.

If it is a colon node constraint, Rubin searches for all constants mentioned during

the call of the colon node. If Rubin finds them all in corresponding scopes, it gets the

type of the last one in the list, and unifies this type to the left-hand side type variable of

the constraint. If Rubin cannot find at least one of the given constants, it cannot solve that

constraint.

If the constraint is a singleton constraint for an already determined type, Rubin

creates a new type for its receiver, that becomes a subtype of the previous one, by adding

 82

the newly defined function to the table of that class. If the type of the receiver is not

determined, Rubin postpones the resolution of this constraint by continuing on to the next

constraint.

Function constraints are the most complicated kind to solve. Before starting a

process of a function constraint solution, Rubin examines the receiver of the constraint. If

the receiver of the constraint is implicit, then initially the system searches for a function

with the matching name up through nested scopes until it reaches the scope of the

enclosing class of a current scope, or it reaches the root scope (Object). If the final type

for the receiver is not determined yet, i.e. the ultimate inner type for the receiver is a type

variable, then this constraint cannot be solved yet, and its solution is postponed until

later. If the system has found the function with that name, it tries to determine whether

the constraint is valid (whether the usage implied by the constraint is compatible with that

function).

If the name of the constraint (that corresponds to the name of the function that this

constraint represents) is equal to new, then this node is a creation of the instance for a

class (a constructor): an initialization constraint. The receiver must be a raw class (for

example A::B.new, not a=A::B; a.new). If Rubin shows that the receiver is not a

raw class, it returns an error that the function new was called with the wrong receiver.

Otherwise Rubin gets the matching class in the inner field of the raw class.

At this point the actual process of solving a constraint begins. Each class may

have only one function of a given name, except for built-in functions. So the system

checks for the function with the desired name in the tables of the receiver. If the function

is not present anywhere, then the constraint cannot be solved and the solution is deferred.

Alternatively Rubin reports a typing error if this constraint was created at the root level.

If the function is present, and there is only one possibility, then the system tries to unify

the matching types of the constraint and the function. If it cannot, then an error has been

found; the constraint is not satisfiable.

If there is more than one possible function, then it is a built-in primitive. In this case

Rubin needs to find the suitable function by sieving the possibilities based on the

information given in the constraint:

 83

• whether a block is necessary and whether it was provided,

• number of arguments, and

• types of each argument.

After each round of sieving, the system checks the number of possibilities left. If zero

possibilities remain, none of the possibilities is suitable, and the constraint cannot be

solved. If only one possibility is left, then the system tries to unify the constraint to that

sole function. If more than one remains, then sieving continues. If in the end more that

one possibility is left, the information given for the constraint resolution system was not

sufficient to determine which possibility to use. In this case that system tries to find

common types from all possible functions remaining. For example, consider the function

+ with the receiver that is an integer the two following possibilities remained:

+: Integer*Integer  Integer

+: Integer*Float  Float

In this case, the system is able to recognize that the argument must be of the type

Number, and the return type also must be of the Number type, as both float and integer

are numbers. So it unifies the matching type variable in the constraint to the common

type. The system is always able to find a common type, as in Ruby every type is an

instance of Object. Rubin is able to determine this type, but being an object does not

provide any additional typing information.

In Figure 4.14 we give pseudo-code for this algorithm.

 84

SolveConstraint (Constraint C):boolean

IF C is colon node THEN

 RETURN SolveColonNode (C)

ELSIF C is singleton THEN

 RETURN SolveSingleton (C)

ELSIF C is implicit THEN

 RETURN SolveImplicit (C)

ENDIF

The constraint is a function constraint
A = C.rec.getType

IF A ∈ tvar THEN # final type of receiver not determined yet
 RETURN FALSE # Constraint cannot be solved yet
ENDIF

IF C ∈ InitConstraint THEN # the name of the function is new
 RETURN SolveInitConstraint (C,A)

ENDIF

IF A.funs.has (C.name) THEN

 ResTable = SievePossibleFuns (C, A)

 n = ResTable.funs.numberOf (C.name)

 IF n > 1 THEN

 RETURN SearchCommonTypes (C,ResTable)

 ELSIF n == 0 THEN

 RETURN FalseConstr (C)

 ELSE

 RETURN UnifyCnstrToFun (C, A.funs.get (C.name))

 ENDIF

ELSE

 RETURN FalseConstr (C)

ENDIF

END
Figure 4.14 Constraint resolution algorithm

 85

SolveColonNode (Constraint c): boolean

FOR each name in C.vcConstants

 Find the necessary scope

 IF (Lookup (name)==null) THEN

 RETURN FalseConstr (C)

 ELSE

 RETURN true

 ENDIF

 ENDFOR

END
Figure 4.15 Colon node constraint resolution algorithm

SolveSingleton(Constraint C): boolean

 IF (Lookup (C.rec.name)==null) THEN

 RETURN FalseConstr (C)

 ELSE

 setSingleton (C.rec, C.fun)

 RETURN true

 ENDIF

END
Figure 4.16 Singleton constraint resolution algorithm

FalseConstr (Constraint C): boolean

 Report an error # one of the typing errors
 IF (C created at the root level) THEN

 C.isSolvable = false

 ENDIF

 RETURN false

END
Figure 4.17 Algorithm handle unsolvable constraint

 86

SolveImplicit (Constraint C):Boolean

 F = table.get (C.NAME)

 IF F != null THEN

 RETURN UnifyCnstrToFun (C, F)

 ELSE

 RETURN FalseConstr (C) # Constraint cannot be solved yet
 ENDIF

END
Figure 4.18 Solve function constraint with an implicit receiver

SolveInitConstraint (Constraint C,tvar A):boolean

 IF A ∈ RC THEN
 A = A.getFT

 RETURN true

 ELSE

 RETURN FalseConstr (C)

 ENDIF

END
Figure 4.19 Solve initialization constraint

SearchCommonTypes (Constraint C, Table table): Type

 FOR i = 1 to C.NumOfTvars

 Type t = table.ElementAt(0).ElementAt(i)

 FOR each possible function pf in table

 t = FindCommonTypeTwoTypes(t,pf.ElementAt(i))

 ENDFOR

 Unify (C.tvars(i), t)

 ENDFOR

 RETURN t

END
Figure 4.20 Search common type for the two types

 87

SievePossibleFuns (Constraint C, Name A):

table = A.funs.subtable (C.name)

FOR all elements in table

 IF element.numberOfArgs != C.numberOfArgs THEN

 remove element from table

 ENDIF

 FOR each tvars ∈ C

 IF !Unify (tvar, matching27 tvar in C) THEN

 remove element from table

 ENDIF

 ENDFOR

 IF !(element.argblock compatible with C.argblock) THEN

 remove element from table

 ENDIF

ENDFOR

RETURN table

END
Figure 4.21 Algorithm to sieve functions

At this point another important algorithm remains to be examined: the algorithm that

unifies according types of a function and a constraint. When the system determines which

function was called and finds this function in the table, Rubin must ensure that the use of

this function is compatible with its description: the number of arguments is as specified,

the used types are correct, and so on. This procedure works in the following way: a

function and a constraint (or two blocks) given as arguments are considered compatible,

if:

• their numbers of arguments are equal

• each argument is compatible with the matching function parameter’s type

• their argument blocks are not compatible

27 Specifically, the return type of a function must be compatible with the return type of a
constraint; the same for the receiver and all arguments.

 88

The pseudo-code for this function is given in Figure 4.22.

UnifyCnstrToFun (Constraint C, Function F)

 IF F.numberOfArgs != C.numberOfArgs THEN

 RETURN FALSE

 ENDIF

 FOR each tvar ∈ C

 IF !Unify (tvar, matching tvar in C) THEN

 RETURN FALSE

 ENDIF

 ENDFOR

 ENDFOR

 IF !(element.argblock compatible with C.argblock) THEN

 RETURN FALSE

 ENDIF

 RETURN TRUE

END
Figure 4.22 Constraints and functions unification algorithm

The function UnifyCnstrToFun works for duplicates of the unified function and

constraint, that is why the situation of mistakenly unifying a few tvars before realizing

that the function does not correspond the constraint is not possible.

4.4 Summary

This chapter detailed our implementation of Rubin, our system that implements

type inference for Ruby. In particular, we described data structures that are supported by

Rubin, including

• Type,

• Fixed Type,

• Unary Type,

• Binary Type,

• Module,

 89

• Type Variable,

• Function Type,

• Block, and

• Raw Class/Module.

Also we provided the descriptions of the fundamental algorithms of our system

with principal typings. The most important of these are constraint generation and

constraint resolution.

Next we turn our attention to validating our system, and showing its abilities. We

will show how the system works with the potentially problematic Ruby constructs

previously identified, and how it is able to improve the software development process.

Also we will discuss several examples of the actual Ruby projects, and how Rubin could

help programmers in developing those projects.

 90

Chapter 5

Evaluation

The system was designed in order to improve Ruby interpretation mode described

previously in this thesis. Here we provide a brief summary of the system’s tasks:

• Provide error messages earlier in the development process than jirb does

• Provide error messages at a better localized, more expected place than jirb does

• Provide more meaningful messages than jirb does

This chapter evaluates the extent to which these goals are met.

There are several ways we can validate the system:

• Show that the subset of Ruby situations, for which error messages will be

reported earlier by Rubin, is bigger than it was for jirb.

• Show that the system can improve developing of actual Ruby projects.

• Conduct a user study

 As a result, we decided to perform several types of evaluation because it will better

demonstrate the utility of the system from different angles.

First, we will show benefits provided by the system – we will examine all of the

challenges described earlier, and show how Rubin reduces the difficulties. At this stage

of evaluation we will also discuss how Rubin improves interactive/incremental Ruby

coding. We will show what our system with principal typings can do that others lacking

this property cannot.

Second, we will show several examples of buggy code in actual Ruby projects, and

how the system like ours could prevent these bugs from remaining in the project. We will

provide three examples. The purpose of that subsection is to show that the system like

ours can be useful for real world applications.

 91

5.1 Challenges

We show here the way the system works with different Ruby constructs and

different coding situations where potential type problems may occur without warnings

from jirb. We give the messages Rubin produces, and compare these messages to those of

jirb.

As we discussed earlier, problems may show up for specific Ruby constructs,

given in Chapter 2. Below, we list these constructs, and show how Rubin deals with each

of them.

In each of the cases, Rubin will report a potentially unsafe situation to the

programmer:

• immediately after the construct is written, if the code is being written on the

root level of the interaction window, or

• immediately after the programmer gets back to the root level, if the code is

not being written on the root level of the interaction window.

In addition, Rubin recognizes a number of different type-clashes, which can lead to

later programmer confusion. Some of these are recognized as incorrect, and an error

message is emitted; others are problematic, and an informational warning message is

emitted. In the latter case, the system describes constraints that the programmer is

expected to adhere to in the future. In both cases, the code can still be run – Rubin does

not prohibit the code it considers to be flawed from being executed.

Because the system performs this way, the programmer will be able to correct the

identified problem as soon after the error is committed. In this case, the possibility that

the programmer will be relying on the potentially buggy code in the future is significantly

reduced.

We will examine both errors and inconsistent use of code. We will start with errors.

 92

5.1.1 Errors:

The following are situations that are recognized as errors by Rubin. Any

occurrence of these results in the system reporting an appropriate error messages to

programmers that indicate that they wrote erroneous code. If a programmer receives any

of the messages that are described below, he probably will need to go back in his

program and repair some blocks of code, as otherwise his program will fail when

executed. The situations here correspond to those shown in Chapter 3. It is important to

note that for all situations except 5.1.1.7, jirb will not report any error message at the time

of code writing; it will crash later when the erroneous code is executed.

Here are the nine situations that we identified Rubin recognizes as errors.

Descriptions of each of them we start with short reminder of a problem (additional

information can be found in Chapter 3, section 3.2), and then show Rubin in action: a

message that Rubin produces for a problem.

5.1.1.1 Branches in Control-flow Statements are not Type-consistent

Recall that type inconsistent branches may lead to future type errors, thus they are

considered as errors by Rubin. Below we show Rubin’s messages for each case possible

for them.

a. Variable Created with Differing Types: If a previously undefined variable is

created with different types in different branches of a control-flow statement, then the

programmer may not rely on the variable containing values of a known type. As this is

a dangerous situation, Rubin names these variables with ambiguous types. For this and

other similar cases of control-flow statements for future analysis Rubin remember the

results from the first evaluated branch – the branch that was written first (before other

branches) by the developer (the branch that is the highest in the code). The system

must rely on some information in order to carry on type checking. The potential

problem was already reported to the programmer, so Rubin assumes that he either

corrected the problem, or he controls the situation – in either case the task of the

system was accomplished. The same reasoning applies for all other ambiguous

situations.

 93

1: # ‘f’ is not defined
2: if a>0
3: f=9
4: else
5: f="6"
6: end
7: # ’f’ has ambiguous type

Rubin’s Message:

ERROR!!! The local variable 'f' was defined in THEN and ELSE bodies
of the IF statement on line 2 with different types.
 Object::Integer
 Object::String
For the future analysis we will assume that its type will be
Object::Integer

As in the previous case, this analysis applies to all inner-blocks of control flow

statements, including if, case, for, while, switch, until, and unless.

b. Variable not Created in All Branches: Recall that if a variable does not exist, and is

created/assigned in only one branch, then an error condition occurs because the

programmer cannot assume, after the conditional, that the variable exists and is

initialized. As a result, an error is reported by Rubin, and the message identifies the

variable(s) that are known to not exist in advance and differ after.

1: # neither ‘f’ or ‘d’ are defined
2: if a>0
3: f=9
4: else
5: d=6
6: end
7: # either ‘f’ or ‘d’ is created, not both

 94

Rubin’s Message:

ERROR!!! The local variable 'f' was defined in THEN body, but was
not defined in ELSE body: IF statement on line 2
For the future analysis we will assume that the local variable ‘f’ exists
ERROR!!! The local variable 'd’ was defined in ELSE body, but was
not defined in THEN body: IF statement on line 2
For the future analysis we will assume that the local variable ‘d’ exists

c. Function Returning Different Types: Recall that functions usually must return one

type, and the cases where it is not true must be reported to the programmer. Rubin

recognizes those situations as soon as the function definition is completed, and reports an

error message indicating the name of the function and all the potential return types.

1: def diffReturn arg
2: if arg>0
3: return 3 # integer return
4: end
5: return "" # string return
6: end
7: # ‘diffReturn’ returns either an integer or a string

Rubin’s Message:

ERROR!!! The function 'diffReturn' defined on line 1 may return
different types:
 Object::Integer
 Object::String
For the future analysis we will assume that the function will be
returning Object::Integer

5.1.1.2 Local/Global/Instance Variable Changes Type: As was shown previously, if a

variable is already known to contain a value of a given type, and is later assigned a value

of a differing type, the programmer may not know the variables type anymore. This is a

dangerous situation, and that is why Rubin reports the variable(s), their original and their

clashing new type. For future analysis Rubin retains the old type restrictions.

1: b="" # ‘b’ is a string
...
4: b=5 # ‘b’ is redefined as an integer

 95

 Rubin’s Message:

ERROR!!! The local variable ‘b’ changes its type on line 4. It was a
Object::String and attempts to become an Object::Integer
For the future analysis we will assume that the local variable ‘b’ retains
its first type - Object::String

5.1.1.3 Number of Targets Does not Match Number of Values in Multiple

Assignment: As we said previously, the situation when a programmer uses different

numbers of targets and values in the multiple assignment expression, appears to be

incorrect. That is the reason why Rubin emits the error message. For the example below,

Rubin reports that the programmer fails to assign one of the variables, namely c.

9: a,b,c=1,2 # type of ‘c’ is null

Rubin’s Message:

ERROR!!! The number of arguments (3) for a multiple assignment on
line 9 is not equal to the number of values (2)

5.1.1.4. Inappropriate Use of Break, Redo, Next Statement: As was mentioned,

break, next, and redo statements are not allowed outside of loops. Rubin can

recognize and report on these situations.

11: def funWithBadBreak
12: break # illegal outside loop
13: end

Rubin’s Message:

ERROR!!! BREAK statement is used outside a loop on line 12

5.1.1.5 Function Called with Wrong Parameters: Recall that functions calls must

correspond with matching functions declarations; functions cannot be called with wrong

parameters. Here we dwell on three potential dangerous situations for this case, and show

how Rubin works with all of them.

 96

a. A function called with the wrong number of arguments. Rubin can report on

problem. For the example below, Rubin reports that the function concat

cannot be called with two arguments.

5: “hi”.concat(“\n”,”.”) # wrong number of arguments

 Rubin’s Message:

ERROR!!!! Cannot call the function ‘concat’ of the class Object::String
with 2 arguments: line 5

 The same is true for lambda procedures. Rubin will notice and report that the

lambda is called with the wrong number of arguments.

30: a=lambda{2}
31: a.call(2) # wrong number of arguments

 Rubin’s Message:

ERROR!!! The proc is called with the wrong number of arguments: 1
instead of 0: line 31

b. The case when a function may be called with arguments of the wrong types is

recognized by Rubin too.

12: “hi”.concat(3) # wrong type of the argument

 Rubin’s Message:

ERROR!!! Argument 1 of String.concat must be Object::String;
Object::Integer was provided: line 12

c. Rubin is also capable of working with the yield and block problem: if a

function expects a block, but is not given one, Rubin reports to the

programmer that a block must be supplied.

 97

3: def apply
4: yield
5: end
6: apply # needs block

 Rubin’s Message:

ERROR!!! A block was required while calling 'apply' but was not
supplied: line 6
It expected 0 arguments

As mentioned already in this thesis, Rubin does not support functions with arbitrary

number of arguments. If Rubin sees the function like that, it ignores the last formal.

5.1.1.6 Parameterized Types May Only Contain Values of a Single Type: Rubin also

recognizes cases where parameterized types may only contain values of the same type. If

the programmer-provided parameterized types with value types that are not compatible,

the system will report that that the two hashes have incompatible value types.

6: h1={1=>”one”}
7: h2={"two"=>2}
8: h1.update(h2) # type clash

Rubin’s Message:

ERROR!!! Incompatible value types of binary types Object::Hash and
Object::Hash: line 8

We must mention that Rubin assumes that parametric types always must have compatible

value types: Rubin cannot work for the code that contains legitimate parametric types

with incompatible value types: for example, the predefined function divmod returns an

array with two values: an integer and a float. Although that is the behaviour designed by

Ruby developers, Rubin will mark this situation as a type error, and report a

corresponding message.

5.1.1.7 Class Modules, and Constants Redefined to Another: As we mentioned

before, once a name is bound to a class, it cannot be reassigned to a module, and vice

 98

versa. Rubin is able to notice this problem, and report as meaningful error message as it

can derive.

1: class AClass
...
13: end
...
17: module AClass # redefine class as a module
...
23: end

a) Message of Ruby Interpreter:

“TypeError: AClass is not a module”

b) Rubin’s Message:

ERROR!!! The class AClass is redefined as a module: line 17

Although, as can be seen from the report above, jirb recognizes this situation and reports

an error message, it can also be seen that this message is not descriptive: one of the

critical pieces of lacking information in jirb’s message is the old type of the redefined

Ruby essence (class/module/function). We believe, that this information may be useful

for the programmers, that is why Rubin reports a similar message, but with the old type.

5.1.1.8 Ordinary Functions Called as Class/module Functions: Recall that calling an

ordinary function with the name of its class is not allowed; Rubin recognizes such

situations, and reports a corresponding message.

1: class A
2: def ordfun
3: end
4: end
5: def wrap
6: A.ordfun # Error, ‘ordfun’ is not a class function
7: end

Rubin’s Message:

ERROR!!! A function ‘ordfun’ exists, but it must be a module function:
line 6

 99

5.1.2 Informational Messages:

In this subsection we show the situations Rubin considers to be potentially dangerous,

but not necessarily erroneous. All of them can be resolved by adding a necessary piece

(an undefined function, for example) to the code. Therefore, Rubin does not report error

messages, but rather informational messages in such situations. The jirb interpreter

reports no message at all. Implicit in these messages is an obligation that the programmer

does not execute some block of code before all other structures that it uses are defined.

In the jirb interpreter, the program will crash if the programmer neglects to satisfy the

obligation. Rubin highlights these obligations for programmers, enumerating and

reporting necessary types for the structures, in order to reduce the number of runtime

crashes.

5.1.2.1 Use of Functions Before Declarations: Recall that Ruby programmers may call

undefined functions provided that they will define them before the calling blocks of code

that reference those functions are executed. Rubin is able to see these cases, and report

them to the programmer supplying the derived type for the called function also.

12: def lcm a,b
13: a*b/gcd(a,b) # ‘gcd’ not defined
14: end

Rubin’s Message:

WARNING!!! The function 'gcd' is not defined for a class Object: line
13
If you want to use the function ‘lcm’ you need to define ‘gcd’
It must have 2 arguments
Argument 1: any type
Argument 2: any type
It may return any type
The receiver must be Object

The system works for aliases and undefs as well. If a programmer tries to

duplicate or undefine an undefined function, Rubin reports that the function that to be

duplicated is not defined yet.

 100

1: # function ‘euclid’ not defined
2: def duplicatingFun
3: alias gcd euclid
4: end

Rubin’s Message:

WARNING!!! The function to be aliased – euclid – is not defined: line 3

1: # function ‘und’ not defined
2: def undefiningFun
3: undef und
4: end

Rubin’s Message:

WARNING!!! The function ‘und’ might not be undefined at this point as
currently it is not defined: line 3

In order to avoid the future problem, the programmer must define the lacking functions

(gcd, euclid, and und respectively) before he calls the ones that rely on them (lcm,

duplicatingFun, and undefiningFun).

5.1.2.2 A Global/Instance/Class Variable is Used Before Definition: The cases when a

programmer uses yet undeclared variables, are supported by our system. Rubin produces

an informational message, which tells the programmer all the information it could infer

about the variable.

1: class A
2: def geta
3: @a # ‘@a’ not defined28
4: end
5: end

28 Recall that classes can be extended in other code sections: Ruby implements open
classes, so @a may be defined later.

 101

Rubin’s Message:

WARNING!!! Before calling function ‘geta’ you need to define the
instance variable @a: line 3
The instance variable @a was used, but isn't defined: line 3

In order to avoid the future problem, the programmer must define the instance variable

@a before he calls the method geta.

5.1.2.3 Reference to an Undefined Class/Constant. Using Rubin, programmers also

will be able to get feedback about cases when they reference to an undefined class or a

constant. Rubin reports a corresponding informational message to the programmer.

1: def callConst
2: A::B # ‘A’ not visible
3: end

Rubin’s Message:

WARNING!!! You are trying to access a constant B from an undefined
class A: line 2

In order to avoid the future problem, the programmer must define a class A, and the

constant B for it before he calls the method callConst.

5.1.2.4 Functions are not Type-consistent. Recall that the principal typings system must

be able to allow programmers to change their function declarations. Rubin is flexible

enough to be able to change its environment to support function redeclaration. Still, if a

programmer changes the type of an existing function, Rubin reports a corresponding

warning message to the programmer.

1: def currentValue
2: 3
3: end
4: currentValue +5 # ‘currentValue’ must return number
5: def currentValue
6: ""
7: end

 102

Rubin’s Message:

WARNING!!! The function being defined on the line 5 - 'currentValue' -
existed before, inside the class Object
Return types are inconsistent! Previously the function returned
'Object::Integer' and now it will be returning 'Object::String'

5.1.2.5 Definitions of Functions with the Type Inconsistent to the One that It Was

Used Before. Recall that the principal typings system must be capable of type-checking

the code, that has references to the undefined pieces. Rubin provides such capability; it

also provides appropriate messages for programmers in cases when he defined the

function with a different type than the one expected.

1: def fun a
2: callLater # ‘callLater’ must be without arguments
3: end
4: def callLater b # ‘callLater’ expects one argument
5: b=""
6: end

Rubin’s Message:

WARNING!!! You are inconsistent! Previously you used the function
‘callLater’ with the minimum number of accepted arguments was '0'
and now it will be 1: line 4

In the code above the function callLater was called without arguments, but later

the programmer defines it with one formal: if the programmer runs the function fun, his

code will fail. In order to avoid such situations, the programmer must try to be consistent

throughout entire code.

5.1.3 Comparison of Rubin to Ruby Interpreter and Systems with Principal Types.

In this subsection, we showed a host of Ruby constructs that the system was able

to type correctly, and messages returned by it. Below we give a short summary of general

Ruby cases that can cause type problems, and whether they are supported by systems

with principal types and systems with principal typings, i.e. whether they are reported to

the programmer immediately after they were committed. The red square mean that the

 103

system that the current column represents does not provide a feedback to a programmer if

he committed the error described in the same row.

Table 5.1 Comparison of Error Message Reporting

Description of Problem
jirb

Interpreter
Principal

Types only
Principal

Typings (Rubin)

 Branches in Control-Flow
Statements are Type-Inconsistent

 Local/Global/Instance
Variable Changes Type

Target Count Mismatches Value
Count in Multiple Assignment

Ordinary Functions Called as
Class/module Functions

Functions are Type-Inconsistent
Definitions of Function Type-
Inconsistent with Prior Calls

Inappropriate Use of Break,
Redo, Next Statement

 Function Called with
Wrong Parameters

 Parameterized Types May Only
Contain Values of a Single Type

Class/Module/Constant Redefined
to Another Kind

Use of Function
Before Declaration

Global/Instance/Class Variable
Used Before Definition

Reference to
Undefined Class/Constant

Not Supported
Supported

In Table 5.1, a divided cell, indicating both supported and not supported, shows

that the system works for this problem in all situations except those that involve function

redefinition.

 104

Table 5.1 shows:

• that almost none problems described in Chapter 3 are recognized by jirb;

the only exception is the case of class/module/constant redefinitions, in

which the error message is reported, but can be improved,

• that many of the described problems cannot be recognized by systems

with principal types property only,

• that all the described errors are recognized and reported by our principal

typings system.

As can be observed, Rubin extends the set of possible Ruby cases, for which error

messages will be reported to programmers. There are still some difficulties (parametric

types with different value types, functions with an arbitrary number of arguments), that

remain for the future work. Still, Rubin, the system with principal typings, was able to

enhance Ruby code safety by supporting more cases than other previously existing

systems did.

5.2 Application to third party systems

This subsection evaluates whether the problematic constructs described in the

previous section are actually used by Ruby programmers, thus there exists a danger that

the real Ruby code can contain kinds of bugs described in this thesis, not discovered by

the developers. Below we give three popular Ruby projects: two, out of three, are in the

top 100 of most popular Ruby projects by downloads from http://rubyforge.org.

All of the three had releases, which contained such bugs that the system with principal

typings could catch and report do the developers. Each of the bug descriptions below

indicates that programmers that downloaded and used these releases encountered these

hidden bugs, and that these bugs hindered their further development process by not

allowing them to use the features of the buggy application they needed. By providing

follow-ups of developers we show that the developers themselves admitted the errors,

and corrected them.

 105

5.2.1 Project name: Mechanize

The Mechanize library is used for automating interaction with websites.

Mechanize automatically stores and sends cookies, follows redirects, can follow links,

and submit forms. Form fields can be populated and submitted. Mechanize also keeps

track of the sites that users have visited as a history [21].

At the beginning the project was named WWW::Mechanize. The first tracked

version, 0.4.0, was released in 2006-03-22. The current version’s number is 0.9.0,

released on 2008-12-23. Currently the project is 77th most popular Ruby project to

download with 16852 downloads [40].

Bug report:
[#15049] Mechanize 6.10 is broken for rails 1.8.2+

Description of the bug29

The developers provided the arguments for the alias function in a wrong order.

Follow-up:

Message

Date: 2007-10-30 12:37 Sender: Aaron Patterson fixed in
changeset:445

URL: http://rubyforge.org/tracker/?group_id=1453&atid=5709&func=detail&aid=15049
It took developers 5 days to fix the bug after it was reported. The buggy version was

released July 26th, 2007, while next one, with the bug corrected was released December

4th, 2007, so the buggy version was unpatched for 131 days.

29 Here, and in two other places we provide simplified versions. The exact descriptions of
bugs are given in an appendix

 106

Relevant code:
module WWW

 # :stopdoc:

 …

 class Page

 …

 if RUBY_VERSION > '1.8.2'

 alias :inspect :pretty_inspect

 end

 end

 class Link

 …

 if RUBY_VERSION > '1.8.2'

 alias :inspect :pretty inspect

 end

 end

end

Rubin in action:

The programmer who wrote this code provided arguments for the built-in function

alias in a wrong order. If condition is not met (RUBY_VERSION > '1.8.2') the

Ruby interpreter does not evaluate the erroneous parts of the code, therefore it does not

return any message for developers: this is apparently what happened. If the code was run

through Rubin, a programmer would get the following message, that corresponds to the

one described in subsection 5.1.2.1:

The function that is being tried to be aliased - pretty_inspect - was not defined

As can be seen, the programmer would have the information similar to the one that he

received from the bug report. Thus he would be prevented from releasing the buggy code;

he would be able to correct the error, and release a correct version at once.

 107

5.2.2 Project name: TMail

TMail is an email handler library for Ruby. TMail can extract data from mail, and

write data to mail following the relevant RFCs on the subject [46]. The current released

version’s number is 1.2.3.1. It was released on 2008-04-11.

Description of the bug

The programmer made a typo, writing ‘Regep’ instead of ‘Regexp’.

Follow-up:

Message

Date: 2008-01-10 10:21 Sender: Mikel Lindsaar

Thanks for this, trunk REV 178 handles this bug... Mikel

URL:
http://rubyforge.org/tracker/?group_id=4512&atid=17370&func=detail&aid=16899

It took developers three days to fix the bug after it was reported. The buggy version was

released on December 2nd , 2007, while next one, with the bug corrected, was released on

January 11th, 2008, so the buggy version was unpatched for 40 days.

Rubin in action:

A programmer made a typing error – he typed ‘Regep’ instead of ‘Regexp’. The

Ruby interpreter does not return any message in this case. If the code was run through

Rubin, a programmer would get the message:

Constant 'Regep' is not defined

 108

As for the previous case, the programmer would find out of the error immediately after

running the code through Rubin. Thus he would have an opportunity to correct the bug

before releasing his application.

Relevant code:
module TMail

 class HeaderField

 …

 def new_from_port(port, name, conf = DEFAULT_CONFIG)

 re = Regep.new('\A(' + Regexp.quote(name) + '):',
'i')

 str = nil

 port.ropen {|f|

 f.each do |line|

 if m = re.match(line) then

 str = m.post_match.strip

 elsif str and /\A[\t]/ === line then

 str << ' ' << line.strip

 elsif /\A-*\s*\z/ === line then

 break

 elsif str then

 break

 end

 end

 }

 new(name, str, Config.to_config(conf))

 end

 …

end

 109

5.2.3 Project name: webgen

webgen is a free (GPL-licensed) command line application for generating static

websites [47].

The first version 0.1.0 was released on 2004-07-08. The current released version’s

number is 0.5.10. It was released on 2009-08-10. Currently the project is 80th most

popular Ruby project to download with 16790 downloads [40].

Description of the bug.

Calling an ordinary, non-module function with the name of the module (instead of the

name of the instance) as the receiver.

Follow-up:

Message

Date: 2005-12-12 04:48 Sender: Thomas Leitner Fixed!

URL: http://rubyforge.org/tracker/?group_id=296&atid=1207&func=detail&aid=2991

Relevant code:
…

module FileUtils

 …

 def ask_before_delete(ask, func, list, options = {})

 …

 end

 …

end

…

FileUtils.ask_before_delete(@ask, :rm, file, :force =>
true)

…

 110

It took developers three days to fix the bug after it was reported. The buggy version was

released on November 27th, 2005, while next one, with the bug corrected, was released on

December 29th, 2005, so the buggy version was unpatched for 32 days.

Rubin in action:

A programmer defined a function ‘ask_before_delete’ for the module

‘FileUtils’ and did not set it as a module function. Later a programmer calls this

function with a receiver of the name of the module – this is allowed only for module

functions. If the code was checked via Rubin, a programmer would get the message:

ERROR!!! A function 'ask_before_delete' exists, but it must be a module function

As for the two previous cases, the programmer will receive the error report at once, and

he would be able to correct the problem before releasing his program. Otherwise, the

interpreter did not notify the programmer of the error, as the code where the error

happened apparently was not executed.

5.2.4 Summary of the System’s Application to the Real-Life Development

In this section we showed how Rubin can improve coding actual or production

Ruby projects. The fact that we showed popular Ruby projects containing bugs that

Rubin can find, shows that the system may be useful not only for detecting bugs in small

applications, but also for large applications, with thousands of lines of code, that are used

by tens of thousands of users.

For the last two out of three examples Rubin generated many other messages.

This happens because Rubin does not support the entire Ruby platform (this relates

primarily to built-in classes: among big omissions we can mention File, Thread, and

others). After their examination we believe that if Rubin supported every predefined

procedure, those false positives would not happen.

 111

5.3 Summary

In this chapter we presented two approaches of how we evaluated our work, and

how those two approaches validate our work. Our evaluation suggests that the goals of

our research, discussed in first two chapters and briefly mentioned again at the beginning

of the current chapter, were achieved.

The developed system has proven to work for many Ruby constructs that are

neither supported by jirb, nor by the systems with principal types. As was shown in the

first section of this chapter, for most of them Rubin reports error messages earlier than

jirb does.

All of the Rubin’s messages were reported either immediately after the error was

committed, if it was on the root level of interaction session, or immediately after the

Ruby program returned to the root level, if it was not there. This not only shows that

messages are reported earlier than those of jirb, but also proves a better localization of

errors. Reporting error messages Rubin guarantees that the errors were committed in the

most recent chunk of code30, thus facilitating programmers’ efforts to find these errors. In

comparison, when jirb reports messages, it does not guarantee that the actual source of

the problem lies in the most recent chunk of code; in this thesis we showed many

examples when the actual source of the problem was located much earlier than

corresponding jirb’s message.

By providing error messages we showed that they clearly specify the reason of

type inconsistencies, their precise location, and, whenever possible, report possible

problems in the future if the code is not corrected. In contrast, jirb messages are way too

general, and do not specify any of the information shown above to the Rubin’s degree.

Thus we can claim, that Rubin’s messages provide more meaningful messages than jirb

does.

Rubin was able to detect unnoticed errors in large, popular Ruby projects, thus

showing the importance of this field of research.

30 By chunk of code we mean those code constructs that are located between two adjacent
root-level constructs.

 112

A novice user used Rubin for interactive web/mobile development weekly for five

weeks, checking 400 lines of Ruby code. The user reported that Rubin helped him

identify an unexpected bug in his code, where he forgot some branches of the control

flow. The error message from Rubin highlighted this omission and enabled him to

correct his code. In his report the user stated that Rubin’s messages were clear and

understandable, pinpointing the precise location of potential problems. Based on his

report, false positive messages, which can be generated by Rubin for unsupported Ruby

parts, were not a problem: none were generated. The user reported that Rubin enhanced

interactive development for him, and stated that he would use Rubin in future projects.

Based on all these results we believe that our system with principal typings can

improve a software development process in many ways. In our next chapter, “Summary

and Future work”, we conclude our work, give some insights on how our research can be

continued, and what new benefits this continuation can give to programmers.

 113

Chapter 6

Conclusions and Future work

 In this thesis we have shown that some popular interactive languages (Ruby in

particular) do not allow programmers to incrementally develop programs to the fullest

extent possible. One reason is that these interactive languages lack types for them, which

highlight common semantic errors early. This sets limits for programmers. Using

interactive languages could be a very good way to do incremental development, as a

programmer can test different procedures immediately after their definitions, as well as

refactor code on-the-fly.

 One way to solve this problem is to add typing to the language. This is the way that

we chose, using Ruby as our exemplar of interactively-developed, dynamic languages.

Among the possible ways to add typing to Ruby we chose type inference. This has a

primary benefit of retaining compatibility with existing bodies of code since Ruby syntax

is left unchanged. Adding typing for Ruby is not a trivial task, as semantics of this

language allows one to write constructs for which the types are impossible to determine

until run-time. But these slack cases are often confusing or error-prone. The interactive

development in turn puts its own challenges to the type inference system.

This project proposes a system that adds principal typings to Ruby helping to

improve the process of checking and creating robust code incrementally. As the system

works with principal typings (in contrast to the majority of other type inference systems

that focus on principal types) it is able to preserve incremental development capabilities

of Ruby, thus not impeding Ruby programmers in any way.

The evaluation of the system demonstrates its ability to improve the development

process for programmers. The system is capable of finding many type errors in a Ruby

code earlier in the development process that the current Ruby interpreter does. Also, in

some cases it makes error messages look more meaningful for programmers than

 114

messages of the current interpreter. Finally, our system is able to place error messages to

a better-localized code section, enhancing Ruby for incremental interactive development.

In the future among other things the system can be incorporated into an integrated

development environment (IDE) and give programmers many useful features they do not

get from current Ruby environments, like a decent code completion mechanism, type

consistence checking, etc.

We believe that the investigation of the approach shown in this thesis and the

system that was purposefully developed to do that is an important step in making

programming in dynamic languages better.

Although the system already works for a big share of possible Ruby code, it does

not cover every possible case. All the features of Ruby that the system supports are

mentioned before. Ruby is a very big language and there are many other features not

supported (like functions with arbitrary amount of arguments, data types like Thread,

File, and others). We did not find these features interesting from a research perspective.

It is achievable to implement them, but also it is time consuming. Especially, it did not

appear to be worthwhile since Ruby acquires (and loses too) new features every day. But,

if in the future someone decides to release the system for programmers and claim the

completeness of it, it will be necessary to implement all of the Ruby features.

We are planning to make the system open-source as soon as this thesis is

defended. We believe that some developers may find the system interesting and would

like to continue working on it thus making the system better (one of the potential

problems programmers may be working on is a completion of all Ruby features – the

issue discussed in the previous paragraph).

Programmers may be particularly interested in further development of the system

because of the fact that if developed properly it may be used for all Ruby programmers,

not only for those who use IRB. Almost every Ruby programmer uses some sort of an

integrated development environment (IDE) at some level of the development process, but

Ruby IDEs are still very undeveloped comparing to IDEs of popular languages (for

example, Visual Studio .NET for C# or Eclipse for Java). One of the most important

things that current Ruby IDEs lack is an effective code completion mechanism.

 115

Code completion is a technique that is used heavily by programmers of other

languages. A well-designed code completion mechanism can greatly save time for

programmers. Ruby developers, in contrast, must deal with a much weaker code

completion mechanism. The issue, discussed heavily in this thesis – an absence of a type

system for Ruby – is one of the important reasons for the fact, that type completion

systems for Ruby are so underdeveloped comparing to those of other languages. The

absence of a type system means that Ruby IDEs cannot offer a nice code completion

mechanism for programmers with types for functions, variables etc. Basic type inference

systems are implemented in some Ruby IDEs, RubyMine [16] is probably the best of

them. But the information these systems give during code completion is not sufficient,

and with the system like Rubin the process can be greatly improved.

IDE with this system integrated can potentially provide some other useful

facilities. We briefly dwell on just two of them: function prototypes and class skeletons.

As was mentioned earlier in this thesis, programmers may use functions before

the definition of them. In this case IDE with the system can infer types of these functions,

and provide a function prototype later. In this case programmers will not have to worry

about finding all the places where such things (use of a function before its definition)

happened and define the function manually. Also type information generated by the

system can be very useful for better understanding of the function’s purpose: sometimes

it may be hard for programmers to remember the purpose of some function previously

used, especially in the case when they referenced to this function much earlier in the

coding process.

This is true not only for functions, but also for other data types referenced before

definition, for example, classes. The system can generate useful skeletons of such classes

with member and instance functions, class and instance variables, constants, and so on.

Moreover, it can provide a description (given for example, in comments or in a pop-up

window) of how a particular function, variable, or constant was used.

It is possible to make the system do a completeness checking of a code as well: in

particular, whether all referenced routines are supplied, do they integrate correctly, are

unit tests available for all code paths, etc.

 116

References

[1] Agesen, O., The Cartesian Product Algorithm: Simple and Precise Type Inference

Of Parametric Polymorphism, in Proceedings of the 9th European Conference on
Object-Oriented Programming. pp. 2-26, 1995

[2] Aho, A.V., Sethi, R, and Ullman, J. D., Compilers: Principles, Techniques, and

Tools, 2nd ed., Addison Wesley, 2006

[3] Cannon, B., Localized Type Inference of Atomic Types for Python, California

Polytechnic State University, 2005

[4] Cardelli, L., Basic polymorphic typechecking, Science of Computer

Programming, 2(8):147-172, 1987

[5] Chacko, J.J., What is a Ruby Symbol? – symbols explained, 2008, URL:

http://www.rubytips.org/2008/01/26/what-is-a-ruby-symbol-symbols-explained,
access date: 10/13/2009

[6] Cockburn, A., Using Both Incremental and Iterative Development, CrossTalk

(USAF Software Technology Support Center), 21(5): 27-30, 2008

[7] Damas, L. and Milner, R., Principal type-schemes for functional programs. Proc

9th ACM Symp on Principles of Programming languages, pp. 207-212, 1982

[8] Enebo, T., The Future of JRuby, 2008, URL:

http://java.dzone.com/articles/discussing-jruby-with-thomas-e, date accessed:
10/20/2009

[9] Feynman, R., Appendix F for Presidential Commission on the Space Shuttle

Challenger Accident - Personal Observations on Reliability of Shuttle, 1986

[10] Flanagan, D. and Matsumoto, Y., The Ruby Programming Language, O'Reilly,

Inc, 2008

[11] Furr, M., et al., Static Type Inference for Ruby, Proceedings of the 2009 ACM

symposium on Applied Computing, pp. 1859-1866, 2008

[12] Goldberg, A., Robson, D., and Harrison, M.A., Smalltalk-80: the Language and

its Implementation, Addison Wesley, 1983

 117

[13] Gosling, J., Joy, B., Steele, G., and Bracha, G., The Java Language Specification,
3d ed., 2005

[14] Hanna, M., Maintenance Burden Begging for a Remedy, IEEE Software 13(6),

IEEE, April 1993

[15] Isenhour, P. String Equality and Interning, 2007, URL:

http://javatechniques.com/public/java/docs/basics/string-equality.html, access
date: 10/23/2009

[16] JetBrains, RubyMine official webpage, 2009, URL:

http://www.jetbrains.com/ruby/index.html, access date: 10/12/2009

[17] Jim, T., What are principal typings and what are they good for? . Proceedings of

the 23rd ACM Symposium on Principles of Programming Languages, pp. 42-53,
1996

[18] Krishnamurthi, S., Programming Languages: Application and Interpretation,

2003

[19] Kristensen, K., Ecstatic — Type Inference for Ruby Using the Cartesian Product

Algorithm, M. Sc. Thesis, Aalborg University, 2007

[20] Larman, C. and Basili V.R., Iterative and Incremental Development: A Brief

History, IEEE Computer, 36(6): pp. 47–56, 2003

[21] Mechanize Development Team, Mechanize official website, 2009, URL:

http://mechanize.rubyforge.org/mechanize/, access date: 10/15/2009

[22] Microsoft Corporation, Type Inference (F#), MSDN Documentation, 2009

[23] Nutter, C., Duby and Juby Languages, 2009, URL:

http://skillsmatter.com/podcast/ajax-ria/charles-nutter-duby-and-juby-languages,
access date: 10/11/2009

[24] O'Sullivan, B., Goerzen, J., and Stewart, D., Real world Haskell, O’Reilly, 2008

[25] Pierce, B.C., Types and Programming Languages. MIT Press, 2002

[26] Pilone D. and Miles.R., Head First Software Development, O'Reilly., 2007

[27] Pottier, F., A modern eye on ML type inference: old techniques and recent

developments. Lecture notes for the APPSEM Summer School, 2005

[28] Pottier, F and Rémy, D., The Essence of ML Type Inference. Advanced Topics in

Types and Programming Languages, pp. 389-489, MIT Press, 2005

 118

[29] Pressman, R. S., Software Engineering: A Practitioner's Approach, 5th ed.,

McGraw-Hill, 2001

[30] Prins, P., Ruby: Productive Programming Language, 2002, URL:

http://www.linuxjournal.com/article/5915, date accessed: 10/13/2009

[31] Redmil, F., Software Projects: Evolutionary VS. Big-Bang Delivery, Wiley, 1997

[32] Rigo, A., Psyco, webpage, 2009, URL: http://psyco.sourceforge.net, access date:

10/02/2009

[33] Robinson, J.A., A Machine-Oriented Logic Based on the Resolution Principle,

Journal of the ACM 1(12):23-41, 1965

[34] Rossum, G.v. Optional Static Typing. Artima weblogs, 2000,

http://www.python.org/~guido/static-typing date accessed: 04/11/2009

[35] Ruby Community, Official Ruby Documentation, 2009

[36] Ruby Community, Official Ruby Documentation, Array, 2009

[37] Ruby Community, Official Ruby Documentation, Hash, 2009

[38] Ruby Community, Official Ruby Documentation, Range, 2009

[39] Ruby Community, Official Ruby Documentation, Symbol, 2009

[40] rubyforge.org, List of the most popular projects on rubyforge.org by downloads,

2009, URL: http://rubyforge.org/top/toplist.php?type=downloads, access date:
10/03/2009

[41] Salib, M., Starkiller: A Static Type Inferencer and Compiler for Python, M. Sc.

Thesis, Department of Electrical Engineering and Computer Science, MIT, 2001

[42] Singh, A., Using Reflection in Ruby, 2006, URL:

http://angrez.blogspot.com/2006/11/using-reflection-in-ruby.html, access date:
10/17/2009

[43] Sramek, D., Ruby class hierarchy, image, 2002, URL:

http://www.insula.cz/dali/material/rubycl/RubyDataClasses.jpg, accessed date:
10/22/2009

[44] Strandh, R., Top-down Programming, 2006, URL: http://dept-

info.labri.fr/~strandh/Teaching/MTP/Common/Strandh-Tutorial/top-down-
programming.html, access date: 09/30/2009

 119

[45] Thomas, D., Fowler, C., and Hunt, A., Programming Ruby 1.9: The Pragmatic
Programmers' Guide, 3rd edition, Pragmatic Bookshelf, 2009

[46] TMail Development Team, TMail official website, 2009, URL:

http://tmail.rubyforge.org/, access date: 09/27/2009

[47] Webgen Development Team, webgen official website, 2009, URL:

http://webgen.rubyforge.org/, access date: 09/28/2009

[48] Wirth, N., Program Development by Stepwise Refinement, Communications of
 the ACM, 14(4):221-227, 1971

 120

Appendix A. Bugs Descriptions of Evaluated
Ruby Projects

This appendix gives exact bug reports for projects, discussed in the section 5.2.

A.1 Project name: Mechanize

Below we give a precise bug report, submitted for Mechanize:
c:/ruby/lib/ruby/gems/1.8/gems/mechanize-
0.6.10/lib/mechanize/inspect.rb:57: undefined method
`pretty_ins pect' for class `WWW::Mechanize::Link'
(NameError)

 from
c:/ruby/lib/ruby/site_ruby/1.8/rubygems/custom_require.rb:2
7:in `require'

 from c:/ruby/lib/ruby/gems/1.8/gems/mechanize-
0.6.10/lib/mechanize.rb:42

 from
c:/ruby/lib/ruby/site_ruby/1.8/rubygems/custom_require.rb:3
2:in `require'

In Mechanize 6.10 lines 44 and 56 of inspect.rb:

 if RUBY_VERSION > '1.8.2'

 alias :inspect :pretty_inspect

 end

The Alias method's proper syntax is:

alias :new_name :old_name

See http://phrogz.net/ProgrammingRuby/language.html

Using Ruby 1.8.4, I get the error below when requiring
mechanize until I correct these lines to:

 121

alias :pretty_inspect :inspect

Thanks, Eric Beland

A.2 Project name: TMail

This is a bug report, submitted for TMail.

The HeaderField#new_from_port member fails with the
following exception.

/usr/local/lib/ruby/gems/1.8/gems/tmail-
1.2.0/lib/tmail/header.rb:58:in `new_from_port':
uninitialized constant Class::Regep (NameError)

The cause of the error is a typo:

 re = Regep.new('\A(' + Regexp.quote(name) + '):',
'i')

…

3) Project name: webgen

Below is a bug report, submitted for TMail.

"webgen clean" crashes with

/usr/lib/ruby/1.8/webgen.rb:124:in `handle_node': undefined
method `ask_before_delete' for FileUtils:Module
(NoMethodError)

The fix is remplacing in lib/webgen.rb line 94

 def ask_before_delete(ask, func, list, options = {})

by

 def FileUtils.ask_before_delete(ask, func, list,
options = {})

 122

Appendix B. Rubin’s User Manual

Rubin: a type system for Interactive Ruby
User Manual

 Andriy Hnativ and Christopher Dutchyn
 University of Saskatchewan

 123

Overview

Rubin is an extension to the Ruby interpreter (JRuby), and its purpose is to make irb better support

interactive program development.

The purpose of the Ruby interpreter, irb, is to develop and test code fragments that will eventually form a

complete program. Programming with irb is an interactive process, expected to provide immediate

feedback from the Ruby interpreter, typically warnings and error messages that show inconsistencies or

programming mistakes, when code is executed. However, a program fragment can be executed only when

all dependent fragments are also written.

This may introduce a potentially substantial delay between programming and validation, filled with

distractions from writing the needed dependent code. Another possible problem arises with the use of

control-flow statements, as Ruby (unlike Java or C) allows programmers to produce different results in

different branches. This may lead to unexpected results much later in the code.

As a result, error messages are emitted later than necessary, and may appear in other blocks of code than

where the error originates. Essentially, irb lacks a type checker: a system to infer types and check their

consistency before code is executed. This is not surprising, given the obstacles that irb’s interactive code

development raises for type checking. As one develops a program, code fragments are written and re-

written; each is difficult to validate in isolation, and complex to merge and re-check collectively.

We have implemented a system, Rubin, which reports type errors for incomplete irb programs, by verifying

code blocks as they are developed, and checking that they mesh correctly with other code blocks as the

developer changes and replaces them. By using principal typings inference, our tool adds lightweight type

checking to the Ruby language without changing the syntax. As a result, coders will be able to reduce

development time by more precisely locating errors at a better time in the development process.

 124

Obtaining the System

Rubin can be downloaded from http://www.cs.usask.ca/research/research_groups/selab/projects/index.html.

It is available as a tar file that was compressed further into a zip file. The size of the file is 15.6 MB.

If you have trouble downloading the file, please contact the developers:

• Andriy Hnativ hnativ@cs.usask.ca

• Christopher Dutchyn dutchyn@cs.usask.ca

 125

Installation

In order to install the system, decompress the zip archive to generate the rubin.tar archive; then

unarchive the tar file into a user-created directory; for example, C:\Program Files\Rubin under

Windows, or /usr/local/rubin under Linux or MacOS. The installation directory will be populated

with a copy of this document, a jruby.jar file, and several subdirectories including bin and lib. The tar

archive (and the zip file) can be removed once Rubin is installed.

 126

Deinstallation

Deinstallation of the system is as simple as deleting the directory into which Rubin was installed.

 127

Use

In order to run the system, go to Rubin installation directory, and type in the command line:

java -jar jruby.jar -I ./bin --command jirb --prompt default

Alternately, the jruby.jar can be explicitly pathed in the java command. This will start an apparently

ordinary Ruby interpreter (irb) with Rubin disabled. This means that the Rubin system will not monitor

any of the users interactions with the Ruby interpreter, and that it will neither check any code nor emit any

error messages.

There are two ways to enable Rubin to begin checking the user’s Ruby interactions – the verbose mode and

the silent mode. The difference between the two is that in verbose mode the system gives messages to a

programmer, while in the silent mode it monitors the user’s input without producing any messages.

1) Enter the verbose mode – type tinf_verbose in the interpreter31

2) Enter the silent mode – type tinf_silent in the interpreter

The system performs the type checking in both modes. If a programmer wants to disconnect Rubin and

return to an ordinary irb, he should type “tinf_exit”.

3) Disable Rubin – type tinf_exit in the interpreter

It is possible to switch between the three modes (disabled, silent, and verbose) at any time of the coding

process, provided that the programmer is at the root level of the interaction window.

Any code which is entered while Rubin is disabled, will not be type-checked. Furthermore, any code that

depends on that not-type-checked code will report errors because the types for the unchecked code are not

available. This is especially important when code will be programmed after some is read in without

checking and then checking is enabled. For this reason, the silent mode is recommended over disabling

Rubin.

31 Note that the there is an underbar, “_”, not a space in the names of all three commands.

 128

 Ambiguous Cases

Ruby is a very flexible language. It allows users

o to write functions that return different types,

o use variables that may instantiate to different types,

o create different variables in the different branches of control-flow structures,

and so forth. In each of these cases, there is a risk of program execution errors, because expectations that a

function returns a value of a given type, or a variable contains a value of a given type in incorrect. In many

cases, the programmer is aware of and takes care to handle these ambiguous cases. But, future program

modifications may be made by those with less diligence or incomplete information regarding these cases.

Our system is not omniscient, it cannot discern whether the programmer is aware of and accommodating

these cases. Hence, in all the cases when a type-clash occurs, Rubin recognizes the problem. If verbose

mode is enabled, it generates a message to the user, informing her of the location and nature of the type

error. It is the responsibility of the programmer to understand the message and take appropriate action, or

simply ignore it. Rubin does not prevent the flawed code from running, but simply informs the programmer

of potential errors.

In order to continue interactive type-checking after finding a type clash, Rubin must deal with ambiguous

cases. A rule of thumb is that if there are several possible types, Rubin expects the first encountered one for

future analysis. For example, if a function may return different types, the system reports a warning and

remembers the first possible type for the future analysis.

For example, the code below, one branch of the if statement returns an integer (3), and the other an empty

string.

def foo

 a=3

 if a>0

 3

 else

 ""

 end

end

ERROR!!! The function 'foo' may return different types:

 129

Object::Integer
Object::String

For future analysis we will assume that the function will be returning Object::Integer
Another example: an array may contain values of differing types; again, for the future analysis the system

will select the first one provided. The example below stores a string, an integer, and another array

(containing an integer) in a three-element array:

a=[””,1,[1]]

ERROR!!! The array 'foo' may have different value types:
Object::String
Object::Integer
Object::Array

For future analysis we will assume that the array will be of the type Object::Array[Object::String]

As a last example: a variable may have different types in different branches, for the future analysis the

system will select the one from the first assignment line. For example, the following code will generate

an constraint that variable b contains integers.

if a>0

 if c>10

 b=93

 else

 b=”hi”

 end

else

 b=3.14

end

ERROR!!! The local variable 'b' may have different value types:
Object::Integer
Object::String
Object::Float

For future analysis we will assume that its type will be Object::Integer

 130

Ruby Statements that Rubin Understands

Rubin type-checks the following language constructs:

Loops:
 while, for, until

Conditionals:
 if, case, unless

Blocks, Procs, and Functions

Each of the following different kinds of functions:

1. User-defined procedures: def foo a …

2. Built-in functions: +, concat, …32

3. Lambdas lambda |x| …

4. Aliased functions alias new old

Important: Rubin does not support methods in which the last argument indicates that they can accept an
arbitrary number of arguments. For example, def some_method(a, b=5, *p) … is not
supported.

Assignments, Multiple assignments
 x, y, z = 1, “hi”, 4.5

Classes

Including the following built-in classes:

• Object

• Numeric

• Integer

• Float

• String

• Boolean

• Array

• Range

• Symbol

• Hash

32 See Appendix: List of Supported Functions for complete details.

 131

Rubin knows also how to handle methods, inheritance, instance variables, class variables,

singletons, and visibility (private and public statements).

Files and Modules

 include, require statements

 Module definitions are also checkable.

Local/Global variables, Constants

 132

Messages (type errors and warnings) emitted
by Rubin

This section is omitted, because it parallels Chapter 5.

 133

Summary of Ruby Built-ins that are
Checkable

Rubin supports many built-in operations for many types. For example, programmers who use Rubin can

use all usual operations on numbers: they can use arithmetic operations (all common ones: addition,

subtraction, multiplications, divisions, modulo, rounding up and down, exponentiation), comparisons (less

than, greater that, equals), bitwise operators (bit shifts (<<, >>), bitwise OR (|), AND (&), and XOR (^)),

base change (operators like hex, and oct), and type conversions.

Rubin tries to adhere to a type preservation policy, yielding the most precise type possible. For example, if

two integers are used as arguments in the + operation, Rubin infers the result type of this expression to be

integer as well rather than just a number.

A big set of operators is implemented for strings as well. Strings can be comparable (with the usual

operations: <, >, ==, !=, ===, and empty? yielding booleans as results), extended, merged, truncated,

concatenated, converted to other types or cases (upcase, downcase, swapcase).

Rubin supports also complex parametric type such as arrays, ranges, and hashes. Programmers who want to

use these have an ability to use all the common methods for them: working with inner elements (all the

popular operations: add an element to an array (hash), remove an element, replace an element, access a

specific element, access elements one by one (for example, using built-in iterators such as each,

each_key, each_value)), working with those types as a whole (merging similar types, truncating,

mapping, reversing, filling).

Each element of Ruby language is an instance of some class that is a descendant of Object. That is why all

operators for objects are available for all Ruby elements. Rubin supports a number of sporadic operations

including hashing, freezing, comparisons (among supported comparison operators for objects are most

popular: ==, ===, eql?, equal?), displaying, identifications (with operations like object_id,

__id__), and others.

A complete list of supported built-in functions is given in the following appendix.

 134

User Manual Appendix: List of Supported
Functions

Before listing all the supported built-in Ruby methods of different classes we discuss one important issue –

overloading. Often different classes have methods with the same names (like “+” for example). This is

called overloading – when there exist functions with the same name that, depending on the arguments

provided, perform different actions. Our system supports overloading by setting constraints. Let us assume

that the system encountered “+” operation, where one of the arguments is a string. From Ruby

specifications, we know that the other argument must have a string type too. There are cases when we don’t

know anything about the types of the arguments (or the information known is not sufficient) – then the

system just sets constraints that whatever is provided as arguments must be consistent to the specifications.

Below we provide a list of built-in functions for which the system works. Description of each function

consists of 2 pieces:

• Name (given in double quotes, for example “+”)

• Different possibilities for this function

Format:

 [b] Nargs Tret Targ1 … TargN [{…}]

Each type possibility adheres to a special format. If a possibility requires a block as an argument, then the

description of this possibility starts with the character ‘b’. In this case the last part of this possibility

description will be a description of the block. Required parameters (that all possibility descriptions have)

consist of: number of function arguments (including a receiver), a return type and types for all the

arguments. The following symbols indicate types:

I Integer

F Float

S String

a($) Array with the inner type $ (Can be any other type letter here – for example, if

we want to indicate an array of integers, then we use a notation a(i))

r(#) Range with the inner type #

h(!,@) Hash with the key type !, and a value type @

$ An inner type of an array

 135

An inner type of a range

! A key type of a hash

@ A value type of a hash

* Any type

There are several functions that take an arbitrary number of arguments. For those functions we put 32000

(if last n arguments unify to the same type) or 32001 (if last n arguments unify to the same alternating types

– like for the “insert” function) as a number of arguments. The next 2 parameters for those possibility

descriptions are the minimum and the maximum number of parameters (we put 32000 to indicate infinity).

A block notation:

{|[type1…] | retType}

Each description of a block is enclosed in {}. Symbols that are given within | | indicate types of block

arguments (a first symbol indicate a type of the first argument, a second symbol – of the second argument,

and so on).

Consider three examples of possibilities.

Possibility1: (may be one of the possibilities, for example, for the “+” operation)

2 I I I

There is no ‘b’ at the beginning, so this possibility does not require a block as an argument. Digit 2 at the

beginning of the description indicates that this possibility counts on two provided arguments. The first ‘I’

indicates that a function returns an integer type, and two following ‘I’s indicate that types of 2 arguments,

first of which is a receiver, must be integers.

Possibility2: (may be on of the possibilities for the “each” operation)

b 1 r(#) r(#) {|#|&}

This possibility assumes that a programmer must provide a block for an according function. If this

possibility works, this function will take only one argument (a receiver) which type will be a range, and it

will return the same type as the argument (a range with the same inner type). Moreover, a type of the first

block argument must be the same as the inner type of those ranges.

 136

Possibility3 (for example, for “insert”)

32001 1 32000 a($) a($) I $

This possibility shows that an according function must take at least 1 argument (of an array type) and must

return the same type as the first argument (an array of the same type). The next optional arguments must go

in pairs – the first of the two will be an integer, and the second will unify to the inner type of the return

array.

Below a complete list of the supported functions is given. This list is a precise representation of the file,

used by Rubin for resolving constraints of built-in procedures.

"+"
2 I I I
2 f I f
2 f f n
2 s s s
2 a($) a($) a($)
2 * * *
2 * * n

"-"
2 I I I
2 f I f
2 f f I
2 f f f
2 s s s
2 a($) a($) a($)
2 * * *
2 f * *
2 * * n

"*"
2 I I I
2 f I f
2 f f I
2 f f f
2 s s i
2 a($) a($) I
2 s a s
2 * * *

"**"
2 n I I
2 f I f
2 f f I
2 f f f
2 * * *

 137

"%"
2 I I I
2 f I f
2 f f I
2 f f f
2 s s o

"modulo"
2 I I I
2 f I f
2 f f I
2 f f f

"divmod"
2 a(n) f n
2 a(i) I I
2 a(n) I f

"/"
2 I I I
2 f I f
2 f f I
2 f f f
2 * * *

"<"
2 b I n
2 b f n
2 b * *

"<="
2 b n n
2 b * *

">"
2 b I n
2 b f n
2 b * *

">="
2 b n n
2 b * *

">>"
2 * * *
2 I * n
2 I I n

"<<"
2 I I i
2 s s i
2 s s s
2 a($) a($) $
2 * * *
2 * * o

 138

"&"
2 a($) a($) a($)
2 b b o
2 I I n
2 * * *
2 I * n

"concat"
2 s s i
2 s s s
2 a($) a($) a($)

"crypt"
2 s s s

"=~"
2 I s o
2 b o o

"__id__"
1 I o

"object_id"
1 I o

"display"
1 v o
2 v o *

"eql?"
2 b o o

"equal?"
2 b o o

"freeze"
1 o o

"=="
2 b o o

"==="
2 b o o

"hash
1 i o

"-@"
1 I I
1 f f
1 n n

"+@"
1 I I
1 f f
1 n n

 139

"finite?"
1 b f

"nan?"
1 b f

"id"
1 I o

"zero?"
1 b f
1 b I
1 b *

"abs"
1 I I
1 f f
1 * *

"to_i"
1 I I
1 I f
1 I s
2 I s I
1 I *

"induced_from"
2 f f o
2 I I o

"to_s"
1 s o
2 s i i

"to_str"
1 s s
1 s *

"to_f"
1 f I
1 f f
1 f s
1 f *

"to_int"
1 I n
1 I *

"floor"
1 I n

"ceil"
1 I n

"round"
1 I n

 140

"truncate"
1 I n
3 I * s I
2 I * i

"chr"
1 s I

"integer?"
1 b n

"next"
1 I I
1 s s
1 * *

"succ"
1 I I
1 s s
1 * *

"infinite?"
1 I f

"capitalize"
1 s s

"capitalize!"
1 s s

"downcase"
1 s s

"downcase!"
1 s s

"upcase"
1 s s

"upcase!"
1 s s

"swapcase"
1 s s

"swapcase!"
1 s s

"dump"
1 s s

"inspect"
1 s o

"length"
1 i s
1 i a
1 i h

 141

"size"
1 i s
1 i a
1 i h
1 I I

"begin"
1 # r(#)
1 I *

"end"
1 # r(#)
1 I *

"exclude_end?"
1 b r

"include?"
2 b s s
2 b s i
2 b h o
2 b r(#) o
2 b a($) o
2 b * *

"member?"
2 b h o
2 b r(#) o
2 b * *

"tr"
3 s s s s

"tr_s"
3 s s s s

"unpack"
2 a s s

"ljust"
2 s s I
3 s s I s

"rjust"
2 s s I
3 s s I s

"lstrip"
1 s s

"rstrip"
1 s s

"strip"
1 s s

"intern"
1 * s

 142

"to_sym"
1 * s
1 * i

"hex"
1 i s

"oct"
1 i s

"sum"
1 i s
2 I s i

"empty?"
1 b s
1 b a
1 b h

"merge"
2 h(!,@) h(!,@) h(!,@)
b 2 h(!,@) h(!,@) h(!,@) {|!,@,@|&}
2 * * *

"merge!"
2 h(!,@) h(!,@) h(!,@)
b 2 h(!,@) h(!,@) h(!,@) {|!,@,@|&}
2 * * *

"update"
2 h(!,@) h(!,@) h(!,@)
b 2 h(!,@) h(!,@) h(!,@) {|!,@,@|&}

"replace"
2 s s s
2 a($) a a($)
2 h(!,@) h h(!,@)
2 * * *

"reverse"
1 s s
1 a($) a($)

"reverse!"
1 s s
1 a($) a($)

"casecmp"
2 I s s

"instance_of?"
2 b o *

"instance_variables"
1 a(o) o

 143

"remove_instance_variable"
2 o o s
2 o o *

"is_a?"
2 b o *

"kind_of?"
2 b o *

"taint"
1 o o

"untaint"
1 o o

"tainted?"
1 b o

"respond_to?"
2 b o s
2 b o *
3 b o s o
3 b o * o

"methods"
1 a(s) o

"type"
1 * o

"singleton_methods"
1 a(s) o
2 a(s) o o

"nil?"
1 b o

"center"
3 s s I s

"chomp"
1 s s
2 s s s

"chomp!"
1 s s
2 s s s

"chop"
1 s s

"chop!"
1 s s

"rehash"
1 h h

 144

"default"
1 @ h(!,@)
2 @ h(!,@) !

"default="
2 h(!,@) h(!,@) @

"[]"
2 $ a($) I
3 a($) a($) I I
2 a($) a($) r
2 I s I
3 s s I I
3 s s * I
2 s s r
2 s s s
2 i i I
2 i i f
2 o * *
2 o * i

"slice"
2 $ a($) I
3 a($) a($) I I
2 a($) a($) r
2 I s I
3 s s I I
3 s s * I
2 s s r
2 s s s

"push"
32000 1 32000 a($) a($) $

"squeeze"
32000 1 32000 s s s

"count"
32000 1 32000 i s s

"insert"
32001 1 32000 a($) a($) I $
3 s s s s

"downto"
b 2 I I I {|i|&}
b 2 * * * {|*|&}

"upto"
b 2 I I I {|i|&}
b 2 s s s {|s|&}
b 2 * * * {|*|&}

"times"
b 1 I I {|i|&}
1 * *

 145

"each"
b 1 r(#) r(#) {|#|&}
b 1 s s {|s|&}
b 2 s s s {|s|&}
b 1 a($) a($) {|$|&}
b 1 h(!,@) h(!,@) {|!,@|&}

"reverse_each"
b 1 a($) a($) {|$|&}

"each_byte"
b 1 s s {|i|&}
b 1 * * {|*|&}

"each_line"
b 1 s s {|s|&}
b 2 s s s {|s|&}

"each_index"
b 1 a($) a($) {|i|&}

"each_key"
b 1 h(!,@) h(!,@) {|!|&}

"each_value"
b 1 h(!,@) h(!,@) {|@|&}

"collect"
b 1 a($) a($) {|$|&}
b 1 * * {|*|&}

"collect!"
b 1 a($) a($) {|$|&}
b 1 * * {|*|&}

"map"
b 1 a($) a($) {|$|&}
b 1 * * {|*|&}

"map!"
b 1 a($) a($) {|$|&}
b 1 * * {|*|&}

"step"
b 3 n n n n {|2|&}
b 1 r(#) r(#) {|#|&}
b 2 r(#) r(#) I {|#|&}
b 3 o * o o {|*|&}

"compact"
1 a($) a($)

"compact!"
1 a($) a($)

 146

"gsub"
3 s s * s
b 2 s s * {|s|&}
2 s * s
b 1 s * {|s|&}

"gsub!"
3 s s * s
b 2 s s * {|s|&}
2 s * s
b 1 s * {|s|&}

"sub"
3 s s * s
b 2 s s * {|s|&}
2 s * s
b 1 s * {|s|&}

"sub!"
3 s s * s
b 2 s s * {|s|&}
2 s * s
b 1 s * {|s|&}

"scan"
2 a(s) s *
b 2 s s * {|s..|&}
1 a(s) s
b 1 * * {|*|&}

"split"
1 a(s) s
2 a(s) s *
2 a(s) s I
3 a(s) s * I
2 a(s) * s
1 a(s) *
2 a(s) * I

"delete_at"
2 $ a($) i

"delete_if"
b 1 a($) a($) {|$|&}
b 1 h(!,@) h(!,@) {|!,@|&}

"fetch"
2 $ a($) I
3 a($) a($) I $
b 2 $ h(!,@) I {|i|&}
2 @ h(!,@) !
3 @($) h(!,@) ! @
b 2 @ h(!,@) ! {|!|&}

 147

"fill"
2 a($) a($) $
3 a($) a($) $ I
4 a($) a($) $ I I
3 a($) a($) $ r(i)
b 1 a($) a($) {|i|$}
b 2 a($) a($) I {|i|$}
3 a($) a($) I I {|i|$}
2 a($) a($) r(i) {|i|$}

"first"
1 # r(#)
1 $ a($)
2 a($) a($) I

"last"
1 # r(#)
1 $ a($)
2 a($) a($) i

"has_key?"
2 b h(!,@) !

"has_value?"
2 b h(!,@) @

"key?"
2 b h(!,@) !

"value?"
2 b h(!,@) @

"keys"
1 a(@) h(!,@)
1 a *

"frozen?"
1 b o

"join"
1 s a
2 s a s

"nitems"
1 i a

"pack"
2 s a s

"pop"
1 $ a($)

 148

"clear"
1 a a
1 h h
1 * *

"index"
2 I a($) $
2 ! h(!,@) @
2 I s I
2 I s s
2 I s *
3 I s I I
3 I s s I
3 I s * I

"reject"
b 1 a($) a($) {|$|&}
b 1 h(!,@) h(!,@) {|!,@|&}
b 1 * * {}

"reject!"
b 1 a($) a($) {|$|&}
b 1 h(!,@) h(!,@) {|!,@|&}
b 1 * * {}

"initialize"
1 s s
2 s s s
1 a a
2 a($) a a($)
b 2 a(s) a I {|i|$}

"attr_reader"

"attr_writer"

"attr_accessor"

