10 research outputs found

    Security and Privacy Threats on Mobile Devices through Side-Channels Analysis

    Get PDF
    In recent years, mobile devices (such as smartphones and tablets) have become essential tools in everyday life for billions of people all around the world. Users continuously carry such devices with them and use them for daily communication activities and social network interactions. Hence, such devices contain a huge amount of private and sensitive information. For this reason, mobile devices become popular targets of attacks. In most attack settings, the adversary aims to take local or remote control of a device to access user sensitive information. However, such violations are not easy to carry out since they need to leverage a vulnerability of the system or a careless user (i.e., install a malware app from an unreliable source). A different approach that does not have these shortcomings is the side-channels analysis. In fact, side-channels are physical phenomenon that can be measured from both inside or outside a device. They are mostly due to the user interaction with a mobile device, but also to the context in which the device is used, hence they can reveal sensitive user information such as identity and habits, environment, and operating system itself. Hence, this approach consists of inferring private information that is leaked by a mobile device through a side-channel. Besides, side-channel information is also extremely valuable to enforce security mechanisms such as user authentication, intrusion and information leaks detection. This dissertation investigates novel security and privacy challenges on the analysis of side-channels of mobile devices. This thesis is composed of three parts, each focused on a different side-channel: (i) the usage of network traffic analysis to infer user private information; (ii) the energy consumption of mobile devices during battery recharge as a way to identify a user and as a covert channel to exfiltrate data; and (iii) the possible security application of data collected from built-in sensors in mobile devices to authenticate the user and to evade sandbox detection by malware. In the first part of this dissertation, we consider an adversary who is able to eavesdrop the network traffic of the device on the network side (e.g., controlling a WiFi access point). The fact that the network traffic is often encrypted makes the attack even more challenging. Our work proves that it is possible to leverage machine learning techniques to identify user activity and apps installed on mobile devices analyzing the encrypted network traffic they produce. Such insights are becoming a very attractive data gathering technique for adversaries, network administrators, investigators and marketing agencies. In the second part of this thesis, we investigate the analysis of electric energy consumption. In this case, an adversary is able to measure with a power monitor the amount of energy supplied to a mobile device. In fact, we observed that the usage of mobile device resources (e.g., CPU, network capabilities) directly impacts the amount of energy retrieved from the supplier, i.e., USB port for smartphones, wall-socket for laptops. Leveraging energy traces, we are able to recognize a specific laptop user among a group and detect intruders (i.e., user not belonging to the group). Moreover, we show the feasibility of a covert channel to exfiltrate user data which relies on temporized energy consumption bursts. In the last part of this dissertation, we present a side-channel that can be measured within the mobile device itself. Such channel consists of data collected from the sensors a mobile device is equipped with (e.g., accelerometer, gyroscope). First, we present DELTA, a novel tool that collects data from such sensors, and logs user and operating system events. Then, we develop MIRAGE, a framework that relies on sensors data to enhance sandboxes against malware analysis evasion

    Profiler for Smartphone Users Interests Using Modified Hierarchical Agglomerative Clustering Algorithm Based on Browsing History

    No full text
    Part 3: Authentication and ProfilingInternational audienceNowadays, smartphone has been a life style for many people in the world and it has become an indispensable part of their live. Smartphone provides many applications to support human activity which one of the applications is web browser applications. People spend much time on browsing activity for finding useful information that they are interested on it. It is not easy to find the particular pieces of information that they interested on it. In this paper, user-profiler is presented as way of providing smartphone users with their interest based on their browsing history. In this study, we propose a Modified Hierarchical Agglomerative Clustering algorithm that uses filtering category groups on a server-based application to aid provides smartphone user profile for interests-focused based on browsing history automatically. Based on experimental results, the proposed algorithm can measure degree of smartphone user interest based on browsing history of web browser applications, provides smartphone users interests profile and also outperforms the C4.5 algorithm in execution time on all memory utilization

    24th International Conference on Information Modelling and Knowledge Bases

    Get PDF
    In the last three decades information modelling and knowledge bases have become essentially important subjects not only in academic communities related to information systems and computer science but also in the business area where information technology is applied. The series of European – Japanese Conference on Information Modelling and Knowledge Bases (EJC) originally started as a co-operation initiative between Japan and Finland in 1982. The practical operations were then organised by professor Ohsuga in Japan and professors Hannu Kangassalo and Hannu Jaakkola in Finland (Nordic countries). Geographical scope has expanded to cover Europe and also other countries. Workshop characteristic - discussion, enough time for presentations and limited number of participants (50) / papers (30) - is typical for the conference. Suggested topics include, but are not limited to: 1. Conceptual modelling: Modelling and specification languages; Domain-specific conceptual modelling; Concepts, concept theories and ontologies; Conceptual modelling of large and heterogeneous systems; Conceptual modelling of spatial, temporal and biological data; Methods for developing, validating and communicating conceptual models. 2. Knowledge and information modelling and discovery: Knowledge discovery, knowledge representation and knowledge management; Advanced data mining and analysis methods; Conceptions of knowledge and information; Modelling information requirements; Intelligent information systems; Information recognition and information modelling. 3. Linguistic modelling: Models of HCI; Information delivery to users; Intelligent informal querying; Linguistic foundation of information and knowledge; Fuzzy linguistic models; Philosophical and linguistic foundations of conceptual models. 4. Cross-cultural communication and social computing: Cross-cultural support systems; Integration, evolution and migration of systems; Collaborative societies; Multicultural web-based software systems; Intercultural collaboration and support systems; Social computing, behavioral modeling and prediction. 5. Environmental modelling and engineering: Environmental information systems (architecture); Spatial, temporal and observational information systems; Large-scale environmental systems; Collaborative knowledge base systems; Agent concepts and conceptualisation; Hazard prediction, prevention and steering systems. 6. Multimedia data modelling and systems: Modelling multimedia information and knowledge; Contentbased multimedia data management; Content-based multimedia retrieval; Privacy and context enhancing technologies; Semantics and pragmatics of multimedia data; Metadata for multimedia information systems. Overall we received 56 submissions. After careful evaluation, 16 papers have been selected as long paper, 17 papers as short papers, 5 papers as position papers, and 3 papers for presentation of perspective challenges. We thank all colleagues for their support of this issue of the EJC conference, especially the program committee, the organising committee, and the programme coordination team. The long and the short papers presented in the conference are revised after the conference and published in the Series of “Frontiers in Artificial Intelligence” by IOS Press (Amsterdam). The books “Information Modelling and Knowledge Bases” are edited by the Editing Committee of the conference. We believe that the conference will be productive and fruitful in the advance of research and application of information modelling and knowledge bases. Bernhard Thalheim Hannu Jaakkola Yasushi Kiyok

    The Big Five:Addressing Recurrent Multimodal Learning Data Challenges

    Get PDF
    The analysis of multimodal data in learning is a growing field of research, which has led to the development of different analytics solutions. However, there is no standardised approach to handle multimodal data. In this paper, we describe and outline a solution for five recurrent challenges in the analysis of multimodal data: the data collection, storing, annotation, processing and exploitation. For each of these challenges, we envision possible solutions. The prototypes for some of the proposed solutions will be discussed during the Multimodal Challenge of the fourth Learning Analytics & Knowledge Hackathon, a two-day hands-on workshop in which the authors will open up the prototypes for trials, validation and feedback

    Multimodal Challenge: Analytics Beyond User-computer Interaction Data

    Get PDF
    This contribution describes one the challenges explored in the Fourth LAK Hackathon. This challenge aims at shifting the focus from learning situations which can be easily traced through user-computer interactions data and concentrate more on user-world interactions events, typical of co-located and practice-based learning experiences. This mission, pursued by the multimodal learning analytics (MMLA) community, seeks to bridge the gap between digital and physical learning spaces. The “multimodal” approach consists in combining learners’ motoric actions with physiological responses and data about the learning contexts. These data can be collected through multiple wearable sensors and Internet of Things (IoT) devices. This Hackathon table will confront with three main challenges arising from the analysis and valorisation of multimodal datasets: 1) the data collection and storing, 2) the data annotation, 3) the data processing and exploitation. Some research questions which will be considered in this Hackathon challenge are the following: how to process the raw sensor data streams and extract relevant features? which data mining and machine learning techniques can be applied? how can we compare two action recordings? How to combine sensor data with Experience API (xAPI)? what are meaningful visualisations for these data

    Measurement of service innovation project success:A practical tool and theoretical implications

    Get PDF
    corecore