104,587 research outputs found

    SpikingLab: modelling agents controlled by Spiking Neural Networks in Netlogo

    Get PDF
    The scientific interest attracted by Spiking Neural Networks (SNN) has lead to the development of tools for the simulation and study of neuronal dynamics ranging from phenomenological models to the more sophisticated and biologically accurate Hodgkin-and-Huxley-based and multi-compartmental models. However, despite the multiple features offered by neural modelling tools, their integration with environments for the simulation of robots and agents can be challenging and time consuming. The implementation of artificial neural circuits to control robots generally involves the following tasks: (1) understanding the simulation tools, (2) creating the neural circuit in the neural simulator, (3) linking the simulated neural circuit with the environment of the agent and (4) programming the appropriate interface in the robot or agent to use the neural controller. The accomplishment of the above-mentioned tasks can be challenging, especially for undergraduate students or novice researchers. This paper presents an alternative tool which facilitates the simulation of simple SNN circuits using the multi-agent simulation and the programming environment Netlogo (educational software that simplifies the study and experimentation of complex systems). The engine proposed and implemented in Netlogo for the simulation of a functional model of SNN is a simplification of integrate and fire (I&F) models. The characteristics of the engine (including neuronal dynamics, STDP learning and synaptic delay) are demonstrated through the implementation of an agent representing an artificial insect controlled by a simple neural circuit. The setup of the experiment and its outcomes are described in this work

    Simulating Farm Household Poverty: From Passive Victims to Adaptive Agents

    Get PDF
    Existing microeconomic models for simulating poverty heavily rely on static projection from statistical inference. When used for simulation these models tend to conceive farm households as passive victims and thereby underestimate their resilience and adaptive capacity. Farming systems research has much to contribute to the research on poverty by bringing in a detailed understanding of farm household decision-making, which directly relates to their adaptive capacity. This paper presents a novel methodology to simulate poverty dynamics using a farming systems approach. The methodology is based on mathematical programming of farm households but adds three innovations: First, poverty levels are quantified by including a three-step budgeting system, including a savings model, a Working-Leser model, and an Almost Ideal Demand System. Second, the model is extended with a disinvestment model to simulate farm household coping strategies to food insecurity. Third, multi-agent systems are used to tailor each mathematical program to a real-world household and so to capture the heterogeneity of opportunities and constraints at the farm level as well as to quantify the distributional effects of change. An empirical application to Uganda illustrates the methodology. The method opens exciting new prospects for applying farming systems research and multi-agent systems to poverty analysis and the ex ante assessment of alternative policy interventions.Food Security and Poverty,

    Advances in infrastructures and tools for multiagent systems

    Full text link
    In the last few years, information system technologies have focused on solving challenges in order to develop distributed applications. Distributed systems can be viewed as collections of service-provider and ser vice-consumer components interlinked by dynamically defined workflows (Luck and McBurney 2008).Alberola Oltra, JM.; Botti Navarro, VJ.; Such Aparicio, JM. (2014). Advances in infrastructures and tools for multiagent systems. Information Systems Frontiers. 16:163-167. doi:10.1007/s10796-014-9493-6S16316716Alberola, J. M., Búrdalo, L., Julián, V., Terrasa, A., & García-Fornes, A. (2014). An adaptive framework for monitoring agent organizations. Information Systems Frontiers, 16(2). doi: 10.1007/s10796-013-9478-x .Alfonso, B., Botti, V., Garrido, A., & Giret, A. (2014). A MAS-based infrastructure for negotiation and its application to a water-right market. Information Systems Frontiers, 16(2). doi: 10.1007/s10796-013-9443-8 .Andrighetto, G., Castelfranchi, C., Mayor, E., McBreen, J., López-Sánchez, M., & Parsons, S. (2013). (Social) norm dynamics. In G. Andrighetto, G. Governatori, P. Noriega, & L. W. van der Torre (Eds.), Normative multi-agent systems (pp. 135–170). Dagstuhl: Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik.Baarslag, T., Fujita, K., Gerding, E. H., Hindriks, K., Ito, T., Jennings, N. R., et al. (2013). Evaluating practical negotiating agents: results and analysis of the 2011 international competition. Artificial Intelligence, 198, 73–103.Boissier, O., Bordini, R. H., Hübner, J. F., Ricci, A., & Santi, A. (2013). Multi-agent oriented programming with JaCaMo. Science of Computer Programming, 78(6), 747–761.Campos, J., Esteva, M., López-Sánchez, M., Morales, J., & Salamó, M. (2011). Organisational adaptation of multi-agent systems in a peer-to-peer scenario. Computing, 91(2), 169–215.Carrera, A., Iglesias, C. A., & Garijo, M. (2014). Beast methodology: an agile testing methodology for multi-agent systems based on behaviour driven development. Information Systems Frontiers, 16(2). doi: 10.1007/s10796-013-9438-5 .Criado, N., Such, J. M., & Botti, V. (2014). Norm reasoning services. Information Systems Frontiers, 16(2). doi: 10.1007/s10796-013-9444-7 .Del Val, E., Rebollo, M., & Botti, V. (2014). Enhancing decentralized service discovery in open service-oriented multi-agent systems. Journal of Autonomous Agents and Multi-Agent Systems, 28(1), 1–30.Denti, E., Omicini, A., & Ricci, A. (2002). Coordination tools for MAS development and deployment. Applied Artificial Intelligence, 16(9–10), 721–752.Dignum, V., & Dignum, F. (2012). A logic of agent organizations. Logic Journal of IGPL, 20(1), 283–316.Ferber, J., & Gutknecht, O. (1998). A meta-model for the analysis and design of organizations in multi-agent systems. In Multi agent systems. Proceedings. International Conference on (pp. 128–135). IEEE.Fogués, R. L., Such, J. M., Espinosa, A., & Garcia-Fornes, A. (2014). BFF: a tool for eliciting tie strength and user communities in social networking services. Information Systems Frontiers, 16(2). doi: 10.1007/s10796-013-9453-6 .Garcia, E., Giret, A., & Botti, V. (2011). Evaluating software engineering techniques for developing complex systems with multiagent approaches. Information and Software Technology, 53(5), 494–506.Garcia-Fornes, A., Hübner, J., Omicini, A., Rodriguez-Aguilar, J., & Botti, V. (2011). Infrastructures and tools for multiagent systems for the new generation of distributed systems. Engineering Applications of Articial Intelligence, 24(7), 1095–1097.Jennings, N., Faratin, P., Lomuscio, A., Parsons, S., Sierra, C., & Wooldridge, M. (2001). Automated negotiation: prospects, methods and challenges. International Journal of Group Decision and Negotiation, 10(2), 199–215.Jung, Y., Kim, M., Masoumzadeh, A., & Joshi, J. B. (2012). A survey of security issue in multi-agent systems. Artificial Intelligence Review, 37(3), 239–260.Kota, R., Gibbins, N., & Jennings, N. R. (2012). Decentralized approaches for self-adaptation in agent organizations. ACM Transactions on Autonomous and Adaptive Systems (TAAS), 7(1), 1.Kraus, S. (1997). Negotiation and cooperation in multi-agent environments. Artificial Intelligence, 94(1), 79–97.Lin, Y. I., Chou, Y. W., Shiau, J. Y., & Chu, C. H. (2013). Multi-agent negotiation based on price schedules algorithm for distributed collaborative design. Journal of Intelligent Manufacturing, 24(3), 545–557.Luck, M., & McBurney, P. (2008). Computing as interaction: agent and agreement technologies.Luck, M., McBurney, P., Shehory, O., & Willmott, S. (2005). Agent technology: Computing as interaction (A roadmap for agent based computing). AgentLink.Ossowski, S., & Menezes, R. (2006). On coordination and its significance to distributed and multiagent systems. Concurrency and Computation: Practice and Experience, 18(4), 359–370.Ossowski, S., Sierra, C., & Botti. (2013). Agreement technologies: A computing perspective. In Agreement Technologies (pp. 3–16). Springer Netherlands.Pinyol, I., & Sabater-Mir, J. (2013). Computational trust and reputation models for open multi-agent systems: a review. Artificial Intelligence Review, 40(1), 1–25.Ricci, A., Piunti, M., & Viroli, M. (2011). Environment programming in multi-agent systems: an artifact-based perspective. Autonomous Agents and Multi-Agent Systems, 23(2), 158–192.Sierra, C., & Debenham, J. (2006). Trust and honour in information-based agency. In Proceedings of the 5th international conference on autonomous agents and multi agent systems, (p. 1225–1232). New York: ACM.Sierra, C., Botti, V., & Ossowski, S. (2011). Agreement computing. KI-Knstliche Intelligenz, 25(1), 57–61.Vasconcelos, W., García-Camino, A., Gaertner, D., Rodríguez-Aguilar, J. A., & Noriega, P. (2012). Distributed norm management for multi-agent systems. Expert Systems with Applications, 39(5), 5990–5999.Wooldridge, M. (2002). An introduction to multiagent systems. New York: Wiley.Wooldridge, M., & Jennings, N. R. (1995). Intelligent agents: theory and practice. Knowledge Engineering Review, 10(2), 115–152

    Non-Markovian Agent Evolution with EVOLP

    Get PDF
    Logic Programming Update Languages were proposed as an extension of logic programming, which allow for modelling the dynamics of knowledge bases where both extensional knowledge (facts) as well as intentional knowledge (rules) may change over time due to updates, with important application Multi-Agent Systems (MAS). Despite their generality, these languages do not provide means to directly access past states of the evolving knowledge. They only allow for so-called Markovian changes i.e. changes determined entirely by the current state. This is a drawback in several situation. In this paper, after motivating the need for non-Markovian changes, we extend EVOLP -- The Logic Programming Update Language at the heart of an existing MAS -- with LTL-like temporal operators that allow referring to the history of the evolving agent. We then show that with a suitable introduction of new propositional variables it is possible to embed the extended EVOLP into the original one, thus demonstrating that EVOLP itself can already be used for non-Markovian changes. While showing how to use EVOLP for encoding non-Markovian changes, this embedding sheds light into the relationship between Logic Programming Update Languages and Modal Temporal Logics, of particular importance in MAS

    Visual Programming for Modeling and Simulation of Biomolecular Regulatory Networks

    Get PDF
    In this paper we introduce our new tool BIOSKETCHPAD that allows visual programming and modeling of biological regulatory networks. The tool allows biologists to create dynamic models of networks using a menu of icons, arrows, and pop-up menus, and translates the input model into CHARON, a modeling language for modular design of interacting multi-agent hybrid systems. Hybrid systems are systems that are characterized by continuous as well as discrete dynamics. Once a CHARON model of the underlying system is generated, we are able to exploit the various analysis capabilities of the CHARON toolkit, including simulation and reachability analysis. We illustrate the advantages of this approach using a case study concerning the regulation of bioluminescence in a marine bacterium

    Decomposition and Mean-Field Approach to Mixed Integer Optimal Compensation Problems

    Get PDF
    Mixed integer optimal compensation deals with optimization problems with integer- and real-valued control variables to compensate disturbances in dynamic systems. The mixed integer nature of controls could lead to intractability in problems of large dimensions. To address this challenge, we introduce a decomposition method which turns the original n-dimensional optimization problem into n independent scalar problems of lot sizing form. Each of these problems can be viewed as a two-player zero-sum game, which introduces some element of conservatism. Each scalar problem is then reformulated as a shortest path one and solved through linear programming over a receding horizon, a step that mirrors a standard procedure in mixed integer programming. We apply the decomposition method to a mean-field coupled multi-agent system problem, where each agent seeks to compensate a combination of an exogenous signal and the local state average. We discuss a large population mean-field type of approximation and extend our study to opinion dynamics in social networks as a special case of interest

    A stochastic approximation algorithm for stochastic semidefinite programming

    Get PDF
    Motivated by applications to multi-antenna wireless networks, we propose a distributed and asynchronous algorithm for stochastic semidefinite programming. This algorithm is a stochastic approximation of a continous- time matrix exponential scheme regularized by the addition of an entropy-like term to the problem's objective function. We show that the resulting algorithm converges almost surely to an ε\varepsilon-approximation of the optimal solution requiring only an unbiased estimate of the gradient of the problem's stochastic objective. When applied to throughput maximization in wireless multiple-input and multiple-output (MIMO) systems, the proposed algorithm retains its convergence properties under a wide array of mobility impediments such as user update asynchronicities, random delays and/or ergodically changing channels. Our theoretical analysis is complemented by extensive numerical simulations which illustrate the robustness and scalability of the proposed method in realistic network conditions.Comment: 25 pages, 4 figure

    Robust distributed linear programming

    Full text link
    This paper presents a robust, distributed algorithm to solve general linear programs. The algorithm design builds on the characterization of the solutions of the linear program as saddle points of a modified Lagrangian function. We show that the resulting continuous-time saddle-point algorithm is provably correct but, in general, not distributed because of a global parameter associated with the nonsmooth exact penalty function employed to encode the inequality constraints of the linear program. This motivates the design of a discontinuous saddle-point dynamics that, while enjoying the same convergence guarantees, is fully distributed and scalable with the dimension of the solution vector. We also characterize the robustness against disturbances and link failures of the proposed dynamics. Specifically, we show that it is integral-input-to-state stable but not input-to-state stable. The latter fact is a consequence of a more general result, that we also establish, which states that no algorithmic solution for linear programming is input-to-state stable when uncertainty in the problem data affects the dynamics as a disturbance. Our results allow us to establish the resilience of the proposed distributed dynamics to disturbances of finite variation and recurrently disconnected communication among the agents. Simulations in an optimal control application illustrate the results
    • …
    corecore