
Universidade de Aveiro
2021

Daniel
Martins Coelho

Detecção de Ataques por Canais Laterais na Camada
Física

Detection of Side Channel Attacks at the Network
Physical Layer





“Working hard for something we don’t care about is called stress;
working hard for something we love is called passion.”

— Simon Sinek

Universidade de Aveiro
2021

Daniel
Martins Coelho

Detecção de Ataques por Canais Laterais na Camada
Física

Detection of Side Channel Attacks at the Network
Physical Layer





Universidade de Aveiro
2021

Daniel
Martins Coelho

Detecção de Ataques por Canais Laterais na Camada
Física

Detection of Side Channel Attacks at the Network
Physical Layer

Dissertação apresentada à Universidade de Aveiro para cumprimento dos requisi-
tos necessários à obtenção do grau de Mestre em Engenharia de Computadores e
Telemática, realizada sob a orientação científica do Doutor Paulo Jorge Salvador
Serra Ferreira, Professor Associado do Departamento de Eletrónica, Telecomuni-
cações e Informática da Universidade de Aveiro.





Dedico este trabalho aos meus avós Ermelinda e Arlindo, aos meus pais
e aos meus amigos por todo o apoio que me deram nestes cinco anos. A
preocupação e o carinho foram fundamentais para passar por todo o percurso
com distinção.





o júri / the jury
presidente / president Professor Doutor Arnaldo Silva Rodrigues de Oliveira

Professor Auxiliar do Departamento de Eletrónica, Telecomunicações e Informática da Universi-
dade de Aveiro

vogais / examiners committee Professor Doutor Ricardo Santos Morla
Professor Auxiliar do Departamento de Engenharia Eletrotécnica e de Computadores da Univer-
sidade do Porto

Professor Doutor Paulo Jorge Salvador Serra Ferreira
Professor Associado do Departamento de Eletrónica, Telecomunicações e Informática da Univer-
sidade de Aveiro (orientador)





agradecimentos /
acknowledgements

Um forte agradecimento por todo o apoio que a minha família me deu durante
todo o meu percurso académico, em especial aos meus pais e avós, que fizeram os
possíveis para me manter focado e saudável. Sempre foram uma fonte de inspiração
e suporte incrível. Quero também agradecer aos meus amigos, pela amizade e o
carinho. Acompanham-me à vários anos e estiveram cá para mais uma etapa na
minha vida.
Gostava também de agradecer à Scientific Junior Value, uma júnior empresa na
qual cresci como pessoa e profissional e que para sempre guardo todos os amigos
que fiz pertencendo a esta júnior empresa.
Quero também deixar um especial agradecimento ao Professor Paulo Salvador,
que desde a primeira aula, no inicio do curso, sempre mostrou disponibilidade de
ajudar, sempre transmitiu ideais de como ser um bom profissional e mostrou ser
uma ótima pessoa. Para além disso, foi incansável o seu apoio para a realização
desta dissertação.
Por isso, do fundo do coração um grande obrigado a todos.





Palavras Chave Canais Laterais, Monitorização de Rede, Monitorização do Sinal Rádio, Deteção
de Anomalias, Classificação Mono-Classe, Aprendizagem Automática.

Resumo Hoje, com o advento da IoT e a resultante fragmentação das tecnologias sem fio,
elas trazem não apenas benefícios, mas também preocupações. Diariamente vá-
rios indivíduos se comunicam entre si usando vários métodos de comunicação. Os
indivíduos usam uma variedade de dispositivos para atividades inócuas do dia-a-
dia; no entanto, existem alguns indivíduos mal-intencionados (agentes desonestos)
cujo objetivo é causar danos, sendo a exfiltração de informação uma das maio-
res preocupações. Sendo a segurança das comunicações Wi-Fi uma das áreas de
maior investimento e investigação no que toca a segurança na Internet, os agentes
desonestos fazem uso de canais laterais para exfiltrar informação, nomeadamente
o Bluetooth. A maioria das soluções atuais para deteção de anomalias em redes
baseiam-se em analisar tramas ou pacotes, o que, inadvertidamente, pode revelar
padrões de comportamento dos utilizadores, que estes considerem privados. Além
disso, as soluções que se focam em inspecionar dados da camada física normal-
mente usam a potência de sinal recebido (RSSI) como uma métrica de distância
e detetam anomalias baseadas na posição relativa dos nós da rede, ou usam os
valores do espetro diretamente em modelos de classificação sem prévio tratamento
de dados.
Esta Dissertação propõe mecanismos para deteção de anomalias, assegurando si-
multaneamente a privacidade dos seus nós, que se baseiam na análise de atividade
rádio na camada física, medindo os comportamentos da rede através do número
de frequências ativas e inativas e a duração de períodos de silêncio e atividade.
Depois da extração de propriedades que caracterizam estas métricas, é realizada
uma exploração dos dados e um estudo das mesmas, sendo depois usadas para
treinar modelos de classificação mono-classe.
Os modelos são treinados com dados retirados de uma série de interações entre
um computador, um AP, e um telemóvel num ambiente com ruído reduzido, numa
tentativa de simular um cenário de automação doméstica simplificado. De seguida,
os modelos foram testados com dados semelhantes mas contendo um nó compro-
metido, que periodicamente enviava um ficheiro para uma máquina local através
de uma ligação Bluetooth. Os dados mostram que, em ambas as situações, foi
possível atingir taxas de precisão de deteção na ordem dos 75% e 99%.
Este trabalho finaliza com algumas ideias de trabalho futuro, nomeadamente al-
terações ao nível do pré-processamento, ideias de novos testes e como diminuir a
percentagem de falsos negativos.





Keywords Side-Channels, Network Monitoring, Radio Signal Monitoring, Anomaly Detection,
One-Class Classification, Machine Learning.

Abstract Today, with the advent of IoT and the resulting fragmentation of wireless tech-
nologies, they bring not only benefits, but also concerns. Daily, several individuals
communicate with each other using various communication methods. Individu-
als use a variety of devices for innocuous day-to-day activities; however, there are
some malicious individuals (dishonest agents) whose aim is to cause harm, with
the exfiltration of information being one of the biggest concerns. Since the security
of Wi-Fi communications is one of the areas of greatest investment and research
regarding Internet security, dishonest agents make use of side channels to exfiltrate
information, namely Bluetooth. Most current solutions for anomaly detection on
networks are based on analyzing frames or packets, which, inadvertently, can reveal
user behavior patterns, which they consider to be private. In addition, solutions
that focus on inspecting physical layer data typically use received signal power
(RSSI) as a distance metric and detect anomalies based on the relative position
of the network nodes, or use the spectrum values directly on models classification
without prior data processing.
This Dissertation proposes mechanisms to detect anomalies, while ensuring the pri-
vacy of its nodes, which are based on the analysis of radio activity in the physical
layer, measuring the behavior of the network through the number of active and
inactive frequencies and the duration of periods of silence and activity. After the
extraction of properties that characterize these metrics,an exploration and study
of the data is carried out, followed by the use of the result to train One-Class
Classification models.
The models are trained with data taken from a series of interactions between a
computer, an AP, and a mobile phone in an environment with reduced noise, in
an attempt to simulate a simplified home automation scenario. Then, the models
were tested with similar data but containing a compromised node, which period-
ically sent a file to a local machine via a Bluetooth connection. The data show
that, in both situations, it was possible to achieve detection accuracy rates in the
order of 75 % and 99 %.
This work ends with some ideas of resource work, namely changes in the level
of pre-processing, ideas of new tests and how to reduce the percentage of false
negatives.
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CHAPTER 1
Introduction

This chapter describes the overall motivation for addressing the topics of this Dissertation,
the background of the Internet of Things (IoT), parallel data exfiltration and machine learning
areas. In this chapter, we also address the main contributions of this work and a summary of
the structure of the document.

1.1 Motivation

IoT devices have become an important part of the information and communication
technology performing a crucial role in a company make them more efficient and productive,
especially if they assist curtail on manual steps and human error. However, the growing
complexity in IoT infrastructures is raising unwanted vulnerability to their systems. IoT
devices bring indisputable benefits to the companies - which are undeniably numerous -
but they often forget to simultaneously assess the risks of information breaches related to
those devices. According to ESET’s 1 2020 threat report says that all top ten vulnerabilities
in Q2 2020 originated from before 2016, demonstrating the "longevity" of IoT flaws and
the reluctance or inability of vendors and/or users to patch them [1]. In IoT devices,
security breach and anomaly has become common phenomena nowadays. IoT devices use
a wireless medium to broadcast data which makes them an easier target for an attack [2].
A normal communication attack in the local network is limited to local nodes, but attack
in IoT ecosystem expands over a larger area and has a devastating effects. The security
measures that have been used until now are weak against the vulnerability of IoT devices. For
companies, data is money. Vulnerability in IoT nodes makes a backdoor for an attacker to data
exfiltration from any important organization [3]. According to IBM, the average total cost per
data breach worldwide in 2019 amounted to a total of $3.92 million and $3.5 million in 2014 [4].

1https://www.eset.com/
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Conventional wireless security solutions specialize in perimeter network defense, like
Unified Threat Management (UTM), Intrusion Prevention System (IPS), and authentication
solutions, being great at preventing, detecting, and monitoring threats coming over the
network, however they are inept at protecting against IoT-related attacks. Unlike ancient IT
security exploits, IoT threats gain enterprise access through the broader Radio Frequency (RF)
spectrum. It is not just a laptop or smartphone accessing corporation WiFi that presents
a threat; it’s any device enabled by Bluetooth, NFC, RFID, among others. It is no longer
sufficient to protect only the perimeter of the company’s network. Companies need to be
aware that the coming of IoT devices brings a greater number of communication channels. If
one were breached, it might be devastating to the corporation.

Nowadays, the companies are a strong interest in detecting an attack after compromising
the network instead of preventing it from occurring. According to a global study of large
organizations in 2019, presented by Visual Capitalist2, there are 6.5 million data records
compromised every day, 42% are caused by criminals. In 2014, the Syrian Electronic Army
hacked eBay and had full access to its servers for 229 days. The hacking compromised 145
million accounts. [5]. For companies, a data breach can mean the release publicly of sensitive
information, proprietary trade secrets, and customer data, resulting in hefty fines and damage
to the company. Many companies are therefore interest in detecting and preventing breaches
as they happen. To do that we need to identify the unauthorized transfer of data from inside,
known as data exfiltration.

A network typically has a large volume of data in circulation, which the vast majority
is legitimate. Identifying malicious data, while avoiding false positives, is the challenge for
building an exfiltration detector. Machine learning is a strong and useful tool for these
scenarios. Anomaly detection can automate the search for outliers, and separate them out
from the traffic that warrants further investigation. There are several ways to increase the
robustness of the resulting alerts. It’s used statistical and temporal characteristics of the RF
spectrum to define a typical behavior of the network and facilitate anomaly detection.

Figure 1.1: Stages of an attack with exfiltration data (retrieved from article [6]).

2https://www.visualcapitalist.com/
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1.2 Objectives

The most popular network monitoring systems and tools focus primarily on measurements
and tracking of network status, there is an enormous security gap in the physical layer [7].
Furthermore, modeling physical layer behavior is not as easy as on the upper layers. First, one
can not discriminate individual flows of data like when inspecting the network layers. We are
not provided with as much data as on upper layers. In the physical layer, the only available
data are power indicators throughout the time, which makes it much more challenging to
differentiate network behavior.

Figure 1.2: OSI Model (retrieved from website [8]).

This dissertation aims at detecting anomalous behavior in IoT networks without compro-
mising user or node privacy using the physical layer. Even if the majority of current solutions
do not study individual users’ behavior on the network, they do not guarantee their privacy
since they have access to data that may disclosure it.

Traditionally, Network-based Intrusion Detection System (NIDS) are broadly classified
based in two different ways: systems counting on misuse-detection monitor activity with
precise descriptions of known malicious behavior, while anomaly-detection systems have a
perception of regular activity and flag deviations from that profile. Compared to other security
areas on research world, anomaly detection has not obtained much traction in the real world.
Those systems found in operation deployment are most commonly based on statistical profiles
of heavily aggregated traffic [9]. According to Robin Sommer and Vern Paxson, in terms
of actual deployments, we observe a striking imbalance: in operational settings, they find
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almost exclusively only misuse detectors in use—most commonly in the form of signature
systems that scan network traffic for characteristic byte sequences [9]. Robin Sommer and
Vern Paxson speculate that many anomaly detection systems in the academic world do not
live up to the requirements of operational settings.

First introduced by Denning in her seminal work on the host-based IDES system [10] in
1987, to capture normal activity, IDES (and its successor NIDES [11]) used a combination of
statistical metrics and profiles. Since then, many more approaches have been proposed. Often,
they tested several techniques from the machine learning community, such as information
theory [12], neural networks [13], support vector machines [14], genetic algorithms [15], among
others. In our discussion, we focus on anomaly detection systems that utilize some of this
machine learning approaches.

This dissertation is focused on defining methodologies to extract the important information,
processing data and investigating the potential of machine learning techniques to increase
the safety of IoT devices, focusing on the development of unsupervised learning techniques.
Finally, it discusses the results of the overcome challenges and the paths that can be taken to
effectively improve the detection of anomalies so that it can perform a good job of protecting
IoT devices.

1.3 Contributions

Taking into account the current security challenges IoT networks face, it was developed
work that can be summarized into four points:

• Using a Software-Defined Radio (SDR) it was developed a monitoring system of the
network interactions at layer 2.

• Descriptive data from the network were extracted from the monitoring system, namely
Wi-Fi and Bluetooth, which were cleaned, filtered and selected.

• Accurately model anomaly-free network behavior, and detect a broad range of outliers,
by using classical approaches of One-Class Classification (OCC) models.

• Validate the proposed mechanisms by designing one use-case where the goal was to
identify periodic outlier behavior on Bluetooth. The behavior of the tampered node is
masked by data exchanges of other devices in the network.

1.4 Document Structure

This document is structured as follows:

• Chapter 2 - State of the Art: it presents the background of current issues and
solutions to secure IoT networks, as well as current works regarding physical layer
monitoring. Furthermore, it addresses machine learning techniques currently used for
OCC.

• Chapter 3 - Scenario and Methodologies for Anomaly Detection: this chapter
showcases the proposed mechanisms for detecting anomaly in physical layer. It depicts the
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entire data pipeline, starting with the characterization of the scenario to be studied and
finding activity and silence periods and the number of active and inactive frequencies, and
extracting relevant resources from those metrics for classification. It also demonstrates
how those features should be treated, and how to properly train the OCC models that
will be in charge of labeling each sample.

• Chapter 4 - Methodologies Evaluation: it describes two scenarios with few devices
presenting a home IoT scenario in both, however one with more data volume, which was
designed to validate the mechanisms presented in the previous chapter. It showcases a
carefull RSSI and feature analysis, and the results that OCC models obtained.

• Chapter 5 - Conclusions and Future Work: this chapter summarizes the work
presented through chapters two to four, and depicts the final conclusions of this disser-
tation. It finalizes this dissertation by proposing future developments in the issued area
and a scalable framework for real-time network behavior classification, by gathering
RSSI data from different network probes and labelling it in a separate server.
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CHAPTER 2
State of the Art

This chapter presents the state of the art and the background of the main topics addressed
by this work. The first regards the current state of IoT networks, more explicitly detailing its
story, and security issues and vulnerabilities, many due to its devices heterogeneous, lack of
concern about security mechanisms, and lack of awareness of the imminent dangers.

The second part focuses on the most common wireless communication channels used in
IoT, respectively, WiFi and Bluetooth. Its discussed its technical features, how important
they are for IoT environments, and why Bluetooth is becoming the most adopted solution.

The third section presents some methodologies used in attacks, focusing on zero-day
attacks and exfiltration of data through IoT. Based on the assumption that the network is
already compromised by this proof of concept. The phases of an attack are described in order
to understand how this happens.

The fourth section, focuses on monitoring, exploring how data is collected for monitoring,
deepening the concept of SDR. Also, it is presented methods to detect anomalies in the
network, as well as the types of intrusion detection systems and what machine learning
approaches have been tested in the research world using machine learning for detecting outlier
behaviors in the network.

The final section illustrates a series of machine learning techniques for anomaly detection,
particularly OCC models, and feature engineering techniques, such as feature selection and
feature dimensionality reduction. Many of these techniques will be used for anomaly detection
of physical layer behavior, as described in the following chapters.

2.1 Internet of Things

The Internet of Things, also known by IoT, it comprises all devices and objects that are
enabled to be permanently connected to the Internet, being able to identify themselves on
the network and communicate with each other. They may have their state altered by the
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environment around them, with or without the active involvement of human beings and they
are able to collect a vast amount of information about those around them. The Internet Society
[16] broadly defines IoT as "scenarios where network connectivity and computing capability
extends to objects, sensors and everyday items not normally considered computers, allowing
these devices to generate, exchange and consume data with minimal human intervention" .

Vehicles, traffic lights, surveillance cameras, environment sensors and medical devices are
just a few examples of what already exists in the IoT world. The benign objective of all
these devices, and the large amount of data resulting from interaction through the Internet, is
that the resulting processing is carried out so that, for example, traffic jams are avoided or a
disease is anticipated, to give just a few examples.

This new technological wave is much more than the mere implementation of electronic
systems in general in the production processes in the factories as characterized by Industry 3.0,
it is based on the concept explained above about IoT, enabling a great interaction between
different devices along the production chain, including the logistics chain, providing that the
manufacturing processes result in communion between the physical and virtual world.

Figure 2.1: Industrial Revolution (retrieved from [17] )

In other words, the industrial revolution 4.0, both in the production component and in the
logistics component, contemplates the symbiosis of digital information from various sources
and locations, in order to command and control the physical act of producing and distributing
a product or a set of products.

Thus, IoT is an irreversible reality and will gradually invade the world, our homes, the
spaces where we work, and our personal and professional life. Therefore, we can either ignore
or prepare better for the new normality. The IoT concept does not only bring benefits but
also harm, both for companies and for the personal life of each one. The number of devices
connected to the Internet, which interact with the larger world, also increases the risk of
suffering a serious compromise due to the inherent and substantial attack surface.
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2.1.1 IoT Security Issues

A work developed by Deloitte in partnership with the Manufacturers Alliance for Pro-
ductivity and Innovation (MAPI) demonstrates that almost half of the manufacturers have
mobile applications associated with their products, with 76% of companies choosing
WiFi as a data flow transmission channel between their products, easily eclipsing the use of
Bluetooth, 48%. According to the same article, "Over half of the manufacturing executives,
52% surveyed said the connected products their companies produce are able to store and/or
transmit confidential data, including social security and banking information.", with only 55%
of manufacturers saying they use encryption as the most widely used method to protect
data as it flows through their devices. Using this data as a basis, the lack of data security
mechanisms creates considerable vulnerabilities for those who have these objects installed in
their workspaces and homes. In cases of cyber breaches, 40% of manufacturers do not include
these products in their responses to incidents. In short, it is imperative that manufacturers
produce this type of product, have "security by design" as a standard and whoever acquires
them requires evidence of this. [18].

The growth in remote work is compounded by a worldwide trend: the escalation of the
internet of things (IoT) devices at our homes and work. In fact, one trillion IoT devices are
expected by 2025 [19], and most security teams have zero visibility into them. As consumer
IoT devices increasingly share the same network as corporate devices, consumer IoT devices
effectively expand the organization’s attack surface and exacerbate this growing blind spot.

According to the newspaper PÚBLICO, "’The pandemic is causing the largest volume of
attacks we have seen at one time,’ says Mark Rogers to the PÚBLICO, one of the founders of
the CTI League 1." [20]. A company with several employees working from home, it is certain
that they will access several applications simultaneously and the security systems will not
be able to filter everything. An "infected" mobile phone can steal credentials and access the
network and then have access to the work computer, for example, and thus access the work
network [20]. Without a federally enforced standard governing the security of consumer IoT
devices, device manufacturers have been permitted to prioritize time-to-market above security,
it leaves massive potential for hackers to take over devices and use them for cyber attacks [21].

A 2018 Worlwide Thread Assessment from Robert Ashley, director of the US Defense In-
telligence Agency, warned that weak security on IoT devices posed one of the "most important
emerging cyber attacks" to national security [22].

2.1.2 Vulnerabilities in IoT devices

The variety of IoT devices is wide and accessible to anyone, from IP cameras, lights or
thermostats. Unlike previous IT technologies, the security analysis of IoT devices is complex
due to the wide variety of devices and software available on the market. While "things" on
the Internet of Things benefit homes, factories and cities, these devices can also present blind
spots and security risks in the form of vulnerabilities.

1https://cti-league.com/
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Some of the explanations why IoT devices are vulnerable are, limited computational
abilities and hardware limitations, since the devices have specific functions that warrant
only limited computational abilities, leaving little room for robust security mechanisms and
data protection, heterogeneous transmission technology, turn it difficult to determine
standard protection methods and protocols, components vulnerability, and users lacking
security awareness, users awareness could expose smart devices vulnerabilities to threads
and attack openings.

The OWASP foundation, in 2018, developed a Top 10 related to the vulnerabilities of IoT
devices and that should be taken into account by all those who develop, create or manage
IoT systems.

Figure 2.2: Top 10 security issues associated with IoT devices developed by OWASP in 2018 (retrieved
from [23] )

An example of the use of these vulnerabilities is in the 2015 incident, in which an
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automotive company sold more than a million vehicles with vulnerabilities that could be
exposed by jackware 2, as was the case with the Fiat Chrysler Jeep. [24].

Although most research and discussion on "car hacking" is about technical issues inside
the vehicle, it’s important to understand that much of IoT technology depends on a support
system that goes far beyond the device itself which can cause remote access from devices.

It is possible to confirm this with the news from 2015 with VTech, which operates in
the area of IoT for children (IoCT). A security breach in electronic toys exposed personal
data about the kids and their parents, showing everyone how many attack possibilities are
created through IoT. According to Troy Hunt, a security expert, called by VTech to analyze
the problem, concludes that he found almost 5 million accounts with weak and easy to crack
passwords, and the secret questions used to recover passwords were kept in a simple format of
text [25].

2.2 Wireless Communication Technologies

Different Wireless Communication Technologies can be used for connecting the IoT devices
as local networks, and connecting these local networks (or individuals IoT devices) to the
Internet.

2.2.1 WiFi

WiFi is the most popular wireless technology used in IoT environments. It’s based on
IEEE 802.11 standards. It can operate in 2.4GHz, 3.5GHz, and 5GHz unlicensed Industrial,
Scientific and Medical (ISM) frequency bands. It provides a coverage range of up to 100
meters. It also provides reliable, secure, and high-speed communications. However, it supports
short-range communications. The cost and power of WLAN products are also higher than
other short-range wireless technologies such as ZigBee, Z-Wave, or Bluetooth [26].

WiFi plays a task in most IoT environments, alone or interworking with more specialized
protocols, or with cellular. Some IoT applications, like vehicular services, or video-based
apps like connected security cameras, will need the bandwidth of the wireless broadband
network, implemented to enable other requirements like low latency. In critical environments,
low latency may be a crucial condition. WiFi is uniquely placed to support broadband and
narrowband IoT applications from a standard platform which will work on several levels of
power consumption and signal range. Subsequent release of 5G standards, will prioritize IoT-
focused capabilities like latency below four milliseconds and really high availability, to support
emerging cases within the URLLC (ultra-reliable low latency communications) category [27].

2Jackware acts the same as ransomware. When installed on a device, it will lock access and hold the device
for ransom. It differs from ransomware in that it can disallow control to an entire device.
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2.2.2 Bluetooth

Bluetooth is a technology developed 26 years ago, in 1994, when the first draft of data
transmission would begin to develop to become one of the main pillars of IoT. In 1998, the
Bluetooth Special Interest Group (SIG) was formed, which until today publish and promotes
the standard ans its subsequent revisions [28].

The technology once pronounced dead by a trade magazine journalist in 2003 [29] was
been prosperity in the last 10 years for audio communications and stereo streaming. Daniel
Kleiner from Bluetooth SIG 3 said that is projected that nearly 4.6 billion Bluetooth devices
will ship in 2019 [30].

Bluetooth enables low power communication between devices that are in close proximity
of each other. It operates in the unlicensed ISM RF 2.4 GHz spectrum. Bluetooth is used for
data transmission through short range UHF radio waves between 2.4 and 2.485GHz, occupying
very similar frequencies with WiFi, although has always been designed as a much shorter
range and lower power alternative [31].

One main advantage of the technology is its ability to transmit both voice and data
simultaneously. Bluetooth devices operate on 79 different frequencies in the radio wave
spectrum. When two devices wish to connect, they choose one of the 79 channels at random,
or try a different one if it is already occupied by another pair of nearby devices.

2.2.3 Choice of Bluetooth over WiFi in IoT environments

Both Bluetooth and WiFi are commonly used for IoT devices, but there are advantages
and drawbacks to both choices because they operate in different ways.

The Bluetooth protocol has two different versions commonly employed by IoT devices
which will indirectly communicate with each other: Bluetooth Classic and Bluetooth Low
Energy (BLE), which is meant for devices that require to consume low amounts of power.
Bluetooth usually requires physical proximity to initiate a sign broadcast, so there’s no
possibility of remote attacks, also requires much less energy than WiFi, so it works better for
low-power IoT devices like basic sensors [32]. Also, the BLE provides a totally new approach
in terms of cyber-securing the network. The previous version of Bluetooth was known to
contain variety of security vulnerabilities that would cause exposure of encryption keys [33].

Another advantage of Bluetooth networking is that the incontrovertible fact that it’s
supported by the overwhelming majority of the mobile phones that are in use today. It’s
therefore easy to use the resident’s smartphone to supply an easy interface with the smart
devices installed within the premises. Moreover, Bluetooth allows for greater localization
accuracy compared to WiFi, thanks to its more limited range. It’s also easier and safer to
line up and operate, thanks to the inherent features in Bluetooth’s design [33].

Properly-designed Bluetooth IoT applications are effective for several specific application
domains. Since Bluetooth is pervasive in smartphones and private computers, it’s gaining
ground in home automation applications albeit the trouble to be a very low-power technology

3https://www.bluetooth.com/
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remains ongoing [34]. The Bluetooth immediately pulled in financial specialists, who look
with revenue to the expanding business sector of the IoT.

2.3 Attack Methodologies

Targeted cyber attacks are a standard weapon for subverting the integrity of Internet
operations. Those operations steal intellectual property, conduct espionage, damage critical
infrastructures, and make danger for users. It are able to do both tactical and strategic goals
across the internet without requiring any physical requirement. It’s clear that targeted attacks
are a strong weapon playing a big role in future cyber wars [35].

2.3.1 Zero-day Attack

Intruders are smarter and their methods are unpredictable. They will eventually find a
way to penetrate the defenses. This means that at some point the preventive measures will
fail. The best intruders save their exploits for the targets that truly matter, zero-day exploits.

Zero-day exploits are exploits that are designed for unknown vulnerabilities that vendors
haven’t any awareness and no patches are available. In critical software is now considered to
be attack weapons which will be wont to gain control of an opponent’s network infrastructure.

Government security agencies are spending many dollars on unknown zero-day exploits.
The United States government is one among the most important buyers of those cyber weapons
[36]. In fact, legitimate security companies find vulnerabilities, write zero-day exploits, and
sell them to governments for giant amounts of cash. A well-crafted targeted cyber attack isn’t
cheap as substantial effort is expended in building a multi-layer model of attack vectors and
adapting them to the target network’s environment. Targeted attacks are nation independent
and may be initiated by independent attackers [35].

Patching may be a bigger problem than zero-day exploits. In many cases, like with
IoT devices, they’re shipped from the factory in a vulnerable state, then never get patched.
Sometimes is physically impossible to patch these devices. Although a security patch has been
published by the seller does little good if that patch never gets deployed in production [37].

2.3.2 Targeted Attacks

There exist several definitions of targeted cyber attacks, however, the basic definition based
on the naming convention says that a targeted attack is a class of dedicated attacks that aim
at a specific user, company, or organization to gain access to critical data. Targeted-attacks
differentiate the targets and wait for the appropriate opportunity to execute the attack plan,
unlike broad-based attacks that are random in nature and focus on infecting and compromising
large groups of users [35].

The targeted attacks follow some important characteristics as:
• Zero-day exploits against unknown vulnerabilities are used to compromised target

systems.
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• Sophisticated malware are used, which go unnoticed despite the presence of security
solutions installed on network.

• Real identity behind the attack is hidden to keep a low profile to avoid any legal
problems.

• Only the targeted systems are compromised and infected. A targeted attack is less likely
to be caught and becomes more dangerous.

• Attack is made persistent for a long period of time and operations are executed in a
hidden manner.

Targeted attacks are complex because attackers need to invent substantial amount of
your time to pick and prepare the attack model and discovering zero-day vulnerabilities.
Every one of these variables collectively provide an environment to launch targeted attacks [35].

2.3.3 Attack Phases

When cyber attackers strategize the way to infiltrate an organization’s network and
exfiltrate data, they follow a series of stages that comprise the attack lifecycle. The described
cyber kill chain characterizes the progression of a cyber attack and in this 7 layer model, each
one is critical. For attacks to successfully complete an attack, they need to progress through
each stage. Blocking adversaries at any point within the cycle breaks the chain of attack.

Figure 2.3: Phases of cyber kill chain (retrieved from article [38]).

The kill chain model mainly describes an Advanced Persistent Threat (APT), a classy
attacker waging an organized attack campaign against a selected company. A targeted attack
can be considered a super set of APTs [39]. Every stage is critical for ensuring the success of
targeted attack.
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Reconnaissance

Reconnaissance means gathering information about the potential target, which can
affect individuals or organizations and is used in later stages to design and deliver the payload.
No detail should be overlooked, no matter how innocuous it may seem. Recognition can
be divided into target identification, selection, and profiling. For successful recognition, a
strategy is needed. A typical strategy needs to include active and passive recognition.[40]:

• Passively: The attacker uses the vast amount of data available on on the internet, not
iterating directly with the target and intrinsically, the target has no way of knowing,
recording, or logging any activity.

• Actively: The attacker iterates directly with the target, involving deeper profiling and
could trigger an alert to the target.

Weaponize

Weaponize means design a backdoor and a penetration plan, using the information
gathered from reconnaissance. Attackers often use malware, commonly a Remote Access
Trojan, or RAT, coupled with a delivery payload with a deliverable payload, such as an
infected document, like a PDF [41].

Depending on the delivery method, weaponization can take many other forms, such as
exploit kits. In this case, the attacker tricks the target to download the malware without
hiding it. The target is encouraged to visit an infect website, which could result in a "drive-by
download" of malware [41].

Delivery

Delivery is a critical part of the cyber kill chain, responsible for an efficient and effective
cyber attack. In most of the cyber-attacks it is mandatory to have some kind of user
interaction like downloading and executing malicious files or visiting malicious web pages.
Delivery may be a high-risk task for an attacker because delivery leaves traces. While
delivering the weapon multiple methods can be used to guarantee 100% success [35].

The Verizon 4 report classifies data breach through the following delivery mechanisms:
Email Attachments, Phishing Attacks, Drive-by Download - The target is forced to download
appealing malicious content from internet, USB/Removal Media, and DNS Cache Poisoning
- Vulnerabilities in DNS are exploited to divert internet traffic from legitimate servers to
attacker controlled destinations [42].

According to Internet Security Thread Report by Symantec, 65% of known APT groups used
phishing emails for targeted attacks [43]. Email links account for nearly 40% of malware
vectors, with email attachments account for about 18% [42].

4https://enterprise.verizon.com/
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Exploitation

After delivering the weapon, is expected the target completes the required task on the
target side. On execution, the next step is triggering the exploite, who silently install/execute
the payload. To run the exploit, there are certain conditions that need to be met [35].

1. The user must use the software/operating system for which the exploit has been created.
2. The software/operating system should not be updated or upgraded to the versions

wherein the exploit could not work.
3. Anti-viruses or any security system mechanism should not detect the exploit or payload

neither in statistically nor dynamically scan during run time.
If all the conditions are fulfilled then exploit is triggered and can successfully install/execute

the payload within the target’s system. Exploits are made using vulnerabilities in software
publicly identified as Common Vulnerabilities and Exposures (CVE) 5 [35].

Installation

The installation of a remote access trojan or backdoor on the victim’s system allows the
contender to maintain perseverance within the environment [44]. The common way to the
computer would become infected by an infection vector, is for example, an infected removable
media, which in turn will leave a malware executable in some unusual location. Eventually,
the user will report this executable to an antivirus vendor, who in turn will analyze it and
come up with a signature to detect it and maybe remove it. However, modern malware is not
that simple. Nowadays, malware is multi-staged and depend on droppers and downloaders to
deliver the malware modules. A Dropper is a program that will install and run the malware
on the target system after trying to disabling security controls and hide the installed malware.
A Downloader is similar to the Dropper but tended to be smaller than Dropper because
they not contain malicious components. Instead, they connect to a remote repository and
download the core components [35].

Installation life-cycle incorporates several resilience features in a way to maximize the
success of the installation, protecting the attack entity.

Command and Control

Command and Control (C&C) system is employed to offer remote covert instructions to
compromised machines. This enables for continuous connectivity for the environment and
the detective measure activity on the defense. Can act as the place where the data can be
exfiltrated. The architecture of C&C channel has evolved owing the exponential development
of defensive mechanisms, namely anti viruses, firewalls, IDs, etc.

There are mainly three types of C&C communication structures, the traditionally central-
ized structure, the decentralized architecture and the most recent one, the Social Networks
based structure [35].

5https://cve.mitre.org/
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• The Centralized Structure refers to an only one server that command and control
the infected machines. Its easy to manage. However, if the server is taking down will
shutdown the entire C&C architecture.

• The Decentralized Structure the attackers use Peer-to-Peer (P2P) architecture for
command and control. This type of architecture promotes scalability, fault tolerance,
since redundant communication links can be formed to route information and P2P
nature resolves the single point dependence of centralized architectures.

• The Social Networks-Based Structure is the most recent and dangerous one. For
example, Facebook has 1.35 billion registered users as of third quarter of 2014. Most of
the social network services are free and are considered benign for a big part of the world,
becoming a viable option to attackers. High availability and reliable social networks are
used to transmit information in a centralized/decentralized way to the infected machines.
An example of such attacks is Taidoor.

Taidoor is a malware used for cyber espionage. In a typical attack, targets receive a
spear-phishing email - attack via email or electronic communication, targeted at a specific
individual, organization or company - which encourage them to open an attached file, and if
opened on a vulnerable system, malware silently installed on the target’s computer while a
decoy document with a legitimate content is opened that is intended to alleviate any suspicions.
Taidoor has been successfully compromising targets since 2008. This thread has evolved over
time. Additionally, the well-known Taidoor network approach pattern has been modified,
likely as a new way to avoid network-based detection [45].

Act on Objective

Once all the previous steps are completed, APTs finally begin to work on their main
objectives. The command used by attacker depends on interest of attack [46]:

1. Mass Attack: The goal is to hit many targets as possible. Most of such attacks aims to
getting bank, email or local system administrator credentials. An example of mass attack
is the BOTNets. BOTNets are mainly used for Distributed Denial-of-Service (DDoS)
attacks and virtual coin mining [35].

2. Targeted Attack: Its more sophisticated and carried with more caution. Most of the
attacks are trying to get confidential data from target system. Spreading through the
network also becomes the primary goal when the target is an organization [35]. These
may include data exfiltration, installing malware intend to disable or destroy
systems, or forwarding to bigger systems linked to the system they have
compromised [41].

2.3.4 Data Exfiltration

Data exfiltration may be a major risk for many organizations, particularly those with
highly valuable or sensitive information. Whether accidental or intentional, insider threats
within a corporation could also be putting sensitive data in danger every day. Hackers also
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often target privileged insiders with credential theft attempts, including phishing and social
engineering attacks. Also, transferring private information from the target system are often
manual by someone with physical access to the computer or automated, administered through
malware over a network [47].

Portuguese energy giant Energias de Portugal (EDP) was the latest company to be
threatened with public disclosure of their sensitive data if they fail to pay the ransom. Hacking
group called Ragnarok, known for using the custom Ragnar Locker ransomware that has been
hitting managed service providers since late 2019, has publicly threatened to dump sensitive
information from the 10TB of data they stole if the energy company does not opt to pay their
ransom demand of $10.9 million [48].

Big data security is an understudied area. According to research from CA Technologies,
databases are the amount one most vulnerable IT asset. If you think about it, databases are the
crown jewel of sensitive information, and if an attacker accesses one, there’s a high likelihood of
uncovering something extraordinarily valuable to the organization. Cybercriminals can exploit
vulnerabilities at the hardware, software and/or network layer level to secretly filter data stored
on vulnerable systems, such as by IoT devices and the cloud. IoT devices are increasingly
targeted, as these systems are sources of a large amount of data flow, including personal and
confidential information from individuals, organizations and governments. Organizations,
where an employee can bring their own device, may be potentially exposed to an increased risk
of data exfiltration if those devices are used to access and store sensitive corporate information.
Once a compromised device is successfully targeted and compromised, secret data exfiltration
can easily occur [49]. In such a case, the intrusion can, in theory, be detected by identifying a
channel that is being used to exfiltrate information.

Time aspects

An article developed by Annarita Giani et al. [50] makes an approach to the concept
of timing covert channels. They first consider the bandwidth constraints of varied media,
before moving on to a (rather) subjective evaluation of "covertness". Figure 2.4 shows the
interval of your time required to exfiltrate a given amount of data (horizontal axis) for several
different exfiltration methods (printing, burning DVDs, or a network transaction given a
selected bandwidth constraint).
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Figure 2.4: Exfiltration times (in minutes) given different amounts of data (in kilobytes) using various
media. Note the log-scale on the horizontal axis. Moving 10KB could for instance be a
letter, while 100GB could entail moving an entire database (retrieved from [50]).

For instance, for printing pages they assume that each page holds 3.6Kb in text and the
printer can print a page in 3 seconds. For CD-ROM disks for data transfer, supposing that
each disk contains 700 MB, they assume that the time to burn a CD is approximately 10
minutes. Then to transfer X MB we need at least Y = X

700 disks, taking a about Y · 10
minutes. They must round up, since transferring only 10 kilobytes by CD-ROM still requires
the use of a full CD-ROM (although the burning process will take significantly less time).

Assuming what was previously mentioned, informally, an operation is "more" covert if it’s
difficult to detect without the utilization of special tools that specifically search for it. In
other words, they define covertness a characteristic of an operation which will be measured by
the rate of usage of the media. If the apparatus is exploited at its maximum capacity, the
operation is definitely visible with a covertness of zero; if instead it’s exploited at a lesser
rate, the operation are going to be increasingly covert. Therefore, to stay activity as covert as
possible, the speed of usage, compared to the capacity of the equipment, should be kept as
low as possible. The closer the capacity is to the rate at which the operation or transmission
is executed, the more covert the transmission are going to be. Covertness is thus proportional
to the difference between capacity and therefore the actual rate used:

Covertness ∝ (Capacity of the medium - Transmission Rate)

The capacity and transmission isn’t the sole condition to require a glance. For instance,
document printing is less noticeable when the user uses a laptop in a workplace than in a
public place. The stealthiness of the transmission, therefore, depends not only on its covertness
but also the precise visibility of the operation; as an example, if a record of the method is
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kept during a log. Figure 2.5 gives an intuitive idea of how covert a given exfiltration method
is compared to others.

Figure 2.5: Intuitive covertness of the exfiltration methods given the rate at which the media is
utilized (retrieved from [50]).

2.4 Monitoring

System monitoring provides a feature that aims to detect real attacks or attempted attacks
on business systems and services. Monitoring depends heavily on the context, referring to
the process of becoming aware of the system’s state. Good monitoring is essential in order
to effectively detect attacks, either originating from outside the organization or attacks
as a result of deliberate or accidental user activity, react to attacks, a swift response is
essential to stop the attack, and to minimize the impact or damage caused, and must take
into account the activity, having a complete understanding of how systems are being used
by users, allowing to ensure that systems are being used appropriately in accordance with
organizational policies [51].

Monitoring can be done both at the protocol level and at the radio spectrum level. However,
protocol monitoring is unable to monitor and is unaware of the existence of parallel channels.
Considering this scenario, spectrum monitoring is an important ally. Spectrum monitoring
helps spectrum regulators to plan and use frequencies, avoid incompatible use and identify
sources of harmful interference. Spectrum monitoring is extremely necessary and important
in the management of spectrum resources, radio stations and electromagnetic environments,
providing valuable monitoring data, including spectrum occupation and signal characteristics,
such as field strength, bandwidth, modulation type , location of emitters, etc [52].

As a result of technological developments, namely with the miniaturization of electronic
components and the increase in processing capacity, it has enabled constant and rapid evolution
of radio-communication and monitoring systems. New technologies in radio-communication
systems may encompass adaptative frequency usage, co-frequency multiplexing, spread spec-
trum such the frequency hopping, among others. Software-defined radio is a typical example
of a new radio-communication system. Future spectrum monitoring should have the capability
for monitoring new radio-communication technologies and systems, such as detection of weak
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signals, con-frequency signal separation, RF sensor networking, and other technologies.
Two of the most common methods of monitoring, functional to both paradigms, both at

the protocol level and at the radio spectrum level are active and passive monitoring.
• Active Monitoring simulates user behavior to determine potential network perfor-

mance by "injecting" traffic into the environment. These tests can depend on what
will be measured. Since test traffic mimics the service traffic, active testing is right for
providing a real-time view of the end-to-end performance of a service, such things as
latency (or delay), jitter (or delay variation), or packet loss [53]. There are a variety of
tools used in active monitoring, such as the injection of Simple Network Management
Protocol (SNMP) queries to obtain or even change settings on devices on the network
environment, probing tools such as ping and traceroute to check for connectivity, and
scanners, such as nmap, to scan a given network (e.g., check the IP addresses of active
machines on a subnet).

• Passive Monitoring does not introduce traffic overhead in the network. On the other
hand, this technique involves capturing and analyzing live network traffic, or traffic
statistics. Large volumes of data are ideal for performing predictive analysis on intrusions
and bandwidth usage baselines, commonly through machine learning strategies. At its
simplest, passive monitoring could also be nothing more than the periodic collecting of
port statistics, like byte and packet transmit and receive numbers [53].

In fact, the best of both worlds is the best option. Active and passive monitoring is
necessary to obtain a complete image. Active monitoring should be used to provide real-time
visibility into service level performance, Quality Of Service (QoS) and give visibility to possible
network anomalies. Passive monitoring can be used to support active monitoring, first, it
can be used for post-event analysis, such as identifying malicious traffic. When building
a historical profile of traffic and signaling flows, the analysis can be performed to look for
anomalous traffic. In addition, it can also be ideal for building a detailed understanding of
customer usage patterns and application performance, enabling a deep understanding of root
cause issues and customer behavior, allowing greater visibility into the customer experience
[53].

Unfortunately, detailed information has a cost. Store every information can be unpractical
due to the power and processing limitations. The required monitors to deal with traffic may be
very expensive due to the requirements for processing and storing collected data. In addition,
inferring typical user behavior and traffic characteristics can compromise and possibly violate
user privacy through the monitoring system.

2.4.1 Data Collection

The main purpose of monitoring is to realize near real-time insight into the present state
of the system. The extracted information helps to answer many information questions, assists
in the verification of nonstandard behavior and shows more information about a reported
issue.

The process of monitoring starts with gathering data by collection agents, specialized
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software programs running on monitored entities like hosts, databases, or network devices.
Those agents capture meaningful system information, encapsulate it into data inputs, and then
report these data inputs to the monitoring system at regular intervals. The inputs are then
collated and aggregated into metrics to be presented as data points on a time series at a later
stage. Input collection could also be a continuous process or it’s going to occur periodically at
even time intervals, depending on the nature of the measurement and therefore the cost of the
resources involved in data collection. The data collection agents can be categorized into [54]:

• White-box
– Log parsers : These extract specific information from log entries;
– Log scanners : These count occurrences of strings in log files, defined by regular

expressions;
– Interface readers : These read and interpret system and device interfaces. Ex-

amples include readings of CPU utilization;
• Black-box

– Probers : These run outside the monitored system and send requests to the
system to check its response, such as ping or HTTP calls to a website to check
their availability;

– Sniffers : These monitor network interfaces, such Bluetooth interface, for instance,
and analyze traffic statistics such as number of transmitted packets;

Before the data collection occurs, agents must be deployed into the monitored entities. However,
in some circumstances, as the scenario that will later be referred to by this dissertation, it
might be desirable to monitor remote entities without the use of deployable agents, referred
to as agentless data collection in which the data is transmitted from monitored entity through
an agreed protocol and is interpreted outside the monitored system [54].

Resort to agentless monitoring is an advantage in systems with heavy restrictions on
custom software deployments, such as proprietary systems that disallow custom addictions
or high-security systems policy restrictions imposed. Examples of agentless data collection
include gathering statistics from entities running on networking gear via SNMP or periodically
executing diagnostic commands via Secure Socket Shell (SSH).

2.4.2 Software-Defined Radio (SDR)

The term "Software Radio" was used in the early 1990’s by Joseph Mitola III to refer to a
type of radio that was able to implement different communication standards from the same
hardware [55]. In a SDR, some of the radio functions typically implemented in hardware are
converted into software like the signal modulation and encoding.

Today, with the advent of IoT and the resulting fragmentation of wireless technologies,
they bring not only benefits, but also concerns and SDRs has a crucial role in monitoring
IoT environments. In a practical way, e.g. in a given populated area, several individuals
communicate with each other using various communication methods. Individuals use a
panoply of devices for innocuous, day-to-day activities, however, there are a few malicious
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individuals (rogue agents) whose purpose is to cause harm and disrupt the lives of others. The
communications between individuals are increasingly encrypted at various levels for privacy
reasons. It’s natural to assume that rogue agents choose to conceal their radio communications
among the civilian (background) traffic while enjoying the privacy protection provided by
encryption systems.

The set of communication technologies used by people in their day can reveal different
transmission frequencies. The best solution to address the scenario of distinguishing different
utilizations is to work with SDR, which will allow you to modify the radio frequency that is
being analyzed and the way to decode the signal based on the device being evaluated. There-
fore, it is not necessary to have different hardware for different devices, but a combination of
single hardware and software that will allow changes to be made according to the requirements
[56]. The arrival of SDRs offers an opportunity to identify dishonest agents by looking at
radio communications in an area. SDR can be used as a flexible, low-cost scanner, with a
focus on the statistical characteristics of communication standards.

Most articles and projects developed with SDR use RSSI values or characteristics taken
directly from the RSSI values to train models. One of those projects was developed by Vijay
Bhuse and Ajay Gupta [57] in which they propose methods to detect anomalies intrusions in
wireless sensor networks. The basic idea is to reuse the system information already available
that is generated in several layers of a network stack. They try to detect anomaly at multiple
layers using the only existing system information. If the intruder escapes at one layer, there
are still possibilities that it will be detected at other layers. The multi layer approach makes
intrusion detection system robust. The problem is related to how they use RSSI values. They
associate a neighbor with an estimated RSSI value and when nodes perform neighbor discovery,
they record RSSI values for each neighbor. These recorded values are used to detect intrusion.

Another article developed by Meng Zhang, Anand Raghunathan, and Niraj K. Jha [58]
proposed a medical security monitor that snoops on all the radio-frequency wireless communi-
cations to/from medical devices and uses multi layered anomaly detection to identify malicious
transactions. They observe physical characteristics of the signal, such RSSI, time arrival,
differential time arrival, and angle of arrival and generate limits and intervals considered
normal. Thus, thresholds are used to demarcate boundaries between normal and abnormal
values. An anomaly is detected if the signal allegedly sent by the device has unusually high or
low strength. It is stated in this article that "... measurements are performed in an empty room
with no object near the transmitter/receiver or blocking the transmission paths", obtaining
good results. However, if the attacker stayed within the RSSI threshold, he would be able to
access the devices. The solution presented to this problem is "... the monitor can analyze
the packet contents and capture "smart" attacks that are not caught by physical anomaly
detection". In conclusion, in spite of obtaining good results, the measurements were made in
a "clean" space, with no real test. Therefore, if the monitoring system fails in real time, the
answer will be to look at the content causing a breach of privacy and possibly data integrity.

In both articles, they are aware of the flexibility of RSSI according to external factors, how-
ever they put this characteristic aside and consider RSSI to be a constant variable, considering
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that its change is only affected by the distance between devices.

2.4.3 Intrusion Detection System (IDS)

Intrusion Detection System (IDS) are one of the tools that network administrators rely on
to perform monitoring. An IDS would inspect network traffic with the help of agents on the
network and sets off alarms when it detects suspicious activity. Essentially, the IDS would
compare the traffic against what it considers normal traffic and, using a range of techniques,
would generate an alarm. IDS can provide valuable information about anomalous network
behavior. [59].

On the other hand, an IPS is very similar to an IDS, however, it can be configured to block
potential threats by setting filtering criteria on network devices. Just as IDS monitors traffic
in real-time by discarding any suspicious malicious packets, blocking traffic from malicious
source addresses, resetting suspicious connections, or deploying an alarm [59]. In conclusion,
an IPS system is proactive and, in theory, works autonomously, without the intervention of a
network administrator, unlike an IDS.

False alarms are a huge problem for IDSs. For example, false positives may be
generated by the IDS for legitimate hosts carrying out identical legitimate behavior that may
appear malicious. Lets take an example, imagine a legitimate domain accessed frequently by
hosts becomes temporarily unreachable. The failed Domain Name Service (DNS) queries to
the same domain in this instance will be generated for many hosts and may appear suspicious,
but should not be considered malicious activity. Likewise, a false negative would cause
classifying malicious activity as benign.

An IDS can be an integral part of an organization’s security, but they are just one aspect of
many in a cohesive and safe system. It can be useful to monitor the network, but its usefulness
depends on what the administrator does with the information, because the detection tools
do not block or solve potential problems, they are ineffective to add a layer of security,
unless the administrator has the right personnel and policy to manage them and act on any
threads. Also, an IDS cannot see into encrypted packets, so attackers can use them
to enter into the network. An IDS will not register these intrusions until the intrusion is
discovered, and even if the packets have not been encrypted, the information from an IP
packet can still be spoofed, and the IDSs can’t see that [60].
IDSs can be classified in two categories [59]:

1. Signature-based intrusion detection systems compare monitored traffic against a
database containing known threat signatures similar to virus scan software. The database
need to be continually updated or will not detect new types of attacks. Signatures can
be as simple as a source/destination IP address or contain many other protocol headers.

2. Anomaly-based intrusion detection systems use features of normal traffic to
compare with the monitored traffic. The criterion of capturing normal traffic could be
bandwidth usage, protocols, ports, arrival rate and burstiness [61]. Network behavior is
usually defined by an automated training, while statistical modeling detects outliers
with minimal false-positive rates. It is way more precise, efficient, and reliable than a

24



signature-based system, but they are sometimes used together to complement each other.

Host-based Intrusion Detection System (HIDS) is another point of view, because
HIDS runs on individual hosts who monitoring for malicious behavior. A HIDS monitors and
analyzes the internals of a computing system rather than its external interfaces [59]. One can
think of a HIDS as an agent that monitors whether anything or anyone internal or external
has circumvented the security policy that the operating system tries to enforce. Most virus
scan software would have this feature where they also monitor inbound and outbound traffic in
addition to the usual virus scanning. This can be helpful if the hosts have been compromised
and form part of a bot to attack other networks/services. Unlike intrusion detection system
that is deployed at strategic locations within the network to monitor inbound and outbound
traffic to and from a domain area.

2.4.4 Network Anomaly Detection

Ideally, attacks should be detected as early as possible, or even predicted before they
have started so that they can be prevented altogether. The spike in the total of network
attacks, their severity, and complexity has forced administrators to use tools that rely on
anomaly analysis to detect new and unforeseen phenomena, rather than solutions that look
for traditional and well-known attacks.

Sabahi and Movaghar [62] developed a survey who categorized anomaly-based IDSs into the
following five categories: (i) statistical methods; (ii) rule-based methods; (iii) distance-based
methods; (iv) profiling methods and (v) model-based approaches.

• Statistical methods monitor the user or system behavior by measuring certain vari-
ables over time, e.g. the number of clicks on a page. This type of approach are used in
HIDS, network-based IDSs, as well in application-based IDSs for detection malicious
behaviors.

• Distance-based methods come in to try to overcome the limitations of the statistical
approaches detecting outliers. They detect outliers by computing distances among
points. However, it cannot handle data on substantial dimensional spaces.

• Rule-based methods predefines a set of rules to characterize normal behavior and
then detects anomalous behavior as deviations from that set of rules.

• Profiling methods builds profiles of normal behaviors for different types of network
traffic (for example, programs or users), and deviations from them are considered
intrusions. Profiling methods vary widely, from different data mining techniques to
various heuristic-based approaches.

• Model-based approaches builds models to characterize normal behavior and anoma-
lies are detected as deviations from this model.

Time Aspects

In the same survey developed by Sabahi and Movaghar [62], they consider that IDSs can
be distinguish into two main groups: (i) offline IDSs and (ii) real-time (online) IDSs. Offline
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IDSs perform post-analysis of audit data. Offline analysis is often performed using static tools
that analyze an environment snapshot looking for vulnerabilities and configuration errors.

Real-time IDSs attempt to detect intrusions in real-time or near real-time. They process
data from data streams and analyze the data while the stream is in progress. Real-time IDSs
would shoot an alarm when an attack is detected.

One aspect to take into account in real-time IDSs is time granularity. When data inputs
are segmented into fixed intervals and summarized by a mathematical transformation in a
meaningful way, they can be presented as a time series. The length of data intervals referred
to as time granularity, depends on the types of measurements and the kind of information that
will be extracted. One of the most important advantages of using time series for monitoring
is their property of illustrating the process of change in the context of historical data. Fine-
grained metrics tend to reveal a closer time to a phenomena and are useful for locating specific
events. Although it can be more expensive to store. Coarse-grained metrics are much better
suited to illustrate trends. Selecting the right granularity to present a metric is important
for accurate data interpretation. Measurements of very small and very large granules can
obscure the point you are trying to convey. A good granularity is important to answer the
"one million dollars" question of monitoring: what has changed and when? [54]

2.4.5 IDS approaches using ML Techniques

The effectiveness of Machine Learning (ML) techniques in fraud detection, image recogni-
tion and text classification has encouraged security researchers to employ these algorithms for
anomalous pattern detection and to identify abnormal behaviors to enhance the security in
IoT networks [63]. The machine learning algorithms rely on learning data sets taken as inputs.
For this reason, Machine Learning is being applied even in conventional methods of attack
detection such as signature-based and anomaly-based in traditional internet networks [64].

Bhavani [65] and Ponthapalli [66] proposed an intrusion detection system based on
single machine learning classifiers, Bhavani using random forest and decision trees
techniques and Ponthapalli using decision tree, logistic regression, RF and Support Vector
Machine (SVM) on KDD-NSL 6 dataset.

The researches showed that the intrusion detection system performs best with random
forest classifier. They also discovered that the random forest classifier has the least execution
time, but has the limitation of performing efficiently only with a single dataset. Low
detection as well as false positive rate were not solved by the proposed work.

Marzia Z. and Chung-Horng L. [67] propose an implementation of an IDS based on a
set of multiple supervised and unsupervised machine learning algorithms that
were aggregated using the voting classifier. They adopted Kyoto2006 dataset 7. The
work increase the accuracy and performance of the current intrusion detection systems. This
makes their work to attain a certain level of accuracy but the recall of the result is low

6https://www.unb.ca/cic/datasets/nsl.html
7http://www.takakura.com/Kyoto_data/
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in some few cases which indicate high values of false negative rate.

Dutt I. [68] proposed a real-time hybrid intrusion detection in which a signature-based
approach was used to detect well known attacks while the anomaly approach to detect
novel attacks. In this work a high detection rate was achieved due to the fact that;
patterns of intrusions that were able to escape the signature-based detection were able
to be identified as attack by the anomaly detection technique. The model’s accuracy
increased incrementally each day up to a significant value of 92.65% on the last day
of the experiment, also, as the model learns and trains the system each day, the rate of
false negative decreases sharply. The issue of slow detection rate persists when
the model is applied on a very big size data.

Some works being done on previous intrusion detection systems lack ability to work
efficiently on different data sets. A work done by Zhou [69] shows that anomaly-based
detection has room for improvement especially in false positive rate. The proposed work
present a novel intrusion detection system that brings the benefit of combing ensemble
classifier with feature selection, this provides an improved efficiency and high accuracy
detection of intrusions. The work was carried out using three different data sets. For feature
selection, CFS-BA based approach was used. The ensemble based approach increases the
multiclass classification performance on unbalanced data sets.

Perez D. [70], proposed a hybrid network based intrusion detection system using multiple
hybrid machine learning techniques. The supervised machine learning technique, Neural
Network was combined with unsupervised machine learning, K-Means clustering with feature
selection. Another combination was made consisting of SVM with K-means clustering. The
results clearly showed that the combination of such supervised and unsupervised
machine learnings complement each other which increase the performance of
IDSs. The combination of SVM and K-means with feature selection returns the best accuracy.

The articles described, although few in number, present points that allow us to affirm
that ensemble and hybrid classifiers have the better predictive accuracy and detection rate.
Furthermore, the use of feature selection has to be considered in order to get rid of irrelevant,
unwanted and redundant features to improve the efficiency and detection rate of IDS.

2.5 Machine Learning

The term machine learning refers to the automated detection of meaningful patterns in
data. A few decades ago it has become a common tool in almost any task that requires
information extraction from large data sets [71]. Since the success of a learning algorithm
depends on the data used, ML is inherently related to data analysis and statistics. More
generally, learning techniques are data-driven methods combining fundamental concepts in
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computer science with ideas from statistics, probability and optimization [72].
Recently, Machine learning was defined by Stanford University as "the science of getting

computers to act without being explicitly programmed" [73]. Machine Learning is now
responsible for some of the most significant advancements in technology, such as the new
industry of self-driving vehicles like those developed by Tesla. ML models have become quite
adaptative in continuously learning, which makes them increasingly accurate the longer they
operate [73]. ML algorithms combined with new computing technologies promote scalability
and improve efficiency resolving a variety of organizational complexities. Although, it cannot
always provide a correct analysis or cannot always provide an accurate result based on the
analysis, but it gives a predictive model based on historical data to make decisions. The more
data, the more the result-oriented predictions that can be made.

2.5.1 Machine Learning Process

Part of this dissertation can be described as a machine learning process from gathering
data until the development of a model with a good performance and generalization, therefore,
it is important to refer to the entire machine learning lifecycle.

Data is at the core of any application of machine learning. Among the many challenges in
machine learning, data collection is becoming one of the critical bottlenecks and is the first
step in the machine learning process. It is known that the majority of the time for running
machine learning is spent on preparing the data, which includes collecting, cleaning, analyzing,
visualizing, and feature engineering. This is one of the most important steps since a good
result is not directly related to a good implementation of the algorithm, but to the quality
and quantity of the data. In addiction, it is not possible to say in advance how much data is
needed because everything depends on the algorithm that will be used. Only after testing is
it possible to find out if the estimates are suffering from high polarization or variation [74].

Real-world data is never perfect. The data collected from multiple sources can be of a
heterogeneous nature, containing duplicate data or missing data, or a lot of unnecessary extra
data and therefore pre-processing [75], [76] may be necessary to produce consistent data
sets for training purposes and verification. The data must be refined to make it suitable for
ML. Pre-processing can also seek to reduce the complexity of the data collected or design
resources to assist in training [77], [78]. Once refined and formatted, data can be summarized
in a set of instances with multiple features. Each feature is a measurable individual property
of a phenomenon that is being observed. Data visualization could help to see if there are
any relevant relationships and how it’s possible to take advantage, and as well show if there
are any data imbalances present.

28



Figure 2.6: Machine Learning Process.

The next step starts by selecting the type of model to be produced. This model
selection is undertaken with reference to the problem type (e.g., classification or regression),
the volume and structure of the training data [79], and often in light of personal experience.
When the resulting ML model achieves satisfactory levels of performance, the next stage of the
ML worklow is validate the model. Otherwise, the process is repeated, where additional
data are collected, pre-processed and analyzed in order to improve the training further. The
challenge of this stage is to ensure that the trained model performs well on new, previously
unseen inputs, i.e. it has a good generalization. Assuming that the verification result contains
all the required assurance evidence, a system that uses the now verified model is assembled.

2.5.2 Feature Dimensionality

Machine learning can be used on different tasks that are often characterized by a high
dimensional space of features. The number of features for a dataset is referred to as its
dimensionality. More input features often make a predictive modeling task more challenging
to model, more generally referred to as the curse of dimensionality. Adding features without
increasing the number of training samples as well, the dimensionality grows and becomes
sparser and sparser. In fact, this brings a problem, the more dimensions the data has, the
easier it is to find a hyperplane separating categories in the training data; but at the same
time, the harder it gets to also perform well on the unseen data (for example, test data).
The reason is that because we have more dimensions that we can choose from to lay the
hyperplane through, we are much more prone to overfitting. Overfitting happens when the
model corresponds too closely to a particular set of data and doesn’t generalize well. An
overfitted model would work very well on the training dataset, but will fail on the unseen
dataset and became the prediction unreliable.

Moreover, features used to describe learning tasks are not necessarily all relevant and
beneficial for the inductive learning task. In addition to the fact that a large number of input
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resources can degrade the performance of machine learning algorithms as stated above, it
can even slow down the induction process, providing results similar to those obtained with a
much smaller subset of resources. Therefore, it is often desirable to reduce the number of
input resources [80].

Feature Selection

In a machine learning configuration, a matter of great interest is to estimate the influence
of a given input feature on the forecast made by a model. Understanding which features are
important helps to improve our models, increases confidence in model prediction and isolates
undesirable behaviors.

To remove an irrelevant resource, a feature selection criterion is required to measure the
relevance of each feature based on the output labels. From the point of view of machine
learning, if a system uses irrelevant variables, it will use that information for new data leading
to poor generalization.

The best subset contains the least number of dimensions that most contribute to accuracy,
discarding the remaining unimportant dimensions since the main aim of feature selection is to
determinate a minimal feature subset from a problem domain while retaining a suitably high
accuracy in representing the original features.

The feature selection has an impact at several levels, from the hardware level reducing
the limitation of storage requirements and has immediate effects on data analysis tasks
by accelerating the execution time of the learning algorithms, at the data level, since it
improves the quality of the data, removes the redundant, irrelevant or noisy data, reducing the
overfitting, less redundant data means less opportunity to make decisions based on noise and
allows a better understanding of them and a possible visualization and at the level of the
learning algorithm, improving performance by gaining predictive precision and increasing
the speed of the algorithm [81].

Generally speaking, feature selection methods can be divided into three main categories:

• Filter Methods : These methods select features based on discriminating criteria that
are relatively independent of any machine learning algorithm. Instead, features are
selected on the basis of their scores in various statistical tests for their correlation with
the outcome variable. Recently, have been proposed several methods to select features
with minimum redundancy. The methods use a Minimum Redundancy-Maximum
Relevance (MRMR) feature selection framework. The point is to choose features that
are maximally dissimilar, to expands the representative power of the feature set and
improves their generalization properties [81].

• Wrapper Methods : These methods work by evaluating a subset of resources using a
machine learning algorithm that employs a research strategy to examine the space of
possible subsets of resources, evaluating each subset based on the quality of performance.
The problem is essentially reduced to a research problem since they aim to find the
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best possible combination of features that result in the best performant model. These
methods are usually very computationally expensive [82].

• Embedded Methods : These methods combine the qualities of filter and wrapper
methods. The embedded methods complete the feature selection during the model
training, which is why we call them embedded methods. A learning algorithm takes
advantage of its own variable selection process and performs feature selection and
classification at the same time. The embedded methods solve both issues from filter
and wrapper methods by combining their advantages, taking into consideration the
interaction of features like wrapper does, but also faster like filter do, although more
accurate than filter methods and find the feature subset for the algorithm being trained
[83].

For any application, several feature selection algorithms can be applied and the best one
can be selected that meets the required criteria. A problem is the stability of the feature
selection algorithms. The stability of a feature selection algorithm can be viewed as the
consistency of an algorithm to produce a consistent feature subset when new training samples
are added or when some training samples are removed. If the algorithm produces a different
subset for any perturbations in the training data, then that algorithm becomes unreliable for
feature selection. In the multi-criteria fusion algorithm developed by Feng Yang and K. Z.
Mao. [84] are used multiple feature selection algorithms to classify/score the features.
They are combined to obtain a robust subset based on the combination of multiple classifiers
to improve accuracy.

PCA

Feature selection and feature projection seek to reduce the number of attributes in a
data set, the former removes the attributes, while the latter creates a new combination of
attributes, but unlike feature selection, feature projection needs to ensure that it conveys
similar information concisely, like the PCA [85].

Generally, PCA can be formulated as a mapping from an original feature space to an
appropriate subspace such that a learning criterion is optimized. PCA enables us to visualize
high dimensional feature vectors in a low dimension and analyze the distribution of the reduced
feature vectors. As a result, we can select a classifier that has the best performance for the
reduced feature vectors.

Introduced by Karl Pearson, in 1901, the data in a higher-dimensional space need to
map to a lower space, although, the variance of the data in the lower dimensional space
should be maximum [86]. The total amount of variance in PCA is equal to the number of
observed variables being analyzed. In PCA, observed variables are standardized, e.g., mean=0,
standard deviation=1 and diagonals of the matrix are equal to 1.

The number of components extracted is equal to the number of observed variables in the
analysis. The first principal component identified accounts for most of the variance in the
data. The second component identified accounts for the second largest amount of variance
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in the data and is uncorrelated with the first principal component and so on. Components
account for maximal variance are retained while other components accounting for a trivial
amount of variance are not retained.
Eigenvalues indicate the amount of variance explained by each component, eigenvectors are
the weights used to calculate components scores [87].

Let’s say, there is a dataset which is d + 1 dimensional. Where d could be thought as
Xtrain and 1 could be thought as ytrain (labels) in modern machine learning paradigm. So,
Xtrain + ytrain makes up our complete train dataset. Also, let’s assume we are left with a
three-dimensional dataset after ignoring the labels i.e d = 3.

For PCA to work properly, you have to subtract the mean from each of the data dimensions.
The mean subtracted is the average across each dimension. So, all the x values have x̄ (the
mean of the x values of all the data points) subtracted, and all the y values have ȳ subtracted
from them. This produces a data set whose mean is zero.

After this, is computed the covariance matrix of the whole dataset. Recall that covariance
is always measured between 2 dimensions. If we have a data set with more than 2 dimensions,
there is more than one covariance measurement that can be calculated. For example, from a
3 dimensional data set (dimensions X, Y , Z) we could calculate cov(X,Y ), cov(X,Z) and
cov(Y,Z). In fact, for an n-dimensional dataset, we can calculate n!

2(n−2)! different covariance
values.

cov(X,Y ) = 1
n− 1

n∑
i=1

(Xi − x̄)(Yi − ȳ) (2.1)

So, since the non-diagonal elements in this covariance matrix are positive, we should expect
that both the X and Y variable increase together. Now, we can easily compute eigenvalue
and eigenvectors from the covariance matrix that we have above. To do this, we find the
values of λ which satisfy the characteristic equation of the matrix A, namely those values of λ
for which

det(A− λI) = 0 (2.2)

where I is the N×N identity matrix, where N is the dimension of the dataset. Once the
eigenvalues of a matrix A have been found, we can find the eigenvectors. For each eigenvalue
λ, we have

(A− λI)x = 0 (2.3)

where x is the eigenvector associated with eigenvalue λ. So, by this process of taking the
eigenvectors of the covariance matrix, we have been able to extract lines that characterize the
data. The rest of the steps involve transforming the data so that it is expressed in terms of
them lines. And now, is where the notion of data compression and reduced dimensionality
comes into it. It turns out that the eigenvector with the highest eigenvalue is the principle
component of the data set.

In general, once eigenvectors are found from the covariance matrix, the next step is to
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order them by eigenvalue, highest to lowest. This gives you the components in order of
significance. Now, if you like, you can decide to ignore the components of lesser significance.
You do lose some information, but if the eigenvalues are small, you don’t lose much. If you
leave out some components, the final data set will have less dimensions than the original. To
be precise, if you originally have n dimensions in data, and it’s calculated n eigenvectors and
eigenvalues, and then are chosen only the first p eigenvectors, then the final data set has only
p dimensions [88].

Therefore, using the main principal components can reduce a dataset with high dimensions
and massive inter-correlated variables to a few features with primary characteristics. This will
help avoiding hypothetical and uncorrelated components (e.g. noise), which could interfere
with the extraction of information [89].

Tree-based Classifiers

A standard approach is to use a classifier that differentiates all categories. However,
training multiple classifiers will be very expensive and needs a common set of resources for
all categories. Another option is to separate the data set into smaller classification groups,
subsets, each dealing with its own set of features. This allows the use of a specific set of
options for each set of categories. Splitting the problem can improve accuracy [90], and in
some scenarios, the use of a smaller classifier can improve generalization [91]. Tree-based
models can be very adaptable to the data and have low bias. A low-bias model are often
highly flexible and has the capacity to suit a spread of various shapes and patterns, however
in order to achieve low bias, models tend to demonstrate high variance. For example, let’s
consider an easy sequence of data points like a daily stock price. A moving average model
would estimate the stock price on a given day by the average of the data points within a
particular window of the day. The dimensions of the window can modulate the variance and
bias here. For a little window, the average is far more aware of the data and has a high
potential to match the underlying trend. However, it also inherits a high degree of sensitivity
to those data within the window, and this increases variance. Widening the window will
average more points and can reduce the variance within the model but also will desensitize
the model fit potential by risking over-smoothing the data (and thus increasing bias).

There are a number of common methods for dividing a multi-class problem. Trees are
intuitively a good choice because they require the training of fewer base classifiers than other
techniques and are much faster in classifying new points. Feature selection using Tree-based
Classifiers comes under the category of Embedded methods. Common feature set selection
techniques can be grouped into several categories, namely, ranked selection, basic search, and
sequential search [92].

• Ranked feature selection techniques simply apply a performance measure to every
feature and choose the K number of features with the very best score or features with a
worth over a particular threshold.
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• Basic search-based feature selection techniques is a brute force method that includes
techniques like exhaustive search. However, it is to exhaustively evaluate all possible
combinations of the input features, then find the most effective subset. Obviously, the
exhaustive search’s computational cost is prohibitively high, with a substantial danger of
overfitting. An overfitting scenario occurs when, in the training data, the model has an
excellent performance, however when we use the test data the result is bad. Overfitting
can have many causes and usually is a combination of not enough data and get more
data can sometimes fix overfitting problems or too many features. Having a lot of
features is like having a lot of dimensions. Effectively, it means that the data is more
sparse, so it is much more likely to reach a conclusion that is not guaranteed.

• Sequential search techniques create a feature set by incrementally adding or removing
candidate features from the feature set. The most popular sequential search techniques
are the sequential backward selection method as the search algorithm was introduced
already by Marill and Green (1963) and its "bottom up" counterpart known as sequential
forward selection by Whitney (1971) [93]. Both these methods are generally sub-optimal
and suffer from the "nesting effect", which means that features that are eliminated will
not be considered for other iterations.

2.5.3 One-Class Classification

The traditional multi-class classification paradigm aims to classify an unknown data object
into one of several predefined categories. The problem appears when an unknown data object
does not belong to any of those categories. There are scenarios that classification task is
just not to allocate a test object into predefined categories but to decide if it belongs to a
particular class or not.

In OCC, one of the classes (which we will arbitrarily refer to as the target class) is well
characterized by instances in the training data, while the other class (outlier class) has either
no instances or very few of them, or they do not form a statistically-representative sample of
the negative concept [94].

Figure 2.7: Scatter plot of the traditional one-class classification problem (retrieved from [95]).

In the literature a large number of different terms have been used for this problem. The
term one-class classification had his first mention from Maya [96], but also outlier detection [97]
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or novelty detection [98] are used. The first application for data description and still used today
is the detection of anomalies, for the detection of objects that do not resemble the data set in
any way. This branch of machine learning technology has not only gained tremendous fame
in classical domains like banking, financial institutions, medical and pharmaceutical science
and telecommunication but also emerged as a key player in many IoT based applications for
monitoring and predicting system failures [99].

The anomalies (outliers) are caused by human error, instrument error, natural deviation in
populations, fraudulent behavior, unexpected changes in behavior, or faults in the system. The
knowledge of the anomalies in data has a huge impact on the selection of a suitable approach
for developing the detection system. As Pierre Lafaye de Micheaux, a Canadian/French/Swiss
statistician, says "Outliers are not necessarily a bad thing. These are just observations that are
not following the same pattern as the other ones. But it can be the case that an outlier is very
interesting. For example, if in a biological experiment, a rat is not dead whereas all others
are, then it would be very interesting to understand why. This could lead to new scientific
discoveries. So, it is important to detect outliers." [99].

There are three approaches to face the problem on the level of modeling a strategy that
could be considered based on the nature of data.

• Supervised Learning : This approach requires pre-labeled data tagged as normal
or abnormal (or even specific known types of abnormal behaviors). One standard
formulation of the supervised learning task is the classification problem: the model
makes use of a function which maps a vector into one of the several classes by looking
for the input-output examples of the function [100].

• Unsupervised Learning : This approach is using data sets where the output labels
are not provided. Hence, instead of trying to predict a particular output for each input,
these algorithms attempt to discover the underlying structure of the input data, grouping
similar inputs together. This approach assumes the data has a static distribution which
can be described by statistical models and flags the data points having values, not within
the distribution as outliers. An example of a simple unsupervised learning algorithm is
k-nearest neighbor clustering.

• Semi-supervised Learning : This approach focus on modeling only normality, re-
quiring either pre-classified data marked as normal or assuming that the training only
contains normal data, only applicable to cases where abnormalities are occasional events.
For these algorithms, the normal pattern is learned by a supervised model and are apply
an unsupervised method to induce the boundary of normality. This approach can be
the most favorable for cases in which normal data is highly available but it’s very hard
to obtain abnormal data, such as an anomaly detection system.

The problem of this dissertation can be described as a classification problem where the classes
are sampled very well, while the other class is severely undersampled. The measurements
of the undersampled class might be very difficult to obtain. For instance, in a machine
monitoring system where the current condition of a machine is examined, an alarm is raised
when the machine shows a problem. Measurements on the normal working conditions of a
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machine are very cheap and easy to obtain. On the other hand, measurements of outliers
would require to generate all faulty situations, which are impossible. Only a method trained
on just the target data can solve the monitoring problem.

In this dissertation, we will focus on solutions of one-class classification with the creation
of artificial outliers for the evaluation of the different models though. For classifying a
class, One-Class Support Vector Machine (OC-SVM), Isolation Forest (IF), Local Outlier
Factor (LOF), Kernel Density Estimation (KDE), and Gaussian Mixture Model (GMM) have
been proposed to test for anomaly detection.

One-Class Support Vector Machines

SVM are today a very popular machine learning technique that can be used in a variety
of applications, including, for example, handwritten digit recognition, object recognition, text
categorization, and also anomaly detection. In those utilizations, SVM performs at least
as good as others methods in terms of the generalization error [101], because they take the
capacity of the model into account, which is the flexibility of the learned model to represent
any training dataset with a minimal error.

On the other hand, OC-SVM attempt to determine a decision boundary that obtains the
maximum separation between the points and the origin [102]. According to Mennatallah Amer,
Markus Goldstein and Slim Abdannadher, the idea of getting the maximum separation between
the points and the origin was hindered by the inability to learn non-linear decision boundaries
as well as the inability to account for outliers. Although, both problems were solved by the
introduction of kernels and the incorporation of soft margins [103]. According to Yanxin Wang,
Johnny Wong, and Andrew Miner [104] the main idea is that the algorithm maps the data
into a feature space H using a appropriate kernel function, and then attempts to determinate
the hyperplane that separate the mapped vectors from the origin with maximum margin.

For example, given a data set (x1, y1), (x2, y2), ... ∈ Rn · {±1}, let φ : Rn → H be a kernel
map who transforms the training dataset into a feature space H. Then, to divide the dataset
from the origin, we need to solve the bellow quadratic programming equation:

min
(

1
2‖w‖

2 + 1
υ · l

t∑
i=1

ξi − ρ
)

subject to

yi(w · Φ(xi) ≥ p− ξi, ξi ≥ 0, i = 1, . . . , l

where υ ∈ (0, 1) is a parameter that controls the trade off between maximizing the distance
from the origin and containing most of the data in the region created by the hyperplane and
is the ratio of "outliers" in the training dataset. Then the decision function

f(x) = sign((w · Φ(x))− ρ)
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will be positive for most samples xi contained in training set. The data will be linear
divided by a hyperplane, however, some data sets are not linearly separable. Thus, kernel
functions, such as polynomial kernel and radial basis kernel, are widely used in SVMs to map
from the original data to a higher dimension feature space in order to make data set linearly
separable [105].

Figure 2.8: Geometry interpretation of one-class SVM based classifier (retrieved from [106]).

Isolation Forest

Another approach proposed for this dissertation is a model-based method that explicitly
isolates anomalies rather than profiles normal instances. For this, the method proposed take
advantage of two quantitative properties, they are the minority consisting of fewer instances
and they have attribute-values that are very different from those of normal instances. In
short, they are few and different, which make them more susceptible to isolation than normal
points. The proposed method, IF, builds an ensemble of trees for a data set, then anomalies
are those samples which have short average path lengths on the trees.

According to Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou, the difference between
isolation and profiling, is the isolation characteristic of trees enables them to build partial
models and exploit sub-sampling to an extent that is not feasible in other methods. Another
different is the isolation forests utilizes no distance or density to detect anomalies, and
this eliminates the major computational cost of distance calculation in all distance-based
methods and density-based methods. In terms of complexity, isolation forest has a linear time
complexity with a low constant and a low memory requirement. Isolation forests has also the
capacity to scale up to handle extremely large data size and high dimensional problems with
a large number of irrelevant attributes [107].
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Figure 2.9: Representative subset selection and outlier detection via isolation forest (retrieved from
[108]).

Local Outlier Factor

The LOF is an unsupervised technique first proposed for finding outliers in multidimen-
sional data sets. The value of the local outlier factor indicates the extent to which a sample is
an outlier [109].

In many applications, different portions of a data set can exhibit very different character-
istics, and it is more meaningful to decide on the possibility of an object an outlier based on
other objects in its neighborhood. In the LOF algorithm, the difference in density between a
data object and its neighborhood is the degree of being an outlier, known as its local outlier
factor [110]. The outliers are the data objects with high LOF values, whereas data objects
with low LOF values are likely to be normal with respect to their neighborhood. In other
words, a high LOF value is an indication of a low density neighborhood, and hence, a potential
outlier. The computational procedure of LOF can be found in [111].

Unfortunately, the LOF algorithm’s time complexity is O(n2), where n is the data size. It
is designed to compute the LOF for all objects in the data set, which results in a computa-
tionally intensive process, since it requires a large number of k-Nearest Neighbours (kNN).
Because of this issue, designing efficient and reliable intrusion detection systems based on the
LOF method is challenging [110].

However, LOF has been shown to perform well in detecting abnormal behavior in a network
IDS [112]. LOF has been used to identify several novel and previously unseen intrusions in
real network data that could not be detected using other intrusion detection systems such as
SNORT 8.

Kernel Density Estimation

An alternative approach to detecting statistical anomalies is the use of KDE. Kernel density
estimation is a non-parametric technique to estimate probability density functions. Once it
is non-parametric, it makes no assumptions about the form of the underlying distribution,
allowing it to naturally follow the shape of the training data. When using kernel density

8https://www.snort.org/
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estimates to detect anomalies, one sets a minimum probability threshold; if the kernel density
estimate yields a probability that is below the threshold, anomaly detection is declared. The
probability threshold can be set so that a certain small percentage of the historical data would
be considered abnormal.

KDE is a technique dating back to the sixties [113]. Due to its computational complexity,
however, it did not gain significant attention until the early nineties due to the increased
availability of computational power [114]. Even with added computational power, kernel
density estimation is not highly used in higher dimensions due to the curse of dimensionality
[115] which hinders its ability to accurately measure the distribution. However, dimensionality
is not an issue if dimension reduction techniques are used beforehand.

Gaussian Mixture Model

Another possible approach is to use a Density Method which directly estimate the
density of the training data [116] and to set a threshold on this density. Several distributions
can be assumed, such as a Gaussian or a Poisson distribution, and numerous tests, called
disagreement tests, are then available to test new objects. In this thesis we will consider the
Gaussian mixture model [117].

A GMM is a parametric probability density function represented as a weighted sum of
Gaussian component densities. GMM parameters are estimated from training data using the
iterative Expectation-Maximization (EM) algorithm from a well-trained prior model.

When the sample size is sufficiently high and a flexible density model is used, this approach
works very well. However, it requires a large number of training samples to overcome the
curse of dimensionality. If the dimensionality of the data and the complexity of the density
model are restricted, this can be avoided, but then a large bias may be introduced when the
model does not fit the data very well. When a good probability model is assumed and the
sample size is sufficient, this approach has a very big advantage. When one threshold is op-
timized, automatically a minimum volume is found for the given probability density model [95].
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CHAPTER 3
Scenario and Methodologies for

Anomaly Detection

As stated throughout chapter 2, with the advent of IoT and wireless mesh networks, security
risks inherent to these types of networks have grown in number, and severity, especially when
attackers use network resources in an illicit manner, or perform data exfiltration. Most of
the approaches current available for anomaly detection perform packet inspection, which may
inadvertently reveal the private behavioral patterns of its users. Moreover, in situations where
the communications is encrypted, these strategies could be ineffective. Physical layers even
though more challenging to differentiate individual patterns of users/nodes, there is no way
to identify private information, as used in layers 2 and 3.

As stated throughout this document, the objective of this dissertation is to develop a
framework for detecting anomalies, measuring activity and silence periods and active and
inactive frequencies in a given network and training OCC models.

3.1 Case scenario: Data exfiltration via Bluetooth from a Rogue Device

In the figure 3.1, the basic idea of using IoT devices in a business network context is
presented, putting at the outset that at least one of them contains a bluetooth interface. For
the development of this proof of concept, it is placed at the outset that the presented network
is compromised and the attacker in question is ready to exfiltrate important data, jeopardizing
the normal flow of the company.
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Figure 3.1: Basic idea of an IoT network

This attacker (figure 3.2) already has access to the internet and access to the machine he
has committed to access the company’s network. However, in order not to raise suspicions,
instead of filtering the data through the network’s gateway, where it contains systems that
will alert and prevent the information from leaving, it groups all the information on the device
that compromised and exfiltrates the data through Bluetooth.

Figure 3.2: Compromised network

What this dissertation proposes is a framework for detecting anomalies that, as mentioned
previously, monitors the physical layer, being a gap in existing technologies and recent studies.
The structure (figure 3.3) would be composed of several devices installed in various positions
due to the low range of Bluetooth, in which they would report anomalies to a central entity
through a network parallel to the company’s network.
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Figure 3.3: Compromised network with a framework for detecting anomalies on the physical layer

3.2 System Overview

In order to facilitate the visualization of the entire system, it will be separated in steps,
and detailed by the figure below (figure 3.4).

To provide an appropriate solution in network anomaly detection, we need the concept of
normality. The idea of normal is introduced by a model that expresses relations among the
fundamental variables involved in system dynamics. Consequently, an event or an object is
detected as anomalous if its degree of deviation with respect to the profile or behavior of the
system, specified by the normality model, is high enough.

Figure 3.4: Overall System Overview Diagram

Therefore, in a practical way, the sniffer records power indicators RSSI from the processing
of Fast Fourier Transform (FFT), which is transformed into a binary activity timeline. From
it, a series of statistical characteristics that model normal behavior are extracted and, finally,
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anomaly detection is evaluated.
The system has mainly two modules: (1) a modeling module and (2) a detection module.

One trains the systems to get the normality model M . The obtained model is subsequently
used by the detection module to evaluate new events or objects or traffic as anomalous or
outliers. It is the measurement of deviation that allows classification of events or objects as
anomalous or outliers. In particular, the modeling module needs to be adaptive to cope with
dynamic scenarios.

3.3 RSSI Data Collection

The main point is to identify anomalous behaviors in the physical layer, thus avoiding the
extrapolation of monitoring to higher layers without an individual identification and breaking
the confidentiality of customers who are exchanging data. To capture data radio frequencies,
a radio probe capable of registering its surroundings is necessary, i.e. a sniffer, in this case,
a SDR. In addition, a sniffer can be installed on any device connected to a local network, not
necessarily the device we want to monitor.

Frequency analysis can be performed on the discrete-time signal by converting the time-
domain sequence to an equivalent frequency-domain representation. This can be accomplished
with the Fourier Transform of the discrete-time signal. Further processing can produce a spec-
trogram that shows the power level at given frequencies for a timestamp as shown in Figure 3.5.
In the end, we will have a set of frequencies F = f1, f2, f3, ..., fn for a instant of time t, which
represents a sweep made by the SDR, resulting in an RSSI array for each frequency, RSSI(F, t)
[118] (figure 3.6). The FFT processing carried out to obtain the RSSI values is described
by Pedro Martins [119] and the software used for such obtaining is provided by SDR HackRF 1.

(a) Ground noise (b) Bluetooth Activity

Figure 3.5: Time fragment of frequency spectrum with/without Bluetooth activity outputted by an
SDR

1https://greatscottgadgets.com/hackrf/

44



The RSSI is an estimated measure of how good the device can hear, detect and receive
signals from any access point. RSSI is one of the most popular and simplest methods for
location. The main reason for its popularity is that finding the RSSI requires no additional
hardware and can be found on any device utilizing almost any type of wireless communication
technology. Since propagating signals are greatly susceptible to noise in the environment,
RSSI often leads to inaccurate values that can cause errors in the final result [120].

Figure 3.6: Data returned by the SDR

The SDR will output several values, however not all the values are relevant to the problem,
depending on the objective, we may only need a representative value. If the goal is to
monitoring WiFi channels then the values can be separated into groups(channels) and grouped
into an average, resulting in a single RSSI value for each channel. Another scenario is the
need to monitor all frequencies and therefore it would be a good idea to group them in small,
representative time groups in order to facilitate processing, however losing resolution.

In addition, the SDRs are powered by an amplifier, whose configuration should be carefully
done. The point is, assure that is easy to distinguish the ground noise from the network
activity, and for that, it’s necessary to inspect the outputted signal, while are tested several
parameter combinations. The optimal combination who works for a scenario may not be
the optimal combination for another scenario. It’s nearly impossible to define an unique
combination who works for ever scenario. It is expected that an well-configured amplifier
facilitates an well-choice threshold, to split the network silence/activity from the ground noise.
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(a) Ground noise (b) Bluetooth Activity

Figure 3.7: Average RSSI values for the entire spectrum for each time point

3.4 Data Preprocessing

Without a context the outputted data from the SDR doesn’t have any meaning. It is
necessary to have optimal characteristics that represent the data set to be analyzed in order
to see an optimal separation of what is clean data in relation to anomalous data, in other
words, relevant characteristics.

Working on the direct values given by the SDR is by far the best option given the variations
that layer 1 data may have. Collection of RF data can overwhelm even the largest data
storage capacities very quickly due to high sampling frequencies. The sampling frequencies
can range up to two or even five billion samples per second. Data rates can exceed 200 GB
per second and it is expensive to store large samples in real-time [121]. Also, due to physical
obstacles and environmental interference, such as the location of transmission that directly
influences the propagation of radio waves or urban noise that influences radio wave reception,
and even climate change, can have a direct impact on data variation. Depending on the
phenomenon, changes in transmission distances may occur, for example, raindrops act as an
electromagnetic insulator, reducing the wave’s range [122]. In view of the above, performing
statistical analysis over absolute power values is not a plausible strategy.

Most anomalies have an underlying periodicity and an amount of data; hence, using
statistics of activity and silence moments is favored, as they reveal the behavioral patterns of
normal and anomalous traffic. To differentiate activity and silence periods, one must define a
RSSI threshold, to separate ground noise from network activity (figure 3.8).
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Figure 3.8: Extraction of the relevant periods through a threshold (on the right) of the original
capture (on the left)

RSSI values below the threshold will be considered moments of silence and on the contrary,
RSSI values above the threshold, are considered an activity. The threshold is given by the
equation 3.1, where the w is the max of the RSSI average values, and s is the mean of the
activity spikes (above the w). Finally, the threshold is obtained by averaging s,that is, the
average of the peaks.

w = max
t

(
mean
f

(RSSIf,t)
)

st = mean
f,if RSSIf,t>0.95·w

(RSSIf,t)

thr = mean
t

(st)

(3.1)

The values above the threshold are transcribed with the value 1, and the values below with
the value 0. A period of silence is a block of consecutive samples whose values transcribed are
0, and a period of activity is a block of consecutive samples with values equal to 1.
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Figure 3.9: Example of post-processing of activity periods.

3.5 Feature Extraction

Even though the activity timelines show the network behavior it’s heavy a machine learning
model computes all the RSSI values. Large data sets require a lot of computing resources
to process. The important thing is that the model retains enough information to learn the
behavior patterns of the network.

To perform feature extraction, a period-based approach is used to reduce an activity
timelines data set into more manageable groups blocks (observation windows), and compute
variables into relevant features. The observation window is composed of a set of consecutive
time instants called sub-windows, or sampling window. The strategy is to split the
activity timeline into consecutive observation windows of the size ω, where a window n would
start on the sample i and end on the sample i+ ω, and the next window n+ 1 would start on
the sample i+ ω + 1. However, different windows could have different patterns, making it a
hard task for the model to learn.

The solution to this problem, maintaining the similarity of the consecutive windows and
increasing the performance, is through the sliding of the windows which will cause a slight
overlap. (figure 3.10). A significant advantage of this strategy over a "hard" split is that
it usually ends up generating more data windows, which may increase the classification
performance. Taking into account the above, and choosing a slide value δ < ω, the window n

would start and end on the same way, although n+ 1 would start in sample i+ δ, and end on
the sample i+ δ + ω.
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Figure 3.10: Comparison of how the timeline samples are distributed across data windows. On the
top, a "hard" separation. On the bottom, the sliding-based approach.

In this light, the proposed method permits performing a statistical analysis over the
number of frequencies and the periods of silence and activity allowing differentiating behaviors
through distinct periodicities. Feature extraction over multiple window sizes is a simple
approach, since they provide insights in different periods. Nonetheless, the dataset must be
split according to the most extensive window size and the defined window slide. For every
observation window, the statistical measurements are computed (figure 3.11) .

Figure 3.11: Diagram of the moments when the features are extracted.

The resources extracted from each observation window have three basic information
sources based on the behavior of communication technologies and the behavior of the
network, the number of active frequencies, consecutive active frequencies, and
activity/silence periods (figure 3.12). WiFi uses a restricted spectrum range, so when
WiFi is used, there are fewer frequencies to "activate" compared to Bluetooth that uses
the full spectrum, and therefore a greater number of consecutive active frequencies. Based
on this assumption, the first two information sources for feature extraction were created,
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however these statements could suffer from external influence if we have more than one
Access Point (AP). The third information source assumes that the silence of a network, that
is, the time that there are no active frequencies is much less in the normal behavior of a
network, since nowadays there is almost uninterrupted use of the Internet, directly or indirectly.

Figure 3.12: The three basic forms that will be worked on in each observation window. The 1st form
is based on the "activated" frequencies and the 2nd form is based on the average of
consecutive active frequencies, and the third is based on the periods of activity and
silence .

As showcased in figure 3.13, there are three types of features for each base information
source, active/inactive frequency features, dispersion features, and activity/silence
features. However, each of them is computed in three different ways, either based on each
base information source.

Mean, median, standard deviation, 75º, 90º, 95º and 99º percentiles, minimum and
maximum are values referring to periods of activity and silence or to active and inactive
frequencies. In addition, both communication technologies present different ways of using
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the spectrum e.g. Bluetooth is used for data transmission through short range UHF radio
waves between 2.4 and 2.485GHz, occupying very similar frequencies with WiFi, that uses
one channel at a time. In principle, different wireless communication channels has different
behaviors on the range.

Therefore, an interesting way to differentiate them, as was said before, is to see how the
active frequencies are dispersed. They have different frequency range sizes, so Bluetooth
will have a higher difference between the first and last positions in the list of frequencies.

Figure 3.13: Diagram of features extracted for every sub-window size.

3.6 Feature Dimensionality

As mentioned in 2.5.2, in machine learning to obtain a more accurate result we trend to
add as many features as possible as first. However, after a certain point, the performance of the
model decrease with the increasing of features, known as "The Curse of Dimensionality". Curse
of dimensionality describes the phenomenon where the feature space becomes increasingly
sparse for an increasing number of dimensions of a fixed-size training dataset. On the other
hand, if the training data is not enough, there is a risk to produce a model that could be very
good at predicting the target class on the training dataset but fail miserably when faced with
new data.

So to overcome the curse of dimensionality and avoid the overfitting it is a good practice
to perform some sort of dimensionality reduction, in fact, the learning process will be
significantly faster with a smaller number of features and yields a more general concept. This
helps in getting a better insight into the underlying concept of a real-world classification
problem [123].
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In the previous section, 3.5, we considered that there are n observation windows in each
data window, and for each observation window are extracted m features, having a total of
n×m features on each data window. It is probable that most of the features are correlated
or not have statistical relevance to be considered. For this situation, it can be beneficial to
use only a subset of k < m of those features [124].

In section 2.5.2, two approaches are presented to reduce the total amount of resources used
to train the models. The first approach PCA, which maps a higher dimension set of features
to a smaller one without losing the information of the original dataset. The second strategy is
through the tree-based classifiers, using only those given by a series of models that output
the relevance of each input feature, to train the classifiers. The idea behind using multiple
models is to ensemble different perspectives into a reliable global selection methodology. Both
strategies should be tested to assess which one performs better.

Since the main objective of this dissertation is to develop an anomaly detection system,
anomaly samples should not be used during model training for the classifier to learn only to
classify clean data and differentiate them from anomalies. The idea is not to classify clean
data from anomalous data, but to distinguish clean data from anomalous data. However, the
data set used to model feature selection will have both clean and anomalous data, preferably
of different types to avoid the tendency to select features for a given target, however it’s not
possible obtain every possible anomaly. The use of this data set aims to verify which resources
are potentially most useful for differentiation.

Figure 3.14: Feature importance using ETC (retrieved from Plotly website 2)

The majority of embedded feature selection models return a normalized importance value.
However, these values do not translate very well across different data sets (e.g., a given feature
may have different relevance in different data sets). To solve this, is proposed a classification
system. The idea comes from the problem already presented in section 2.5.2, Feature Selection,

2https://chart-studio.plotly.com/
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on the stability of the feature selection algorithms. Feng Yang and K.Z. Mao [84] proposed a
fusion of multiple criteria based on scoring, where "each base criterion first produces a scoring
vector containing scores from all resources, a scoring combination algorithm is then employed
to aggregate the multiple scoring vectors score in a consensus score vector, and a resource
ranking procedure is finally carried out to rank resources based on their consensus scores" as
illustrated in figure 3.15.

Figure 3.15: Score-based multicriterion fusion.

For N different data sets, each characteristic receives points, which corresponds to the
position of the characteristic of how much more relevant it is to the dataset. In the end, the
K features with the fewer points are selected as the most relevant. This process is repeated n
times, to be assured that the features chosen are the best ones (figure 3.16).

Figure 3.16: Points-based Classification System to find the best features to model our problem

The K value will be the minimum number of resources to achieve good performance, but
with reasonably fast learning times. The objective, will be verify which K optimizes it’s
classification F1-Score.
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3.7 Model training and Evaluation

Once the original data is reduced in size, the data is prepared to be processed by machine
learning algorithms. First, the clean data will be divided into training α and test 1-α sets.
Even we are only considering only OCC models, the anomaly data will be divided into training
and testing sets for Cross-validation (CV) purposes.

Each model is trained n times, using different training and testing sets, making it possible
to reduce the performance metrics variance and return a confidence interval of those results.

For each training iteration, after splitting the data sets (one containing only "normal"
behavior and other containing only anomalies) into training and testing sets, classifiers are
training with multiple combinations of hyper parameters. The goal is to find the set µgroup ∈ S,
i.e. find the best arguments, at which the function output F1-Score is the best as possible,
where S is a group of sets of hyper parameters, and i the number of splits, that defines a
model C maximizing the average F1-Score (F1) on multiple sets of CV.

µgroup = argmax
µ∈S

1
i

∑
(x,y)∈CV

F1(C, µ, x, y)

For each combination, the "normal" training set is divided into training and CV sets using
K-Fold Cross-Validation splitting (figure 3.17), which randomly divides a data set into k
disjoint folds with approximately equal size, and each fold is in turn used to test the model
induced from the other k − 1 folds by a classification algorithm. The performance of the
classification algorithm is evaluated by the average of the k accuracies resulting from k-fold
cross validation, and hence the level of averaging is assumed to be at fold. All folds are
assumed to contain the same number of instances except explicitly specified [125].

Figure 3.17: Illustration of the cross-validation division

To assess the performance of each combination of hyper parameters, both anomalous
and clean data will be used, ideally split the data into 70/30 or 80/20. The splitting are
exemplified in equations 3.2 and illustrated in figure 3.18 and is repeated n times. With this
approach there is a possibility of high bias if we have limited data, because we would miss
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some information about the data which we have not used for training. If our data is huge
and our test sample and train sample has the same distribution then this approach is acceptable.

cvtrainSize = µ · cleanSetsize
cvtest_CleanSize = (1− µ) · cleanSetsize
cvtest_OutlierSize = (1− µ) · anomalySetsize

(3.2)

Figure 3.18: Splitting of the training data sets into training and cross-validation sets

Beside feature selection and dimensionality reduction, an important technique to improve
significantly the performance of some models is feature scaling, to handle highly varying
magnitudes, values, or units of the features. Some machine learning algorithms are sensitive
to feature scaling while others are virtually invariant to it, p.e. machine learning algorithms
like KNN, K-means, and SVM, among others distance-based algorithms, are most affected by
the range of features, because they are using distances between data points to determine their
similarity. For multiple features with different scales, higher weightage is given to features
with higher magnitude and this will impact the performance of the machine learning algorithm
and we do not want the algorithm to be biassed towards one feature. We scale the data before
employing distance-based algorithms to all features that contribute equally to the result. On
the other hand, tree-based algorithms are fairly insensitive to the scale of the features. A
decision tree is only splitting a node based on a single feature, a feature that increases the
homogeneity of the node. This split on a feature is not influenced by other features. This is
what makes them invariant to the scale of the features.

There are two commonly used feature scaling techniques in machine learning. Standard-
ization can be helpful in cases where the data follows a Gaussian distribution, however, this
is not necessarily true. Unlike Normalization, standardization does not have a bounding range,
so even with the presence of outliers, they will not be affected by standardization, but in the
other hand, Normalization can be helpful in algorithms that not assume any distribution of
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the data like KNN or Neural Networks [126].
Since the main objective of this dissertation is to fit the normal behavior of the network

in the best possible way, it is crucial not to contain any anomaly data, being, as previously
mentioned, the one-class classifiers the optimal solution for this dissertation. With the right
set of resources, it will be possible to detect invisible phenomena and, consequently, trigger
alarms for possible outliers.

The presented models in section 2.5, in the optimal scenario, should be able to detect any
anomalies, seen and unseen phenomena, and not trigger alarms by mistake, i.e., is expected
small values for false positive and false negatives. Each classifier will be classified
and comparing according to its F1-Score. Consequently, both precision and recall must be
computed according to their number of outliers True Positives (TP), False Positives (FP),
and False Negatives (FN), as showcased in equation 3.3.

precision = TP

TP + FP

recall = TP

TP + FN

F1 = 2 · precision · recall
precision+ recall

(3.3)

As stated before, the model will be trained and tested with different data sets resulting in an
average result and a confidence interval according to the equation 3.4, where x and σ is the
mean and standard deviation, respectively, of a set of performance results, n is the size of
the set and Z, a tabulated value that corresponds to the probability that an interval for a
statistical sample actually includes the parameter population.

IC = x± ZC ·
σ√
n

(3.4)

3.8 Summary

The mechanisms presented throughout this chapter aim at filling a gap regarding physical
layer anomaly detection strategies, since, up until this moment, we were not able to find any
work that used RSSI data for pattern and behavioral analysis, rather than location-based
outlier detection. With this in mind, the main aspects of the proposed mechanisms are:

• These are mechanisms focused on privacy because at no time is the information contained
in the network’s data flow revealed, making the identification of individual behavior a
challenge for a network with multiple devices sharing the same spectrum.

• It focuses on the analysis of the network behavior and wireless communication behavior,
that is, the modeling of periods of activity/silence and active/inactive frequencies
extracted from the time series RSSI and the arrangement of wireless communication
channels in the spectrum.

• It can be adapted to other radio technologies with relative ease, not only WiFi and
Bluetooth, mainly because it uses SDR for capturing physical-layer data.
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• It is not necessary to feed the models with every type of anomalous behavior imaginable,
only with clean data. However, these mechanisms cannot work by themselves, an extra
level of verification, manual or automatic, is required to complement the mechanism, to
verify the appearance of false negatives.

• It focuses on optimizing the model detection performance based on metrics that work
even on unbalanced data sets, such as the F1-Score.

The proposed mechanisms will be further explored in the next chapter, where they will be
employed to perform outlier analysis in a home automation set scenario.
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CHAPTER 4
Methodologies Evaluation

In order to validate the anomaly detection methodology presented in the previous chapter
(chapter 3), home automation scenario were tested, in order to verify whether the proposed
methodology can identify periods of anomalous behavior across the spectrum at the 2.4GHz
frequency.

In addition, we will do a complete analysis of the recorded data; this will include the
entire pipeline, from registering the data captured on the network to obtaining the relevance
of the extracted resources. Furthermore, performance metrics are presented in terms of
detection Accuracy, Precision, Recall, and F-score. Finally, overall discussion on the result
and a summary concludes the chapter.

4.1 IoT Home Scenario

This scenario serves only as a proof of concept. It reflects a home automation scenario,
represented by a network composed of a laptop (Legitimate PC) with access to the Internet
through an AP, generating normal traffic, and a mobile phone that has been compromised
that exchange files with a laptop (Pirate PC) through a Bluetooth connection, generating
anomalous traffic. The normal behavior of the network is given by frequent interactions
of the Legitimate PC, running Linux, with the AP, through the uninterrupted playback of
Youtube videos or with no activity in the network, while the anomalous behavior is given by
the periodic file transfer between the Pirate PC and the mobile phone.

Initially, datasets will be created with isolated events, namely a dataset exclusively with
Wi-Fi traffic or ground noise, i.e., the interaction of the laptop with the AP will represent a
clean dataset and a dataset containing exclusively anomalous behavior during a fixed period
will represent a dirty dataset.

Posteriorly was blended the clean behavior with the anomalous behavior by keeping the
interactions between the compromised personal computer and the AP in the background at
the same time the mobile phone change files with the personal computer. (figure 4.1).
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Figure 4.1: Home Scenario Network Diagram

In order to simulate data exfiltration from the compromised device, it’s simulated a transfer
of files from the cell phone to attackers computer, with the following distribution statistics:

• The transferred file has 5MB;
• A file transfer which occurred every 120 and 300 seconds, hereafter referred as scheduled

120s and scheduled 300s, respectively;
In this simulation, the sniffer that we used to perform the signal captures is the HackRF

One 1, an open-source hardware SDR, capable of transmission or reception of radio signals
from 1MHz to 6GHz, that can be used as USB peripheral, performing live FFT computations
over the outputed data. The tests were performed over the 2.4GHz band, more specifically
between 2401 MHz and 2483 MHz , since Bluetooth uses the 2.4 GHz ISM spectrum band,
and the Wi-Fi channel was set to channel 8. Channel 8 is "free", i.e., no one device is working
on that channel. Another aspect to consider is the sample rate, which was set to 20MHz, so
that it could cover the maximum range of frequencies. This was also the maximum allowed
value by the HackRF One.

When calibrating the HackRF One, the goal is to separate the ground noise from activity
in the spectrum. In the conducted tests, its amplifier Low-Noise Amplifier (LNA) gain was
set to 32dB, and the Variable-Gain Amplifier (VGA) gain to 16dB. The LNA corresponds to
the main gain, and the VGA to the ground-noise. Several combinations were made and, after
visualizing the graphical representations of the output signal, these values proved to be the
best for the proof-of-concept scenario mentioned above.

The place where the sniffer is placed is a very important aspect, which should not be
too far from the AP, as it will affect the signal captured and make noise an obstacle to the
proof-of-concept study. Thus, the sniffer was placed 0.5 meters from the nodes and 5 meters
from the AP, in-between them.

The simulation of an attack was through the development of an android application that
periodically sends a file with a specific size to the pirate PC. The automated periodic sending

1https://greatscottgadgets.com/hackrf/

60



was developed through a Python server which provides a Bluetooth service with a specific
identifier to which the phone will connect. The android application through the MAC address
and the Bluetooth service identifier is able to establish a connection with the service. As soon
as the connection is established, the transfer begins.

Figure 4.2: Android application for periodic file uploads

4.1.1 Data Exploration

All data sets referring to the home automation scenario have 1 hour of records. However
for visualization purposes, graphs of a few minutes will be shown, unless otherwise indicated.

The FFT processing of the IQ data outputted by the HackRF One resulted in a file
containing several samples, each one containing RSSI values of every frequency of interest, with
approximately 81 samples per second. In sum, we have 83 RSSI values, each corresponding to
a frequency. The values are stored in a matrix, each cell corresponding to an RSSI value from
a frequency in a specific time instant.

To understand and visually analyze the behavior of the network over time and validate
the data to later train and test the classifiers, these 83 values can be calculated to obtain an
average RSSI across the spectrum for each instant of time.
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As illustrated in figures 4.3 and 4.4, the outliers have completely different behavior than
the typical traffic characteristics of the network. The first plot, 4.3a, mainly shows the
2.4GHz range without a single data exchange, only ground noise and control and management
packages, which maintain the credibility of the scenario; the second 4.3b is playing a Youtube
video. Youtube’s behavior is described by activity spikes, periodic. The Youtube behavior
transmission is done by packets of a few seconds that are in the constant buffer. As the video
plays, the buffer is empty and YouTube reloads it. This allows you to change the quality.
That is, if we have 40 seconds of a movie at 360p and we want to improve the images, you can
switch to 720p and Youtube will send packages with a different quality. A few moments later,
the video - still playing - will have improvements in resolution and will not show any pauses.
Therefore, only from X to X time is the buffer filled again. That’s the reason why YouTube’s
behavior shows spikes in activity. In contrast, both third 4.4a and fourth 4.4b plot shows two
different outliers, the first with short data bursts every 120 seconds, and the second 300 seconds.

(a) Network without any activity

(b) Network with a single activity

Figure 4.3: RSSI power values over time in two different data sets exclusively containing clean traffic.
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(a) Anomaly Behavior (120s scheduled outlier)

(b) Anomaly Behavior (300s scheduled outlier)

Figure 4.4: RSSI power values over time in two different data sets exclusively with anomalous
behavior.

Figure 4.5 now show the spectrum behavior when the compromised node is running in the
background, masked by the usual behavior of the network. Besides the typical interactions
with Youtube, the anomalous behavior is also present which overlap the non-anomaly behavior.

Figure 4.5: RSSI power values over time with anomalous traffic masked behind typical network traffic
of one node, Linux laptop streaming YouTube videos.

The reproduction of Youtube videos almost completely masks the anomalous behaviors,
besides the Youtube videos is also periodic, much like the anomalies, which makes it harder
for the models to identify these patterns.

Threshold

The next stage is to extract the relevant information in a way to get the three basic
information sources from the data series data. As mentioned in the previous chapter, it’s
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necessary to establish a threshold to separate activity from silence. Equation 3.1 presented in
the previous chapter makes it possible to differentiate activity from silence.

The data is split into sliding windows of 10 minutes with 5 seconds sliding distance, with
a sampling window of 1 second. Since we don’t know the frequency of anomalies, a 10 minute
observation window is proposed to have a greater field of view about a possible anomaly,
with an offset of 5 seconds, which despite generating more data, it is extremely important
to extract information and make a decision as soon as possible to prevent data exfiltration.
A 1 second sampling window is proposed in order to reduce recorded information. Without
applying a sampling window, 81 samples per second would be recorded. Registering each
sample is disadvantageous for later resource extraction. It is not possible to make a greater
reduction, as we would be losing information and possibly losing anomalies.

As showcased in section 3.5, activity/silence features, dispersion features and trading
features over any of the windows are extracted from the time-series data.

The relevance of the features

Not all these features are equally relevant for detecting outliers. In section 3.5 some
assumptions were made about how clean and anomalous behaviors can be differentiated. As
mentioned so far, it has been put forward that different communication technologies will
reveal a total number of different active frequencies. Wi-Fi makes use of a restricted number
of active frequencies, while Bluetooth makes use of almost the entire 2.4GHz range. Figure
4.6 shows that the use of Bluetooth has an average of active frequencies higher than Wi-Fi.
Contrary to what was supposed, the number of active frequencies is far from the size of the
used range.

Figure 4.6: Comparison of the number of active and inactive frequencies in clean and outlier behaviors.

A Wi-Fi channel uses approximately 22 frequencies, and figure 4.7 shows an average of
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active frequencies between 2 and 23, reaching maximum values between 8 and 27, which
reveals the presence of noise in the dataset. The extra used frequencies can be explained by
radio noise and random Wi-Fi activities from active devices in the vicinity. It is noteworthy
that the figures there are anomalous data overlapping the normal ones, revealing that there are
periods in which the number of active and inactive frequencies is identical in both behaviors,
which can create an obstacle to differentiation, and possibly the generation of false negative.

Figure 4.7: Percentile 75 and maximum number of frequencies in clean and outlier behaviors.

A differentiating factor that goes according to the assumption made, is the DFLP. The
difference between the first and last position of the active frequencies is notorious. It is not
possible to conclude whether this same metric would work to distinguish if the network had
more APs. In our scenario, the clean behavior presents a value interval between 2 and 46,
and the anomalous behavior present an average between 34 and 71 positions (figure 4.8). As
mentioned before, a Wi-Fi channel has a total of 22 frequencies, however the average difference
between the first and the last active position is much higher than this limit. Possibly the
presence of background noise explains the data presented between the third quantile and the
maximum value.
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Figure 4.8: Mean difference between the first and the last active frequency in clean and outlier
behaviors.

The second assumption was based on the number of consecutive active frequencies. Since
Wi-Fi uses fewer frequencies, then the number of consecutive frequencies will be greater than
Bluetooth. This assumption holds even for an increase in the number of APs. Through figure
4.9a, it can be concluded that the assumption made is true. The number of consecutive
frequencies is different in both behaviors. Figure 4.9b shows that maximum values support the
assumption made. The normal behavior remains among the 20 consecutive active frequencies
while the anomalous behavior presents more dispersed values, presenting a higher density
between the median and the 3rd quantile, but can reach a maximum of 30 consecutive active
frequencies.

(a) Average number of consecutive frequencies. (b) Maximum number of consecutive frequencies.

Figure 4.9
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Another important factor for the distinction between both behaviors is the times of
activity and silence. The third assumption is based on the idea that the iterations generated
by the incessant reproduction of Youtube, will cause a longer time of activity and a shorter
time of silence. In contrast, the anomalous behavior generated by the periodic sending of a
file will cause shorter activity times, but longer periods of silence.

Analyzing this case, figures 4.10 and 4.11 reveal what was expected, long periods of silence
and short periods of activity on the part of anomaly behavior. Oh the other hand, the normal
behavior show longer activity times and shorter silence times. One noticeable thing on these
plots is that there is a correlation between activity and silence periods; considering that
window sizes are fixed, more extended activity periods results in shorter silent periods, and
vice-versa.

Figure 4.10: Comparison of the mean silence and activity periods on clean and outlier behaviors
(anomaly with a with a periodicity of 300 seconds).
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Figure 4.11: Comparison of the mean silence and activity periods on clean and outlier behaviors
(anomaly with a with a periodicity of 120 seconds).

The data demonstrate also a poorly controlled environment. In a fixed window, with an
anomaly with an activity time between 50 and 60 seconds - time taken to transfer a 5MB file
- and an interval between anomalies of 300 seconds, only two cases can happen, or you have
an anomaly or two in a single window. Theoretically, the activity time in a 10 minute window
can vary between an average minimum of 27.5 seconds, corresponding to the presence of a
complete anomaly plus 5 seconds of a new anomaly - an observation window slides 5 seconds -
and a average maximum of 60 seconds, corresponding to the presence of one or two complete
anomalies. Looking closely for the figure 4.10, it is possible to notice that the activity time
is longer than stipulated by theoretical calculations. Having said that, there are two factors
that may have influenced this result. The software developed for the periodic sending of files
over a Bluetooth connection, at specific times, may have failed and generated delays, or there
is the possibility of noise being present, generating unexpected activities. For example, in
figures 4.10 and 4.11 there are data with 600 seconds of silence and 0 seconds of activity
proving without a doubt the software delay, because the software starts to transfer the 5MB
file as soon as the capture starts, and therefore it will generate a dataset with anomalies every
300 seconds without stopping, therefore it is "impossible" to generate observation windows
without any activity.

In general, the average times of both anomalies are similar, mainly in relation to the time
of silence. If the transferred file were smaller, that is, the information exfiltrated was smaller,
it would still be possible to differentiate between the two behaviors, being an enhancing
characteristic for the differentiation of both.

The anomalous behavior present in all indicators analyzed so far presents data similar
to the normal behavior. This behavior can be explained by the way the features of each
observation window are extracted. First, each point on the graph is an observation window.
In a 10 minute observation window, if there is at least 1 second anomalous, the entire window
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is considered anomalous, and therefore the statistically similar points in the graphs so far
revised, can be explained by this method of extracting features.

To conclude, all the assumptions proved to be true, however not all proved to be robust.
The times of activity and silence were more promising, which could be a possibility if this
methodology is used in more than one scenario, namely with the increase of APs and Bluetooth
connections. The basic idea in relation to the number of frequencies used proved to suffer from
external influences, with the possibility of generating a large percentage of false negatives.

4.1.2 Feature Dimensionality

There are a variety of ensemble models that provide feature-importance information, such
as Extra Trees, Decision Forests or Random Forest classifiers that complement the feature
classification proposed in section 3.6 and given the number of features, we analyzed the
statistical importance. It’s used Scikit-learn1 Python implementation of Tree-based Classifiers
to conduct this process. To determinate the K most relevant features, one must test multiple
values of K, select the top features, and use them for training multiple models, and record
their F1-Scores. Since the models need anomalous data to tune their hyperparameters and
perform their final performance evaluation, samples of all the anomalous data sets were merged
into a single dataset.

To test the efficiency of the chosen features, were tested for OC-SVM models with K ∈
{1, 5, 10, 15, 20, 25, 30, 35, 40, 45} most relevant features, with 10 cross-validation splits. A
OC-SVM is an unsupervised learning algorithm that’s trained only on the "normal" data, in
our case the negative examples. It learns the boundaries of those points and is, therefore,
ready to classify any points that lie outside the boundary as, you guessed it, outliers. Training
any quite unsupervised learning algorithm are often difficult and therefore the OC-SVM is
not any exception. The nu parameter should be the proportion of outliers that we expect to
watch (in our case we don’t know, so we will test several magnitudes), the gamma parameter
determines the smoothing of the contour lines. Therefore, the OC-SVM models used has the
following combinations (table 4.1). All parameters not mentioned give worse results.

Combinations
gamma : 0.001, kernel : linear, nu : 0.001
gamma : 0.01, kernel : poly, nu : 0.01
degree : 1, gamma : auto, kernel : poly

gamma : 0.001, nu : 0.001
gamma : 0.001, nu : 0.01

gamma : 0.01, kernel : sigmoid, nu : 0.01
gamma : 0.01, kernel : sigmoid, nu : 0.001

Table 4.1: OC-SVM combinations for feature dimensionality.

1https://scikit-learn.org/stable/
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Figure 4.12: Relevance for each feature using Points-based Classification System

Given the number of features, we analyzed the importance of statistical data (figure
4.21). As said in section 3.6, features with few points are more relevant. The features are
designated with a nomenclature (function)_(type of Feature)_(base information source).
Each information source has the letters (f, fc and t), respectively for the active/inactive
frequencies, consecutive active frequencies and activity/silence periods.

Taking this into account, it is possible to verify that the temporal features, more precisely
the features based on silence are considered the most important, however the "podium" has a
greater presence of features based on the number of active and inactive frequencies. On the
contrary, frequencies based on consecutive active frequencies are not of great relevance for
differentiation.

Now, it is possible to test the minimum number of features necessary to model the problem.
It will be tested the influence of the features already ranked from the tree-based classifiers
and the PCA on the model’s result. To find a constant result and prove the robustness, the
process was repeated 30 times for 10 cross-validation splits as was said earlier.
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(a) (b)

Figure 4.13: F1-Score for different number of features, using Tree-based Classifiers and PCA

There are 47 features in total. It would take time to study the performance for each total
of features. Therefore, performance is studied for different numbers of features in order to
understand how in which range of total features the best performance is found. Then the
range of values before the maximum found in the previous study is studied in order to find
the minimum total of features that contribute to performance.

Figure 4.13a show the minimum optimal number of characteristics is 10, using tree-based
classifiers. The first 10 features are limited to features based on the number of active frequencies
and features based on silence periods. Which goes according to the analysis made earlier.
However, it was concluded that features based on the amount of active and inactive frequencies
could lead to a large amount of false negatives, anomalous behavior to be considered normal.
To guarantee this conclusion, different scenarios will be tested in the following chapter.

We also tested PCA for dimensionality reduction with a set {1, 5, 10, 15, 20, 25, 30, 35,
40, 45} components. It turns out that using PCA components as input features without using
feature selection produces slightly worse results. The PCA needs more features to achieve
a good result. If the number of features was not much higher, it was preferable to use this
number of features since we would have more inputs for the classification. However, since the
number of features used by the PCA is much higher, 10 features will be used.

Therefore, since the tree-based classifiers has better results than PCA, the PCA was
applied to the result of the tree-based classifiers, seeking to obtain equal or better results using
fewer features (figure 4.13b). In terms of processing and assuming that this methodology is
applied on a large scale, the less features are used the better.

Defining the value of the tree-based classifiers and testing the use of PCA in the tree-based
classifiers result features shows that there is a slight improvement in the result. The PCA
allows a decrease in the number of features of 10 to 5 feature. It is important to note that we
are dealing with an environment in which both anomalies and normal behavior were generated
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in a controlled manner, since it is a proof of concept as indicated at the beginning of this study.
Therefore, the number of patterns considered by the selection of features will be reduced,
which may explain the reduced number of features considered.

The features resulting from this scenario will be used in the next scenarios. Each scenario
at the start has a different dataset and therefore, a feature selection must be applied to each
dataset, however, due to the time that needs to be spent, it will not be done, using the features
resulting from this scenario for the next scenarios.

4.1.3 Classification Results

The final step is to train each model with the selected features and to extract the results.
The tested models were OC-SVM, IF, LOF, KDE, and GMM, using Scikit-learn 2 Python
implementations. For each dataset and each model, the data was randomly split into 80%
training and 20% testing five times (µ = 0.8, τ = 5) and split according K-Fold Cross-
Validation method ten times (υ = 5) for every tested set of hyperparameters. The batch size
used for CV sets was equal to 30% of the training set (γ = 0.3), and so, 70% of the training
set with "clean" data was used for training, while the remaining 30%, plus an equal percentage
of outlier samples (ρ = 0.5), were used as CV data. Table 4.2 showcases which ranges of
parameters were used for tuning the classical models. Values over or under the present ranges
performed worse than the presented tested combinations.

Model Parameters ranges
OC-SVM kernel: poly, linear, sigmoid, nu: 0.01, 0.001, gamma: 0.01, 0.001, auto, degree: 1

IF max samples: [1, 4999], contamination: [0.1,0.2]
LOF nn: 5000, contamination: [0.1, 0.2]
KDE kernel: guassian, bandwidth: [0.01, 0.1], threshold: 0.2
GMM n_components: [2.0, 3.0], covariance type: full, threshold: 0.2

Table 4.2: Ranges of parameters used on classical OCC models tuning.

Since this scenario was considered a test run, we only considered classical models. Their
performance does not scale well with higher-dimensional feature spaces. With this in mind, the
input features vector corresponds to the K best features resulting from the feature selection,
as exemplified in the previous section. Also, for the discussion of the results, when faced with
two models of identical performance, the model with greater precision is predominating.

The 4.3 table shows that, OC-SVM was able to produce the best detection rates, with the
cost of considerably short training times, averaging about 11 seconds to perform hyperparam-
eter tuning using 10-fold cross-validation strategy. In addition, it also has short test times,
averaging less than 1 second to classify about 5051 samples. IF were one of the fastest to
converge, but the ones producing the worse classification results. The GMM and KDE seems
to have excellent performance while maintaining reasonable training times. LOF has one of
the least optimal detection rates and is about eight times slower to train than OC-SVM.

2https://scikit-learn.org/stable/
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It was expected that there would be a greater number of false negatives, since the models
are mono-class and they learn normal behavior. The identical data revealed in the data
exploration section was expected to be considered false negatives. However, what happened
was not exactly that. If we compare the precision and F1-Score values, the F1-Score values
are not only affected by precision, but also by recall, so we are talking about the presence of
both false positives and false negatives. In the case of OC-SVM in the study of "mixture of
samples", the F1-Score result is completely affected by the number of false positives, since it
is presented with a great precision. In all models, the confidence intervals were considerably
high. What can justify this behavior is the difference between the scenarios tested. It is
difficult to ensure the same types of behavior to be tested since the tests are done at home,
with the use of the Internet being used frequently.

Type of anomaly OC-SVM IF LOF KDE GMM

scheduled 120s Precision 100.0±3.74 87.04±7.29 88.16±4.36 91.60±4.54 91.84±2.89
F1-Score 98.00±7.44 93.07±6.69 93.04±8.90 88.92±5.00 89.20±0.94

scheduled 300s Precision 100.0±4.67 73.88±5.73 73.79±6.35 91.72±0.98 91.35±1.04
F1-Score 100.0±4.34 77.96±4.89 84.92±3.76 90.65±1.94 86.30±1.08

Mixture of samples Precision 100.0±7.36 67.25±5.96 86.80±1.58 90.76±1.89 91.37±0.83
F1-Score 85.99±7.67 80.42±6.77 88.13±1.99 84.54±1.06 89.98±1.17

Table 4.3: Home automation scenario classification results (in percentage, with a 95% confidence
interval).

In sum, this was a simple scenario, since it only monitored three nodes maximum, one
of them not licit. The usage of the spectrum may be one of the reasons for the results.
The difficulty in maintaining a controlled environment may have influenced the results.
Furthermore, the strategy chosen to face the problem was not the best. Even so, the models
were able to maintain considerable performance in the dataset with normal background
behavior.

Model Training time Training set size Testing time Test set size
OC-SVM 0min11s ± <1s 28128 <1s 5051.0±581

IF 0min3s ± <1s 28128 <1s 5051.0±581
LOF 1min27s ± 0min3s 28128 <1s 5051.0±581
KDE 0min4s ± 0min4s 28128 <1s 5051.0±581
GMM 0min3s ± <1s 28128 <1s 5051.0±581

Table 4.4: Average (with 95% confidence interval) training and testing durations in the home au-
tomation scenario.
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4.2 IoT Home Scenario (with higher volume of data)

Contrasting with the scenario presented in section 4.1, which was initially thought as a
bench test to validate the proposed methods in chapter 3. The following scenario showcases
an attempt at detecting the same type of outlier behavior but in an environment with a
higher number of nodes connected to the same AP and with Bluetooth devices, simulating a
more realistic scenario. As the amount of non compromised connected devices is superior - in
comparison to the maximum three in the previous case - the 2.4GHz spectrum will be far
more often occupied, making it harder to detect the presence of periodic outlier behavior.

Figure 4.14: Home Scenario Network Diagram

The objective is also to identify a periodic outlier, within an environment containing
interactions of two legitimate PCs with an AP, mostly YouTube videos, one of which is playing
audio on Headphones. These iterations simulate normal traffic. Anomalous traffic is simulated
in the same way as the previous scenario, with the exchange of files between the compromised
mobile phone and the Pirate PC.

The data flow to simulate anomalous behavior maintains the same statistical distribution
presented in the previous context, with a file transferred of 5 MB. The file transfer occurs
every 120 and 300 seconds, referred to as scheduled 120s and scheduled 300s, respectively.

The HackRF LNA gain was set to 32dB, and the VGA gain to 16dB, just like in the
previous case. It was placed about five meters away from the access point, and 0.5 meters
from the adjacent devices, as described in the figure 4.14.

4.2.1 Data Exploration

This scenario will have about 1 hour of data per data set. Unlike the previous scenario,
there were no restrictions on data capture. This scenario will have an identical environment to
the previous one. The captures are made exclusively during the night to restrict the circulation
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of data on the network maintaining a controlled environment. As in the home automation
scenario, all devices are connected to the same AP via channel 8, as in the previous scenario.
All captured RSSI data were calculated at the frequencies of interest.

Figure 4.15 shows that there are some differences when compared with the same figure
in the previous chapter (figure 4.3b). The activities seem to be less noticeable. It should be
noted that the VGA value has a high value making the ground noise more noticeable in an
environment with more devices, the latter being much higher due to the greater number of
nodes and general background noise. The tests on the previous home automation scenario were
carried out in a place where there was little interference in the 2.4 GHz band; thus, making it
easier to discern the activity of soil noise. Despite having small activities all the time, only
more significant data transfers are clear. In this scenario, there is the communication of the
devices not only with AP, on the part of laptops, but via Bluetooth between laptop and
headphones.

Figure 4.15: RSSI power values over time with several activities

Following the study, the threshold corresponding to the maximum of the values RSSI
with no sign of relevant activity on the network was defined. Again, the data is divided into
10-minute sliding windows with a 5-second sliding distance, with a 1-second sampling window.
In addition, activity/silence features, dispersion features and trading features are extracted
from the time series data.

The exploration of the features is done by comparing a normal dataset with an anomalous
dataset. The normal dataset contains uninterrupted data flow over Wi-Fi through the connec-
tion with the AP and Bluetooth, through the connection between Laptop and headphones
and the anomalous dataset contains isolated anomalies but with normal behavior in the
background. The intention is to verify what is highlighted with the addition of anomalies to
the normal behavior of the network.

As for the first basic information source, which states that different communication tech-
nologies will reveal a total number of different active frequencies, it is no longer a valid premise
for this scenario. In comparison with the previous scenario, a greater number of frequencies,
not used by the previous scenario, is used as part of the normal behavior through the addition
of Bluetooth devices (figure 4.16).

Regarding normal behavior, a more detailed analysis reveals that the number of inactive
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frequencies decreases, now maintaining a smaller range of the total active frequencies between
9 and 22. The most notable difference is in the average number of frequencies active by
anomalous behavior. The increase average number of frequencies used complete overlap
the average number of frequencies used by normal behavior. This reveals a concern already
mentioned in the previous behavior. As in the previous scenario, this can lead to the possibility
of false negatives. The use of the number of frequencies does not seem to be a good feature in
differentiating behaviors.

Figure 4.16: Comparison of the number of active and inactive frequencies in clean and outlier
behaviors

Once again, looking at the 4.17 figure, you can see the similarity with the previous scenario.
The maximum number of active frequencies remains very noticeable, despite the normal
behavior of having Bluetooth connections. The 75th percentile shows that the number of
active frequencies has remained within a small range, and the number of inactive frequencies
decreases due to the presence of the Bluetooth connection, compared to the previous scenario.
In addition, the anomalous behavior continues to present a set of data of similar characteristics,
with the possibility of generating false negatives. The points when being classified as normal,
the appearance of anomalies with identical statistics will lead to the wrong classification.
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Figure 4.17: Percentile 75 and maximum number of frequencies in clean and outlier behaviors.

The DFLP indicator shows evidence of a behavior seen in the previous indicator. It was
assumed that the addition of a Bluetooth connection to the normal behavior would increase
the dispersion of active frequencies, however this is not true. The average number of active
frequencies increased, but the dispersion of active frequencies did not have a major impact.
On the other hand, the addition of another Bluetooth connection, which is the connection
referring to the anomaly, placed this range with higher average values.

Figure 4.18: Mean difference between the first and the last active frequency in clean and outlier
behaviors.

As mentioned in the previous scenario, the second assumption was based on the number
of consecutive active frequencies. Since Wi-Fi uses fewer frequencies, then the number of
consecutive frequencies will be greater than Bluetooth.

Unlike the previous scenario, the presence of more devices increases the number of
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consecutive frequencies (figure 4.19a). A behavior quite different from the previous one where
it presented similar values between normal and anomalous behavior. An intriguing observation
is the fact that with the presence of anomalies the number of consecutive frequencies decreases.
One possible explanation is the number of devices using the spectrum. Eventually, increasing
the number of devices, the use of the spectrum will increase, consequently, the number of
active frequencies and the number of consecutive active frequencies. However, there are few
devices on the network, and therefore the addition of a new Bluetooth communication does
not increase the consecutive active frequencies, but rather increases the dispersion that was
initially generated by the presence of a single Bluetooth connection.

In the previous scenario, the maximum values supported the assumption, in which the
difference in maximum values for the number of consecutive frequencies was notorious, but
in this case the maximum values of the behaviors remained identical, passing from a normal
distribution of median 20 for normal behavior, to a constant value 20.

(a) Average number of consecutive frequencies. (b) Maximum number of consecutive frequencies.

Figure 4.19

The average time proved to be a promising factor for the differentiation of behaviors,
prevailing even with the addition of a Bluetooth connection. Analyzing this case, long periods
of activity prevail in the normal scenario, but mainly periods of silence continue to be the
determining factor in distinguishing behaviors (figure 4.20).
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Figure 4.20: Comparison of the mean silence and activity periods on clean and outlier behaviors

In sum, eventually with the increase in devices, regardless of the communication technology
they use, the spectrum will be so full that the indicators based on the number of frequencies
will be irrelevant. However in a controlled environment, for example, an IoT environment,
in which the devices have a static position and periodic activities, indicators based on the
number of frequencies may still be useful to some extent. The usefulness of indicators based
on active frequencies depends on the context of the use of the sniffer, which in terms of
production is not feasible, as the anomaly detection method has to encompass the largest
number of scenarios.

4.2.2 Feature Dimensionality

The next step was to perform an analysis of the relevance of input features. Besides using
the feature selection mechanisms proposed in section 3.5, we also test feature dimensionality
reduction techniques such as PCA. Similarly to the previous example, we used Scikit-learn3

Python implementation of Tree-based Classifiers and PCA to conduct this process. For any
subset of features, the number of cross-validation splits was 10, and for both the number of
relevant features and PCA components, K ∈ {1, 5, 10, 15, 20, 25, 30, 35, 40, 45} set.

The increase in the number of connections foresaw an increase in the dependence on
temporal resources, however this did not happen. On the contrary, it showed that the podium
is shared exclusively by features based on the number of active frequencies. A possible
explanation, given previously, is the not strong use of the spectrum. Despite the increase in
the number of connections, it is not enough to disable features based on active and inactive
frequencies.

3https://scikit-learn.org/stable/
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Figure 4.21: Relevance for each feature using Points-based Classification System

Figure 4.22a shows that, compared to resource selection, the PCA performs better. On
the other hand, in relation to resource selection methods, the use of 10 or 15 resources in
data sets produces excellent results but below the optimum score produced by the PCA. The
application of tree-based classifiers on the PCA results did not bring any added value. The
results showed slightly worse or almost equal. Although it can increase training time, we
chose to use 25 features, as the extra information can be useful for other models not tested so
far, such as KDE or GMM.

(a) (b)

Figure 4.22: F1-Score for different number of features, using Tree-based Classifiers and PCA

4.2.3 Classification Results

The data were randomly split into 80% training, and 20% testing for each of five conducted
training procedures on every model. For classical models, it was then split according to the
K-fold cross-validation method ten times for every set of hyperparameters, with a batch size
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equal to 30% of the training set, and a 50% rate of outlier samples in the CV data. Identical
to the previous scenario, we resorted to Scikit-learn implementations. The parameters used to
tune the models were the same as in the previous scenarios (table 4.2).

As shown in table 4.5, and identical to the previous scenario, OC-SVM outperforms all
other models, obtaining the highest detection score. Contrary to the results obtained in
the previous scenario, the LOF had a better performance, almost as good as the OC-SVM,
however with a longer training time. OC-SVM has both a high precision rate and a large
F1-Score, showing excellent behavior in identifying normal and abnormal behaviors. The IF
model has lower F1-Score scores that come from lower precision rate, which means that they
sometimes produce false positives, although they are able to identify almost all anomalies
(high recall). The rest of the models have high F1-Score rates accompanied by equivalent
precision, which means that they produce false negatives. In this scenario, the range of
values remains high and as such the possible justification remains the same as in the previous
scenario. What can justify this behavior is the difference between the scenarios tested. It is
difficult to ensure the same types of behavior to be tested since the tests are done at home,
with the use of the Internet being used frequently.

Type of anomaly OC-SVM IF LOF KDE GMM

scheduled 120s Precision 99.42±1.47 88.74±6.22 98.67±9.38 95.13±4.10 91.11±0.81
F1-Score 99.45±5.41 94.03±10.02 99.33±7.51 93.25±2.11 85.03±2.07

scheduled 300s Precision 100.0±5.16 75.71±7.50 95.64±4.62 89.52±2.79 85.66±2.74
F1-Score 93.00±8.33 86.18±5.87 97.36±9.79 88.06±2.67 84.30±2.07

Table 4.5: Home automation scenario classification results (in percentage, with a 95% confidence
interval).

In sum, classical models proved that, even in scenarios with a higher number of devices
and increased background noise, they are still capable of discerning outlier behavior, since
they maintained results identical to the tests carried out between normal and exclusively
abnormal behavior.

Model Training time Training set size Testing time Test set size
OC-SVM 0min3s ± <1s 12237 <1s 2578.0±405

IF 0min3s ± <1s 12237 <1s 2578.0±405
LOF 0min22s ± 0min1s 12237 <1s 2578.0±405
KDE 0min1s ± <1s 12237 <1s 2578.0±405
GMM 0min1s ± <1s 12237 <1s 2578.0±405

Table 4.6: Average (with 95% confidence interval) training and testing durations in the home au-
tomation scenario.
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4.3 Conclusion

Realistically, it’s not possible to check every type of existing anomalies. This work covered
only a few variations, more specifically, small volume periodic behavior, simulating an attacker
exfiltrating information on a regular basis. Anomalies with a greater volume of knowledge
exchange would be more easily detected because the respective periods of activity would
be relatively long and the average number of active frequencies will be higher, however it
is not possible to make the same conclusion for corporate networks due to the large flow of
information caused by other devices, but it is possible to assume that for IoT networks this is
possible due to the low volume of information exchanged between IoT devices. Obviously, if an
attacker is aware of the periodic behavior of the network, it would be easier to masquerade the
outlier behavior; yet, we are assuming that an external entity does not have that information.
Additionally, the attacker may disguise the anomaly by mimicking the typical operation of a
specific device, if he was aware that such a node existed in the network. Even if he managed
to do it, he would only mimic the device bot-like behavior, not the human interactions that
also describe its usual operation.

Moreover, these tests were conducted in a controlled environments. The home scenario
occurred in a location with reduced number of devices connected to the network and little
background noise or interference, since it is difficult to carry out the experiments when people
at home are using the same network. The work environment tests were always conducted
at the same period of the day - usually between 0 and 6 a.m. - and the agents connected to
the network were always the same, despite slight variations on their behavior. Besides, the
amount of data available was relatively low. In order to create a more reliable model, we
would have to record a lot more training data, as well as more diverse.
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CHAPTER 5
Conclusions and Future Work

Although this dissertation covered the base approach to allow the detection of anomalies
at the physical layer, there is still a few points where it can be improved.

5.1 Conclusions

The study in Chapter 2 shows that IoT environments are susceptible to a spread of attacks,
with the IoT environment increasing the attack surface for remote and physical attacks. In
many cases, like IoT devices, they’re shipped from the factory in a vulnerable state and have
never been fixed or have implemented trivial security mechanisms. Sometimes, it’s physically
impossible to repair these devices.

To overcome these issues, administrators were forced to use monitoring strategies to keep
networks secure, although at the same time they’re disrespecting users’ privacy as they’re
ready to correlate network patterns to an individual node. On the opposite hand, the proposed
anomaly detection mechanisms specialize in physical layer data, where such a task becomes
more complex because the signal mixes multiple devices data exchanges.

The mentioned mechanisms rely on analyzing and extracting statistical and time-frequency
features that characterize radio silence/activity periods and active frequencies. Moreover, the
goal is to only model the network when it’s freed from anomalies, in order that the trained
classifier isn’t bound to any specific form of outlier behavior. Another issue of current anomaly
detection systems in IoT networks is that the majority rely on supervised learning techniques,
thus training a classifier to specific forms of attack vectors, i.e. signature-based. With this in
mind, we proposed a series of feature engineering procedures to optimize the classification
performance of OCC models. Our choice for one-class classifiers is justified by only having
to train them with “clean” data, therefore, avoiding biasing them towards some determined
anomalous behavior. This also made it possible to make a more robust model against unseen
phenomena.
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Furthermore, as we suggested the utilization of SDRs because the primary tool to record
IQ data, these mechanisms aren’t bound to any specific radio technology, and that they are
often used with Wi-Fi, Bluetooth, or any other that works on the frequency range supported
by the provided sniffer.

To validate those same mechanisms to outlier detection at the physical layer, we designed a
home network scenario, where the goal was to detect periodic outlier behavior in a Bluetooth
channel working as a proof-of-concept scene.

The OCC classical models were able to detect the anomalous behavior with some difficulties.
Some models were able to obtain between 75% e 99% detection rate. One positive note about
the developed models is that the majority also presented satisfactory precision rates.

These tests showed the validity of the mechanisms proposed in chapter 3, although it’s
realistically impossible to check all kinds of existing anomalies. We only tested low-volume
and considerably high-frequency behavior, because it seemed harder to detect smaller data
transfers because the remaining traffic masked them. The tests were always conducted with
the same devices, with similar behaviors whenever, at an equivalent periods of the day. This
makes it harder for the model to generalize to other periods of the day where there would be
more connected devices or maybe differences in behavior between weekdays and weekends.

5.2 Future Work

Despite what this Dissertation addressed, there are several points that can be improved
and others that can be added:

• In our test scenarios, only short-length and high-frequency anomalies were considered.
It is impossible to test all imaginable variations of anomalous behavior, especially since
it depends on the regular operation of the network. Nevertheless, having a longer list of
anomalies, particularly long-duration and low-frequency ones (e.g., uploading a 1GB
video every ten minutes) increases the chances of creating a model that is properly
tuned.

• In our scenarios, periodic tests were considered, however IoT networks, in addition
to periodic and automated behaviors, can have human or asynchronous interactions,
that is, non-periodic. Making tests considering these iterations are important, mainly
imitating legal behaviors.

• Our tests were conducted with a few IoT devices. It would be interesting to study
the network behavior with more devices and how they work, and see there impact on
the spectrum usage. It will be more challenging understand and model such behaviors
correctly.

• The pre-processing methodology presented in chapter 4, a threshold was used to isolate
the relevant data, but it was interesting, a priori, to use a EMD. It aims to decompose
a signal into elemental ones, called Intrinsic Mode Functions (IMFs). The first Intrinsic
Mode Function (IMF) usually carries the most oscillating (high-frequency) components,
it can be rejected to remove high-frequency components (e.g., random noise) [127].
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Figure 5.1: Illustration of an EMD decomposition of a toy signal composed of a sawtooth, a sinusoid
and a linear trend (retrieved from [127])

The intention of this pre-processing would be to try to isolate the relevant waves,
instead of relying on a threshold to isolate the network activity. It should be remembered
that the results detected activity at unused frequencies, pointing out that just applying
a threshold will not be enough.

• One of the problems present at the end of the tests was the presence of false positives. A
possible solution to be tested for the reduction of false negatives is the implementation
of a second level of classification, which would involve decision making based on more
than one window. When considering N windows, if one of them was anomalous, all the
others would be considered anomalous. This solution would not have a great impact on
the methodology followed, since the sliding of the observation windows is only 5 seconds.
So instead of making the decision after 10 minutes (time from an observation window),
the decision was made after 10 minutes * N * 5 seconds.

• The business scenario addressed initially mentions a system for sending data collected
by sniffers, allocated at strategic points, to a central entity. In this scenario, the sniffer
is no longer a passive element, but an active element as it introduces data into the
network. It would be interesting to study the network with the introduction of this
data, in order to draw the conclusion whether or not it is possible to use the existing
network to send the data or it will be necessary to have an exclusive network parallel to
the existing network for sending data.
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