8,765 research outputs found

    Attitude and vibration control of a large flexible space-based antenna

    Get PDF
    The problem of control systems synthesis is considered for controlling the rigid body attitude and elastic motion of a large deployable space based antenna. Two methods for control systems synthesis are considered. The first method utilizes the stability and robustness properties of the controller consisting of torque actuators and collocated attitude and rate sensors. The second method is based on the linear quadratic Gaussian (LQG) control theory. A combination of the two methods, which results in a two level hierarchical control system, is also briefly discussed. The performance of the controllers is analyzed by computing the variances of pointing errors, feed misalignment errors and surface contour errors in the presence of sensor and actuator noise

    Compact and accurate models of large single-wall carbon-nanotube interconnects

    Get PDF
    Single-wall carbon nanotubes (SWCNTs) have been proposed for very large scale integration interconnect applications and their modeling is carried out using the multiconductor transmission line (MTL) formulation. Their time-domain analysis has some simulation issues related to the high number of SWCNTs within each bundle, which results in a highly complex model and loss of accuracy in the case of long interconnects. In recent years, several techniques have been proposed to reduce the complexity of the model whose accuracy decreases as the interconnection length increases. This paper presents a rigorous new technique to generate accurate reduced-order models of large SWCNT interconnects. The frequency response of the MTL is computed by using the spectral form of the dyadic Green's function of the 1-D propagation problem and the model complexity is reduced using rational-model identification techniques. The proposed approach is validated by numerical results involving hundreds of SWCNTs, which confirm its capability of reducing the complexity of the model, while preserving accuracy over a wide frequency range

    Photoinduced Temperature Gradients in Sub-wavelength Plasmonic Structures: The Thermoplasmonics of Nanocones

    Full text link
    Plasmonic structures are renowned for their capability to efficiently convert light into heat at the nanoscale. However, despite the possibility to generate deep sub-wavelength electromagnetic hot spots, the formation of extremely localized thermal hot spots is an open challenge of research, simply because of the diffusive spread of heat along the whole metallic nanostructure. Here we tackle this challenge by exploiting single gold nanocones. We theoretically show how these structures can indeed realize extremely high temperature gradients within the metal, leading to deep sub-wavelength thermal hot spots, owing to their capability of concentrating light at the apex under resonant conditions even under continuous wave illumination. A three-dimensional Finite Element Method model is employed to study the electromagnetic field in the structure and subsequent thermoplasmonic behaviour, in terms of the three-dimensional temperature distribution. We show how the latter is affected by nanocone size, shape, and composition of the surrounding environment. Finally, we anticipate the use of photoinduced temperature gradients in nanocones for applications in optofluidics and thermoelectrics or for thermally induced nanofabrication

    From Theory to Practice: Sub-Nyquist Sampling of Sparse Wideband Analog Signals

    Full text link
    Conventional sub-Nyquist sampling methods for analog signals exploit prior information about the spectral support. In this paper, we consider the challenging problem of blind sub-Nyquist sampling of multiband signals, whose unknown frequency support occupies only a small portion of a wide spectrum. Our primary design goals are efficient hardware implementation and low computational load on the supporting digital processing. We propose a system, named the modulated wideband converter, which first multiplies the analog signal by a bank of periodic waveforms. The product is then lowpass filtered and sampled uniformly at a low rate, which is orders of magnitude smaller than Nyquist. Perfect recovery from the proposed samples is achieved under certain necessary and sufficient conditions. We also develop a digital architecture, which allows either reconstruction of the analog input, or processing of any band of interest at a low rate, that is, without interpolating to the high Nyquist rate. Numerical simulations demonstrate many engineering aspects: robustness to noise and mismodeling, potential hardware simplifications, realtime performance for signals with time-varying support and stability to quantization effects. We compare our system with two previous approaches: periodic nonuniform sampling, which is bandwidth limited by existing hardware devices, and the random demodulator, which is restricted to discrete multitone signals and has a high computational load. In the broader context of Nyquist sampling, our scheme has the potential to break through the bandwidth barrier of state-of-the-art analog conversion technologies such as interleaved converters.Comment: 17 pages, 12 figures, to appear in IEEE Journal of Selected Topics in Signal Processing, the special issue on Compressed Sensin

    Attitude and vibration control of a large flexible space-based antenna

    Get PDF
    Control systems synthesis is considered for controlling the rigid body attitude and elastic motion of a large deployable space-based antenna. Two methods for control systems synthesis are considered. The first method utilizes the stability and robustness properties of the controller consisting of torque actuators and collocated attitude and rate sensors. The second method is based on the linear-quadratic-Gaussian control theory. A combination of the two methods, which results in a two level hierarchical control system, is also briefly discussed. The performance of the controllers is analyzed by computing the variances of pointing errors, feed misalignment errors and surface contour errors in the presence of sensor and actuator noise

    MIT Space Engineering Research Center

    Get PDF
    The Space Engineering Research Center (SERC) at MIT, started in Jul. 1988, has completed two years of research. The Center is approaching the operational phase of its first testbed, is midway through the construction of a second testbed, and is in the design phase of a third. We presently have seven participating faculty, four participating staff members, ten graduate students, and numerous undergraduates. This report reviews the testbed programs, individual graduate research, other SERC activities not funded by the Center, interaction with non-MIT organizations, and SERC milestones. Published papers made possible by SERC funding are included at the end of the report

    Noise-based information processing: Noise-based logic and computing: what do we have so far?

    Full text link
    We briefly introduce noise-based logic. After describing the main motivations we outline classical, instantaneous (squeezed and non-squeezed), continuum, spike and random-telegraph-signal based schemes with applications such as circuits that emulate the brain functioning and string verification via a slow communication channel.Comment: Invited talk at the 21st International Conference on Noise and Fluctuations, Toronto, Canada, June 12-16, 201

    Controls for LSS

    Get PDF
    An overiew of control development for large space structures (LSS) is presented addressing the activities of LSS modeling for control synthesis, technology identification and development, and performance evaluation. Specifically discussed are a 100 meter wrap rib antenna, a multiple payload science application platform, and a solar power satellite. In addition, the static shape control of flexible space structures by utilizing the Green's function is described
    • …
    corecore