164 research outputs found

    Stopping Insiders before They Attack: Understanding Motivations and Drivers

    Get PDF
    Insider attacks are able to evade traditional security controls because the perpetrators of the attack often have legitimate access to protected systems and data. Massive logging of user online activity data (e.g. file access or transfer, use of data storage devices, email records) is collected and analyzed to detect insider attacks (e.g. data theft, fraud, policy violation, etc.). Such techniques are fraught with drawbacks and limitations: 1) the proverbial “needle in a haystack problem,” where very little useful information is found in massive data sets, especially where the incidence of malicious insider activities is very small compared to that of legitimate actors; 2) employee privacy issues may exist about the company monitoring employee behavior; and 3) these techniques are largely wanting in their accuracy, leading to notably high false positive rates. Perhaps the most salient limitation of these techniques is that the analyses are post-hoc, and by the time the activity is detected, the insider has already engaged in data theft or exfiltration, the impact of which may not be reversible. This paper discusses the concept of using probes for detection of threats, wherein user intentions to engage in insider attacks can be gauged by sending carefully designed probes that rouse malicious users into acting. In this research, we seek a broad understanding of the scope and relevance of such probes. There are various motivations for users to steal data, including financial gain, patriotic fervor, and disgruntlement with work. In the present experiment, we created simulated conditions to reflect common insider motivations by providing subjects with imagined scenarios, then asking them to take the perspective of insiders in those scenarios, and explicate their actions through a series of structured questions that mimic our probes. The results show the effect of different scenarios in motivating the users, and the effectiveness of different probes in eliciting their actions

    The Wolf of SUTD (TWOS): A dataset of malicious insider threat behavior based on a gamified competition

    Get PDF
    In this paper we present open research questions and options for data analysis of our previously designed dataset called TWOS: The Wolf of SUTD. In specified research questions, we illustrate the potential use of the TWOS dataset in multiple areas of cyber security, which does not limit only to malicious insider threat detection but are also related to authorship verification and identification, continuous authentication, and sentiment analysis. For the purpose of investigating the research questions, we present several state-of-the-art features applicable to collected data sources, and thus we provide researchers with a guidance how to start with data analysis. The TWOS dataset was collected during a gamified competition that was devised in order to obtain realistic instances of malicious insider threat. The competition simulated user interactions in/among competing companies, where two types of behaviors (normal and malicious) were incentivized. For the case of malicious behavior,we designed two types of malicious periods that was intended to capture the behavior of two types of insiders – masqueraders and traitors. The game involved the participation of 6 teams consisting of 4 students who competed with each other for a period of 5 days. Their activities were monitored by several data collection agents and producing data for mouse, keyboard, process and file-system monitor, network traffic, emails, and login/logout data sources. In total, we obtained 320 hours of active participation that included 18 hours of masquerader data and at least two instances of traitor data. In addition to expected malicious behaviors, students explored various defensive and offensive strategies such as denial of service attacks and obfuscation techniques, in an effort to get ahead in the competition. The TWOS dataset was made publicly accessible for further research purposes. In this paper we present the TWOS dataset that contains realistic instances of insider threats based on a gamified competition. The competition simulated user interactions in/among competing companies, where two types of behaviors (normal and malicious) were incentivized. For the case of malicious behavior, we designed sessions for two types of insider threats (masqueraders and traitors). The game involved the participation of 6 teams consisting of 4 students who competed with each other for a period of 5 days, while their activities were monitored considering several heterogeneous sources (mouse, keyboard, process and file-system monitor, network traffic, emails and login/logout). In total, we obtained 320 hours of active participation that included 18 hours of masquerader data and at least two instances of traitor data. In addition to expected malicious behaviors, students explored various defensive and offensive strategies such as denial of service attacks and obfuscation techniques, in an effort to get ahead in the competition. Furthermore, we illustrate the potential use of the TWOS dataset in multiple areas of cyber security, which does not limit to malicious insider threat detection, but also areas such as authorship verification and identification, continuous authentication, and sentiment analysis. We also present several state-of-the-art features that can be extracted from different data sources in order to guide researchers in the analysis of the dataset. The TWOS dataset is publicly accessible for further research purposes. © 2018, Innovative Information Science and Technology Research Group. All rights reserved

    Data Exfiltration:A Review of External Attack Vectors and Countermeasures

    Get PDF
    AbstractContext One of the main targets of cyber-attacks is data exfiltration, which is the leakage of sensitive or private data to an unauthorized entity. Data exfiltration can be perpetrated by an outsider or an insider of an organization. Given the increasing number of data exfiltration incidents, a large number of data exfiltration countermeasures have been developed. These countermeasures aim to detect, prevent, or investigate exfiltration of sensitive or private data. With the growing interest in data exfiltration, it is important to review data exfiltration attack vectors and countermeasures to support future research in this field. Objective This paper is aimed at identifying and critically analysing data exfiltration attack vectors and countermeasures for reporting the status of the art and determining gaps for future research. Method We have followed a structured process for selecting 108 papers from seven publication databases. Thematic analysis method has been applied to analyse the extracted data from the reviewed papers. Results We have developed a classification of (1) data exfiltration attack vectors used by external attackers and (2) the countermeasures in the face of external attacks. We have mapped the countermeasures to attack vectors. Furthermore, we have explored the applicability of various countermeasures for different states of data (i.e., in use, in transit, or at rest). Conclusion This review has revealed that (a) most of the state of the art is focussed on preventive and detective countermeasures and significant research is required on developing investigative countermeasures that are equally important; (b) Several data exfiltration countermeasures are not able to respond in real-time, which specifies that research efforts need to be invested to enable them to respond in real-time (c) A number of data exfiltration countermeasures do not take privacy and ethical concerns into consideration, which may become an obstacle in their full adoption (d) Existing research is primarily focussed on protecting data in ‘in use’ state, therefore, future research needs to be directed towards securing data in ‘in rest’ and ‘in transit’ states (e) There is no standard or framework for evaluation of data exfiltration countermeasures. We assert the need for developing such an evaluation framework

    Detecção de ataques por canais laterais na camada física

    Get PDF
    Today, with the advent of IoT and the resulting fragmentation of wireless technologies, they bring not only benefits, but also concerns. Daily, several individuals communicate with each other using various communication methods. Individuals use a variety of devices for innocuous day-to-day activities; however, there are some malicious individuals (dishonest agents) whose aim is to cause harm, with the exfiltration of information being one of the biggest concerns. Since the security of Wi-Fi communications is one of the areas of greatest investment and research regarding Internet security, dishonest agents make use of side channels to exfiltrate information, namely Bluetooth. Most current solutions for anomaly detection on networks are based on analyzing frames or packets, which, inadvertently, can reveal user behavior patterns, which they consider to be private. In addition, solutions that focus on inspecting physical layer data typically use received signal power (RSSI) as a distance metric and detect anomalies based on the relative position of the network nodes, or use the spectrum values directly on models classification without prior data processing. This Dissertation proposes mechanisms to detect anomalies, while ensuring the privacy of its nodes, which are based on the analysis of radio activity in the physical layer, measuring the behavior of the network through the number of active and inactive frequencies and the duration of periods of silence and activity. After the extraction of properties that characterize these metrics,an exploration and study of the data is carried out, followed by the use of the result to train One-Class Classification models. The models are trained with data taken from a series of interactions between a computer, an AP, and a mobile phone in an environment with reduced noise, in an attempt to simulate a simplified home automation scenario. Then, the models were tested with similar data but containing a compromised node, which periodically sent a file to a local machine via a Bluetooth connection. The data show that, in both situations, it was possible to achieve detection accuracy rates in the order of 75 % and 99 %. This work ends with some ideas of resource work, namely changes in the level of pre-processing, ideas of new tests and how to reduce the percentage of false negatives.Hoje, com o advento da IoT e a resultante fragmentação das tecnologias sem fio, elas trazem não apenas benefícios, mas também preocupações. Diariamente vários indivíduos se comunicam entre si usando vários métodos de comunicação. Os indivíduos usam uma variedade de dispositivos para atividades inócuas do dia-adia; no entanto, existem alguns indivíduos mal-intencionados (agentes desonestos) cujo objetivo é causar danos, sendo a exfiltração de informação uma das maiores preocupações. Sendo a segurança das comunicações Wi-Fi uma das áreas de maior investimento e investigação no que toca a segurança na Internet, os agentes desonestos fazem uso de canais laterais para exfiltrar informação, nomeadamente o Bluetooth. A maioria das soluções atuais para deteção de anomalias em redes baseiam-se em analisar tramas ou pacotes, o que, inadvertidamente, pode revelar padrões de comportamento dos utilizadores, que estes considerem privados. Além disso, as soluções que se focam em inspecionar dados da camada física normalmente usam a potência de sinal recebido (RSSI) como uma métrica de distância e detetam anomalias baseadas na posição relativa dos nós da rede, ou usam os valores do espetro diretamente em modelos de classificação sem prévio tratamento de dados. Esta Dissertação propõe mecanismos para deteção de anomalias, assegurando simultaneamente a privacidade dos seus nós, que se baseiam na análise de atividade rádio na camada física, medindo os comportamentos da rede através do número de frequências ativas e inativas e a duração de períodos de silêncio e atividade. Depois da extração de propriedades que caracterizam estas métricas, é realizada uma exploração dos dados e um estudo das mesmas, sendo depois usadas para treinar modelos de classificação mono-classe. Os modelos são treinados com dados retirados de uma série de interações entre um computador, um AP, e um telemóvel num ambiente com ruído reduzido, numa tentativa de simular um cenário de automação doméstica simplificado. De seguida, os modelos foram testados com dados semelhantes mas contendo um nó comprometido, que periodicamente enviava um ficheiro para uma máquina local através de uma ligação Bluetooth. Os dados mostram que, em ambas as situações, foi possível atingir taxas de precisão de deteção na ordem dos 75% e 99%. Este trabalho finaliza com algumas ideias de trabalho futuro, nomeadamente alterações ao nível do pré-processamento, ideias de novos testes e como diminuir a percentagem de falsos negativos.Mestrado em Engenharia de Computadores e Telemátic

    A novel privacy preserving user identification approach for network traffic

    Get PDF
    The prevalence of the Internet and cloud-based applications, alongside the technological evolution of smartphones, tablets and smartwatches, has resulted in users relying upon network connectivity more than ever before. This results in an increasingly voluminous footprint with respect to the network traffic that is created as a consequence. For network forensic examiners, this traffic represents a vital source of independent evidence in an environment where anti-forensics is increasingly challenging the validity of computer-based forensics. Performing network forensics today largely focuses upon an analysis based upon the Internet Protocol (IP) address – as this is the only characteristic available. More typically, however, investigators are not actually interested in the IP address but rather the associated user (whose account might have been compromised). However, given the range of devices (e.g., laptop, mobile, and tablet) that a user might be using and the widespread use of DHCP, IP is not a reliable and consistent means of understanding the traffic from a user. This paper presents a novel approach to the identification of users from network traffic using only the meta-data of the traffic (i.e. rather than payload) and the creation of application-level user interactions, which are proven to provide a far richer discriminatory feature set to enable more reliable identity verification. A study involving data collected from 46 users over a two-month period generated over 112 GBs of meta-data traffic was undertaken to examine the novel user-interaction based feature extraction algorithm. On an individual application basis, the approach can achieve recognition rates of 90%, with some users experiencing recognition performance of 100%. The consequence of this recognition is an enormous reduction in the volume of traffic an investigator has to analyse, allowing them to focus upon a particular suspect or enabling them to disregard traffic and focus upon what is left

    The Pulse of Fileless Cryptojacking Attacks: Malicious PowerShell Scripts

    Full text link
    Fileless malware predominantly relies on PowerShell scripts, leveraging the native capabilities of Windows systems to execute stealthy attacks that leave no traces on the victim's system. The effectiveness of the fileless method lies in its ability to remain operational on victim endpoints through memory execution, even if the attacks are detected, and the original malicious scripts are removed. Threat actors have increasingly utilized this technique, particularly since 2017, to conduct cryptojacking attacks. With the emergence of new Remote Code Execution (RCE) vulnerabilities in ubiquitous libraries, widespread cryptocurrency mining attacks have become prevalent, often employing fileless techniques. This paper provides a comprehensive analysis of PowerShell scripts of fileless cryptojacking, dissecting the common malicious patterns based on the MITRE ATT&CK framework.Comment: 10 pages, 1 figur

    A novel flow-based statistical pattern recognition architecture to detect and classify pivot attacks

    Get PDF
    A thesis submitted in partial fulfilment of the requirements of the University of Wolverhampton for the degree of Doctor of Philosophy.Pivot attack or pivoting is a well-known technique used by threat actors to cover their tracks and overcome connectivity restrictions imposed by the network defences or topology. Therefore, detecting ongoing pivot attacks while the opponent has not yet achieved their goals is essential for a solid defence strategy. However, recognising and classifying this technique in large corporate networks is a complex task. The literature presents limited studies regarding pivot attacks, and mitigation strategies have severe constraints to date. For example, related work still focuses on specific protocol restrictions techniques scoped at internal network assets only. This approach is inefficient since opponents commonly create pivot tunnels across the internet. This thesis introduces and evaluates APIVADS, a novel flow-based detection scheme to identify compromised assets supporting pivot attacks. Moreover, APIVADS outperforms previous approaches regarding features and capacities. To the best of our knowledge, this is the first protocol and cryptographic primitives agnostic, privacy-preserving approach capable of detecting pivot attacks over the internet. For example, Its efficient data reduction technique can achieve near real-time detection accuracy of 99.37% by distinguishing ongoing pivot attacks from regular enterprise traffic such as TLS, HTTPS, DNS and P2P over the internet. Additionally, this thesis proposes APCA, an automatic pivot attack classifier algorithm based on perceived indicators of attack (IoA) generated by APIVADS, to determine the level of connectivity achieved by the adversary. APCA can distinguish between different types of pivoting and contribute to the threat intelligence capabilities regarding the adversary modus operandi. The architecture composed by APIVADS and APCA considers a hybrid approach between decentralised pivoting host-based detection and a centralised approach to aggregate results and achieve scalability. Empirical results from our experiments show that even when the adversary uses evasive pivoting techniques, the proposed architecture is efficient and feasible regarding classification and detection, achieving high accuracy of 98.54% and low false positives
    corecore