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Abstract

In recent years, mobile devices (such as smartphones and tablets) have be-
come essential tools in everyday life for billions of people all around the
world. Users continuously carry such devices with them and use them for
daily communication activities and social network interactions. Hence, such
devices contain a huge amount of private and sensitive information. For this
reason, mobile devices become popular targets of attacks. In most attack
settings, the adversary aims to take local or remote control of a device to
access user sensitive information. However, such violations are not easy to
carry out since they need to leverage a vulnerability of the system or a care-
less user (i.e., install a malware app from an unreliable source). A different
approach that does not have these shortcomings is the side-channels analysis.
In fact, side-channels are physical phenomenon that can be measured from
both inside or outside a device. They are mostly due to the user interaction
with a mobile device, but also to the context in which the device is used,
hence they can reveal sensitive user information such as identity and habits,
environment, and operating system itself. Hence, this approach consists of
inferring private information that is leaked by a mobile device through a
side-channel. Besides, side-channel information is also extremely valuable
to enforce security mechanisms such as user authentication, intrusion and
information leaks detection.

This dissertation investigates novel security and privacy challenges on
the analysis of side-channels of mobile devices. This thesis is composed of
three parts, each focused on a different side-channel: (i) the usage of network
traffic analysis to infer user private information; (ii) the energy consumption
of mobile devices during battery recharge as a way to identify a user and as
a covert channel to exfiltrate data; and (iii) the possible security application
of data collected from built-in sensors in mobile devices to authenticate the
user and to evade sandbox detection by malware.

In the first part of this dissertation, we consider an adversary who is
able to eavesdrop the network traffic of the device on the network side (e.g.,



controlling a WiFi access point). The fact that the network traffic is often
encrypted makes the attack even more challenging. Our work proves that it
is possible to leverage machine learning techniques to identify user activity
and apps installed on mobile devices analyzing the encrypted network traffic
they produce. Such insights are becoming a very attractive data gathering
technique for adversaries, network administrators, investigators and market-
ing agencies.

In the second part of this thesis, we investigate the analysis of electric
energy consumption. In this case, an adversary is able to measure with a
power monitor the amount of energy supplied to a mobile device. In fact,
we observed that the usage of mobile device resources (e.g., CPU, network
capabilities) directly impacts the amount of energy retrieved from the sup-
plier, i.e., USB port for smartphones, wall-socket for laptops. Leveraging
energy traces, we are able to recognize a specific laptop user among a group
and detect intruders (i.e., user not belonging to the group). Moreover, we
show the feasibility of a covert channel to exfiltrate user data which relies
on temporized energy consumption bursts.

In the last part of this dissertation, we present a side-channel that can be
measured within the mobile device itself. Such channel consists of data col-
lected from the sensors a mobile device is equipped with (e.g., accelerometer,
gyroscope). First, we present DELTA, a novel tool that collects data from
such sensors, and logs user and operating system events. Then, we develop
MIRAGE, a framework that relies on sensors data to enhance sandboxes
against malware analysis evasion.
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Chapter 1

Introduction

Nowadays, mobile devices like smartphones and tablet have spread rapidly
becoming more and more pervasive; this is due to their feature-richness,
mobility, and affordable price. In fact, market studies reported that in 2011
mobile device sales surpassed those of desktop PCs [97]. At the time of
writing, smartphone and tables remain the most used handheld devices.
Such outbreaking success is mostly due to the fact that these devices embed
advanced operating systems and allow users to perform a variety of tasks,
which in the past would have been only possible on desktop PCs. In order to
carry out such tasks, mobile platforms make available to users a plethora of
multi-purpose applications, commonly known as apps. Since mobile devices
are also equipped with networking capabilities, many apps rely on Inter-
net access to provide extra functionalities and fresh contents. In addition
to this, other mobile devices such as laptops are becoming year after year
more popular than desktop workstations [188], since they offer portability
in addition to equivalent computational capabilities.

Users continuously rely on mobile devices in their everyday life to per-
form even the most sensitive tasks from the point of view of privacy. For
example, users can perform tasks such as private messaging, manage ap-
pointments, purchase of goods or services, finance or bank operations. Mo-
bile devices became a receptacle for personal information. Moreover, with
the recent diffusion of cloud services, users private data are kept updated
and available anytime and anywhere from all the devices that belong to a
user.

Unfortunately, this worldwide technological success of mobile devices
and their access to users private information have not gone unnoticed by
malicious users. Despite some of them could be also motivated by politi-
cal interests, attackers are mostly motivated to obtain financial advantages
from their malicious behavior. Such malicious behavior may either directly
hinder users’ financial assets or sell users’ private information to interested
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third-parties. To perpetrate their malicious behaviors, attackers can adopt
different approaches, which can be either active or passive

On one hand, in an active attack, the adversary’s main target is to gain
control of the mobile device in order to exfiltrate information she aims at.
In most scenarios, the attacker relies on vulnerabilities exposed by flaws
on the operating system or application software. Alternatively, adversaries
leverage also distracted users, or users without sufficient knowledge of secu-
rity. Indeed, another attack method consists of inducing the victim to install
malware via untrusted or repackaged apps. Active attacks are the most suit-
able choice for the adversaries that want since immediately access to stolen
information. Luckily, attackers may not always succeed in their malicious
intent without being detected and neutralized, since such violations have
to meet requirements that are beyond their control. In fact, active attacks
are only possible when the victim does not adopt good security practices
or does not deploy any prevention mechanisms (e.g., anti-viruses software).
Nevertheless, even the most motivated attackers have to invest a lot of effort
and money in order to discover novel zero-day vulnerabilities.

On the other hand, passive attacks do not face the shortcomings de-
scribed above. In this kind of attacks, the adversary passively collects data
leaked by mobile devices through side-channels. We can define a side-channel
as a physical phenomenon that can be measured, and it is due to user actions
or to processes running in a mobile device. In particular, with user actions
we mean the operations actively performed by a user, such as sending a
message, reading the news, or watching a video. It is worth noticing that,
despite some common issues, our definition of side-channel differs from the
traditional one given in cryptanalysis. In particular, we use such channels
to infer knowledge about the user and the mobile device itself, rather than
focus on inferring a cryptographic key. Side-channels analysis is the ideal
approach for adversaries that aim to not raise suspiciousness in the victim
and remain undetected, because she does not intervene directly on the mo-
bile device. Besides, the adversary can analyze side-channels information to
inferring valuable insights about the user and the mobile device itself.

1.1 Research Motivation and Contribution

The multi-purpose capabilities offered by mobile devices are inducing users
to develop a symbiotic bound with them, which is becoming stronger year
by year. Users rely on such devices to carry out sensitive tasks and to
store even the most private information. At the same time, the usage of
mobile devices generates side-channels from which an attacker can infer such
information. In this dissertation, we investigate on side-channels analysis
techniques and applications in the field of security and privacy. Besides,
we not only present user privacy attacks that can be perpetrated relying
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on side-channel information, but also propose some possible applications
that aim to enhance mobile devices’ security. We highlight that most of the
applications of side-channels analyses that we report in this dissertation are
novel contributions to the state of the art.

Figure 1.1 depicts the type of mobile devices considered in this thesis,
the side-channels analyzed and their possible applications of such analyses.
On the left side of Figure 1.1, we report the mobile devices we consider
in our work, namely smartphones, tablets, and laptops. Side-channels can
be categorized according to the point in which they can be measured: in-
side or outside the mobile device. The former category includes the data
about touch gestures (i.e., user inputs on the touchscreen) and built-in sen-
sors that measure environmental properties, such as motion and orientation
of the mobile device. The latter category considers physical phenomenon
measurable externally to the device, such as the electric energy provided
to recharge the battery, and the wireless network traffic. Given the data
collected from the aforementioned side-channels, it is possible to apply ma-
chine learning techniques to extract some valuable knowledge. On the right
side of Figure 1.1, we list some possible outcomes and applications of such
analyses.

Users interaction on We can Mobile device generates We analyze Security and privacy
mobile devices measure a side-channel data through applications
( \ Ll
Touch User recognition
gestures Pattern
From recognition
X inside ) User actions and
the device Y behaviour
Smartphones Build-in BN e
sensors
i Installed
Unsupervised applications

learning

Tablets Sandbox detection

Energy
consumption |4
(G
= = Network
Laptops

Figure 1.1: Schema for mobile devices side-channels analysis and possible
applications.

From
outside
the device

Supervised
learning

Data exfiltration

The research work presented in this thesis is composed of three main
parts, each related to a different side-channel:

e Network traffic analysis investigates on possible information that could
be inferred in wireless encrypted communications between mobile de-
vice and remote service.

e FEnergy consumption analysis considers the applications of electric cur-
rent retrieved by a mobile device as a side-channel.
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e Built-in sensors analysis presents work that consider data collected
from mobile devices’ sensors as a side-channel to be used to enforce
security.

In what follows, we briefly introduce the aforementioned parts, high-
lighting our contributions.

In this dissertation, some figures have been re-used and some passages have
been quoted verbatim from the following works [34,51-53,183,185,195,196]
(all co-authored by the author of this dissertation).

1.1.1 Network Traffic Analysis

In order to access to web services, mobile devices are equipped with WiF'i or
cellular network adapters, that provide Internet connectivity. An attacker
could intercept the communications between mobile devices and services in
several ways, such as by eavesdropping wireless transmission with an an-
tenna, by wiretapping the transmission cable, or by being the deployer of
Internet access point. Such kind of attack is called Man-In-The-Middle
(MITM) attack since the attacker places herself in the middle of the com-
municating parties, being able to observe their messages. In Figure 1.2, we
depicts a possible MITM attack that involves an Android device and a web
server. This kind of attack can be either active or passive.

On one hand, an active attacker can intercept a web service’s real certifi-
cate and provide the victim a fake certificate, pretending to be the real web
service. Nonetheless, active MITM attack can be easily revealed whether the
victim adopts effective security countermeasures [49]. On the other hand, at
the time of the writing, passive MITM attack are hard, if not impossible, to
detect since it only listens to the channel without performing any alteration.

In the first part of this thesis, we consider a passive MITM attacker that
listen to TCP/IP network traffic generated by the victim’s mobile device.
It is worth noticing that such network traffic is encrypted with SSL/TLS
encryption protocol, thus the attacker is not able to rely on Packet Inspection
techniques. Even the network traffic is encrypted, a passive MITM attacker
can still infer a significant amount of information from the analysis of the
properly encrypted network traffic. For example, work leveraging analysis
of encrypted traffic already highlighted the possibility of understanding the
set of apps installed on a mobile device [190], or identify the presence of a
specific user within a network [198].

In our work, we focus on inferring two private information about the
victim: (i) the actions performed by the victim with an app; and (ii) the list
of installed apps on the victim’s mobile device.
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Figure 1.2: Man-In-The-Middle attack.

User Actions Recognition

The actions a user performs on an app could reveal many insights about
her. She installs and uses several apps to communicate with friends or ac-
quaintances. Through her smartphone, she gets information about sensitive
topics such as diseases, sexual or religious preferences. As a consequence,
several concerns have been raised about the capabilities of these portable
devices to invade the privacy of users actually becoming “tracking devices”.

This work focuses on understanding whether the user profiling made
through analyzing encrypted traffic [198] can be enhanced to understand
exactly what actions the user is doing on her phone: as concrete examples,
we aim at identifying actions such as the user sending an email, receiving an
email, browsing someone’s profile on a social network, publishing a post or a
tweet, or “tagging” someone in a picture. The underlying issue we leverage
in our work is that SSL and TLS protect the content of a packet, while they
do not prevent the detection of networks packets patterns that instead may
reveal some sensitive information about the user behavior.

Contributions: We investigate to which extent such an external attacker
can identify the specific actions that a user is performing on her mobile apps.
Our work analyzes the network communications and leverages information
available in TCP/IP packets (like IP addresses and ports), together with
other information like the size, the direction (incoming/outgoing), and the
timing. By using an approach based on machine learning, each app that is
of interest is analyzed independently. To set up our system, for each app
we first pre-process a dataset of network packets labeled with the user ac-
tions that originated them, we cluster them in flow typologies that represent
recurrent network flows, and finally we analyze them in order to create a
training set that will be used to feed a classifier. The trained classifier will
then be able to classify new traffic traces that have never been seen before.
We run a thorough set of experiments to evaluate our solution considering
seven popular apps: Facebook, Gmail, Twitter, Tumblr, Dropbox, Google+
and Evernote. The results show that it can achieve accuracy and precision
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higher than 95%, for most of the considered actions. We also run a thorough
comparison of our solution with three algorithms, showing that our solution
outperforms them in all of the cases. We present this work in Chapter 2

Mobile Apps Fingerprinting

Automatic fingerprinting and identification of mobile apps are becoming a
very attractive data gathering technique for adversaries, network admin-
istrators, investigators, and marketing agencies. In fact, the list of apps
installed on a device can be used to identify vulnerable apps for an attacker
to exploit, uncover a victim’s use of sensitive apps, assist network planning,
and aid marketing. However, app fingerprinting is challenging because of
the vast number of apps available for download, the wide range of devices
they may be installed on, and the use of payload encryption protocols such
as HTTPS/TLS.

Contributions: In Chapter 3, we propose a novel methodology and a
framework implementing it, called AppScanner, for the automatic finger-
printing and real-time identification of Android apps from their encrypted
network traffic. To build app fingerprints, we run apps automatically on a
physical device to collect their network traces. We apply various processing
strategies to these network traces before extracting the features that are
used to train our supervised learning algorithms. Our fingerprint genera-
tion methodology is highly scalable and does not rely on inspecting packet
payloads; thus our framework works even when HTTPS/TLS is employed.
We built and deployed this lightweight framework and ran a thorough set
of experiments to assess its performance. We automatically profiled 110
of the most popular apps in the Google Play Store and were later able to
re-identify them with more than 99% accuracy.

1.1.2 Energy Consumption Analysis

The Internet of Things (IoT) paradigm, in conjunction with the one of smart
cities, is pursuing toward the concept of smart buildings, i.e., “intelligent”
buildings able to receive data from a network of sensors and thus to adapt
the environment. IoT sensors can monitor a wide range of environmental
features such as the energy consumption inside a building at fine-grained
level (e.g., for a specific wall-socket). Some smart buildings already de-
ploy monitoring electric energy consumption of appliances. Besides, charger
stations deployed in public places provide electric current to recharge the
batteries of mobile devices. Such stations could monitor the energy provided
as well. While electric consumption measurements could be carried out in
order to optimize the energy use for good purposes (e.g., to save money, to
reduce pollution), they also raise a significant amount of privacy concerns.

10
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Energy consumption can be considered as another side-channel of mobile
devices because it is directly related to the way a user interacts with a device.
In the second part of this dissertation, we contribute to the state of the art
of energy consumption analysis with two works having the following targets:
(i) identifying the user laptop plugged on a smart meter; and (ii) exfiltrating
data via USB charging cable using energy consumption as a covert channel.

User Laptops Identification

Laptops became a useful mobile device thanks to their portability and com-
putational capabilities. Despite these positive features make them a valu-
able tool for work and entertainment, laptops share the same shortcoming
of smartphones and tablet: they are limited by the life of their battery if
not connected to a power source. For this reason, when laptops are used
in a stationary location, users connect them to a power source rather than
rely on the battery. In our threat model, we assume a smart building where
a user plugs her laptop to a wall-socket smart meters, thus we are able to
measure the energy consumption of such laptop.

Contributions: We investigate the feasibility of recognizing the pair
laptop-user (i.e., a user using her own laptop) from the energy traces pro-
duced by her laptop in Chapter 4. We design MTPlug, a framework that
achieves this goal relying on supervised machine learning techniques as pat-
tern recognition in multivariate time series. We present a comprehensive
implementation of this system and run a thorough set of experiments. In
particular, we collected data by monitoring the energy consumption of two
groups of laptop users, some office employees and some intruders, for a total
of 27 people. We show that our system is able to build an energy profile for a
laptop user with an accuracy above 80%, in less than 3.5 hours of laptop us-
age. To the best of our knowledge, this is the first research that assesses the
feasibility of laptop users profiling relying uniquely on fine-grained energy
traces collected using wall-socket smart meters.

Data Exfiltration

Thanks to the technological innovation and to the high user demand, mo-
bile devices are integrating extensive battery-draining functionalities, which
results in a surge of energy consumption of these devices. This scenario
leads many people to look for opportunities to charge their devices at public
charging stations: the presence of such stations is already prominent around
public areas such as hotels, shopping malls, airports, gyms and museums,
and is expected to significantly grow in the future. While most of the times
the electric power comes for free, there is no guarantee that the charging
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station is not maliciously controlled by an adversary, with the intention to
exfiltrate data from the devices that are connected to it.

Contributions: We show for the first time how an adversary could leverage
a maliciously controlled charging station to exfiltrate data from a smart-
phone via a USB charging cable (i.e., without using the data transfer func-
tionality), controlling our simple app (named PowerSnitch) running on the
device. It is worth noticing that PowerSnitch app does not any permission
to be granted by the user to send data out of the device. We show the
feasibility of our attack through a prototype implementation in Android,
which is able to send out potentially sensitive information, such as IMEI
and contacts’ phone number. We present and evaluate our covert-channel
in Chapter 5

1.1.3 Built-in Sensors Analysis

Along with other aforementioned features, mobile devices are equipped with
a wide range of sensors to measure the surrounding environment (e.g., ori-
entation, location, lightness) and provide an advanced user experience. The
data measured by those sensors are made available to all apps without any
permission and it can be considered as a side-channel. To some extent, we
can also consider mobile device’s touchscreen as a sensor, more than simply
an input device. Differently from the side-channels presented in the two
previous parts, built-in sensors side-channel can be directly measured from
inside a mobile device. Since the analysis of such data may require time
and computational power for a battery-powered device, it is possible to first
collect sensors data and then send it out to be analyzed in a more suitable
facility.

In our work, we investigate different aspects related to built-in sensors
side-channel and we give two contributions to the state of the art: (i) we
present a usable and multi-purpose logging tool for Android; and (ii) we
use sensors data collected from real devices to build a malware analysis
sandboxes robust against emulator detection heuristics.

Logging and Data Extraction Tool

The use of smartphones has increased exponentially, and so have their sens-
ing and functional capabilities. Indeed, together with an increase in process-
ing power, smartphones and tablets are equipped with a variety of sensors
and provide an extensive set of API. Such capabilities allow mobile devices
to collect data related to environment, user habits, and operating system
itself. This data is extremely valuable in many research fields such as infor-
mation leaks detection and user authentication [54,85,184,187]. For these
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reasons, researchers need a solid and reliable logging tool to collect data
from mobile devices.

Contributions: First, we survey the existing logging tools available on
the Android platform, comparing their features and their impact on the
system. Second, we present DELTA, a framework for Data Extraction and
Logging Tool for Android. DELTA improves the existing Android logging
solutions in terms of flexibility, fine-grained tuning capabilities, extensibility,
and available set of logging features. We fully implement DELTA and we
run a thorough performance evaluation. The results show that our tool has
a low impact on the performance of the system, on battery consumption,
and on user experience. DELTA is open source and its code is available to
the research community. We presented this work in Chapter 6.

Robust Sandbox Against Malware Analysis Evasion

Malware developers attention is gradually moving from PCs to mobile de-
vices. This because the latter ones can access and store personal information
(e.g., location, photos, and messages). The most promising approach to an-
alyze malware is by monitoring its execution in a sandbox (i.e., via dynamic
analysis). In particular, most malware sandboxing solutions for Android
rely on an emulator, rather than a real device. This motivates malware
authors to include runtime checks in order to detect whether the malware
is running in a virtualized environment. In that case, the malware does
not trigger the malicious payload. The presence of differences between real
devices and Android emulators (also called artifacts) started an arms race
between security researchers and malware authors, where the former want
to hide these differences and the latter try to seek them out.

Contributions: We present Mirage, a malware sandbox architecture for
Android focused on dynamic analysis evasion attacks in Chapter 7. We
designed the components of Mirage to be extensible via software modules,
in order to build specific countermeasures against such attacks. Mirage is the
first modular sandbox architecture that is robust against sandbox detection
techniques. As a representative case study, we present a proof of concept
implementation of Mirage with a module that tackles evasion attacks based
on sensors API return values. In particular, such values can be constant
or stream of sensor data previously collected from real mobile devices via a
data collection app (e.g., DELTA). Mirage replays such data injecting them
into the emulator that, such a way, pretends to be a real device does.

Finally, Chapter 8 we draw some conclusions and possible future direc-
tions.
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1.2 Publications

The research presented in this dissertation and carried out during my Ph.D.
program produced peer-reviewed conference, journal and workshop publica-
tions. In what follows, we report the complete list of published and currently
submitted works: In Section 1.2.1, journal papers; in Section 1.2.2, confer-
ence and workshop papers; and international patents and knowledge transfer
in Section 1.2.3.

1.2.1 Journal Publications

[JO1] M. Conti, L. V. Mancini, R. Spolaor and N. V. Verde, “Analyzing An-
droid Encrypted Network Traffic to Identify User Actions”, in IEEFE Trans-
actions on Information Forensics & Security, 2016 (JCR IF 2013: 2.065;
IT-ANVUR Class 1).

[J02] R. Spolaor, Q-Q. Li, M. Monaro, M. Conti, L. Gamberini and G.
Sartori, “Biometric Authentication Methods on Smartphones: A Survey”,
in PsychNology Journal, 2017.

[JO3] R. Spolaor, E. Dal Santo and M. Conti, “DELTA: Data Extraction and
Logging Tool for Android”, in IFEE Transactions on Mobile Computing,
2017. (JCR IF 2016: 3.822; IT-ANVUR Class 1) (In press).

[J04] V. F. Taylor, R. Spolaor, M. Conti and I. Martinovic, “Robust Smart-
phone App Identification Via Encrypted Network Traffic Analysis”, in IEEE
Transactions on Information Forensics € Security, 2017. (JCR IF 2016:
4.332; IT-ANVUR Class 1) (In press).

[JO5] M. Conti, Q-Q. Li, A. Maragno, R. Spolaor, “The Dark Side(-
Channel) of Mobile Devices: A Survey on Network Traffic Analysis”, CoRR
abs/1708.03766, 2017. Under submission at: [EEE Communications Sur-
veys and Tutorials.

[JO6] M. Monaro, C. Galante , R. Spolaor, Q-Q. Li , L. Gamberini, M.
Conti, and G. Sartori, “Covert lie detection using keyboard dynamics”,
Under MINOR revision at: Scientific Reports.

1.2.2 Conference and Workshop Publications

[CO1] M. Conti, L. V. Mancini, R. Spolaor and N. V. Verde, “Can’t you
hear me knocking: Identification of user actions on Android apps via traffic
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analysis”, in Proceedings of the ACM Conference on Data and Application
Security and Privacy (CODASPY), 2015. (acceptance rate 21%).

[C02] V. F. Taylor, R. Spolaor, M. Conti and I. Martinovic, “AppScanner:
Automatic Fingerprinting of Smartphone Apps From Encrypted Network
Traffic”, in Proceedings the IEEE European Symposium on Security and Pri-
vacy (EuroSE&P), 2016. (acceptance rate 17%).

[CO3] V. D. Stanciu, R. Spolaor, M. Conti and C. Giuffrida, “On the Ef-
fectiveness of Sensor-enhanced Keystroke Dynamics Against Statistical At-
tacks”, in Proceedings of the ACM Conference on Data and Application
Security and Privacy (CODASPY), 2016. (acceptance rate 19%).

[C04] M. Conti, M. Nati, E. Rotundo and R. Spolaor, “Mind The Plug!
Laptop User Recognition Through Power Consumption”, in Proceedings of
the International Workshop on IoT Privacy, Trust, and Security (IoTPTS)
@ AsiaCCS, 2016.

[CO5] M. Conti, C. Guarisco and R. Spolaor, “CAPTCHaStar! A novel
CAPTCHA based on interactive shape discovery”, in Proceedings of the
International Conference on Applied Cryptography and Network Security
(ACNS), 2016 (acceptance rate 19%).

[C06] R. Spolaor, L. Abudahi, V. Moonsamy, M. Conti, R. Poovendran,
“No Free Charge Theorem: A Covert Channel via USB Charging Cable on
Mobile Devices”, in Proceedings of the International Conference on Applied
Cryptography and Network Security (ACNS), 2017.

[C07] L. Bordoni, M. Conti and R. Spolaor, “Mirage: Toward a Stealthier
and Modular Malware Analysis Sandbox for Android”, in Proceedings of the
European Symposium on Research in Computer Security (ESORICS) 2017.
(acceptance rate 15.88%).

[CO8] Merylin Monaro, R. Spolaor and Q-Q. Li, M. Conti, L. Gamberini and
G. Sartori, “Type Me the Truth!: Detecting Deceitful Users via Keystroke
Dynamics”, in Proceedings of the International Conference on Awvailability,

Reliability and Security (IWCC) @ ARES, 2017.

[C09] M. Favaretto, R. Spolaor, M. Conti, and M. Ferrante, “You Surf so
Strange Today: Anomaly Detection in Web Services via HMM and CTMC”,

in Proceedings of the International Conference on Green, Pervasive and
Cloud Computing (GPC), 2017.
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[C10] R. Spolaor, M. Monaro, P. Capuozzo, M. Baesso, M. Conti, L. Gam-
berini, and G. Sartori, “You Are How You Play: Authenticating Mobile
Users via Game Playing”, in Proceedings of the International Workshop on
Communication Security (WCS) @ EuroCrypt, 2017.

[C11] M. Piskozub, R. Spolaor, M. Conti and I. Martinovic, “NetVerifier:
Analysis of Host Behavior Profiles using CompactFlow Data” (submitted).

[C12] S. Wang, Z. Chen, Q. Yan, L. Wang, R. Spolaor, B. Yang and M.
Conti, “Lexical Clustering of Malicious URLs for Mining Mobile Malware”

(submitted).

1.2.3 Patents and Knowledge Transfer

[PO1] M. Conti, C. Guarisco and R. Spolaor, “Metodo per riconoscere se un
utente di un terminale elettronico ¢’ un umano o un robot” (International
Patent Submitted), First prize at Notte dei Brevettatori 2015, Padua.

[P0O2] M. Conti, R. Spolaor an G. Tolomei “CAPTCHAJ: interactive
CAPTCHA with Monetizetion via Ads” (Spin-off Request Submitted), 2017.
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Chapter 2

User Actions Recognition

With people becoming more familiar with mobile devices and their related
privacy threats, users have started adopting good practices that better adapt
to their understanding privacy. Unfortunately, even adopting such good
practices would not close the door to malicious adversaries. Indeed, several
attacks may violate user privacy even when the adversary does not physically
or remotely control the user device. In this chapter, we consider a passive
attacker that is able to sniff the network traffic generated by mobile apps.
Obviously, if the network traffic is not encrypted, the attacker can simply
read the payload of each packet. However, many apps use the Secure Sockets
Layer (SSL) — and its successor Transport Layer Security (TLS) — as a
building block for encrypted communications. Even when such encryption
are in place, the adversary can still infer a significant amount of information
from encrypted network traffic analysis. As an example, work leveraging
such analysis highlighted the possibility of identify the presence of a specific
user within a network [198].

In this chapter, we present a work that focuses on identifying whether
user profiling can be enhanced to understand what actions a user is per-
forming on a specific app. In particular, we aim at identifying actions such
as the user sending an email, browsing friend’s profile on a social network,
publishing a tweet or a post. Our framework can carry out such task by
leveraging an analysis on encrypted network traffic. Indeed, SSL and TLS
do not prevent us to detect patterns of networks packets that may reveal
some sensitive information about the user behavior.

An adversary may use our framework in several practical ways to
threaten the privacy of the user. In the following, we present some pos-
sible scenarios:

e A censorship government trying to identify a dissident who spreads
anti-government propaganda using an anonymous social network ac-
count. Comparing the time of the public posts with the time of the
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actions (inferred with our method), the government can guess the iden-
tity of that anonymous dissident.

e By tracing the actions performed by two users, and taking into account
the communication latency, an adversary can guess (even with some
probability of error) whether there is a communication between them.
However, multiple observations could reduce the probability of errors.

e An adversary can build a behavioral profile of a target victim based
on the habits of the latter one (e.g., wake up time, work time). For
example, this could be used to improve user fingerprinting methods,
to infer the presence of a particular user in a network [198], even when
she accesses the network with different types of devices.

Contributions: Our framework analyzes the network communications and
leverages information available in TCP/IP packets, such as IP addresses
and ports, packet size, direction (i.e., incoming or outgoing), and timing.
We analyze traffic of several apps of interests using an approach based on
machine learning techniques. For each app, we build a dataset in three steps:
(i) we pre-process a dataset of network packets labeled with the user actions
that generated them; (ii) we cluster them in flow typologies that represent
recurrent network flows; and (iii) we analyze them in order to create a
training set that will be used to feed a classifier. The trained classifier
will then be able to classify new traffic traces that were never seen before.
We run a thorough set of experiments to evaluate our framework considering
seven popular apps: Facebook, Gmail, Twitter, Tumblr, Dropbox, Google+,
and Evernote. For most of the considered actions, our proposal achieves an
accuracy and a precision more than 95%.

In addition to that, we discuss about the key idea underneath our traffic
analysis approach. In particular, we examine thoroughly examine the con-
cept of network flow and the metric to evaluate the similarity between them.
We also report details of the machine learning techniques we leverage in our
method. Furthermore, we run a thorough comparison of our solution with
three state of the art algorithms, showing that our solution outperforms
them in all of the scenarios.

Organization: The rest of this chapter is organized as follows. We revise
the state of the art around our research topic in Section 2.1. In Section
2.1.1, we introduce some background knowledge on machine learning and
data mining tools used in our work. We present our framework describing
all its different components in Section 2.2, and we present the evaluation of
our solution for identifying user actions in Section 2.3. In Section 2.4, we
discuss about possible countermeasures against the proposed attack. Finally,
we summarize the work described in this chapter in Section 2.5.
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2.1 Related Work

Our main claim in this chapter is that network traffic analysis and machine
learning can be used to infer private information about the user, i.e., the
actions that she executes with her mobile phone, even though the traffic is
encrypted. To position our contribution with respect to the state of the art,
we survey the works that belong to two main research areas that focus on
similar issues: privacy attacks via traffic analysis (not necessarily focusing
on mobile devices) and traffic analysis of mobile devices (not necessarily
focusing on privacy).

Security and privacy on smartphones Privacy is an important matter
also sensed by smartphones’ users, even more than using a laptop [46]. Mal-
ware are a serious threat to security on smartphone [72], because they can
cause device malfunctioning and user personal information disclosure, like
her position, contacts, health condition, etc. Some works propose apps pro-
filing frameworks to detect malicious behavior or potential privacy-related
informations exposure [64,172,210]. In particular Wei et al. [204] present
system to profile the behavior of Android apps. App profile is done from
four different points of view (layer): static, user interaction, OS and net-
work. On Android OS, malicious apps could obtain the access to device
resources by given permissions. But in most cases, users don’t understand
what these permissions really mean [73]. Possible countermeasures to this
problem consist to replace sensitive data with shadowed copy [95] or use
taint analysis [66], to track and understand how these informations are used
by apps. Another possible approach to this problem is MockDroid [27], a
modified version of Android OS, that gives to apps a fake access to resources,
trading more privacy with a reduction of functionality.

Application classification with traffic analysis In recent years it was
produced lots of works about traffic analysis, aiming to identify which ap-
plication produces a flow. With applications, in these works, authors mean
the last layer in ISO/OSI model, those cannot be classified using only the
ports or protocols used. Particular interest is focused on P2P traffic recog-
nition (emule, bittorrent), but also in application level protocols like HT TP,
POP3, SSH and so on. Traffic analysis can be done in several ways exploiting
machine learning algorithms on different network traffic features [104, 118].
Works on traffic analysis could be distinguished from each other by the
machine learning methods: Naive Bayes [138,149], Hidden Markov Models
(HMM) [29,181,198,206], unsupervised clustering and supervised classifica-
tion [41,88,129], Support Vector Machines (SVM) [88,177,212], or custom
classification algorithms [56,102,213]. Many of these works’ analysis could be
done also on encrypted TCP /TP traffic, because they consider only statistics
of network flows (with no access to payloads). In our work we use a method
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known as early traffic analysis, that consist in consider only a limited the
number of packets of a traffic flow. [29,88,177]. An example of custom traffic
classifier is proposed by Crotti et al. in [56]. They build a fingerprint for a
protocol using statistics about packets size, inter-arrival time and order. So
they propose a classification algorithm made ad-hoc for classify these finger-
prints. Another example of custom TCP traffic classification is BLINC [102].
In their multi-level analysis Karagiannis et al. consider network traffic from
three different points of view: hosts popularity (social), hosts role in the
network (client /server), and traffic flow features (application level). Finally,
they propose a multi-level classifier that combines features from each level.

In our framework we use a classification in two steps, first we regroup
flows by typology, and then we use those typologies to classify user actions.
A similar approach, but with different purpose, is used in [129] on HTTP
traffic and in [41] on TCP traffic. In [88,177] Sena et al. describes two
on-line methods to classify encrypted traffic. Starting from a payload traffic
analysis ground truth, they compare Centroid clustering and SVM applied
on statistical flow analysis. Like us, they doesn’t consider a whole flow, but
only the first N packets (early) in both directions. Although in their flow
representation, informations about packets sequence isn’t take in concern.
Early flows analysis is also used in [29] for application recognition. First
studying early TCP connection features, then evaluating performance of
HMM and clustering methods like GMM on this domain. Some others,
like [149], do the same classification but timely and continuously, oriented
to QoS management. Their traffic classifier uses C4.5 Decision Tree and
Naive Bayes Machine learning algorithms on statistics of sub-flows (a limited
number of packets taken at any point on a flow). They are able to classify
interactive traffic (on-line gaming and VOIP) among other TCP/IP traffic.

Privacy attacks via traffic analysis

In the literature, several works proposed to track user activities on the
web by analyzing unencrypted HTTP requests and responses [20, 26, 176].
With this analysis it was possible to understand user actions inferring inter-
ests and habits. More recently, Neasbitt et al. proposed ClickMiner [146], a
tool that reconstructs user-browser interactions. However, in recent years,
websites and social networks started to use SSL/TLS encryption protocol,
both for web and mobile services. This means that communications between
endpoints are encrypted and this type of analysis cannot be performed any-
more.

Different works surveyed possible attacks that can be performed using
traffic analysis assuming a very strong adversary (e.g., a national security
agency) which is able to observe all communication links [30,168]. In [116],
Liberatore et al. evaluated the effectiveness of two traffic analysis techniques
based on naive Bayes and on Jaccards coefficient for identifying encrypted
HTTP streams. Such an attack was outperformed by [94], where the au-
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thors presented a method that applies common text mining techniques to the
normalized frequency distribution of observable IP packet sizes, obtaining a
classifier that correctly identifies up to 97% of requests. Similarly, in [156]
the authors presented a support vector machine classifier that was able to
correctly identify web pages, even when the victim used both encryption
and anonymization networks such as Tor. Finally, Cai et al. [38] and Dyer
et al. [62] presented a web pages fingerprinting attack and proved its effec-
tiveness despite traffic analysis countermeasures, such as HTTPOS [124].

More recently still, Panchenko et al. [155] present a website fingerprint-
ing attack on Tor that outperforms related work (including their own earlier
proposal) while requiring less computational resources. Using SVMs as the
classifiers, they proposed a feature extraction technique that samples fea-
tures starting from a cumulative representation of a web page’s network flow.
Muehlstein et al. [139] show that HTTPS traffic can be used to identify op-
erating system, browser, and application. Similar to our work, the authors
generate features using the concept of an encrypted network traffic flow.
Miller et al. [133] use traffic analysis to identify individual web pages within
websites with approximately 90% accuracy. However, the authors make two
assumptions: (i) they rely on feature extraction using whole network bursts
(multiple flows), assuming all the flows in the same burst belong to the same
web page; and (ii) they can also rely on multiple bursts to build a website
graph through an Hidden Markov Model (HMM). These assumptions, while
reasonable for web page fingerprinting, fail for mobile app fingerprinting.
On smartphones, multiple apps can concurrently send network traffic and
so a single burst could contain flows generated by different apps.

Unfortunately, none of the aforementioned works was designed for (or
could easily be extended) to mobile devices. In fact, all of them focus on
web pages identification in desktop environment (in particular, in desktop
browsers), where the generated HTTP traffic strictly depends on how web
pages are designed. Conversely, mobile users mostly access the contents
through the apps installed on their devices [86]. These apps communicate
with a service provider (e.g., Facebook) through a set of APIs. An example
of such differences between desktop web browsers and mobile apps is the
validation of SSL certificates [49,84].

Traffic analysis has been applied not only to HT'TP but also to other
protocols. For example, Song et al. [181] prove that several versions of SSH
are not secure. In particular, they show that even very simple statistical
techniques suffice to reveal sensitive information such as login passwords.
More importantly, the authors show that by using more advanced statistical
techniques on timing information collected from the network, the eaves-
dropper can also learn significant information about what users type in SSH
sessions. SSH is not the only protocol that has been target of such attacks.
Another example is Voice Over IP (VoIP). In [206], the authors show how
the length of encrypted VoIP packets can be used to identify spoken phrases
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of a variable bit rate encoded call. Their work indicates that a profile Hid-
den Markov Model trained using speaker- and phrase-independent data can
detect the presence of some phrases within encrypted VolP calls with recall
and precision exceeding 90%.

In [45], the authors show that despite encryption, web applications also
suffer from side-channel leakages. The system model considered is differ-
ent from ours. In particular, their focus is on web applications. On the
contrary, we focus on mobile applications. More importantly, the authors
leverage three fundamental features of web applications: stateful communi-
cation; low entropy input; significant traffic distinction. We believe that in
most mobile applications two of these features (stateful communication, low
entropy input) are not very useful to characterize user actions. In contrast
to the work in [45], we adopt a solution that only needs information about
packet sizes and their order.

Traffic analysis of mobile devices Focusing on mobile devices, traffic
analysis has been successfully used to detect information leaks [66], to pro-
file users by their set of installed apps [190], and to generate network profiles
to identify Android apps in the HTTP traffic [57]. Traffic analysis has also
been used to understand network traffic characteristics, with particular at-
tention to energy saving [67]. Stober et al. [190] show that it is possible to
identify the set of apps installed on an Android device, by eavesdropping the
3G/UMTS traffic that those apps generate. Similarly, Tongaonkar et al. [57]
introduce an automatic app profiler that creates the network fingerprint of
an Android app relying on packet payload inspection. Unfortunately, their
solution is viable only for apps that do not use encrypted traffic. In [214],
Zhou et al. discovered three unexpected channels of information leaks on
Android: per-app data-usage statistics, ARP information, and speaker sta-
tus. In particular, the authors used a suite of inference techniques to reveal
a phone user’s identity from the network-data consumption of Twitter app,
by also leveraging online resources such as tweets published by Twitter.
Unfortunately, the authors focused only on a specific user action (i.e., send
a tweet) without distinguish that action from the other ones a user could
perform. More recently, Coull et al. in [55] presented a work similar to
ours. The authors inferred information analyzing payload lengths of net-
work packets produced by Apple iMessage and other messaging apps on i0S
and OSX. In particular, the purpose of their work is to infer the OS version,
user actions and language used in instant messaging. The author focused
on five actions strictly related to instant messaging apps: start writing,
stop writing, message sending, attachment sending and read notification.
In this chapter, we consider social network and email service apps on An-
droid. Those apps permit us to investigate a wider set of actions than the
one offered by instant messaging apps. We believe that the interest from
researchers to aim at different targets (i.e., OS version, actions, language)
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and the results obtained so far, underlines the feasibility of those attacks,
the relevance of this issue and the importance to foster further research in
this domain.

2.1.1 Machine Learning and Data Mining Background

In this section, we briefly recall several machine learning and data mining
concepts that we use in our works, while we point the reader to appropriate
references for a complete introduction on those topics.

Dynamic Time Warping

Dynamic Time Warping (DTW) [140] is a useful method to find alignments
between two time-dependent sequences (also referred as time series) which
may vary in time or speed. This method is also used to measure the distance
or similarity between time series.

Let us consider two sequences that represent two discrete signals: X =
(x1,...,zy) of length N € N;and Y = (y1,...,¥ym) of length M € N. DTW
uses a local distance measure ¢ : R x R — R>¢ to calculate a cost matrix
C € RVXM gt each cell C;,; reports the distance between x; and y;.
The goal is to find an alignment between X and Y having minimal overall
distance. Intuitively, such an optimal alignment runs along a “valley” of
low cost cells within the cost matrix C'. More formally, a warping path is
defined as a sequence p = (p1,...,pr) with p; = (n;,m;) € [1: N] x [1: M],
[ € [1: L] satistying the following three conditions:

1. Boundary condition:
p1=(1,1) and py, = (N, M);

2. Monotonicity condition:
nm<ny<...<npyand m; <mo <...<mp;

3. Step size condition:
piv1 —p={(0,1),(1,0),(1,1)} for L € [1: L —1].

The total cost of a warping path is calculated as the sum of all the local
distances of its elements. An optimal warping path is a warping path p*
having minimal total cost among all possible working paths. The total cost
of an optimal warping path is also used as a distance measure between two
sequences X and Y. In this chapter, we will indicate the cost of an optimal
warping path with DTW(X,Y).

Figure 2.1a shows an example of alignment between two signals (indi-
cated in the figure with Flow A and Flow B). The arrows show the matched
points which are given by the DTW algorithm. The same two flows have
been used to calculate the heat matrix shown in Figure 2.1b. In this repre-
sentation, the color of a cell (i, j) represents the minimum distances to reach
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Figure 2.1: Example of DTW algorithm applied to two discrete signals:
Flow A and Flow B.

cell (i,7) when starting from cell (0,0). An optimal warping path is then
highlighted with a line that runs from cell (0,0) to cell (12,13). It can be
noticed that this warping path satisfies boundary, monotonicity, and step
size conditions reported above.

2.1.2 Supervised and Unsupervised Learning

Generally, machine learning approaches can be classified in two classes: un-
supervised and supervised algorithms. Unsupervised learning algorithms
try to find hidden structure in unlabeled data. Since the examples given to
the learner are unlabeled, there is no error or reward signal to evaluate a
potential solution. On the contrary, supervised machine learning algorithms
learns from labeled instances or examples, which are collected in the past
and represent past experiences in some real-world applications. They pro-
duce an inferred model, which can be then used for mapping or classifying
new instances. An optimal scenario will allow for the algorithm to correctly
determine the class labels for unseen instances.

In this chapter, we will use both supervised and unsupervised learning
algorithms. We use supervised learning by applying an ensemble classifier
that is called Random Forest [35]. The main principle behind ensemble
methods is that a group of “weak learners” can be combined together to form
a “strong learner”. Random forest leverages a standard machine learning
technique called “decision tree”, which, in ensemble terms, corresponds to
the weak learner. In practice, it combines together the results of several
decision trees trained with different portions of the training dataset and
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different subsets of features. More details about the Random Forest classifier
can be found in [35].

We use unsupervised learning by applying a clustering algorithm called
hierarchical clustering. Hierarchical clustering is a cluster analysis method
which seeks to build a hierarchy of clusters. This clustering method has the
distinct advantage that any valid measure of distance can be used. In fact,
the observations themselves are not required: all that is used is a matrix of
distances.

In the following we will use a type of hierarchical clustering that is called
agglomerative: each observation starts in its own cluster, and pairs of clus-
ters are merged as one moves up the hierarchy. In order to decide which
clusters should be combined, a metric (a measure of distance between pairs
of observations) and a linkage criterion are required. Since we will clusterize
time-dependent sequences, we will use the total cost of an optimal warping
path as distance metric. As for the linkage criterion, that determines the
distance between sets of observations as a function of the pairwise distances
between observations, we will use the average distance, that is defined as:

d(u,v) = Z M,

15z (¥l
1<j<m

where d() is a distance function, and « and v are two clusters of n and m
elements, respectively. More details about Hierarchical clustering can be
found in [93].

2.2 Our Proposed Methodology

Our framework is logically composed by two components: the “pre-
processor” and the “traffic classifier”. The former has the task of executing
all the pre-processing steps that allow us to model the network traffic into
data that the traffic classifier can easily handle. The latter executes the ac-
tual classification task. Before using the traffic classifier, it has to be trained
with labeled traffic data that we are able to generate by artificially stimu-
lating the analyzed apps. We detail the steps executed by the pre-processor
in Section 2.2.1, while in Section 2.2.2, we describe the methodology used to
generate our training dataset, as well as the procedure used to classify user
actions.

2.2.1 Network Traffic Pre-Processing Steps

Mobile apps generally rely on SSL/TLS to securely communicate with peers.
These protocols are built on the top of the TCP/IP suite. The TCP layer
receives encrypted data from the above layer, it divides data into chunks
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ID Type Time series
Flow 1 Incoming | [1514, 1514, 315, 113, 477]
Outgoing | [282, 188, 514, 96, 1514, 179, 603, 98, 801, 98]
Complete | [282, -1514, -1514, -315, 188, -113, 514, 96, 1514, 179, 603, 98, 801, 98, -477]
Flow 2 Incoming | [1514, 1514, 1266, 582, 113, 661]
Outgoing | [282, 188, 692, 423]
Complete | [282, -1514, -1514, -1266, -582, 188, -113, 692, 423, -661]
Flow 3 Incoming | [1245, 1514, 107, 465, 172, 111]
Outgoing | [926, 655, 136, 913, 1514, 1514, 863]
Complete | [926, 655, 136, -1245, 913, 1514, 1514, 863, -1514, -107, -465, -172, -111]

Table 2.1: Example of time series generated from three network flows. Val-
ues within square brackets represent the amount of bytes exchanged per
packet: negative values in complete time series indicate incoming bytes,
while positive values indicate outgoing bytes.

if the packets exceeds a give size. Then, for each chunk it adds a TCP
header creating a TCP segment. Each TCP segment is encapsulated into
an Internet Protocol (IP) datagram, and exchanged with peers. Since TCP
packets do not include a session identifier, both endpoints identify a TCP
session using the client’s IP address and the port number.

A fundamental entity considered in this work is the traffic flow: with this
term we indicate a time ordered sequence of TCP packets exchanged between
two peers during a single TCP session. The pre-processor takes in input
the network traffic, it builds the network flows that represent that network
traffic, and it generates a set of time series: (i) a time series is obtained by
considering the bytes transported by incoming packets only; (ii) another one
is obtained by considering bytes transported by outgoing packets only; (iii)
a third one is obtained by combining (ordered by time) bytes transported by
both incoming and outgoing packets. Hence, we use this set of time series
as an abstract representation of a connection between two peers. Note that
additional time series may be added to this set for example by considering
other parameters such as the time-gap between different packets. For the
sake of simplicity, in the following we will only consider the first three types
of time series mentioned above.

Table 2.1 reports an example of time series generated from three net-
work flows, while Figure 2.2 graphically represents these flows through a
cumulative chart. The lower side of the chart represents incoming traffic,
while the upper side represents outgoing traffic. This is only one of the
possible representations, and it shows that the “shapes” of these three net-
work flows are quite different. Intuitively, our classification approach tries
to learn the “shape” of network flows related to particular user actions, and
successively it aims to identify user actions by classifying the “shape” of
previously unseen network flows.

Before generating for each flow the corresponding set of time series, a
few pre-processing steps have to be performed. In particular: 1) we apply
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Figure 2.2: Representation of flows time series.

a domain filtering to select only flows belonging to the analyzed app; 2)
we filter the remaining flows, in order to delete packets that may degrade
the precision of our approach (i.e., we filter out ACK and retransmitted
packets); 3) we limit the length of the generated time series. For each flow,
the result of these three pre-processing steps will be a set of time series that
will be passed to the next component of the framework, which is the traffic
classifier. In the following, we will detail the three pre-processing steps.

Domain filtering

The network traffic generated by an application is generally directed
toward a back-end infrastructure. The back-end infrastructures might be
composed of a single server, or a set of servers. The set of servers might
even be behind a load balancer. Since we analyze each app independently, we
need to make sure that traffic generated from apps other than the considered
one (or traffic generated by the OS) does not interfere with the analysis.
Different methods can be used in order to identify the app that generated
each network flows. The destination IP address is a trivial discriminating
parameter. However, in case of a load balanced back-end, we should know
all the individual TP addresses that can be involved in the communication.
The same happens when the back-end is composed of several components
such as different web services, databases, etc. To overcome this problem we
use another strategy: we take into consideration for further analysis only the
flows which destination IP addresses owners have been clearly identified as
related to the considered app. In the implementation of our framework, we
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leverage the WHOIS protocol for this purpose, but we want to highlight that
this is only one of the possible ways. Business and other context information
may be used in order to perform the domain filtering. We also take into
consideration the traffic related to third party services (such as Akamai or
Amazon) that are indeed used by several applications [204].

Packets filtering

Due to network congestion, traffic load balancing, or other unpredictable
network behavior, IP packets can be lost, duplicated, or delivered out of or-
der. TCP detects these problems, hence requesting retransmission of lost
data, and reordering out-of-order data. As a results, several TCP packets
that do not carry data, may hinder the analysis process. In the data ex-
change phase, for example, the receiver sends a packet with the ACK flag
set to notify the correct reception of a chunk of data. These ACK packets
are transmitted in asynchronous mode so they are affected by many factors
related to round trip time of the connection link. The order of the received
packets may hinder the evaluation of the similarity between two network
flows. For this reason, we filter out all packets retransmissions, as well as
packets marked with the ACK flag. Note that the metric that we will use in
order to measure similarity between flows (see Section 2.2.2) will mitigate
the consequences of missing packets. We also filter out other packets that
do not bring any additional information helpful in characterizing flows. In
particular, we filter out the three way handshake executed to open a TCP
connection, and the packets exchanged to close it.

Timeout and packets interval

Two different techniques are used to limit the length of the generated
time series: a timeout mechanism and the specification of a packets inter-
val. The timeout mechanism is used to terminate the flows that did not
receive any new packet since 4.5 seconds. Indeed, it has been proved ex-
perimentally that 95% of all packets arrive at most 4.43 seconds after their
predecessors [190]. The packets interval specifies the first and the last packet
to be considered.

For example, considering a flow f composed by [ packets, and the interval
[z,y] with <y and y <, the corresponding time series will be composed
by y — « + 1 values that report the bytes of the zt" to the y*" packet. This
simple mechanism allows us to focus on particular portions of the flow. The
first part, for example, is often the more significant. In the experimental
part, we report the results for different configurations of packets intervals,
showing that the best configuration is app dependent.

30



Security and Privacy Threats on Mobile
Devices through Side-Channels Analysis R. Spolaor

2.2.2 Classification of Network Traffic

Since we use a supervised learning approach, it is necessary to create a
labeled dataset that describes the user actions that we want to classify. The
labeled dataset is used to train the traffic classifier component allowing it
to correctly classify previously unseen data instances. In order to build the
training dataset, we simulate a series of user actions by interacting with
the app to analyze. For each performed action we intercept and label the
flows generated after the execution of the action itself. For each app that
we analyze we focus on actions that are significant for that particular app.

In most cases, a single user action generates a set of different flows (i.e.,
not just a single one). Furthermore, different user actions may generate
different sets of flows. Our classification method is based on the detection
of the sets of flows that are distinctive of a particular user action. In order
to elicit these distinctive sets of flows, we build clusters of flows by using
the agglomerative clustering approach described in Section 2.1.2. Similar
flows will be grouped together in the same cluster, while dissimilar flows
will be assigned to different clusters. The average distance is used as linkage
criterion, while the computation of the distance between two flows combines
the distances of the corresponding time series. Supposing that each flow f;
is decomposed into a set of n time series {T%,..., T}, the distance between
fi and f; is defined as:

dist(f;, f;) = > wp x DTW (T}, 1),
k=1

where wy is a weight assigned to the particular time series. Weights can
be assigned in such a way as to give more importance to some type of time
series with respect to others. For example, it is possible to give more weight
to the time series that represent incoming packets, and less weight to those
that represent outgoing packets.

In order to reduce the computational burden of the subsequent classifi-
cation, a leader is elected for each cluster. Leaders will be the representative
flows of their clusters. Given a cluster C' containing the flows {f1,..., fn},
the leader is elected by selecting the flow f; that has the minimum overall
distance from the other members of the cluster, that is:

argmin Z dist(fi, f;)
j=1

fieC

Clustering is executed on the set of flows that will be used to build the
training dataset. In particular, after performing the clustering the training
dataset will be composed as follows. The user actions will be the instances
of the datasets, while the class of each instance is a label representing the
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action. We will have one integer feature for each cluster identified through
the agglomerative clustering. The value of each feature is determined by
analyzing the flows related to an action. Each flow f captured after the
execution of an action will be assigned to the cluster that minimizes the
distance between f and the leader of the cluster. The k" feature will there-
fore indicate the number of flows that have been assigned to the cluster Cj,
after the execution of that action. For example, for the action send mail,
the k" feature will be equal to 2 if there are 2 flows labeled with send
mailassigned to the cluster C. Finally, we execute the classification with
the Random Forest algorithm. The main idea behind the overall approach
is that different actions will “trigger” different sets of clusters. The classifi-
cation algorithm will therefore learn which are these sets, and will be able
to correctly determine the class labels for unseen instances.

2.3 Experimental Evaluation

In order to assess the performance of our proposal, we considered several
widespread apps that have different purposes: Gmail, Facebook, Twitter,
Tumblr, Dropbox, Google+ and Evernote. We selected these apps because
of their high popularity [1]. Indeed, Gmail is one of the largest email ser-
vices and its Android app has over one billion downloads. On the other
hand, Facebook and Twitter are not only the most popular Online Social
Networks [2], but they also had a leading role in the Arab spring and the
Istanbul’s Taksim Gezi Park protests (when Turkish government blocked
Twitter). Tumblr is a widely used micro-blogging platform owned by Ya-
hoo! Inc., while Dropbox is one of the most used cloud storage services.
Google+ is the social network and social layer for Google services owned
and operated by Google Inc. Finally, Evernote is an app designed for note-
taking and archiving. Given the wide set of apps we considered, we believe
that the results of our analysis also hold for any other app that generates
network traffic as a consequence of a user action. Note that most of the
apps make use of a back-end service to implement the logic of the service,
and thus they must generate network traffic as a consequence of almost any
user interaction. To collect the network traffic related to different user ac-
tions, we set up a controlled environment. In this section we present the
elements that compose this environment (Section 2.3.1), the methodology
used to collect the data (Section 2.3.2), and the results of the evaluation
(Section 2.3.3).

2.3.1 Hardware and Network Configuration

For the evaluation of our solution, we used a Galaxy Nexus (GT-19250)
smartphone, running the Android 4.1.2 (Jelly bean) operative system. We
enabled the “Android Debug” option in order to allow the usage of the ADB
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(Android Debug Bridge) interface via USB cable. We used a WiFi access
point (U.S. Robotics USR808054) to provide wireless connectivity to the
mobile phone. Finally, we used a server (Intel Pentium Processor dual core
E5400 2.7GHz with 4 GB DDR2 RAM) with two network cards running
Ubuntu Server 11.04 LTS to route the traffic from the access point to the
Internet, and vice versa.

To eavesdrop network packets flowing through the server, we used Wire-
shark software. From a Wireshark capture file, we created a comma sepa-
rated file (csv), where each row describes a packet captured from the access
point’s interface. For every packet we reported source and destination IP ad-
dresses, ports, size in bytes and time in seconds from Unix epoch!, protocol
type and TCP/IP flags. Since the payload is not relevant to our analysis, it
has been omitted. This data has then been used to generate the time series
as explained in Section 2.2.1.

2.3.2 Dataset Collection and Analysis

For our study we considered seven apps installed from the official Android
market: Gmail v4.7.2, Facebook v3.8, Twitter v4.1.10, Tumblr v3.8.6.08,
Dropbox v2.4.9.00, Google+ v5.3.0.91034052 and Evernote v7.0.2. For the
social apps, we created ten accounts that have been divided in two different
categories of users: “active” and “passive” users. “Active” users simulated
the behavior of users that actively use the app by sending posts, email,
tweets, surfing the various menus, etc. “Passive” users simulated the be-
havior of users that passively use the app, just by receiving messages or
posts. The accounts of both passive and active users have been configured
in such a way as to have several friends/followers within the group. We
avoided configuring the accounts with actual friends or followers, in order to
avoid interference due to notifications of external users activities that were
not under our control.

To reach a particular target, a user may have to perform several actions
in a precise order. An action could be simple (e.g., a tap on a button, a
swipe, or a selection of edit box), or complex (e.g., type a text, which is
a sequence of keyboard inputs). For example, a user has to perform three
actions in a precise sequence to post a message on her Facebook wall. He
has to be sure that the Facebook app shows the “user’s wall”, then she has
to tap on the “write a post” button (1), fill the edit box with some text
(2), and finally tap on the “post” button (3). It is important to highlight
that we do not use static text to fill in text boxes, but the text is randomly
selected from a large set of sentences. A script submits the sequence of
actions to the mobile phone through the ADB commands, and it captures
the network traffic that is generated. The script also records the execution

100:00:00 UTC, 01 January 1970
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time of each action. By using the recorded execution time of each action, it
is then possible to label the flows extracted from the network traffic with the
user action that produced it. For each app, we choose a set of actions that
are more sensitive than others from user privacy point of view (e.g., send
an email or a message). The list of these actions is reported in tables 2.3
and 2.4 . We underline that we do not ignore other user actions, but we
label them as other. In this way we have several benefits [134]: we obtain a
greater representation of data in terms of variety and variance of examples;
we reduce the chances of overfitting; we improve the performance of the
classifier on relevant user actions.

We collected and labeled the traffic generated by 220 sequences of actions
for each app, where a sequence is composed by 50 types of actions (for a
total of 11660 examples of actions for Gmail, 6600 for Twitter, 10120 for
Facebook, 16070 for Tumblr, 15104 for Dropbox, 7813 for Google+ and 8740
for Evernote). The user action examples in the dataset were divided into a
training set and a test set. We use the training set to train the classifier,
while we use the test set to evaluate its accuracy. We underline that to build
the test set we used accounts that have not been used to create the training
set. By using different accounts to generate the training and the test set, it
is possible to assure that the results of the classification do not depend on
the specific accounts that have been analyzed.

As explained in Section 2.2.1, each network flow is modeled as a set
of time series. Table 2.2 reports the weights and the intervals for several
configurations (“Conf.” in the table) used to limit the length of the time
series generated by each app. We used different weights configurations, and
we selected the packets intervals by analyzing the statistical length of the
flows. Figure 2.3 reports the statistical distribution of the length of the
flows app by app. The first quartile, the median and the third quartile are
highlighted by using a notched box plot. In particular, the median value
and the third quartile have been used as thresholds to limit the maximum
length of the generated time series. For the Twitter app, in some cases we
set the interval in such a way to focus only on the last three or four packets.
Indeed, we noticed that the first part of the time series was identical for
each flow.

To confirm this statement we report in Figure 2.4a and Figure 2.4b the
graphical representation of the flows that occur when executing three differ-
ent actions in Gmail and Twitter respectively. Comparing the two figures,
it can be noticed that the shapes of the actions drastically change for Gmail,
while they are almost unvaried for Twitter. As a matter of fact, different
Twitter actions just differ in their last packets. Nevertheless, our approach
reaches very good performance for this app too. In our experiments, we
used the Random forest classifier implemented by the Python library scikit-
learn [37]. The classifier is trained using 40 estimators (or weak learners).
Each estimator consists of a decision tree without any restrictions on its
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Apps Sets Weights | In | Out | Complete

. 0.80 (1,4] | [1,2] [1,6]

Configuration 1 0.20 16 13 19

. . 0.66 1,4] | [1,2 1,6
Gmail Configuration 2 0.33 6] | [1,3] 1.9]
. . 0.33 1,4] | [1,2] (1,6]

Configuration 3 0.66 16 13 1.9

. 0.66 1,3] | [1,5 1,7
Configuration 1 0.33 16 | 7 [1,12]

. 0.33 1,3] | [1,5 (1,7]
Facebook | Configuration 2 0.66 16 17 [1,12]
. 0.20 1,3] | [1,5 (1,7]
Configuration 3 0.80 6] | [1,7] [1,12]
. 0.95 - - [7,10]
Configuration 1 0.05 ) ) [1.10]
. . 0.95 - - [8,11]
Twitter Configuration 2 0.05 ) ) 111
" 0.95 - - 8,10

Configuration 3 0.05 ) ) 1.10

Tumblr Configuration 1 1.00 - - 1,11
Dropbox | Configuration 1 1.00 - - (1,9]
Google+ | Configuration 1 1.00 - - [1,16]
Evernote | Configuration 1 1.00 - - [1,23]

Table 2.2: Weights set configurations and packets intervals for the considered
apps.

depth limit. The number of features for each estimator is equal to the
square root of the maximum number of available features.

2.3.3 Classification Performance

Before considering the classification of the user actions, it is worth discussing
how to choose the number of clusters that should be used. In order to es-
tablish a reasonable value for this parameter, we used a validation dataset
to study the accuracy of the classification when varying the number of clus-
ters. Figure 2.5 reports the achieved results. For each app, we therefore
considered the number of clusters that maximized the accuracy, in terms of
averaged F-measure. In the following, we report the results of the classifica-
tion app by app, and we discuss the average accuracy reached when detecting
each sensitive user action. In tables 2.3 and 2.4, we report detailed results
for the precision, the recall and the F-measure metrics achieved by the best
configuration of all the analyzed apps. Since we are space constrained, we
report the corresponding confusion matrices only for some of the analyzed

apps.
Facebook: We focused on seven different actions that may be sensitive

when using the Facebook app. On average, the F-measure is equal to 99%,
with a precision and a recall of 99% and 98% respectively. Performance
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Figure 2.3: Statistical distribution of the length of the complete time series
extracted from the network traffic. First and third quartile are represented
as the left and right side of the notched box. The notch of the box represents
the median value. Lines that extend horizontally from the boxes indicate
the 2% percentile (left) and the 98" percentile (right).

reached with different configurations of weights and packets intervals con-
straints are reported in Figure 2.6a. For each action at least one of the
configurations exceeds 94% of accuracy, while the worst performing is al-
ways higher than 74%.

Table 2.3 reports precision, recall and F-measure reached by using Con-
figuration 3. We noticed that all the actions have a precision higher 96%.
The recall is higher than 95% for all the actions apart from the open user
profile, that reaches 91%. In fact, we realized that this particular action is
classified as other in 9% of the examples, as we can see from the confusion
matrix reported in Figure 2.6b.

Gmail: We analyzed four specific user actions of the Gmail app: send mail,
reply button, open chats and send reply. Figure 2.6¢ shows the classification
accuracy that has been reached for each configuration of weights and packet
interval constraints. We observe that we are able to distinguish with high
accuracy the action of sending of a new mail, from that of replying to a
previously received message, as well as the tap on the reply button. The
open chats action is instead more difficult to distinguish. Table 2.3 reports
precision, recall and F-measure for Configuration 1. We can observe that the
action open chats (that allows to read past chats) achieves a low precision
but a high recall. Analyzing the confusion matrix depicted in Figure 2.6d
it is possible to notice that 16% of other actions are wrongly classified as
open chats. This is the reason of such a low precision.

Twitter: During the analysis we noticed that Twitter actions may be more
difficult to classify than Gmail and Facebook actions. Indeed, different Twit-
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(b) Representation of three different Twitter actions.

Figure 2.4: Comparison of three different Gmail and Twitter actions. It can
be noticed that Twitter actions are more similar than Gmail actions, indeed
their shapes are largely overlapped.
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Figure 2.5: Classification accuracy over number of clusters.

ter actions generate similar time series that have a large portion in common.
Only the last three or four packets of each time series show some difference.
Nevertheless, we have been able to reach outstanding results for this app as
well. In particular, we focus on six specific user actions: refresh home, open
contacts, tweet/message, open messages, open twitter, open tweets. Per-
formance reached for all the analyzed configurations are reported in Fig-
ure 2.6e. For each action at least one of the configurations exceeds 96% of
accuracy, while the worst configuration has an accuracy in any case higher
than 91%. The best performing configuration is Configuration 1, that on
average, reached an F-measure value equal to 97%, with a precision and a
recall of 98% and 97% respectively (see Table 2.3). The action open twitter
has accuracy and recall equal to 100%, independently of the Configuration
set used for the clustering phase. As a consequence, none of the examples
of the test set have been wrongly classified. Figure 2.6f reports the confu-
sion matrix obtained by considering the Twitter actions. Three of the six
analyzed actions are correctly classified in more than the 99% of the cases,
while the other three actions, that are open contacts, open messages and
open tweets, are correctly classified in more than 95% of the cases.

Tumblr: We analyzed ten different user actions of the Tumblr app (see
Table 2.3). On average precision, recall and F-measure is equal to 99%.
Precision is always greater than 97% for the individual actions, while recall
is greater than 96% in all the cases but one: home page.

Dropbox: As for Dropbox, we analyzed eight different user actions. On
average, we reached a precision of 95% and a recall of 92%. Only for two
individual actions, we reached precision or recall lower than 80%. This is
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‘ Apps ‘ Actions ‘ Description ‘ P ‘ R ‘ F1 ‘
send message send a direct message to a friend 1.00 | 1.00 | 1.00
post user status post a status on the user’s wall 1.00 | 0.95 | 0.97
) open user profile | select user profile page from menu | 0.96 | 0.91 | 0.94
8 open message select a conversation on messages 0.98 | 1.00 | 0.99
% status button select “write a post” on user’s wall | 1.00 | 1.00 | 1.00
5 post on wall post a message on a friend’s wall 1.00 | 0.98 | 0.99
open facebook open the Facebook app 1.00 | 1.00 | 1.00
other facebook other Facebook network traffic 0.99 | 1.00 | 0.99
Average Facebook 0.99 | 0.98 | 0.99
send mail send a new mail 1.00 | 1.00 | 1.00
—_ reply button tap on the reply button 0.85 | 1.00 | 0.92
g open chats select chats page from menu 0.36 | 0.94 | 0.52
CED send reply send a reply to a received mail 0.98 | 1.00 | 0.99
other gmail other Gmail network traffic 0.99 | 0.82 | 0.90
Average Gmail 0.83 | 0.85 | 0.86
refresh home refresh the home page 0.94 | 0.99 | 0.96
open contacts select contacts page on menu 0.97 | 0.96 | 0.97
5 tweet/message publish a tweet or a message 0.97 | 1.00 | 0.98
B open messages select direct messages page 1.00 | 0.95 | 0.97
2 open twitter open the Twitter app 1.00 | 1.00 | 1.00
H open tweets select tweets page 1.00 | 0.95 | 0.97
other twitter other Twitter network traffic 0.96 | 0.96 | 0.96
Average Twitter 0.98 | 0.97 | 0.97
open tumblr open the Tumblr app 1.00 | 1.00 | 1.00
post/reblog/quote | publish a post/reblog/quote 1.00 | 0.99 | 0.99
delete post delete a post/reblog/quote 0.97 | 1.00 | 0.99
refresh refresh of the current page 1.00 | 1.00 | 1.00
= home page select home page 1.00 | 0.93 | 0.96
"g likes page select user’s likes page 1.00 | 1.00 | 1.00
a user page select user info page 0.98 | 0.96 | 0.97
following page select following page 1.00 | 1.00 | 1.00
tag input input a tag in a post 1.00 | 1.00 | 1.00
add tag confirm a tag in a post 0.97 | 0.99 | 0.98
other tumblr other Tumblr network traffic 1.00 | 1.00 | 1.00
Average Tumblr 0.99 | 0.99 | 0.99
Table 2.3: First part of the description of user actions for the considered

apps and relative classification performance in terms of precision (P), recall

(R) and F-measure (F1).

the case of folder creation or delete file. However, the average F-measure is

still greater than 92%.

Google+: We analyzed ten different user actions of the Google+ app (see
Table 2.4). On average precision, recall and F-measure are equal to 90%,
94%, 92% respectively. Precision values range from 75% to 100% for the
individual actions, while recall is greater than 84% in all the cases. The
actions delete post and send comment have both precision and recall equal

to 100%.

Evernote: We analyzed six different user actions of the Evernote app.
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‘ Apps ‘ Actions ‘ Description ‘ P ‘ R ‘ F1 ‘
open dropbox open the Dropbox app 1.00 | 0.97 | 0.98
file favorited mark a file as favorite 1.00 | 1.00 | 1.00
content of file/folder browse content of file/folder 1.00 | 0.81 | 0.90
% operation on file/folder | modify a file or a folder 0.81 | 0.95 | 0.87
—a folder creation creation of a new folder 0.75 1 0.99 | 0.86
° favorites page select favorite file page 0.98 | 0.97 | 0.98
A delete file deletion of a file 1.00 | 0.60 | 0.75
delete folder deletion of a folder 0.99 | 0.99 | 0.99
other dropboz other Dropbox network traffic 1.00 | 0.98 | 0.99
Average Dropbox 0.95 | 0.92 | 0.92
open gplus open the Google+ app 0.65 | 0.85 | 0.73
refresh refresh the current page 0.98 | 0.84 | 0.91
user page select user page 0.92 | 0.96 | 0.94
new selection open editor for a new post 0.75 | 0.96 | 0.84
+ send post publish a post or share a content | 0.95 | 0.98 | 0.97
%)o delete post delete a post 1.00 | 1.00 | 1.00
8 post selection select and open a post 0.77 | 0.85 | 0.81
O] send comment publish a comment 1.00 | 1.00 | 1.00
back to main back to the main page 0.92 | 0.96 | 0.94
plus post like or unlike a post 1.00 | 0.98 | 0.99
other gplus other Google+ network traffic 0.98 | 0.96 | 0.97
Average Google+ 0.90 | 0.94 | 0.92
open evernote open the Evernote app 1.00 | 1.00 | 1.00
market page select market page on menu 1.00 | 1.00 | 1.00
) note title input input the title of a note 1.00 | 1.00 | 1.00
g text note done save a text note 0.99 | 1.00 | 0.99
g note edit done save modifies on a text note 1.00 | 0.99 | 1.00
= audio note done save an audio note 1.00 | 1.00 | 1.00
other evernote other Evernote network traffic 1.00 | 1.00 | 1.00
Average Evernote 1.00 | 1.00 | 1.00

Table 2.4: Second part of the description of user actions for the considered
apps and relative classification performance in terms of precision (P), recall
(R) and F-measure (F1).

Evernote is definitely the app that achieved better performance among those
we analyzed. Indeed, we achieved an average precision, recall and F-measure
equal to 100%.

2.3.4 Comparison with other methods

To confirm the validity of the proposed approach, we compared the results
achieved by our solution with three traffic analysis techniques. The solu-
tions we compare with have been proposed to face a problem similar to the
one we consider, i.e., the identification of the websites the user is retrieving
under the cover of an encrypted tunnel. Two of them are due to Liberatore
et al. [116]. They proposed two methods that are based on naive Bayes
and Jaccards coefficient respectively. The third one is due to Herrmann
et al. [94]. They applied common text mining techniques to the frequency
distribution of observable IP packet sizes. Since all these algorithms require
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Figure 2.6: Classification accuracy and confusion matrices of Facebook,
Gmail and Twitter actions.

several parameters to be tuned, we analyzed different configuration and in
the following we report only the results for the best configuration that we
found. Figure 2.7 reports the results of the comparison. Because we are
space constrained, we report the results of the comparison only for some of
the apps we analyzed. The other apps do not show a significantly different
behavior. In particular, the performance of our solution is always compa-
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rable or significantly better than the performance of the other proposed
approaches.

In particular, Figure 2.7a shows the averaged F-measure for Facebook,
Gmail and Twitter. The averaged F-measure is the average of the F-
measures reached by classifying the actions considered for that specific app.
It can be noticed that in all the cases our classifier outperforms the other
approaches. Figures 2.7b, 2.7c and 2.7d show the results for each app more
in depth. In particular, each figure compares the F-measures reached when
classifying the individual actions of that app. As it turns out, our classifier
significantly outperforms the other three approaches in the majority of cases,
while the results are comparable in the remaining cases. This indicates a
higher level of reliability with respect to the other approaches.

In contrast with the other algorithms, our solution uses more advanced
machine learning techniques such as ensemble methods, Dynamic Time
Warping, and hierarchical clustering. Furthermore, our solution uses in-
formation such as the packet order that is not considered in the other cases.
Finally, our approach is resilient to packet retransmissions that might be
significant in mobile apps. We believe that these features make our classi-
fier more reliable than its competitors, especially for the mobile scenario.
However, we want to highlight that our solution may also be competitive in
desktop scenarios.

2.4 Possible Countermeasures and Limitations

Users and service providers might believe that their two parties communica-
tions are secure if they use the right encryption and authentication mecha-
nisms. Unfortunately, current secure communication mechanisms limit their
traffic encryption actions to the syntax of the transmitted data. The seman-
tic of the communication is not protected in any way [107]. For this reason,
it has been possible for example to develop classifiers for TLS/SSL encrypted
traffic that are able to discriminate between applications.

The contribution of this work was to investigate to which extent it is
feasible to identify the specific actions that a user is doing on her mobile
device, by simply eavesdropping the device’s network traffic. While it is
out of the scope of the work to investigate possible countermeasures to the
proposed attack, we discuss in the following some related issues.

The common belief is that simple padding techniques may be effec-
tive against traffic analysis approaches. However, it has to be considered
that padding countermeasures are already standardized in TLS, explicitly
to “frustrate attacks on a protocol that are based on analysis of the lengths
of exchanged messages” [59]. Nevertheless, our attack worked against TLS
encrypted traffic. More advanced techniques have been proposed in the
literature, such as traffic morphing and direct target sampling [206, 207].

42



Security and Privacy Threats on Mobile

Devices through Side-Channels Analysis R. Spolaor
g 1.0 - 0.97 0.95 L
(%]

D 0.8 -
S
L 0.6 :
8 0.4 ur solution | [
2 1 MultiNB
5 0.2 =3 NB L
2: 00 @ Jaccard
Facebook Gmail Twitter
(a) Comparison of averaged F-measures.
1.0
0 08 -
_
706 2ie -
P i %
(] 0.4 .| B Our solution ||
e 10 Multing
w02 NB L
| Jaccard

1.0

0 08

—_
7 0.6
©

EEE Our solution ||
[ MultiNB
NB L
EE3 Jaccard

go4
0.2

0.0

I Our solution ||
[ MultiNB
NB L
EE3 Jaccard

i

W/ttsr

(d) Comparison of performance classification of Twitter actions.

Figure 2.7: Comparison of our solution with Herrmann Multinomial Naive
Bayes (MultiNB) [94], Liberatore Naive Bayes (NB) [116], and Jaccard (Jac-
card) [116].

However, a recent result showed that none of the existing countermeasures
are effective [62].
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The intuition is that coarse information is unlikely to be hidden effi-
ciently, and the analysis of these features may still allow an accurate analysis.
On the light of these results, we believe it is not trivial to propose effective
countermeasures to the attack we showed in this chapter. Indeed, it is the
intention of the authors to highlight a problem that is becoming even more
alarming after the revelation about the mass surveillance programs that are
nowadays adopted by governments and nation states.

In our opinion, the main limitation of our approach is related the usage
of supervised learning algorithms. It has to be considered that this technique
is generally more efficient than the unsupervised learning since it takes ad-
vantage of the knowledge of each class of interest. However, it has two main
drawbacks: (i) the training dataset has to be labeled with the intervention
of a human, (ii) it is not possible to recognize classes of events that have not
been used during the training phase. We mitigated the first limitation using
an automatic approach to label the network traces collected for the training
phase (see Section 2.3.2 for the details). However, the second limitation
cannot be addressed without revising the entire approach. Furthermore, it
has to be noticed that even applying an unsupervised learning technique the
selection of the actions that could originate more privacy concerns should
always be evaluated by a human.

A possible limitation in our framework is that is not able to recognize
user actions that generate the same identical traffic pattern. In practice,
given a flow with a fixed shape, a countermeasure may consists to apply a
sort of padding on the entire flow (i.e., the sequence of packets in a flow must
have the same number of packets, and each packet in the sequence must have
the same size). Unfortunately, such countermeasure is not feasible since it
will heavily hinder the scalability and the efficiency of data transmission,
especially on energy constrained devices such as smartphones and tablets.

2.5 Summary

The proposed framework is able to analyze encrypted network traffic and to
infer which particular actions the user executed on some apps installed on
her mobile-phone. We demonstrated that despite the use of SSL/TLS, our
network traffic analysis approach is an effective tool that an eavesdropper
can leverage to undermine the privacy of mobile users. With this tool an
adversary may easily learn habits of the target users. The adversary may
aggregate data of thousands of users in order to gain some commercial or
intelligence advantage against some competitor. In addition to that, a pow-
erful attacker such as a Government, could use these insights in order to
de-anonimize user actions that may be of particular interest.
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Chapter 3

Mobile Apps Fingerprinting

Mobile devices allow users to install apps that provide various functionali-
ties. In addition to that, many apps utilize Internet access and thus they
generate network traffic. The combination of increased app usage coupled
with app-generated network traffic makes the smartphone an attractive tar-
get for anyone seeking to uncover users’ habits. Smartphone users typically
install and use apps that are in line with their interests. As a result, the apps
installed on typical smartphones may reveal sensitive information about a
user [178], such as medical conditions, hobbies, and sexual and religious pref-
erences. An adversary could also infer who a user banks with, what airline
do they fly on, and which company provides them insurance. This informa-
tion may be particularly useful in “spear phishing” attacks. In addition to
uncovering the aforementioned sensitive information, an adversary can also
use app identification to enumerate and exploit potentially vulnerable apps
in an attempt to gain privileges on a smartphone.

Despite network traffic analysis is not a new area of research on tra-
ditional computers [148], on the domain of mobile devices it present some
new challenges [50]. Unfortunately, app fingerprinting and identification on
smartphones is frustrated in several ways. Port-based fingerprinting fails
because apps deliver their data predominantly using HTTP/HTTPS. Typi-
cal web page fingerprinting fails since apps usually send data back and forth
using text formats such as XML and JSON, thus removing rich information
(such as the number of files and file sizes) that aid web page classifica-
tion. Additionally, many apps use content delivery networks (CDNs) and
third-party services, thus eliminating domain name resolution or IP address
lookup as a viable strategy. Observing domain name resolution or TLS
handshakes also proves less useful due to the use of CDNs. Moreover, DNS
and TLS exchanges may not be observed at all due to the use of client-side
caching, or simply due to the mobile nature (i.e., transient connectivity) of
smartphones.
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App fingerprinting may be useful in a variety of scenarios:

1.

An adversary in possession of exploits for particular apps may use app
fingerprinting to identify these vulnerable apps on a network to narrow
their list of target devices.

. An adversary on the same WiFi network as the victim could surrepti-

tiously monitor the victim’s network traffic to identify what apps are
installed on a device for the purposes of blackmail.

. App fingerprinting in the current era of bring-your-own-device

(BYOD) can provide valuable data about the types of apps and usage
patterns of these apps within an organization.

. App fingerprinting can aid market research since app usage can be

measured within a target population.

In this chapter, we present AppScanner, a highly-scalable and extensi-
ble framework for the fingerprinting and identification of apps from their
network traffic. The framework is encryption-agnostic, and only analyzes
side-channel data, thus making it perform well whether the network traffic
is encrypted. Similarly to the work presented in Chapter 2, we exploit the
fact that while SSL/TLS protects the payload of a network connection, it
fails to hide other coarse information such as packet lengths and direction.
Additionally, we evaluate the robustness of our app fingerprinting framework
by measuring how it is affected by different devices, different app versions,
or the mere passage of time. We make the following contributions to the
state of the art:

1.

Strategies for network traffic pre-processing that enable accurate ex-
traction of features that can be reliably used to re-identify an app.

. A method of obtaining perfect ground truth of what app is responsible

for each network transmission using a novel demultiplexing strategy.

. Design and full implementation! of an app classification system in-

corporating a novel machine learning strategy to identify ambiguous
network traffic, i.e., traffic that is similar across apps.

An analysis of the robustness of app fingerprinting across different de-
vices and app versions. We also analyze the time invariability of app
fingerprints, by measuring how performance is affected when attempt-
ing to identify apps using fingerprints generated six months earlier.

'The code and datasets used for this chapter are available at https://github.com/
vitaylor/appscanner.
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5. Evidence that app fingerprints are time, app version, and device in-
variant to several extents. This lends support to the idea that app
classification can be useful in real-world settings.

The rest of the chapter is organized as follows: In Section 3.1, we sur-
vey of related work. We elucidate how our system works at a high-level
and explains key terminology in Section 3.2. In Section 3.2, we outline our
approach to identifying ambiguous traffic and in Section 3.3 we overview
the datasets that were collected We evaluate system performance in Sec-
tion 3.4 and we present some ways of improving classifier accuracy using
post-processing strategies in Section 3.5. In Section 3.6, we discuss our
results. Finnaly, we conclude the chapter in Section 3.7.

3.1 Related Work

Since the attack scenario is the same we presented in the previous chapter,
we point the reader to Section 2.1 for the review of the related work about
traffic analysis for privacy attacks and for mobile devices. In what follow,
we focus on the state of the art of mobile app fingerprinting.

In early work on the topic, Dai et al. [57] propose NetworkProfiler, an au-
tomated approach to profiling and identifying Android apps using dynamic
methods. They use user-interface fuzzing (Ul fuzzing) to automatically ex-
plore different activities and functions within an app, while capturing and
logging the resulting network traffic. The authors inspect HT'TP payloads
in their analysis and thus this technique only works with unencrypted traf-
fic. The authors did not have the full ground truth of the traffic traces they
were analyzing, so it is difficult to systematically quantify how accurate
NetworkProfiler was in terms of precision, recall, and overall accuracy.

Qazi et al. [163] present Atlas, a framework for identifying apps using
network flows. Atlas uses crowd-sourcing to obtain ground truth. The
authors tested their system on 40 Android applications and achieved an
average performance of 94%. However, it remains unclear whether Atlas
maintains good performance as the number of apps to be classified increases.
Le et al. [113] propose AntMonitor, a system that also uses crowd-sourcing
but for the fine-grained collection of network data from Android devices. In
contrast, AppScanner does not leverage crowd-sourcing approaches. Indeed,
AppScanner is able to obtain perfect ground truth and does so in a scalable
way using Ul fuzzing (see Section 3.2.2).

Stober et al. [190] propose a scheme for identifying a mobile device using
the characteristic traffic patterns it produces. The authors posit that 3G
transmissions can be realistically intercepted and demodulated to obtain side
channel information such as the amount of data and timing information. The
authors leverage network bursts from which they extract features since they
cannot analyze the TCP payload directly. Using supervised learning, the
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authors build a model of the background traffic coming from devices. With
their system, using approximately 15 minutes of captured traffic can result
in a classification accuracy of over 90%. A major drawback with this work
is that the system needs six hours of training and 15 minutes of monitoring
to achieve reliable fingerprint matching.

Mongkolluksamee et al. [135,136] use packet size distribution and com-
munication patterns for identifying mobile app traffic. The authors achieve
an F-score of approximately 95%. Unfortunately, they only consider five
apps so it remains unclear how scalable their approach is. The authors also
fail to collect perfect ground truth because their methodology calls for run-
ning one app at a time on a device to reduce noise instead of more robust
approaches (see Section 3.2.2). Alan and Kaur [5] use TCP/IP headers for
identifying apps. The authors identified apps with up to 88% accuracy us-
ing packet size information from the first 64 packets generated upon app
launch. The authors found that performance decreases when training and
testing devices are different. They also found that performance decreases
only slightly when several days have passed between training and testing.
Complementary to this, we investigate the problem using all network traffic
coming from apps. By collecting data over a period of six months instead
of several days, we show that traffic classification is more severely impacted
by time and that additional strategies to improve performance need to be
employed.

Wang et al. [203] propose a system for identifying smartphone apps from
encrypted 802.11 frames. They collect data from target apps by running
them dynamically and training classifiers with features from Layer 2 frames.
The authors test 13 arbitrarily chosen apps from eight distinct app store
categories and collect network traces for five minutes. By taking into account
a larger set of apps, we show that increasing the number of apps negatively
impacts classifier accuracy. Wang et al. also fail to collect perfect ground
truth. Indeed, our methodology minimizes noise by running a single app at
a time, and we still had to filter 13% of the traffic collected because it was
background traffic from other apps. AppScanner solves the aforementioned
problems by using a larger sample of apps from a wider set of categories and
collecting network traffic for substantially more time.

3.2 System Overview

As an overview, AppScanner fingerprints smartphone apps by using machine
learning to understand the network traffic that has been generated by them.
Patterns in app-generated traffic, when later seen, are used to identify apps.

48



Security and Privacy Threats on Mobile
Devices through Side-Channels Analysis R. Spolaor

Unfortunately, apps sometimes have common traffic patterns because
they share libraries, such as ad libraries, that generate similar traffic? across
distinct apps. This can frustrate attempts at app classification using traffic
analysis, since it may generate false positives. Thus, a strategy is needed to
first identify traffic that is shared among apps, so that it can be appropriately
labeled before being passed to classifiers. We call traffic shared among apps
ambiguous traffic and the remaining traffic distinctive traffic.

In what follows, we introduce the concepts of burst and flow, which are
central to our fingerprinting methodology. We point out that the concept of
flow is slightly different from the one we defined in Section 2.2.1.

e Burst: A burst is the group of all network packets (irrespective of
source or destination address) occurring together that satisfies the con-
dition that the most recent packet occurs within a threshold of time,
the burst threshold, of the previous packet. In other words, packets
are grouped temporally and a new group is created only when no new
packet has arrived within the amount of time set as the burst thresh-
old. This is visually depicted as Traffic burstification in Figure 3.1(c),
where we can see Burst A and Burst B separated by the burst thresh-
old. 'We use the concept of a burst to logically divide the network
traffic into discrete, manageable portions, which can then be further
processed.

e Flow: A flow is a sequence of packets (within a burst) with the same
remote IP address. That is, within a flow, all packets will either be
going to (or coming from) the same remote IP address. A flow is not
to be confused with a TCP session. A flow ends at the end of a burst,
while a TCP session can span multiple bursts. Thus, flows typically
last for a few seconds, while TCP sessions can continue indefinitely.
AppScanner leverages flows instead of TCP sessions to achieve real-
time/near-to-real-time classification. From Flow separation in Fig-
ure 3.2(d), it can be seen that a burst may contain one or more flows.
Flows may overlap in a burst if a single app, App X, initiates TCP
sessions in quick succession or if another app (e.g., App Y'), happens
to initiate a TCP session at the same time as App X.

Our app identification framework first elicits network traffic from an app,
generates features from that traffic, trains classifiers using these features, and
finally identifies apps when the classifiers are later presented with unknown
traffic.

2Traffic generated by third-party libraries will typically be common among apps using
that particular library.
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Figure 3.1: First part of the high-level representation of classifier training,
and a visualization of bursts and flows within network traffic. (a) Equip-
ment setup. (b) Network trace capture. (c¢) Traffic burstification. (d) Flow
separation.

3.2.1 Equipment Setup

The setup used to collect network traces from apps is depicted as Fquipment
setup in Figure 3.1(a). The workstation was configured to forward traffic
between the WiFi access point (AP) and the Internet. To generate traffic
from which to capture our training/testing data, we used scripts that com-
municated with the target smartphone via USB using the Android Debug
Bridge (ADB). These scripts were used to simulate user actions within apps
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Figure 3.2: Second part of the High-level representation of classifier training,
and a visualization of bursts and flows within network traffic. (e) Ambiguity
detection. (f) Classifier training. (g) Trained classifiers.

and thus elicit network flows from the apps. This technique is called Ul
fuzzing.

The traffic generated by the smartphone was captured and exported as
network traffic dumps containing details of captured packets. We collected
packet details such as time, source address, destination address, source port,
destination port, packet size, protocol and TCP/IP flags. The payload for
each packet was also collected but was not used to provide features since
it may or may not be encrypted. Although physical hardware was used
for network traffic generation and capturing, this process can be massively
automated and parallelized by running apps within Android emulators on
virtual machines.

3.2.2 Construction of an App Fingerprint

In what follows, we describe the stages in the fingerprint making process.
Network Trace Capture: Network traffic from apps was elicited automat-
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Figure 3.3: Generating features from flows for classifier training.
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Figure 3.4: Using reinforcement learning to obtain robustness against am-
biguous flows.

ically using Ul fuzzing. Ul fuzzing involves using scripts on a workstation to
interact with the target device through the Android Debug Bridge (ADB).
User interface events such as button presses, swipes, and key-presses are
sent to apps in an automated fashion. These touchscreen input events cause
the logic within apps to execute, thus generating network traffic.

We performed Ul fuzzing on one app at a time to minimize ‘noise’ (i.e.,
traffic generated simultaneously by other apps) in the network traces. Traf-
fic from other apps or the Android operating system itself could interfere
with and taint the fingerprint making process. To combat the problem of
noise, the Network Log tool [160] was used to identify the app responsible
for each network flow. Using data from Network Log combined with a ‘de-
multiplexing’ script, all traffic that did not originate from the target app was
removed from the traffic dump for that app. In this way, and in contrast
to related work, we obtained perfect ground truth of what flows came from
what app.

After data collection, the network traffic dumps were filtered to include
only TCP traffic that was error free. For example, we filtered to remove
packet retransmissions that were as a result of network errors.

Traffic Burstification and Flow Separation: The next step was to
parse the network dumps to obtain network traffic bursts. Traffic was first
discretized into bursts to obtain ephemeral chunks of network traffic that
could be sent immediately to the next stage of AppScanner for processing.
This allows us to meet the design objective of real-time or near real-time
classification of network traffic. Falaki et al. [67] observed that 95% of
packets on smartphones “are received or transmitted within 4.5 seconds of
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the previous packet”. During our tests, we observed that setting the burst
threshold to one second instead of 4.5 seconds only slightly increased the
number of bursts seen in the network traces. This suggests that network
performance (in terms of bandwidth and latency) has improved since the
original study. For this reason, we opted to use a burst threshold of one
second to favor more overall bursts and nearer-to-real-time performance.
Bursts were separated into individual flows (as defined at the beginning
of this section and depicted in Figure 3.3) using remote IP address. We
enforced a maximum flow length that would be considered by the system.
This is simply to ensure that abnormal traffic can be safely ignored in the
real-world.

It is important to note that while destination IP addresses were used for
flow separation, they were not leveraged to assist with app identification.
We also opted not to use information gleaned from DNS queries or flows
with unencrypted payloads. We took this design decision to avoid the re-
liance on domain-specific knowledge that frequently changes, thus making
our framework useful in the long term.

Ambiguity Detection: As mentioned at the beginning of this section,
many apps have third-party libraries in common (especially ad libraries)
and these libraries themselves generate network traffic. Unfortunately, it is
not possible to discriminate traffic coming from libraries (as opposed to the
app that embeds the library) in a scalable way, i.e., without an intrusive
approach such as reverse-engineering or modifying apps. Indeed, as far as
the operating system is concerned, apps and their bundled libraries are one
entity within the same process. Since network traffic generated by common
libraries across apps is similar, this will frustrate the fingerprinting pro-
cess because classifiers will be given contradictory training examples. This
problem of ambiguous flows poses a challenge to naive machine learning ap-
proaches. To mitigate negative effects, we introduce Ambiguity Detection
as detailed in Section 3.2.4. Ambiguity detection uses simple reinforcement
learning techniques to identify similar flows coming from different apps. In
the training phase, ambiguous flows are detected and re-labeled as belong-
ing to the “ambiguous” class, so that the system is later able to properly
identify and handle them.

Classifier Training: Statistical features were generated from flows and
used to train classifiers. Statistical feature extraction involves deriving 54
statistical features from each flow as shown in Figure 3.3. For each flow,
three vectors are considered: size of incoming packets only, size of outgoing
packets only, and size of both incoming and outgoing packets. For each
vector (3 in total), the following values were computed: minimum, maxi-
mum, mean, median absolute deviation, standard deviation, variance, skew,
kurtosis, percentiles (from 10% to 90%), and the number of elements in the
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series (18 in total). These statistical features are computed using the Python
pandas [131] library. Thus, arbitrary length flows are converted to feature
vectors of length 54. These feature vectors and their corresponding ground
truth are used as training examples.

3.2.3 App Identification

Unknown flows are passed to the trained classifiers. Ambiguous flows are
identified and labeled as such, since the classifiers were trained to understand
ambiguous flows. Flows that are not labeled by the classifiers as ambiguous
next go through classification validation as described in Section 3.5.2. The
classification validation stage is crucial for one primary reason. Machine
learning algorithms will always attempt to place an un-labeled example into
the class it most closely resembles, even if the match is not very good. Given
that our classifiers will never be trained with the universe of flows from apps,
it follows that there will be some flows presented to AppScanner which are
simply unknown or never-before-seen. If left unchecked, this can cause an
undesirable increase in the false positive (FP) rate.

To counteract these problems, we leverage the prediction probability
metric (available in many classifiers) to understand how certain the classi-
fier is about each of its classifications. For example, if the classifier labeled
an unknown sample as com.facebook.katana, we would check its prediction
probability value for that classification to determine the classifier’s confi-
dence. If this value is below the classification validation threshold, App-
Scanner will not make a pronouncement. However, if this value exceeds the
threshold, AppScanner would report it as a match for that particular app.
In Section 3.5, we discuss how varying this threshold impacts the precision,
recall, and overall accuracy of AppScanner, as well as how this affects the
percentage of total flows that the classifiers are confident enough to classify.

3.2.4 Ambiguity Detection

The ambiguity detection phase aims to identify and relabel ambiguous flows.
This phase involves a reinforcement learning strategy that is leveraged dur-
ing classifier training. As outlined in Figure 3.4, classifier training is divided
into two stages: the preliminary classifier stage, and the reinforced classifier
stage.

The main training set considered in the analysis is first randomly shuffled
and divided into halves: the preliminary training set and the preliminary
testing set. The preliminary training set is used to train the preliminary
classifier. The preliminary testing set is used to measure the accuracy of
the preliminary classifier, and as a basis for generating the training set for
the reinforced classifier. In this way, we can first identify which flows are
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. Android . Time of data
Name Device version N. of apps | App versions collection
Motorola Latest versions
Dataset-1 XT1039 4.4.4 110 at Ty To
Motorola, Latest versions
Dataset-1la XT1039 4.4.4 65 at Ty To
Motorola , Latest versions ,
Dataset-2 XT1039 4.4.4 65 at T To + 6 months
Dataset-3 | LG E960 | 5.1.1 65 Latest versions | 7. 6 months
at TO
Motorol Latest versions
Dataset-4 otoro-a 4.4.4 110 at Tp + To + 6 months
XT1039
6 months
Motorola Latest versions
Dataset-4a 4.4.4 65 at Ty + To + 6 months
XT1039
6 months
Latest versions
Dataset-5 LG E960 5.1.1 110 at Ty + To + 6 months
6 months
Latest versions
Dataset-5a | LG E960 5.1.1 65 at Top + Th + 6 months
6 months

Table 3.1: Descriptions of the devices, operating systems, number of apps,
app versions, and time of data collection for each dataset used.

incorrectly classified by the preliminary classifier. We validated that these
incorrectly labeled flows are to a large extent library traffic, as expected.

The Relabel Engine leverages feedback on the accuracy of the prelimi-
nary classifier to identify ambiguous flows. Flows in the preliminary testing
set that are incorrectly classified are re-labeled as “ambiguous” by the Re-
label Engine. On the other hand, flows that are correctly classified by the
preliminary classifier keep their original label (i.e., the app that generated
them). This relabeled dataset is now used as the reinforced training set
and is passed to the reinforced classifier. The reinforced classifier is thus
equipped to identify ambiguous flows since it is trained with examples of
ambiguous flows.

We emphasize to the reader that no flows from the preliminary training
set are used in the reinforced training set. The preliminary classifier and
the preliminary training set are only used as a means of identifying ambigu-
ous flows so that additional knowledge can be provided to the reinforced
classifier.

3.3 Dataset Collection

To test the performance of AppScanner, we considered a random 110 of the
200 most popular free apps as listed by the Google Play Store. We chose
the most popular apps because they form a large part of the install-base of
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apps across the world. Additionally, we chose free apps because free apps
tend to be ad-supported and thus use ad libraries. There is a small set of
major ad libraries and thus ad libraries tend to be shared across apps. This
suggests that free apps will be more likely to generate ambiguous flows than
paid apps. Being able to properly fingerprint and identify free apps thus
implies that AppScanner is robust enough to handle paid apps as well.

Smartphones in our testbed were connected to the Internet via a Linksys
E1700 WiFi router/AP that had its Internet connection routed through a
workstation. Ul fuzzing was performed on each app for 30 minutes using the
MonkeyRunner tool from the Android SDK. UI fuzzing simulated user actions
by invoking UI events such as touches, swipes, and button presses. These
UI events were generated randomly and sent to apps. It is worth noting
that some apps presented login screens upon first launch. In such cases, we
first manually created accounts for those apps before logging in. We did
this to ensure that traffic generation using Ul fuzzing was not hindered by
a login screen. Greater coverage of all the network flows in an app may
theoretically be obtained by using advanced Ul fuzzing techniques provided
by frameworks such as Dynodroid [125], or by recruiting human participants.
However, we consider these approaches to be out of the scope of our research.

A major contribution of this work is to understand how app fingerprint-
ing is affected by time, the device used, app versions, and combinations of
these variables. For this reason, we collected several datasets as outlined in
Table 3.1. In what follows, we describe these datasets in detail.

The dataset we consider as our baseline is Dataset-1, which was col-
lected using Device-A, a Motorola XT1039 running Android version 4.4.4.
This dataset contains network traffic from 110 apps using the latest ver-
sion of each app at the time of initial data collection. We refer to this
time of initial data collection as Ty. All other main datasets (Dataset-2 to
Dataset-5) were collected six months after Ty, i.e., at time T + 6 months.

Dataset-2 differs from Dataset-1 only by the time of data collection.
Dataset-2 contains data from only 65 apps (instead of 110), because the
remaining 45 apps refused to run without being updated. We hereafter
refer to the 65 apps in Dataset-2 that ran without being updated as the
run-without-update subset.

Dataset-3 was collected using Device-B, an LG E960 running Android
version 5.1.1. Dataset-3 also used the run-without-update subset.

Dataset-4 and Dataset-5 were obtained by collecting network traffic
from the latest versions (at the time of data collection six months after initial
data collection) of the original 110 apps and were collected using Device-A
and Device-B respectively.

Additionally, we consider variants of the datasets that had 110 apps.
These variants consider only apps in the run-without-update subset. We de-
note these dataset variants as Dataset-1a, Dataset-4a, and Dataset-5a for
Dataset-1, Dataset-4 and Dataset-5, respectively. These datasets were
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Figure 3.5: CDF plot showing the number of flows per app in each dataset.

generated in order to offer a balanced analysis in the presence of datasets
with less than 110 apps (i.e., Dataset-2 and Dataset-3).

Figure 3.5 shows a cumulative distribution function (CDF) of the number
of flows per app in each of the five main datasets. Using Dataset-1 as an
example, an average of 1132 flows were collected per app during Ul fuzzing.
In the same dataset, approximately 80% of apps had 500 or more flows.
Other datasets contained fewer flows per app on average. Nonetheless, recall
that AppScanner identifies individual flows. Thus, even one flow is sufficient
to successfully identify an app, if that flow is distinctive for that app.

3.4 Evaluation

In evaluating our system, we followed a two-step procedure. First, we report
the results of a baseline evaluation of system performance using training and
testing sets derived from single datasets. Second, to obtain a more represen-
tative measurement of system performance, we performed a comprehensive
suite of tests (as outlined in Table 3.3) using completely independent train-
ing and testing sets. Measurements were taken to understand how factors
such as time, device (including operating system), app version, and a com-
bination of device and app version affected performance.

We leveraged the scikit-learn [37] machine learning libraries to imple-
ment the classifiers in our framework. All classifiers were set to use default
parameters. Random forest classifiers were chosen since they gave superior
performance over support vector machines (SVMs) in our preliminary tests.
Random forest classifiers use aggregated decision trees which in turn reduce
bias. Additionally, these classifiers are intrinsically multi-class classifiers,
making them suitable for tasks such as app classification. Moreover, ran-
dom forest classifiers natively give the probability of belonging to a class, a
feature we use in classification validation (Section 3.5.2). Although SVMs
can handle multi-class problems and output the probability of belonging to
a class, these features are not native to SVMs.
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We highlight to the reader that any results reported in this section should
be considered as lower bounds of system performance. Indeed, the results
presented in this section show the performance of the system before any
performance-enhancers, such as ambiguity detection and classification vali-
dation (Section 3.5), have been applied. The tests performed in this section
are merely to assess default system performance before post-processing is
applied.

For our baseline results, we split each dataset into a training set (75% of
flows) and a testing set (25% of flows) and used them to train classifiers as
detailed in Section 3.2. Each test was run 50 times with randomly shuffled
datasets and the results were averaged. We report the performance of our
system in Table 3.2. Accuracy within datasets fell between 65.5% and 73.7%.
These results are fairly good but may overestimate the performance of the
system. This is because the training and testing sets in each case were
generated from one original dataset.

In what follows, we do more robust measurements by using completely
independent datasets for training and testing to make a more real-world
assessment of system performance. Each test was run 50 times with ran-
domly shuffled datasets and the results averaged. The results in each case
are summarized in Table 3.3.

3.4.1 Effect of Time

To measure the effect of time on classification performance, we trained a
classifier with Dataset-1a and tested with Dataset-2. This combination
of training and testing sets assessed the effect of keeping device and app
versions constant, but causing six months to pass between collection of data
for training and testing. The overall accuracy for this test, called the TIME
test, was 40.9% and was the highest performance of our tests that used
completely separate training and testing sets.

Among tests with completely independent training and testing sets, TIME
gave the highest performance. This result is not surprising, since the app
versions and device (including operating system version) were constant. The
logic (app and operating system) that generates traffic seems to generate the
same traffic even after some amount of time (in this case six months) has
elapsed. Since the underlying logic does not change, it would be reasonable
to expect app fingerprints to also remain constant.

3.4.2 Effect of a Different Device

To assess the impact of a different device on app classification we did three
tests: D-110, D-1104A, and D-65. D-110 used Dataset-4 as a training set and
Dataset-5 as a testing set. That is, we trained with 110 apps on one device
and tested with the same 110 apps on a different device. The overall accu-
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Dataset Precision(%) | Recall(%) | F1(%) | Accuracy (%)
Dataset-1 74.5 72.8 73.1 73.1
Dataset-la 74.4 73.2 73.4 73.7
Dataset-2 68.8 67.6 67.7 65.5
Dataset-3 71.3 69.5 69.8 70.4
Dataset-4 68.6 66.6 66.9 67.4
Dataset-4a 68.5 66.8 67.1 66.9
Dataset-5 69.7 68.1 68.3 69.6
Dataset-ba 67.7 65.5 66.0 67.5

Table 3.2: Baseline performance of app classification for each dataset with-
out any post-processing techniques applied.

Neme |ser T [ser|POR)ROA F1 (%) | AH) |yt Apps
TIME |Dataset-la|Dataset-2 | 44.5 | 43.1 42.6 40.9 |Time 65
D-110 |Dataset-4 |Dataset-5 | 40.9 | 36.6 36.3 37.6 |Device 110
D-110A |Dataset-4a|Dataset-5a| 38.4 | 35.2 35.1 37.7 |Device 65
D-65 |Dataset-2 |Dataset-3 | 43.5 | 38.3 39.0 39.6 |Device 65
V-LG |Dataset-3 |Dataset-5a| 33.0 | 31.0 30.0 30.3 |App 65
V-MG |Dataset-2 |Dataset-4a| 34.8 | 32.1 32.1 32.7 |App 65
DV-110 |Dataset-1 |Dataset-5 | 23.3 | 19.5 19.3 19.2 | Device & App | 110
DV-65 |Dataset-la|Dataset-5a| 22.3 | 19.7 19.3 19.5 |Device & App |65

Table 3.3: Summary of the comprehensive suite of tests used to measure the
performance of the app classification system in terms of precision (P), recall
(R), F-measure (F1), and Accuracy (A). All training and testing sets were
completely independent of each other. The independent variables for each
test are identified.

racy for D-110 was 37.6%. D-110A used the run-without-update subsets of
the datasets used in D-110 and had an overall accuracy of 37.7%. D-65 was
conducted with a training set of Dataset-2 and testing set of Dataset-3.
That is, we trained with 65 apps on one device and tested with 65 apps
on another device. The overall accuracy for this test was 39.6%. We note
that this test, with 65 apps, gives performance comparable to the TIME test,
which also had 65 apps. This insight suggests that device model and oper-
ating system version does not have a significant effect on app fingerprinting
performance.

3.4.3 Effect of Different App Versions

We carried out two tests to understand the impact that different app versions
had on app fingerprinting. V-LG involved training with Dataset-3 and test-
ing with Dataset-5a. For this test, the same device was used but with dif-
ferent versions of the same apps. The overall accuracy of this test was 30.3%.
V-MG used a training set of Dataset-2 and testing set of Dataset-4a. The
overall accuracy for this test was 32.7%. We note that the accuracy for both
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of these tests were fairly similar but markedly lower than the TIME, D-110
or D-110A or D-65 tests. This insight suggests that changes in app versions
affects the reliability of app fingerprinting. We believe that this phenomenon
could be due to changes in app code or logic that has direct consequences
on the way that an app generates network flows. Thus there is a need to
keep app fingerprint databases up-to-date as app developers release new app
versions.

3.4.4 Effect of a Different Device and Different App Versions

A final two tests were conducted to measure the impact of changing both
device and app versions. The first test, DV-110, used a training set of
Dataset-1 and a testing set of Dataset-5, i.e., using a total of 110 apps.
The second test, DV-65, used a training set of Dataset-1a and testing set
of Dataset-5a. These tests yielded overall accuracies of 19.2% and 19.5%
respectively. As expected from the results of our previous tests, changing
both device and app versions together more severely impacted classification
performance. It is interesting to note, however, that the number of apps
in training and testing sets did not seem to impact overall classification
accuracy in a negative way under these adverse conditions. This result lends
support to the idea that app fingerprinting can be a scalable endeavor. We
note that despite DV-110 and DV-65 having approximately half the accuracy
of the TIME test, they still perform approximately 20 times better than pure
random guessing.

3.5 Improving Accuracy

Our results so far show the performance of AppScanner without any post-
processing applied. Additionally, these results simulate laboratory condi-
tions since they are taken from datasets that have been filtered of noise
(using NetworkLog as described in Section 3.2.2). In this section, we look at
two post-processing strategies that have proven effective in improving the
accuracy of the system: ambiguity detection and classification validation.
Ambiguity detection is detailed in Section 3.2.4/3.5.1 and classification val-
idation is discussed in Section 3.5.2. In general, both of these strategies aim
to identify network flows that are not reliable for app fingerprinting.

Also in the section, we analyze the impact of noise on classification
accuracy. Noise was filtered in our previous tests. While an attacker can
easily filter noise during training, they are unable to filter noise during
testing. Thus, we examine the impact of noise using three (one laboratory
and two real-world) experimental settings:
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1. The noise-filtered setting removes all noise from training and testing
sets using NetworkLog. This gives the performance of the system
assuming that devices do not have any network traffic being generated
from non-app sources (such as the operating system).

2. The noise-ignored setting removes noise from the training sets, but
leaves noise in the testing sets. This gives a realistic estimation of
performance that might be expected in a real-world attack scenario.
This is because the attacker can remove noise from their training sets
but is unable to remove noise during an attack.

3. The noise-managed setting goes a step further by actually identifying
and labeling noise in both training and testing sets. This allows the
classifiers to understand what network traffic coming from the Android
operating system itself looks like. Thus, classifiers are better able to
identify noise in the real-world, which further improves accuracy.

Unless otherwise stated, subsequent results are generated using the noise-
managed experimental setting.

3.5.1 Ambiguity Detection

As mentioned in Section 3.2.4, many apps have traffic in common and this
can hinder app classification if left unhandled. Our reinforcement learning
approach identifies and relabels ambiguous flows so that the classifiers have
a model to identify them. When measuring performance with ambiguity
detection in use, unknown flows that are labeled as ambiguous are omit-
ted from calculations of classifier performance. That is, ambiguous flows
are identified and ignored, and thus do not affect the measurement of the
performance of our system.

In what follows, we report on the improvements that can be made by us-
ing our reinforcement learning approach to identify ambiguous traffic flows.
Table 3.4 shows the improvement in performance obtained by applying am-
biguity detection as outlined in Figure 3.4. Additionally, the table shows
the number of flows in each testing set and the percentage of flows that
were considered ambiguous. Each test used the training and testing sets
described in Table 3.3 but with varying noise handling to provide results for
each of the noise-filtered, noise-ignored, and noise-managed experimental
settings. For these tests, reinforced classifiers are used so that ambiguous
traffic can be managed. Ambiguity detection was applied to the training
sets of these reinforced classifiers as detailed in Section 3.2.4. Each test was
run 50 times with randomly shuffled data and the results were averaged.

Reinforced classifiers received an approximately twofold boost in overall
accuracy. The most challenging tests, DV-110 and DV-65 (using different
physical devices, Android versions, and app versions between training and
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Test Noise filtered Noise ignored Noise managed Testing Set Details
Name |[P(%)|R(%)|F1(%)|A(%) || P(%) [R(%) | F1(%) | A(%) | P(%) | R(%) [F1(%) | A(%) | Flows| Ambiguous
TIME 66.9 | 66.4 | 65.7 | 729 || 614 | 65.3 | 61.9 | 64.5 || 66.4 | 65.3 | 64.6 | 74.8 || 54240 58.3%
D-110 62.2 | 57.2 56.3 | 66.2 || 56.1 | 56.9 | 53.0 | 55.4 || 59.5 | 53.5 53.0 | 64.7 || 73811 59.6%
D-110A || 60.5 | 55.9 | 55.6 | 65.9 || 53.7 | 55.0 | 51.6 | 54.5 || 57.3 | 54.0 | 53.1 63.4 || 51995 60.4%
D-65 64.4 | 59.8 | 59.4 | 67.5 || 59.4 | 59.0 | 56.0 | 59.0 || 63.8 | 58.8 | 585 | 68.1 || 47018 58.6%
V-LG 478 | 473 | 446 | 52.8 || 414 | 46.6 | 414 | 43.9 || 44.7 | 45.6 | 425 54.5 || 51995 61.9%
V-MG 52.4 | 50.6 | 49.5 58.1 || 489 | 50.0 | 47.2 50.2 || 52.8 | 50.3 | 49.3 | 624 | 51731 61.8%
DV-110 || 37.0 | 35.0 | 33.2 | 41.0 || 32.8 | 34.8 | 31.0 | 324 | 35.0 | 33.7 | 32.0 | 46.3 | 73811 67.5%
DV-65 35.8 | 34.8 | 329 | 39.8 || 309 | 34.0 | 30.2 | 31.3 || 33.8 | 33.8 | 31.5 | 44.0 || 51995 67.2%
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Table 3.4: The reinforcement learning strategy, for each of the tests that were conducted, improved classifier performance in
terms of precision (P), recall (R), F-measure (F1), and Accuracy (A).
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Figure 3.6: CDF plot showing the number of flows remaining per test after
ambiguity detection was applied.

testing sets), had the greatest percentage increases in performance and saw
accuracy more than double when using reinforced classifiers. For example, in
DV-110, accuracy was increased from 19.2% to 41.0-46.3% using ambiguity
detection. Improving performance using reinforced classifiers highlights the
prevalence of ambiguous flows in app traffic and reiterates the need for
systems that can address them.

Ambiguity detection improves accuracy at the expense of the number of
flows that are classified by the system. In the worst case, many apps would
have all flows considered as ambiguous, and thus could not be classified by
the system if ambiguity detection is used. Figure 3.6 shows the number of
flows per app that were considered to not be ambiguous flows. For clarity, we
show results from only the noise-managed experimental setting in this plot.
Other settings gave similar plots. For additional clarity, we omit D-110A and
DV-65 since they are scaled-down versions of D-110 and DV-110 respectively.
For all tests except DV-110, all apps had some flows that were unambiguous,
i.e., there were some flows remaining for every app after ambiguity detection.

For test DV-110, there was one app that did not have unambiguous flows.
In order to identify this app, ambiguity detection would have to be aban-
doned (at the expense of system accuracy), or the app would have to be
re-fingerprinted in an attempt to obtain additional flows that may be unam-
biguous. There also remains the possibility that some apps simply cannot
be identified by AppScanner because they do not generate unambiguous
network flows at all. This is a limitation of app identification using network
traffic analysis.

3.5.2 Classification Validation

Classification validation is another effective strategy that can be leveraged
to improve app classification performance. Classifiers can be made to output
their confidence when labeling and unknown example. In simple terms, a
classifier may be very confident about a classification if the class boundaries
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within its models are distinct, i.e., with sufficient separation between classes.
In other cases, this distinction may be less clear.

By assessing the confidence that a classifier reports with its classification,
a judgment can be made as to whether the classification will be considered
as valid by the system. We call the cut-off for what is considered a valid
classification the prediction probability threshold (PPT). A higher PPT will
lead to more conservative predictions, and thus higher accuracy, at the ex-
pense of the number of flows with classifications considered as valid. On the
other hand, a lower PPT reduces accuracy but maximizes the number of
flows with classifications considered as valid. For a system concerned with
accurate identification of apps, false positives are usually undesirable and
thus higher PPTs are likely to be suitable.

Classification validation reduces the number of flows that are considered
as being “correctly” classified, but it is important to note that there is no
inherent requirement to label all unknown flows. Apps typically send tens
or hundreds of flows per minute when they are being used, so there remains
significant opportunity to identify apps from their more distinctive flows.
Thus, classification validation can be an effective technique for improving
app classification performance while incurring negligible drawback. In what
follows, we report on the improvements provided by applying classification
validation to our previously described reinforced classifiers.

Figure 3.7 shows the improvement provided by classification validation
for the TIME, D-110, D-110A, and D-65 tests. We highlight some results by
considering a PPT of 0.9. Figure 3.7a shows that the TIME test had a pre-
liminary accuracy of 74.8% which was improved to 96.5% using classification
validation. The results for the D-110 and D110-A tests are shown in Fig-
ure 3.7b and 3.7c respectively. Overall accuracy was improved from 64.7%
to 85.9% for test D-110 and from 63.4% to 85.5% for D-110A. The final
test in this group, D-65 saw accuracy go from 68.1% to 89.9% when using
classification validation.

Figure 3.8 shows the improvement provided by classification validation
for the V-LG, V-MG, DV-110, and DV-65 tests. Once again, we report our
results considering a PPT of 0.9. Figure 3.8a shows that classification vali-
dation improved accuracy for the V-LG test from 54.5% to 83.9%. Figure 3.8b
shows the results for the V-MG test, which is similar to V-LG but with a differ-
ent device. Classification validation improved accuracy from 62.4% to 85.5%
in this case.

Figure 3.8¢c and 3.8d show the results for our most challenging tests:
DV-110 and DV-65. Classification validation was able to increase the accu-
racy of DV-110 from 46.3% to 76.7%. Likewise, for test DV-65, accuracy was
increased from 44.0% to 73.5%. This demonstrates that classification vali-
dation can be a useful tool to improve system performance under difficult
conditions.
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3.5.3 Considerations for Parameter Tuning

Given that classification validation disregards some classifier predictions if
the classifier is not confident enough, it is possible that setting the PPT too
high will result in the system being no longer able to classify flows from a
particular app. We measure the effect of classification validation and PPTs
on the number of apps the system is able to classify. For brevity, we show
results for our tests with the best and worst baseline performance, i.e., TIME
and DV-110 respectively. Additionally, we show the different PPTs of 0.5,
0.7, and 0.9. These results are summarized in the CDF plots of Figure 3.9.

In general, higher thresholds for PPT reduced the number of flows that
remained (and were correctly classified) after classification validation. In-
deed, setting the PPT too high resulted in the system no longer being able
to positively identify some apps. At the extreme end, setting the PPT to
0.9 for the DV-110 test resulted in the system not being confident enough
to classify approximately half of the apps. We remind the reader, however,
that DV-110 does not represent a real-world attack scenario since the test
uses outdated app signatures for some apps. The test more representative
of a real-world scenario, TIME, failed to identify 6 apps at a PPT of 0.9
and only 2 apps at a PPT of 0.5. Thus classification validation, while use-
ful, must be tuned only after understanding how the system performs for
particular apps of interest.

There is a trade-off between the number of apps that the system is able
to classify and the overall accuracy that the system can identify apps with.
Experimental settings should be tuned according to the usage scenario of
AppScanner. More apps can be detected with less accuracy, or less apps can
be detected with higher accuracy. An attacker can also tune her system using
knowledge of how her apps of interest behave in the AppScanner system.

3.6 Discussion

Smartphone app fingerprinting is challenging because of a variety of variables
that are likely to change between fingerprint building and final deployment.
Such variables include device, operating system version, app version, and
time. Any mismatch between variables during app fingerprinting and app
identification has the potential to reduce the performance of our app classi-
fication system. To this end, we assessed how the aforementioned variables
affected system performance. Apps were fingerprinted and later re-identified
under a thorough suite of experimental settings.

In Table 3.2, we report app classification performance when training
and testing sets are generated from the same dataset. In the other tests,
we used completely independent datasets for training and testing. System
performance when using independent sets was seen to be notably lower than
the baseline experiments. This highlights the need for completely indepen-
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Figure 3.9: CDF plots showing the number of flows correctly classified per
app after ambiguity detection and classification validation.

dent training and testing sets if one wants to get a more accurate estimate
of the performance of an app fingerprinting system.

Training with specific app versions and device with six months between
the collection of training and testing data had the highest baseline accuracy.
This suggests that time (at the six month timescale) introduces the least
variance in app fingerprints. This insight suggests that although the con-
tent returned by the app’s servers may have changed, our models are fairly
resilient to those changes and still give good performance. Our analysis
on datasets collected using different devices (and operating system version)
gave performance slightly lower than the previous test. This suggests that
device or operating system characteristics of different devices can introduce
some additional noise that affects classification performance to a small ex-
tent. Such reduction in performance is expected, since apps are known to
change their behavior depending on the version of Android operating system
that they are run on. Additionally, differences in the operating system itself
may also contribute additional noise that affects classifier performance.

Fingerprinting a set of apps and identifying new versions of the same
apps incurred a further performance penalty. This phenomenon is not
unexpected, since apps routinely receive changes to their logic during up-
dates [194], which may cause changes in their network traffic flows. However,
our classification system shows that it is able to cope with such changes to an
extent. This, however, motivates the need to re-fingerprint apps whenever
they are updated, but suggests that old fingerprints may be useful, although
presumably less so as apps receive more updates. Changing both device and
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app versions (and time) provided the greatest performance penalty for our
classification system. This is an expected penalty since time, device, operat-
ing system version, and app versions have all changed between training and
testing. Even under these most severe of constraints, our classifier was able
to achieve a baseline performance 20 times that of pure random guessing.

The majority of the performance hit appears to come from so-called
ambiguous flows. These flows are traffic that is similar across apps and
typically comes from third-party libraries that are in common among apps.
Such ambiguous traffic frustrates naive machine learning approaches, since
the classifiers are given effectively the same training examples with different
labels. Using a novel two-stage classification strategy with reinforcement
learning, we were able to approximately double the baseline performance
of our classifiers. Using the additional post-processing technique of clas-
sification validation, further accuracy could be extracted from the system,
but at the expense of the number of flows that the classifiers were able to
give a confident enough prediction. We remind the reader here that in app
classification there is no inherent requirement to label all network flows, but
rather to positively identify apps with high accuracy.

3.6.1 Comparison with Related Work

AppScanner works in the domain of fingerprinting network traffic from
smartphones and so a direct comparison to website fingerprinting cannot
be made. However, to motivate why different approaches such as AppScan-
ner need to be taken when fingerprint app traffic, we show how existing
work on website fingerprinting has reduced accuracy when run on app traf-
fic. For a comprehensive comparison, we used our best and worst performing
datasets: TIME and DV-110.

In general, all approaches performed better in the TIME test (Fig-
ure 3.10a) than in the DV-110 test (Figure 3.10b). Panchenko et al. [156]
performed best with F-measures of 36.9% and 11.4% respectively. App-
Scanner with no ambiguity detection outperformed this work with 42.6%
and 19.2% respectively. Adding ambiguity detection and classification vali-
dation further improved the performance of AppScanner over related work.

3.6.2 Limitations

App identification is frustrated by a number of factors such as “flow cov-
erage”, changing app behavior and ambiguous flows. Flow coverage refers
to the fraction of the number flows that are actually triggered during Ul
fuzzing to the total number of flows that can be made by an app. Indeed,
UT fuzzing may not elicit all flows from an app. Getting complete code cov-
erage is a challenging task and even human participants were seen to only
obtain 60% code coverage [125] in apps through manual interaction.
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Figure 3.10: Comparison with related work for the TIME and DV-110 tests.
AD = Ambiguity Detection and PPT = Prediction Probability Threshold.

Apps may also have different behavior if they are run at a different time.
This may be because the apps themselves have been updated and now have
a change in logic or the apps download (dynamic) configuration parameters
from a server at runtime. Either of these possibilities may cause apps to have
different behavior between training and testing. To mitigate this, repeated
and continuous profiling of apps is necessary. Fortunately, profiling can
be automated using virtual devices and Ul fuzzing, obviating the need for
physical hardware or manual intervention.

Ambiguous traffic also poses a problem for app identification. It degrades
classifier performance since classifiers may be trained with conflicting data.
Additionally, since there are finitely many flows that an app can generate,
it is conceivable that more than one app will generate similar flows. Thus,
an ambiguity detection scheme is critical to identify the non-ambiguous,
distinctive flows coming from apps. It may also be the case that some apps
simply do not generate non-ambiguous flows. In this case, other approaches
will need to be taken for identifying those apps as this is a fundamental
limitation of app classification using network traffic analysis.
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3.6.3 Countermeasures

Mitigating app identification through traffic analysis is a complicated task.
AppScanner uses coarse side-channel data from network traffic flows for fea-
ture generation. Thus, feasible countermeasures will likely involve padding
network flows sufficiently so that one app is no longer distinguishable from
another. In theory, this approach can be useful for frustrating app finger-
printing. In practice however, as argued by Dyer et al. [62], it is unlikely
that bandwidth-efficient, general purpose mitigation strategies can provide
the requisite protection. Moreover, this problem is complicated on smart-
phones (and other mobile devices) where battery power, bandwidth, and
data usage are bottlenecks. Indeed, these added bottlenecks on smartphones
makes efficient traffic analysis countermeasures an open research problem.

3.7 Summary

In this chapter, we presented AppScanner, a robust and scalable frame-
work for the identification of smartphone apps from their network traffic.
We thoroughly evaluated the feasibility of fingerprinting smartphone apps
along several dimensions. We collected several datasets of app-generated
traffic at different times (six months apart) using different devices (and ver-
sions of Android OS) and different app versions. We demonstrated that
the passing of time is the variable that affects app fingerprinting the least.
We also showed that app fingerprints are not significantly more affected by
the device that the app is installed on. Our results show that updates to
apps will reduce the accuracy of fingerprints. This is unsurprising since new
app versions supposedly will have additional features, which can affect the
fingerprint recognition process. We showed that even if app fingerprints are
generated on a particular device, they can be identified six months later on
a different device running different versions of the same apps with a baseline
accuracy that is 20 times better than random guessing. Using the techniques
of ambiguity detection and classification validation, we obtained notewor-
thy increases in system performance. We were able to fingerprint and later
re-identify apps with up to 96% accuracy in the best case, and up to 73% ac-
curacy in the worst case. These results suggest that app fingerprinting and
identification is indeed feasible in the real-world. App fingerprinting unlocks
a variety of new challenges as it relates to user security and privacy.
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Chapter 4

Laptop Users Identification

The usage of electrical devices, ranging from appliances to digital systems,
have constantly increased year after year. In order to cope with both rapidly
growing demand and waste of electric power, future smart buildings will
employ the Internet of Things (IoT) paradigm to overcome many of the
current facilities problems. An example is an intelligent optimization of the
heating, ventilating and air conditioning (HVAC). To this aim, offices and
homes will be equipped with several types of sensors (e.g., user proximity,
light, air, energy meter) that will acquire data from the surroundings. Such
data can thus be sent to a remote entity that can elaborate it, in order
to help addressing facilities issues such as energy saving. Moreover, the
communication between the elements in IoT environments (i.e., sensors and
actuators) can be performed by both wire and wireless.

Researchers on smart building and smart grid have dramatically ad-
vanced the technology and the reading capabilities of smart energy meters
(or simply smart meters). Indeed, such sensors are now able to collect not
only the consumed Active Power, but also several electrical quantities such
as Phase Angle and Voltage [69], with a sampling period of one second.
Smart meters have been deployed in several testbeds and outcomes encour-
ages their usage in future Smart Buildings and IoT environments. Moreover,
smart meters are commercially available and their cost is decreasing, thus
a widespread diffusion in the near future is very likely to happen. Smart
meters are mainly of two types, based on the scope of the observed electrical
network:

e household level sensors are usually embedded into the meter provided
by the supply company and they are designed to monitor the entire
building.

e wall-socket level sensors are deployed on individual sockets and they
are distributed all over the building.
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The former type has already been considered by research on smart grids,
also with respect to the possible privacy issues; public opinion seems aware
of the topic as many news headlines report security and privacy issues. In
this chapter, we focus on privacy issues for the latter category of smart
meters (i.e., wall-socket level sensors) and, supported by our results, we
argue that it deserves more attention by the privacy research community.
To complicate things further (even for privacy aspects), some off-the-shelf
smart meters integrate wireless connectivity in order to form a Wireless
Sensors Network (WSN), where intermediate nodes act as gateways to the
rest of the intelligent architecture of the building [142,145].

Some investigations worked to identify appliances [171] and their
states [119] from energy traces, as well as to protect users, obfuscating their
energy usage [98]. These works showed that energy usage data are pri-
vacy sensitive. Moreover, some appliances can be modeled as Finite State
Machines (FSM) [92], where the complexity increases with the number of
transitions and possible states. Based on this fact, we observe that some
devices consume energy depending on the specific configuration and user in-
teraction. For example, a subset of the observable energy-states of a laptop
is related with the user’s actions.

A widespread diffusion of smart meters is expected in homes and offices,
as well as public places such as bars and restaurants. Moreover, the demand
of recharging batteries of portable devices in public places is increasing.
Indeed, many public places (such as airport waiting areas) attract people as
they supply both free energy and Internet connection. Therefore, in order
to gather information about their customers, they could deploy our system
within a wall-socket monitoring system. We point out that some energy
grid architectures have been specifically designed to enable the monitoring
at the individual outlet level [99,117]. For those reasons, in our study we
consider laptops as personal mobile devices that are not replaced very often.
Laptops consume electricity depending on many factors, mainly the way
the user uses her laptop, running applications, its manufacturer and the
operative system. Although all the aforementioned factors contributes to
the observable energy consumption, defining a relationship between them is
out of the scope of this chapter. Thus, we consider the ensemble of laptop
model, user activity and the set of applications installed and running, as a
single entity (from now on referred as laptop-user) to be identified.

Such intelligent environments are able to study the behavior of the users
and to address common issues and optimization (e.g., anomalies detection,
energy saving). In order to provide the system enough information about
the surroundings, IoT sensors produce huge amount of information which
is difficult to elaborate locally. For this reason, sensors data is commonly
moved and analyzed remotely by remote systems that often is not under
the control of users. By employing advanced machine learning techniques
is possible to extract knowledge for such big data. Literature shows the

76



Security and Privacy Threats on Mobile
Devices through Side-Channels Analysis R. Spolaor

feasibility of studying users, their behavior and even extract privacy sensitive
insights.

Identifying a specific laptop-user from its energy traces could carry both
significant benefits on smart building automation, as well as represents a se-
rious threat to the privacy of users. Indeed, consumption data can be lever-
aged in several benevolent ways within a smart building. Such knowledge
about users can bring several benefits to the Smart Buildings automation:

e Context-aware environments can automatically adjust themselves
based on specific users and trigger predefined actions or services.

e The system can automatically intervene on the surrounding of the
user, adjusting the temperature and the light in the room according
to the her preferences.

e The system can locate and make a user reachable by colleagues, even
in the case she frequently moves in other rooms, for example by auto-
matically forwarding phone calls to her closest landline phone.

e In case of smart meters that integrate also the wired network cable
socket, an IoT environment could authenticate the user and give her
the access according with the network policies. This may act as an
additional authentication over the traditional check on the MAC ad-
dress of network card, that can be easily spoofed. Indeed, the system
could confirm the identity of a user.

e The system could detect not authorized users in a access restricted
room (e.g., server room) or the presence of intruders in a building.

All of these benefits could be achieved without relying on much more in-
trusive systems that should be in place otherwise, such as video or audio
surveillance. On the other hand, an adversary able to retrieve energy traces
from wherever they are stored (i.e., directly from sensors, or from the re-
mote aggregation system such as a cloud platform) could represent a serious
threat for the user privacy. Indeed, such adversary could infer the same
knowledge about a user as a legitimate system could do. Moreover, after
the creation of the user energy profile, the recognition can be extended to
contexts like other buildings equipped with smart meters. This is the case
in which data are collected by a unique meters manufacturer. Therefore,
big smart meters firms might have a very wide scope within which to track
laptop-users. For instance, a user profiled in her office can be tracked down
when she plugs her laptop in public wall-sockets. This information could be
then sold, beyond any still not present regulations, for marketing purposes.
In addition to that, an adversary could, for example, pursue the following
threats:

7



Security and Privacy Threats on Mobile
R. Spolaor Devices through Side-Channels Analysis

e Big smart meters manufacturers that collect data of thousand meters
would have a very wide scope within track laptop users. For instance,
a user profiled in her office can be tracked down when recharges and
uses her laptop at an airport or in other public places. This informa-
tion could be then sold, beyond any still not present regulations, for
marketing purposes.

e The system can remotely monitor where and how often users move
within the smart building. Knowing that some users meet in the same
room or share the office can highlight social relationships.

e An employer can monitor the productivity of employees by tracking
their position within a smart building. Also, the productivity could
be assessed by monitoring the expected consumption.

The main risk of the preceding threats consists in turning a system that
should help users to save energy in a powerful mass surveillance. While
users appreciate the fancy consumption overviews provided by means of
web pages or smartphone apps, their privacy is actually at risk and far from
their direct control. The ubiquity of power sockets that can be possibly
turned in energy consumption monitors suggests this technology can easily
enter in our daily life. Moreover, we highlight that in countries with strict
privacy regulations, the collection of such sensitive data would require users
to accept appropriate Terms of Services.

Furthermore, plugging more than one appliance in the same monitored
wall-socket (for example using a power strip) might not be effective in order
to hide the single appliance usage. Indeed literature shows that it is feasible
to disaggregate the energy consumption per-appliance [114]. Lastly, coun-
termeasures are non-trivial and not yet commercially available, we discuss
them in Section 4.5.

Contributions: In this chapter we introduce MTPlug, our proposed frame-
work for the identification of a user solely relying on her laptop energy traces.
We have built and tested MTPlug with the energy traces produced by the
laptops of 27 users. In what follow, we list the main contributions this
chapter to the state-of-the-art:

e We demonstrate that it is possible to build a laptop-user specific energy
fingerprint using a common low-frequency smart meter at the wall-
socket level.

e We propose and fully implemented MTPlug framework, and evaluate
its performance in terms of precision and recall with a thorough set of
experiments.

e We study the influence of energy traces collection time for building a
reliable laptop-user electrical fingerprint. Such fingerprint can be used
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afterwards to rapidly re-identify a laptop-user with an accuracy above
80%.

This work makes a new contribution to the state of the art, since it
highlights the existence, and the significance, of a new serious privacy threat
in smart metering, and more generally, in anonymity of energy consumption
data.

Organization: The rest of this chapter is organized as follows. We re-
view the state-of-the-art related to our research topic in Section 4.1. In
Section 4.2, we outline required background knowledge. In Section 4.3,
we present our framework MTPlug, describing its components. We evaluate
the performance of our solution in Section 4.4, and we discuss possible coun-
termeasures in Section 4.5 Finally, in Section 4.6 we summarize the work
presented in this chapter.

4.1 Related work

In this section, we survey the main researches in smart metering, considering
different scopes and categories: smart metering privacy issues, appliance
identification and user presence detection.

Smart metering privacy issues — Quinn et al. [164] review existing laws
and regulations in smart metering and raise significant privacy questions.
Furthermore, existing laws which protect user data suffer of weaknesses and
possible exceptions about its usage and transfer to third party entities. How-
ever, the literature has different proposals for privacy-preserving metering
data transmission [7,65]. On the user perspective, protection can be achieved
using a rechargeable battery and a power routing algorithm [101]. In par-
ticular, it is possible to shape the home load signature to hide traces of
appliances usage. Genkin et al. [82] show a side-channel attack able to re-
construct cryptographic keys based on fluctuations of the “ground” electric
potential. Although the state of the art raises question about wall-socket
level privacy, to the best of our knowledge our work is the first on users
recognition through their laptop energy consumption.

Appliance identification — Literature shows that it is possible to perform
appliance identification observing the energy consumption from different
network levels. Non-intrusive load monitoring (NILM) approaches use a
centralized sensor, usually located at the main house hold circuit-level. After
collecting energy usage data, they perform information disaggregation to
isolate single appliances traces [216]. Reinhardt et al. [169] use a more
intrusive approach, considering single appliances and sampling the energy
consumption from the power plug. Using a period of one second, the authors
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achieved good performances in recognizing, beside others, a laptop. Anyway,
commercial services that implement NILM are already publicly available!.

User presence detection — Building occupancy is studied by users de-
tection leveraging on data provided by sensors deployed in smart build-
ings [106]. For example, Heating, ventilating, and air conditioning (HVAC)
systems usage can reveal user presence with a true positive rate above
88% [63] and highlight possible energy wasting [4]. While HVAC activ-
ity is observed from a centralized sensor, low-power appliances monitoring
requires a more invasive approach. Their state recognition is performed
in [217] which scores a F-measure (8 = 1) of 0.906 and 0.804 for binary
and multi-state appliances. However, since combinations of capacitive and
inductive loads monitoring are more difficult to monitor, [216] warns to care-
fully evaluate such cases.

Going towards user profiling, our survey considers tools that gather, on
different levels, energy data about appliance usage, focusing on computers.
It is possible to inspect via software the power impact of single processes
with negligible overhead [130]. Do et al. [61] use energy consumption fea-
tures of operating systems to study the amount of energy consumed by
each running application. Rashidi et al. [167] propose a semi-supervised
approach to build behavioral patterns of users during an extended period
(i.e., two weeks). Despite this work seems very similar to ours, the authors
consider the aggregated consumption of multiple appliances used by indi-
viduals. Although it is a user level profiling, it considers consumption of
un-labeled devices. Furthermore, Procaccianti et al. in [162] collected en-
ergy data from a computer system performing common usage scenarios (e.g.,
idle, web navigation, Skype call). Results show that software use cases im-
pact significantly on energy consumption. Similarly, the authors of [48] show
the feasibility of identifying specific web-browsing activities, using as a side
channel the alternate current (AC) gathered at the power outlet level. The
consumption analysis achieves very high precision and recall on determining
which page is loaded.

Although related work achieve good results in user level analysis, the
focus is mainly on behavioral patterns or other general inspections. In this
chapter we present a comprehensive laptop-users profiling and recognition
based on energy consumption. Strong of our ground truth with respect to
users and monitored laptops characteristics, we push the user monitoring
toward a fine-grained level that seems missing in the literature.

4.2 Background knowledge

In this section, we recall background aspects that we use in this chapter.
Firstly, we first introduce the electrical quantities considered. Secondly, we

! https://www.bidgely.com/technology
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explain the time series segmentation. Then, we briefly describe some ma-
chine learning and data mining concepts. Finally, we illustrate the filtering
of noisy signals. We point interested reader to references cited in this section
for a more in depth study of specific concepts.

Electrical quantities: A wall-socket smart meter is able to measure the
energy consumption of the plugged appliance. Such appliances drain AC
from the electrical system of the household. In particular, such device mea-
sures several electrical quantities. The electrical quantities listed below are
the ones used in this chapter:

o Active Power (P), also referred with real power, is expressed in watt
(W).

o Reactive Power (Q) is often measured in reactive volt-amperes (var).

e RMS Current (I) is the root mean square of the alternate current,
measured in amperes (A).

e Phase Angle (¢) between the current and the voltage in the AC do-
main.

In this chapter, we consider wall-socket smart meters able to measure (at
least) the values of these four electrical quantities for each sampling period.
Hence, an energy trace consists of a multivariate time series of electrical
values of sequential samples.

Time series segmentation: We consider a time series T = {x =
[x1, 2, ...,x,]|1 < k < N} as afinite set of N samples indexed by time points
t1,...,tn [3], and a segment as a set of consecutive time points S(a,b) = a <
k < b,xq, 2441, ...,2. Hence, the segmentation of the time series T into ¢
non-overlapping intervals can be formulated as S5 = {S¢(ae, be) |1 < e < ¢},
were a1 = 1,bp = N and a, = be.—1 + 1. In order to use a time series as
a pattern, the series can be represented by Piecewise Linear Representa-
tion (PLR), which consists in segmenting a series with K straight segments.
Since PLR results in an approximation of T', its fidelity can be expressed by
error metrics (e.g., max_err, total_error) which can consider multiple units
of the PLR: from individual segments to the entire segmented series. In gen-
eral, researchers propose three segmentation approaches [103] that produce
a representation of a time series T' given: (i) the number K of segments;
(ii) a maz_err threshold, which stands for the error bound a single segment
cannot exceed; and (iii) a total_error threshold among all segments of T'.
In this chapter, we applied the second approach to segment the time series
obtained by laptop energy traces.

The bottom-up segmentation is a batch approach based on a maximum
error per each segment. This approach starts from approximating with a
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linear interpolation the n-length time series by n/2 segments. The algorithm
then calculates the cost of merging each pair of adjacent segments until a
stopping criteria is met. Approximation is given by a straight line that can
be computed by linear interpolation or by regression. The linear interpola-
tion consists in connecting each point present in the subsequence T'[a : 0],
while the regression takes into account the best fitting line in the least square
sense. Although the regression can generally achieve higher approximation
quality, as Euclidean distance, it takes linear time in the length of the seg-
ment. The linear takes a constant time so it is preferable in contexts where
computing power is critical (e.g., computer graphic). In order to evaluate
the fitting quality of a candidate segment, the algorithm needs a method
function that we formalize as cost(S(a,b)). It represents the distance (e.g.,
sum of squares) between a simple function (linear or polynomial) fitted to
the actual values of each segments [3]. Possible distance metric can be sum
of squares, distance between the best fit line and data point furthest away
in the vertical direction, or any other measure.

Supervised learning: Supervised machine learning algorithms acquire
knowledge about a specific context through examples. After the training
phase, where such algorithms make up their knowledge from past experi-
ence, they produce an inferred model able to classify new un-labeled in-
stances. In an optimal test scenario, the algorithm determines properly the
class labels for unseen instances. In this chapter, we employ three classifica-
tion methods: Random Forest (RF) ensemble classifier, k-Nearest Neighbors
(KNN) and Support Vector Machine (SVM). The KNN classifier computes
the distances between the test example and each member of the training set.
Then, the trained KNN classifier predicts the class label as the same of the
nearest k training set members. Differently, SVM classifier uses weighted
vectors for defining decision boundaries between classes. SVM classifies ex-
amples by summing the outputs of a similarity function, taking into account
the weights of the vectors, between the support vectors and the unseen in-
stance. Then, the trained SVM classifier predicts the class with the largest
sum, relative to a bias. A comprehensive reading about these classifiers is
available in [31].

Savitzky-Golay filter: In the sampling of an analog signal, sensors may
produce noisy readings. With high frequency fluctuations, this error is more
likely to grow and the segmentation could end in meaningless chunks. For
this reason, a sampled signal could be smoothed using a low-pass filter with-
out harming the original signal structure. Savitzky-Golay [174] is a low-pass
filter very effective in smoothing out highly noisy signals characterized by
a wide frequency spectrum. It considers the frame size as a parameter,
and it must be tuned considering the degree of variance and noise [182].
Savitzky-Golay filters are optimal as low-pass because they preserve the
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Figure 4.1: MTPlug framework overview. Each user plugs her laptop into
the corresponding labeled smart meter.

high-frequency content of the signal and they minimize the amount of noise
reduction intended as the fitting least-squares error.

4.3 Our framework: MTPlug

In this section, we describe the design of MTPlug, our framework to iden-
tify laptop-users from their energy traces. We divide the overview of the
proposed system MTPlug in two blocks: dataset creation (in Section 4.3.1)
and classification (in Section 4.3.6).

4.3.1 Dataset creation

In the first block, the system acquires the raw data and prepares it in order
to be handled by a supervised learning method. This block is composed of
four steps, summarized in Figure 4.1. The first step, named Data Collector,
consists of acquiring the raw energy traces of the laptop-users plugged into
wall-socket smart meters (Section 4.3.2). The second step is the pre-process
of the raw data (Section 4.3.3) and it is in charge to prepare a time series
that could be divided in segments in the third step (Section 4.3.4). Then, as
last step of the first block (dataset creation), the system extracts an array
of statistical features from each segment (Section 4.3.5).
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4.3.2 Data Collector

In this step, MTPlug system relies on wall-socket smart meters to collect
the energy traces produced by laptop-users. These smart devices are able
to build an energy trace composed of several electrical quantities such as
Active Power, RMS Current, Reactive Power and Phase Angle. Since the
sampling period is fixed for each electrical quantity (e.g., one second), an
energy trace can be handled as a multivariate time series. To build a reliable
ground truth, we assigned a wall-socket to a single user, thus the system is
able to relate that user with her energy trace.

4.3.3 Pre-processing

The pre-processing phase consists of filtering out the samples that are not
relevant or that could hinder the segmentation of the time series. First,
the system filters the samples that are meaningful to perform the user iden-
tification. Indeed, the system takes into account only the samples likely
reporting actual user activity. In order to do so, MTPlug considers only
readings with an Active Power value above a certain « threshold. Doing
this, the system drops the samples of when no useful load is plugged (e.g.,
only the power supplier, laptop in stand-by mode). In Section 4.4.1, we
report how we empirically determine « threshold. Secondly, we filter the
samples that contain reading errors, thus they could hinder the time series
segmentation. To do so, we smooth the time series using a Savitzky-Golay
low-pass filter (previously described in Section 4.2), to preserve the original
signal structure. At the end of this pre-processing phase, the time series are
ready to be segmented.

4.3.4 Segmentation

After selecting only useful samples from the raw data, MTPlug applies the
segmentation to the multivariate time series. In the time series classifica-
tion, the choice of a proper segmentation approach for a specific domain is
fundamental to split the series in meaningful patterns. Many approaches are
possible, for instance change-point detection, sliding window, top-down and
bottom-up [25,103]. We employ the latter which starts from a fine series
approximation and iteratively merges the lowest cost pair of segments until
a stopping criteria is met [103]. We aim to segment the consumption data
such that each segment represents a particular pattern in the laptop usage.
Differently from the PLR, we just detect segments endpoints considering the
Active Power, keeping the original data points of the series. Since the seg-
mentation is based on a straight lines approximation, we find them by linear
interpolation, which consists in approximating the subsequence T'[a : b] by
connecting ¢, and ¢, [103]. Hence, to evaluate the quality of the approxima-
tion, we use the Residual Sum of Squares (RSS) as distance metric. RSS
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is the sum of all the vertical squared differences between the best-fit line
and the actual data, a small value means that the model fits tightly. We
merge two adjacent segments if the RSS is below a given maximum error,
in the following referred as max_err. This parameter controls the outcome
segments length so we empirically tune it to achieve an optimal representa-
tion of our domain, we give further details of the distribution of lengths in
Section 4.4.1. We underline that the segmentation is used just to identify
the endpoints of segments, thereby we build our pre-processed dataset using
the values of the original sampled time series.

4.3.5 Features extraction

This step produces a statistical data set which a classifier algorithm can
handle. At the end of the segmentation phase, we obtain segments (i.e.,
multivariate time series) with variable lengths. To build a dataset suitable
for a classifier, we extract a fixed number of features from each segment.
Since a segment is a set of four time series (i.e., one for each electrical
quantity), we extract the following statistical features from each serie: mean,
minimum and maximum values; sum of the values; length of the segment;
variance, standard deviation, mean absolute deviation, skewness, kurtosis
and variance. Moreover, we also calculate the value that corresponds to the
n percentile of a series. For each segment, we concatenate the resulting
four arrays of statistical features, obtaining a single array of data. In order
to simplify the classification execution, we normalize from 0 to 1 the values
for each statistical feature. Finally, we label each segment with the identifier
of the laptop-user which has produced that segment (e.g., user0, userl). At
the end of this step, we obtain a labeled dataset of examples.

4.3.6 Laptop-users classification

In the second block (classification), the system uses the dataset created in
the previous block to first train a classifier and then to evaluate its perfor-
mance. As we previously introduced in Section 4.2, in a supervised learning
a classifier needs a labeled set of examples to be trained upon (i.e., training
set) and another one to test its performance (i.e., test set). Training set and
test sets must be disjointed, i.e., they do not share any element. In fact,
the test set does not take part in the training of the classifier. In our case,
an example is composed of the array of statistical features and an identifier
(i.e., class) of an laptop-user (e.g., user0, userl).

Before proceeding with the training, MTPlug runs first a features se-
lection and then a hyper parameters optimization. Since our feature space
consists of 109 statistical features, the classification could be affected by a
phenomenon known as curse of dimensionality [31]. In order to avoid this
phenomenon, the system evaluates the significance of each statistical fea-
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ture running Random Forest classifier on the training set. Thus, it selects
the feature with a significance score higher than 1% (see Section 4.4.2).
Afterward, the system selects the optimum set of hyper parameters of the
classifier. To do so, it runs an exhaustive search on a wide set of hyper pa-
rameters applying a grid-search algorithm with 5-fold cross-validation (CV).
Such algorithm iteratively evaluates the performance of a classifier for each
possible instance of hyper parameters. For each instance, it runs a cross
validation on five disjoint and equipotent sets of the training set (i.e., 5-
fold). Finally, MTPlug trains a classifier using the whole training set and
the set of hyper parameters that achieved the best results in the cross vali-
dation. In Section 4.4.2, we evaluate classification performance on the test
set of three classifiers: Support Vector Machine (SVM), k-Nearest Neighbors
(KNN) and Random Forest (RF).

A classifier predicts the class to which a segment belongs and the proba-
bility (confidence) for that prediction. In order to increase the overall perfor-
mance, we consider only segment predictions above a threshold omega. Note
that this approach does not assume any class membership on the stream flow
basis. However, since we employ supervised learning, the test phase assures
the reliability of high-confidence predictions. We refer to this process as
the classification confidence post-process function. By this, we aim to pro-
file a laptop-user when plugged in a specific wall-socket for a reasonable
time so we rely on more than a single segment. Thus, we consider only the
segments to which the classifier has a confidence above a certain threshold
(i.e., omega), and simply discarding the others. Unfortunately, a side effect
of this approach is that the increasing of omega, the number of segments
considered as reliable reduces accordingly.

4.4 Experimental results

In this section, we present our testbed configuration for data collection and
the performance evaluation of MTPlug. In particular, we detail our testbed
in Section 4.4.1, while we report the outcomes of the classification in Sec-
tion 4.4.2.

4.4.1 Test-bed configuration and data collection

In our settings, we monitored the energy consumption of laptop-users using
wall-socket smart meters with a sampling period of one second. Each sample
is composed of the user label and an array of real-valued readings of Active
and Reactive Power as well as RMS Current and Phase Angle. The data
collection environment is an office room with 230 Volts and 50 Hz monitored
power sockets.

Participants: Our data collection involved a total of 27 participants with
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their personal laptops. All the participants were volunteers, without any
promise of reward, and they signed an informed agreement. In particular,
we asked seven participants to work in a restricted office for a period of two
weeks. Henceforth, we refer to those seven user as main users. The intruders
are represented by a disjoint set of the remaining 20 users which were not
supposed to plug their laptops within the restricted area. Their participa-
tion lasted just a few hours, since we aim to simulate several unauthorized
accesses. Considered laptops are of seven famous brands, all commercially
available.

Energy trace collection: We deploy off-the-shelf meters Plogg.zbg v2.0 (1
Hz sampling rate) that integrate a TelosB? for remote management. These
devices are designed to arrange hierarchical WSNs where IoT nodes (i.e.,
smart meters) sample data and gateways collect and forward it to the upper
levels, for processing purposes. This approach has been successfully adopted
in bigger testbeds [145]. We set up this environment in order to gather the
energy consumption related to different laptop-users. Before segmenting the
time series, the pre-processing step includes the dropping of those samples
with Active Power value below a threshold « (see Section 4.3.3). We em-
pirically determine the threshold o = 12 Watt by observing that under this
value, all monitored laptops were plugged in but no significant user activ-
ity was observable (e.g., stand-by or low-energy mode). Lastly, we perform
the time series smoothing by a quadratic polynomial Savitzky-Golay low-
pass filter. A preliminary analysis shows that a frame size of 30 points is a
reasonable value to avoid noisy and scattered readings.

Segments lengths: The time series bottom-up segmentation algorithm
produces segments with different lengths. Given n data points and K seg-
ments, the average segment length is L = n/K [103]. The lengths of seg-
ments vary with the parameters of the segmentation algorithm (i.e., maz_err,
RSS, interpolation function). In this paragraph we focus on maz_err, which
determines the merging of two adjacent segments, hence influencing the
output segments lengths. Thus, we tune the max_err parameter in order to
obtain reasonable segments lengths. For this reason, we set two additional
bounds on the length of the segments produced by the segmentation algo-
rithm. On one hand, we fixed the lower bound of segments length to three
samples (i.e., three seconds), hence, we simply ignore segments that last
less than three samples. A preliminary analysis showed that segments with
length smaller than this value appear to be very heterogeneous, and there-
fore more likely to decrease the classification accuracy. On the other hand,
we set an upper limit in order to avoid extremely long segments. Indeed,

2 http://www.memsic.com/userfiles/files/Datasheets/WSN/telosb_datasheet.
pdf
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Figure 4.2: Distribution of lengths of segmented time series. First and third
quartile are represented as the left and right side of the box. The band inside
the box represents the median value. Lines that extend horizontally from
the boxes indicate the 2"d percentile (left) and the 98" percentile (right).

long segments are due to a stable (almost-constant) energy consumption for
many sequential samples. In our analysis, the aforementioned case is mean-
ingless since it does not show any substantial activity, which might helps
the classification. For this reason, we filter out the segments longer than
the 90-percentile. Figure 4.2 shows the distribution of the segments lengths
varying the maz_err, considering all 27 users. The plot shows that as the
maz_err segmentation parameter increases, the segments lengths grow as
well.

4.4.2 Classification Performance

The examples produced by data collection are divided in two disjoint sets:
training set and test set. We use the training set to train the classifier,
while we use the test set to evaluate its accuracy. They consists of the 75%
and the 25% of the whole data set [31], respectively. In our analysis, we
aim to train a classifier that is able to recognize the main users from the
segmented energy traces (i.e., time series) produced by their laptops. More-
over, this classifier has to be able to discriminate each main user from the
intruders. As motivated in Section-4.4.1, all the examples collected from
intruders are considered as a single class. In the following, we firstly investi-
gate the performance of the classifiers considering different sets of electrical
quantities and different values of maz_err. We discuss the results obtained
with the best scoring setting for each considered classifier. In particular, we
discuss the average accuracy reached in recognizing laptop-users, and give
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Figure 4.3: Classifiers performance comparison considering the main users
and the intruders.

detailed results for precision, recall and F-measure (8 = 1) metrics. Later,
we investigate how to improve classification performance relying on confi-
dence threshold omega. Finally, we investigate the performance of the best
classifier as the dimension of the training set changes, thus the number of
segments necessary to build the energy fingerprint of a laptop-user.

First, we investigated the contribution given by each electrical quantity
to the classification of laptop-users. In order to do so, we ran the MTPlug
framework on different combinations of the collected electrical quantities
and for a set of maz_err values ranging from 0.005 to 5. We obtained the
highest classification performance considering all the electrical quantities
and maz_err=0.005. Hence, we use these settings for our classification,
achieving the 85% of accuracy, and the mean length of a segment is just
four seconds. Indeed, increasing the max_err increases also the mean length
of segments, as reported in Figure 4.2.

In the following, we focus our attention on the evaluation of different
classifiers: Random Forest (RF), k-Nearest Neighbors (KNN) and Support
Vector Machine (SVM). In our analysis, we use a popular machine learning
library [37] for implementation of such classifiers. We run our MTPlug (i.e.,
feature selection, grid-search and training) using the best maz_err and elec-
trical quantities combination obtained from the previous analysis. In Fig-
ure 4.3, we compare the performance of three classifiers in this experiment.
Random Forest outperforms k-Nearest Neighbors and Support Vector Ma-
chine on all the considered metrics. Hyper-parameters for the RF obtained
from the grid-search are 150 estimators, maz features = sqrt and the Gini
impurity measure as split criterion.

As we previously explained in Section 4.3.6, considering all the statistical
features extracted from a time series segments could affect the classification
performance with the curse of dimensionality. In fact, from each segment, we
extract its length as well as the features detailed in Section 4.3.5, for a total of
109 features. In order to consider only the most relevant features, we perform
a feature selection relying on the feature importance score calculated by a
RF classifier over the training set. We selected only the statistical features
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Figure 4.4: Impact of w threshold on Random Forest classifier performance
considering maz_err = 0.005 and main users and intruders.

with an importance score higher than 1%. Considering the best settings, we
obtained a total of 36 features of the original 109.

Classification confidence analysis: In order to increase the classification
performances, we used the post-processing function that relies on classifi-
cation confidence, introduced in Section 4.3.6. This function considers the
classifier confidence of each prediction. Figure 4.4 depicts the obtained per-
formance using different w. In this analysis, we consider our framework
using the RF classifier, all the electrical quantities, maz_err=0.005, and the
training and test sets with all the seven main users and the twenty intrud-
ers. The results obtained with the RF classifier highlight that the classifi-
cation confidence mean in the test set is p = 0.82 with standard deviation
o = 0.19. The classifier achieves an F-measure equal to 0.98 in predicting
49.6% of the whole test set, with a confidence w = 0.9. Unfortunately, this
post-processing function decreases the amount of classified segments by a
~ 0.5 factor. In order to deal with this loss, we point out that the segmen-
tation (see Section 4.3.4) should use a maz_err as small as possible, since
this would significantly increase the total number of examples. Experiments
in this section use max_err = 0.005.

Sufficient monitoring time: In order to evaluate the feasibility of produc-
ing an energy fingerprint in a limited time, we investigate on the sufficient
monitoring time for training our MTPlug framework. The time evaluation
is based on the statistical length distribution of the considered segments
showed in Figure 4.2. In this analysis, we consider the max_err = 0.005,
which has mean segments length p = 4.6, standard deviation ¢ = 2 and 75-
percentile = 5 seconds. Here we run multiple trainings, varying the number
of examples per user n = [100, 250, ..., 10000] with incremental steps of 150
segments. The training time of the i** run is tr; = n; x u. Each of the
n experiments is ran 25 times with different training sets (shuffled subsets
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‘ Classifier Values of omega
Random Forest 0.3 | 0.6 | 0.9
Precision 0.85 | 0.91 | 0.98
Recall 0.85 | 0.91 | 0.98
F-measure 0.85 | 0.91 | 0.98
% Segments classified 99.9 | 83.3 | 49.6
K-Nearest Neighbours 0.3 [ 0.6 | 0.9
Precision 0.79 | 0.86 | 0.96
Recall 0.78 | 0.86 | 0.96
F-measure 0.78 | 0.86 | 0.96
% Segments classified 99.8 | 79.0 | 44.3
Support Vector Machine | 0.2 | 0.3 | 0.4

Precision 0.15 | 0.12 | —
Recall 0.24 | 0.24 | -
F-measure 0.12 | 0.10 | —
% Segments classified 0.99 | 0.94 | 0.03

Table 4.1: Classification confidence over some probability thresholds, clas-
sifying main users and intruders.

of the entire training set) and evaluated on the same test set used in pre-
vious analysis. Figure 4.5 shows the average scores for the Random Forest
classifier, the best classifier so far. From this, we show that the sufficient
monitoring time to recognize our main users and intruders with F-measure
= 70% is on average around tro = 7.5 minutes, considering the 75-percentile
we can compute an a training upper bound as 8.3 minutes. On one hand,
we achieve an F-measure above 80% starting from 2650 segments, in this
case the upper bound of the training time is around 3.5 hours. On the other
hand, for the same amount of training time, we achieve an F-measure of
88% and 97%, with w = 0.6 and w = 0.9, respectively. We recall that these
results are obtained by solely observing the consumption of the ensemble
of user activity and their machines. Although it is speculative to attribute
samples to specific events within the laptop-user entity, we stress the fact
that each monitored configuration is, as a whole, rather different.
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Figure 4.5: Random Forest classifier performances with different training
set sizes, considering the classification confidence threshold.
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4.5 Possible Countermeasures

As possible countermeasures, we suppose that both hardware and software
systems can be employed in order to hide a laptop-user recognition through
her energy traces analysis. Researchers propose configurations based on
rechargeable batteries connected to the house electricity meter able to reduce
the sensitive information leak by obfuscating the actual power usage [101].
Moreover, a software countermeasure might try to shape the energy drain
from the AC by controlling the battery usage in order to alter the observ-
able consumption pattern. In [180], authors propose a cloud based battery
control client. Although this solution might be effective against MTPlug, we
argue that is not directly generalizable to the whole laptop domain because
it is based on specific brand’s system utilities. We recall that our identifi-
cation method works only when laptops are plugged to a power socket.

4.6 Summary

In this chapter, we show that the analysis of energy consumption data might
be a serious threat for the privacy of users. We perform and evaluate such
analysis in a controlled environment using off-the-shelf smart meters and su-
pervised machine learning. In particular, we design and implement M'TPlug,
a framework to fingerprint and recognize a user based on her laptop energy
consumption. We design an automatic statistical feature extraction and
selection procedure which considers multiple electrical quantities. In per-
forming this task, the Random Forest classifier outperformed the k-Nearest
Neighbors and the Support Vector Classifier. We carried out an analysis
which shows the feasibility to identify a pair laptop-user with an accuracy
of 86%. In addition to that, the classification accuracy raises to 98% ap-
plying a classification confidence post-processing function, with a properly
selected threshold (i.e., w = 0.9) that filters out uncertainly predicted ex-
amples (around one every two). Given these facts, we strongly believe that,
with w properly tuned, the performance of MTPIlug will remain stable when
the number of laptop-users increases, against an increasing number of un-
certainly predicted examples filtered out. We also investigated the impact
of a single and combined electrical quantities in laptop-users classification.
We point out that it is relatively easy to profile a laptop-user. In fact, even
collecting not contiguous energy traces for a total amount of less than a
3.5 hours are sufficient to build an effective laptop-user energy fingerprint.
Our findings show laptop energy traces have to be considered as sensitive
information because they expose the user to threats to her privacy such as
identification or position tracking.

92



Chapter 5

Data Exfiltration

Following the trend of offering a better user experience, mobile apps are
becoming more and more energy-draining (e.g., Pokémon Go, Snapchat,
Netflix). As a direct consequence, users would eventually look for a source
of electric power to recharge the battery of their mobile devices. For this
reason, the demand for public charging stations has increased significantly
in the last years. Such stations can be seen in public areas such as airports,
shopping malls, gyms and museums, where users can recharge their devices
for free. In fact, this trend is also giving rise to a special type of business?,
which allows shop owners to install charging stations in their stores so as to
boost their sales by providing free phone recharge to shoppers.

As the phone recharging is usually for free, however, at the same time
one cannot be sure that the public charging stations are not maliciously con-
trolled by an adversary. The Snowden revelations gave us proof that civil-
ians are constantly under surveillance and nations are competing against
each other by deploying smart technologies for collecting sensitive informa-
tion en mass. In our work, we consider an adversary (e.g., manufacturers of
public charging stations, Government agencies) whose aim is to take control
over the public charging station and whose motive is to exfiltrate data from
the user’s smartphone once the device is plugged into the station.

In this chapter, we demonstrate the feasibility of using power consump-
tion (in the form of power bursts) to send out data over a Universal Serial
Bus (USB) charging cable, which acts as a covert channel, to the public
charging station. We implemented a proof-of-concept app, PowerSnitch,
that can send out bits of data in the form of power bursts by manipulating
the power consumption of the device’s CPU. Interestingly, PowerSnitch does
not require any special permission from the user at install-time (nor at run-
time) to exfiltrate data out of the smartphone over the USB cable. On the
adversary’s side, we designed and implemented a decoder to retrieve the bits

1 chargeitspot.com, chargetech.com
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that have been transmitted via power bursts. Our empirical results show
that we can successfully decode a payload of 512 bits with a 0% Bit Error
Ratio (BER). In addition, we stress that the goal of this work is to assess for
the first time the feasibility of data transmission on such a covert channel
and not to optimize its performance, which we will tackle as future work.

We focus primarily on Android, as it is currently the leading platform
and has a large user base. However, we believe that this attack can be
deployed on any other smartphone operating systems, as long as the device
is connected to a power source at the public charging station.

Our contributions are as follows:

1. To our knowledge, we are the first to demonstrate the practicality of
using the power feature of a USB charging cable as a covert channel
to exfiltrate data, in the form of power bursts, from a device while it
is connected to a power supplier. The attack works in Airplane mode
as well.

2. We implemented a prototype of the attack, i.e., we designed and im-
plemented its two components: (i) We built a proof-of-concept app,
PowerSnitch, which does not require any permission granted by the
user to communicate bits of information in the form of power bursts
back to the adversary; (ii) The decoder is deployed on the adversary
side, i.e., public charging station to retrieve the binary information
embedded in the power bursts.

3. We are able with our prototype to actually send out data using power
bursts. Our prototype demonstrates the practical feasibility of the
attack.

The rest of the chapter is organized as follows. In Section 5.1, we present
a brief literature overview of covert channel and data exfiltration techniques
on smartphones. Section 5.2 includes some background knowledge on An-
droid operating system, and signal transmission and processing. In Sec-
tion 5.3, we provide a description of our covert channel and decoder design,
followed by the experimental results in Section 5.4 and discussion in Sec-
tion 5.5. We conclude the chapter in Section 5.6.

5.1 Related Work

In this section, we survey the existing work in the area of covert channels
on mobile devices. We also present other non-conventional attack vectors,
such as side channel information leakage via embedded sensors which can
be used for data exfiltration.

Covert Channels: A covert channel can be considered as a secret channel

94



Security and Privacy Threats on Mobile
Devices through Side-Channels Analysis R. Spolaor

used to exfiltrate information from a secured environment in an undetected
manner. Chandra et al. [43] investigated the existence of different covert
channels that can be used to communicate between two malicious appli-
cations. They examined the common resources (such as battery) shared
between two malicious applications and how they could be exploited for
covert communication. Similar studies presented in [109, 127,150, 175] ex-
ploited unknown covert channels in malicious and clean applications to leak
out private information.

As demonstrated by Aloraini et al. [6], the adversary is further empow-
ered as smartphones continue to have more computational power and exten-
sive functionalities. The authors empirically showed that speech-like data
can be sent over a cellular voice channel. The attack was successfully car-
ried out with the help of a custom-built rootkit installed on Android devices.
In [60], Do et al. demonstrated the feasibility of covertly exfiltrating data
via SMS and inaudible audio transmission, without the user’s knowledge, to
other mobile devices including laptops.

In our work, we present a novel covert channel which exploits the USB
charging cable by leaking information from a smartphone via power bursts.
Our proposed method is non-invasive and can be deployed on non-rooted
Android devices. We explain the attack in more detail in Section 5.3.1.

Power Consumption by Smartphones: In order to prolong the
longevity of the smartphone’s battery, it is crucial to understand how apps
consume energy during execution and how to optimize such consumption.
To this end, several works [23,40, 157, 211] have been proposed. Further-
more, the authors from [105,122] studied apps’ power consumption to detect
anomalous behavior on smartphones, thus leading to detection of malware.

Since existing work focus on energy consumption on the device, our
attack would therefore go undetected as the smartphone’s CPU sends small
chunks of encoded data, which are translated into power bursts, back to the
public charging station. Additionally, state-of-the-art attacks that have been
performed while the smartphone is charging [112,132] exploit vulnerabilities
of USB interface rather than actual energy consumption.

Attack Vectors using Side Channel Leaks: Modern smartphones are
embedded with a plethora of sensors that allow users to interact seamlessly
with the apps on their smartphones. However, these sensors have access to
an abundance of information stored on the device that can get exfiltrated.
These data leaks can be used as a side channel to infer, otherwise undis-
closed, sensitive information about the user or device [21,120,208|.

The authors from [22,153] demonstrated how accelerometer readings can
be used to infer tap-, gesture- and keyboard-based input from users to unlock
their smartphones. Similarly, Spreitzer [186] showed that the ambient-light
sensor can be exploited to infer users’ PIN input. Moreover, considering
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network traffic as a side-channel, it is possible to identify the set of apps
installed on a victim’s mobile device [190,196], and even infer the actions
the victim is performing with a specific app [51].

As pointed out in the aforementioned existing work, the adversarial
model did not require any special privileges to exploit side channel leaks
to recover data exfiltrated via sensors. In this chapter, we show that our
custom app, PowerSnitch, does not require any special permissions to be
granted by the user in order to communicate information (in terms of power
bursts) to the adversary. Furthermore, we stress that while the INTERNET
permission is one approach of data exfiltration, our proposed work is dif-
ferent as we show the feasibility and practicability of using a USB cable to
exfiltrate data. In particular, our attack still works even when the phone
is switched to Airplane mode and defeats existing USB charging protection
dongles, as in [42], since we only require the USB power pins to exfiltrate
data.

5.2 Background Knowledge

In this section, we briefly recall several concepts that we use in our work
about Android operating system in Section 5.2.1, and signal transmission
and processing in Section 5.2.2.

5.2.1 Android System and Permissions

In the Android Operating System (OS), apps are distributed as APK files.
These files are simple archives which contain bytecode, resources and meta-
data. A user can install or uninstall an app (thus the APK file) by directly
interacting with the smartphone.

Android apps can be of two kinds:

e GUI apps, which prompt users with a graphical user interface that
they can interact with.

e Services that run in the background, independently from user interac-
tions, and provide a service to the user or to other apps.

When an Android app is running, its code is executed in a sandbox. In
practice, an app runs isolated from the rest of the system, and it cannot
directly access other apps’ memory. The only way an app could gain memory
access is via the mediation of inter-process communication techniques made
available by Android. These measures are in place to prevent the access
of malicious apps to other apps’ data, which could potentially be privacy-
sensitive.

Since Android apps run in a sandbox, they not only have restriction
in shared memory usage, but also to most system resources. Instead, the
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Android OS provides an extensive set of Accessible Programming Interfaces
(APIs), which allows access to system resources and services. In particu-
lar, the APIs that give access to potentially privacy-violating services (e.g.,
camera, microphone) or sensitive data (e.g., contacts) are protected by the
Android Permission System [71]. An app that wants access to protected data
or service must declare in the form of permission (identified by a string) in its
manifest file. The list of permissions needed by an app is shown to the user
when installing the app, and cannot be changed while an app is installed on
the device. With the introduction of Android M (i.e., 6.0), permissions can
be dynamically granted (by users) during an app’s execution.

The permission system has also the goal of reducing the damage in case
of a successful attack that manages to take control of an app, by limiting
the resources that app’s process has access to. Unfortunately, permission
over-provisioning is a common malpractice, so much so that research efforts
have been spent in trying to detect this problem [24]. Moreover, an app
asking for permissions not related to its purpose (or functionality) can hide
malicious behaviors (i.e., spyware or malware apps) [137].

5.2.2 Signal Transmission and Processing

In this section, we provide some background information on bit transmis-
sion, and signal processing and decoding used in our proposed decoder (see
Section 5.3.4).

Bit Transmission: To enable bit transmission over our channel, an under-
standing of basic digital communication systems is essential. For proof-of-
concept purposes, the design of our bit transmission system was inspired by
amplitude-based modulation in the digital communication literature.

Amplitude-Shift Keying (ASK) is a form of digital modulation where
digital bits are represented by variations in the amplitude of a carrier signal.
To send bits over our channel, we used On-Off Signaling (OOS), which is
the simplest form of ASK where digital data is represented by the presence
and absence of some pulse p(t) for a specific period of time. Figure 5.1a
shows the difference between a Return-to-Zero (RZ) and a Non-Return-to-
Zero (NRZ) on-off encoding. In NRZ encoding, bits are represented by a
sufficient condition (a pulse) that occupies the entire bit period T} while RZ
encoding represents bits as pulses for a duration of T} /2 before it returns to
zero for the following Ty /2 period.

On the other hand, Figure 5.1b shows the difference between a unipolar
and a polar RZ on-off signaling. In a polar RZ encoding, two different
conditions, different-sign pulses are used to encode different bits(zeros/ones)
while the presence and absence of a single pulse, a positive one in our case,
are used to encode different bits.
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For the sake of our channel design, it is safe to assume that we can
only increase the power consumption of a phone at certain times and hence,
are able to generate only positive (high) bursts. Thus, a unipolar encoding
seems more relative and applicable for our channel. Moreover, successive
peaks, such as the first two zeros in Figure 5.1a, are easier to identify, and
thus decode, in the RZ-encoded signal than in the NRZ one. This advantage
of RZ over NRZ becomes especially apparent in cases where the bit period is
expected not to be restrictively fixed in the received signal whether it is due
to expected high channel noises or lack of full control of the phone’s CPU.
Therefore, unipolar RZ on-off signaling was used to encode leaked bits over
our covert channel.

NRZ Polar RZ — L1 —
RZ Unipolar RZ -
i 0 1 1 0 0
Encoded Bits 0 0 1 0 1 Encoded Bits I / X X X X

(a) Return-to-Zero (RZ) and Non- Return-  (b) A Polar and a Unipolar encoding of an
to-Zero (NRZ) On-Off Encoding. RZ On-Off Signal.

Figure 5.1: A comparison between bit encoding methods

Signal Processing and Decoding: After choosing the appropriate encod-
ing method to transmit bits, it is also essential to think about the optimal
receiver design and how to process the received signal and decode bits with
minimum error probability at the receiver side of the channel. As known
in the digital communication literature, matched filters are the optimal re-
ceivers for Additive White Gaussian Noise (AWGN) channels. We refer the
reader to Section 4.2 of [161] for a detailed proof.

Matched Filters are obtained by correlating the received signal R(t) with
the known pulse that was first used to encode a transmitted bit, in this
case P(t) with period Tp. After correlation, the resulted signal is then
sampled at time Tp, which means that the sampling rate equals to 1/T}
samples/seconds. This way, each bit is guaranteed to be represented by
only one sample. The decoding decision will then be made based on that
one sample value; if the sample value is more than a given threshold, this
indicates the presence of P(t); and hence a zero in our case, while a sample
value below the threshold indicates the absence of P(t) and hence a one is
decoded.

However and most importantly, for matched filters to work as expected,
it is essential to have fixed bit period T} throughout the entire received
signal. If the periods of the received bits were varying, the matched fil-
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ter samples taken with the 1/T; sampling rate will not be as optimal and
representative of the bit data as expected and synchronization will be lost.

Since there exist infrequent phone-specific, OS-enforced conditions that
can affect the power consumption of a phone, the noises on our channel are
expected to be more complex to fit in an AWGN model. Hence, a matched
filter receiver is most likely not the optimal receiver for our channel. More
creative decoder design decisions are needed to maximize the throughput of
our channel and minimize the error probability.

5.3 Covert Channel using Mobile Device Energy
Consumption

In this section, we elaborate on the components that make up our covert
channel attack. We begin by giving an overview of the attack in Sec-
tion 5.3.1. We then define the terms and parameters for transmission in
Section 5.3.2, followed by a description of each component of the attack:
PowerSnitch app in Section 5.3.3 and the energy traces decoder in Sec-
tion 5.3.4.

5.3.1 Overview of Attack

As illustrated in Figure 5.2, the attack scenario considers two components:
the victim’s Android mobile device (sender) and an accomplice’s power sup-
plier (receiver). Victim’s mobile device is connected to a power supplier
(controlled by the adversary) through a USB cable.

The left side of Figure 5.2 depicts what happens after the victim has
installed our proof-of-concept app, PowerSnitch. The app is able to exfil-
trate victim’s private information, which gets encoded as CPU bursts with
a specific timing. Indeed, as the CPU is one of the most energy consuming
resources in a device, a CPU burst can be directly measured as a “peak”
based on the amount of energy absorbed by a mobile device. The right side
of Figure 5.2 illustrates how the energy supplier is able to measure (with
a given sampling rate) the electric current provided to the mobile device
connected to the public charging station. Then, such electric measurement,
which is considered as a signal, is given as input to a decoder. It should be
noted that the adversary, i.e., the public charging station, has control of the
power supplier, and thus is able to control the amount of current provided
to the device — even if it has the “fast charge” capability.

In our proposed covert channel attack, we consider situations in which
users connect their mobile devices for more than 20 minutes. There are
several scenarios that fulfill such time requirements. Examples are: (i)
recharging a device overnight in a hotel room; (ii) making use of locked
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boxes in shopping malls for charging mobile phones; (iii) recharging devices
on planes, in trains and cars.

In addition, we argue that those time requirements are more than rea-
sonable since generally, 72% of users leave their phones on charging for more
than 30 minutes, with an average time of 3 hours and 54 minutes, as reported
in [74]. This means that: (i) the mobile device is in stand-by mode; (ii) CPU
and the use of other energy consuming resources (e.g., WiFi or 3/4g data
connection) usage is limited only to the OS and background apps. Moreover,
since there is no user interaction, it is reasonable to assume that the phone
screen, which has a relevant impact on energy consumption, will stay off for
the aforementioned period of time.

Moreover, it is also worth noting that the attack is still feasible if there is
no data connection between the victim’s device and the power supplier, such
as Media Transfer Protocol (MTP), Photo Transfer Protocol (PTP), Musical
Instrument Digital Interface (MIDI). This is possible as our methodology
only requires power consumption to send out the power bursts. Moreover,
from Android version 6.0, when a device is connected via USB, it is set
by default to “Charging” mode (i.e., just charge the device), thus no data
connection is allowed unless the user switches on data connection manually.
This improvement in security feature does not impact our proposed attack
as we do not make use of data connection to transfer the power bursts.

Victim’s Android Public Charging
Mobile Device Station Controlled

by the Adversary

Victim's private Electric power supplied \1 Victim's private
Information [/ Information 7

Victim’s private
Information /Z

Figure 5.2: The schema of the components involved in the attack.

5.3.2 Terminology and Transmission Parameters

In this section, we define the necessary terminology to identify concepts used
in the rest of the chapter:

e Payload is the information that has to be sent from the device to the
receiver.

e Transmission is the whole sequence of bits transmitted in which the
payload is encoded.
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In order to obtain a successful communication, the sender and the re-
ceiver need to agree on the parameters of the transmission.

e Period is the time interval during which a bit is transmitted.

e Duty cycle is the ratio between burst and rest time in a period 7. For
example: if a burst lasts for T;/2, the duty cycle will be 50%.

e Preamble is the sequence of bit used to synchronize the transmission.
Usually a preamble is used at the beginning of a transmission, but it
can also be used within a transmission in order to recover the synchro-
nization in case of error. In our case, we used a preamble composed of
8 bits.

5.3.3 PowerSnitch app: Implementing the Attack on An-
droid

The first component of our covert channel we discuss is the proof-of-concept
which we called PowerSnitch app. This app, used for the covert channel
exploit, has been designed as a service in order to be installed as a standalone
app or a library in a repackaged app. Henceforth, we refer to both these
variants simply with the term “app”.

PowerSnitch app requires only the WAKE_LOCK permission and does not
need root access to work. Such permission allows PowerSnitch app to wake
and force execute the CPU while the device is in sleep mode, so that it
can start to transmit the payload. We stress that since it is running as a
background service, PowerSnitch app still works even when user authentica-
tion mechanisms (e.g., PIN, password) are in place. Moreover, since it does
not use any conventional communication technology (e.g., WiFi, Bluetooth,
NFC), PowerSnitch app can exfiltrate information even if the device is in
airplane mode. It is worth mentioning that Android M (i.e., 6.0) introduced
the Doze mode [19], a battery power-saving optimization which reduces the
apps activity when the device is inactive and running on battery for extended
periods of time. When it is in place, Doze mode stops background CPU and
network activity (ignoring wakelocks, job scheduler, WiF1i scan, etc.). Then
on periodic time intervals (i.e., maintenance windows), the system runs all
pending jobs, synchronization and alarms. However, such optimization is
not active when a device is connected to a power source or when the screen
is on. This means that Doze does not affect our proposal since we need
the wakelock function but also the device to be plugged to a power source.
Moreover, since our proposed attack needs also the status of the battery, it
does not need any permission in order to obtain such information: in fact, it
is sufficient to only register at run-time (not even in the manifest) a specific
broadcast receiver (i.e., ACTION_BATTERY_CHANGED).
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In Figure 5.3, we illustrate the modules of PowerSnitch app. It is
composed of three modules: Payload encoder, Transmission controller and
Bursts generator. Payload encoder takes the payload as input and outputs
an array of bits. The payload can be any element that can be serialized into
an array of bits. We use strings as payloads, they are first decomposed into
an array of characters and then, using the ASCII code of each character,
into an array of bits. Payload Encoder can also add to its output array
synchronization bits (e.g., the preamble), and error checking codes (e.g.,
CRC).

/ PowerSnitch App \

Android System
_4'[ Payloag encoder | Broadcast intents

i Start/ stop service [ T - ol ] Battery/Cable/Screen
_______ (optional) | Transmission controller etatus
; (
Period (ms) | Bursts generator J

| Legend: { Signals /intents | ( Input parameters ) |

Figure 5.3: The modules involved in the PowerSnitch app.

Transmission controller is in charge of monitoring the status of the
device with the purpose of understanding when it is feasible to transmit
through the covert channel. Indeed, in order to not be detected by the user,
it checks whether all the following conditions are satisfied: (i) the USB cable
is connected; (ii) the screen is off; and (iii) the battery is sufficiently charged
(see Section 5.5). If our app receives a broadcast intent from the Android
OS that invalidates one of the aforementioned conditions, Transmission con-
troller module will interrupt the transmission. It is worth noticing that to
obtain all this information, PowerSnitch app does not need any additional
permission. From the GUI app used in our experiments, we are also able
to start or stop PowerSnitch app (represented in Figure 5.3 with a dotted
arrow).

The last component of PowerSnitch app is Bursts generator. The task
of this component is to convert the encoded payload into bursts of energy
consumption. These bursts will generate a signal that can be measured
at the other end of the USB cable (i.e., the power supplier). In order to
obtain these bursts of energy consumption, Bursts generator module can
use a power consuming resource of the mobile device such as CPU, screen
or flashlight. Our proof-of-concept, Bursts generator uses the CPU: a CPU
burst is generated from a simple floating point operation repeated in a loop
for a precise amount of time (given by transmission parameters).
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5.3.4 Analysis of Energy Traces

To make better decoder design decisions, several channel traces were ob-
served, collected and then used to calculate channel estimations and im-
plement different simulations of the channel performance and behavior. A
standard on-off signaling decoder needs to know the exact period of bits in
the received signal in order to be able to decode them. However, a channel
built based on a phone’s power consumption is expected to have hard-to-
model noises that, after examining the collected channel data traces, are
actually affecting not only the peak periods but also the peak amplitudes.
The amount of external power consumed by a phone can be largely affected
by dominant OS-enforced, manufacturer-specific factors. For instance, dif-
ferent sudden drop patterns in power consumption especially when the phone
is almost or completely charged, lack of control over the OS scheduler; when,
how often and for how long do some heavy power-consuming OS background
services run, as well as the precision and sampling rate of the power monitor
on the receiver side of the channel.

Figure 5.4 shows a portion of the channel data captured after a trans-
mission of ten successive bits (ten Zeros, therefore ten peaks) was initiated
by our app on a Nexus 6 phone. It should be noted that the data was passed
through a low-pass filter to get rid of harsh, high frequency noises in order
to make the signal looks smoother. As a result, based on a threshold of
100mA, ten peaks are successfully detected. Moreover, the width of each
peak, and hence the period of each bit, is varying sufficiently. The first bit,
for example, has a period of 300ms while the eighth one has a period of only
195ms. Although the intended bit period generated and transmitted by the
app was b00ms, the average period of the received bits was actually 311ms,
which the receiver has no way to predict in advance. Such variations in the
received signal are expected to affect the performance of any decoder. An
ideal matched filter receiver will have hard time decoding such inconsistent
signal and synchronization will be lost very quickly. We elaborate further
on this issue in the remaining sections.

Decoder Design

In this section, we provide additional explanation about the different pro-
cessing stages that our decoder is taking the received signal through in order
to overcome the channel inconsistencies and decode the sent bits with the
minimum Bit Error Ratio (BER). In signal processing, the quality of a com-
munication channel can be measured in terms of BER (represented as a
percentage), which is the number of bit errors divided by the total num-
ber of transmitted bits over the channel. Channels affected by interference,
distortion, noise, or synchronization errors have a high BER.
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Figure 5.4: A portion of a received signal showing the variations in peak
widths and amplitudes.
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Figure 5.5: Different phases of our decoder.

Figure 5.5 summarizes the different processing stages which will be dis-
cussed in the order they take place in, along with some background infor-
mation and algorithm justifications, where applicable.

Data Filtering First, the received signal is passed through a low-pass filter
to get rid of the harsh high-frequency noises. For instance, Figure 5.6 shows
the same portion of a received signal before and after applying the low-
pass filter. The low-pass filter helps not only to make the signal looks
smoother, but also to make the threshold-based detection of real peaks easier
by eliminating narrow-peak noises that can be falsely identified as real peaks
or bits. Additionally, the low-pass filter used in our decoder adjusts its pass
and stop frequencies based on the intended bit period generated by the
phone in order to make sure that we do not over-filter or over-attenuate the
signal.

Threshold Estimation The decoder detects peaks by decoding unipolar
RZ on-off encoded bits. The presence or absence of a peak (a 0 or a 1 in
our case, respectively) at a certain time and for a specific period is then
translated to the corresponding bit. Peak detection is usually done by set-
ting an appropriate threshold; anything above the threshold is a peak and
anything below is just noise. However, deciding which threshold to use is
not a trivial process especially with the unpredictable noise in our channel
and the variations in width and amplitude of the received peaks.

The threshold value used by the decoder is highly critical to peaks de-
tection, the resulted width of detected peaks and the decoder performance.
Hence, we primarily use a known preamble data sent prior to the actual
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Figure 5.6: A portion of a received signal before and after applying the
low-pass filter.

packet to estimate the threshold. The preamble consists of eight known bits
(eight zeros in our case) at the start of the transmission, which means that
the decoder is expecting eight peaks at the start. Since a unipolar RZ on-off
encoded zero has a pulse for half of the bit period, the preamble is expected
to have roughly the same number of peak and no-peak samples. Therefore,
a histogram of the preamble samples is expected to split into two portions;
peak and no-peak portions. Figure 5.7a shows a histogram of the preamble
samples shown in Figure 5.7b. As observed, the histogram has two distin-
guishable densities; each of them look like the probability density function
of a Gaussian distribution.

Estimating the parameters (mean and variance) of two Gaussians that
are believed to exist in one overall distribution is a complicated statistical
problem. However, the Gaussian Mixture Model (GMM), introduced and
explained in [170], is a probabilistic model commonly used to address this
type of problem and to statistically estimate the parameters of existing
Gaussian populations. To estimate the threshold, as shown in Figure 5.8, the
decoder uses the GMM to fit two Gaussians to the two histogram portions,
find the mean of each one of them and then compute the threshold as the
middle point between the two means. As a result, our decoder is able to
estimate the threshold independently and without any previous knowledge
of the expected amplitudes of the received bits. After that, each sample is
converted to either a peak sample or no-peak sample based on whether the
sample value is above or below the estimated threshold.

Robust Decoding Generally, the way a decoder translates the peak and
no-peak samples to zeros and ones is highly time-sensitive. For instance,
if the bit period is fixed and equals to T}, the decoder simply checks the
presence or absence of the peak in each T, period. Since this decoding
decision is made based on a very strict timing manner, the slightest error
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Figure 5.7: A histogram of the preamble samples shows a mixture of two
Gaussian-like densities.
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Figure 5.8: Using the Gaussian Mixture Model to estimate the threshold.

in the received bit periods will cause a quick loss of synchronization. As
mentioned in the previous section, the received peak widths (and hence bit
periods) over our channel are changing with a high variation around their
mean. Therefore, our decoding decision cannot rely on an accurate notion
of time. Instead, our decoder needs to assume a sufficient amount of error in
the period of each received bit and to search for the peaks in a wider range
instead of a strict period of time.

To address this level of time-insensitivity and achieve robustness to syn-
chronization errors, our decoding decision was made based on the time dif-
ference between each two successive peaks. As an example, assume that two
successive zeros were sent and hence two peaks were received. The differ-
ence between the start time of each peak should be rounded to the average
bit period. It should be noted that the decoder computes the average bit
period based on the received preamble data. However, if a zero-one-zero
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transmission was made, the time difference of the start of the two received
peaks should be rounded to double of the average bit period. If a zero-one-
one-zero transmission was made, the difference should be rounded to triple
the average period and so on.

Eventually, synchronization is regained with every detected peak and
based only on the time difference between peaks, the decoder makes a deci-
sion on how many no-peak bits (ones in our case) are transmitted between
the zeros. The time difference does not have to be exactly equal to a multi-
ple of the average bit period. Instead, a range of values can be rounded up
to the same value and thus more flexible time-insensitive decoding decision
is made.

5.4 Experimental Evaluation

In this section, we first describe the devices used in our experiments and
the values for transmission parameters. We then report the results of the
transmission evaluation.

5.4.1 Experiment Settings

In our experiments, we programmed the PowerSnitch app using Android
Studio with API. The device used to measure the energy provided to the
device via USB cable is Monsoon Power Monitor? in USB mode with 4.55V
in output. The decoder used to process signal was implemented in MAT-
LAB. In order to evaluate the performance of the transmission, we send out
a payload comprised of letters and numbers of ASCII code for a total of 512
bits. The values of period used range from 500ms to 1000ms with incre-
ments of 100ms. It is worth mentioning that bits sent over our channel were
not packeted and no error detection or correction techniques were used. For
each phone and bit period, BER was computed after sending 512 bits at
once and then number of bits that were incorrectly decoded was calculated.

We evaluate the performance of our proposal on the following devices
running Android OS: Nexus 4 with Android 5.1.1 (API 22), Nexus 5 with
Android 6.0 (API 23), Nexus 6 with Android 6.0 (API 23) and Samsung
S5 with Android 5.1.1 (API 22). We underline that the devices used in our
experiments are actual personal devices, kindly lent by some users without
any money reward. In order to replicate an actual real world scenario, we
did not uninstall any app, nor stopped any app running in background.
The only intervention we made on those devices is the installation of our
PowerSnitch app.

2 www.msoon.com/ LabEquipment/PowerMonitor
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Device Period (milliseconds)
Model Operating system 1000|900 | 800 | 700 | 600 | 500

Samsung S5| Android 5.1.1 (API 22)| 12.5 |13.5|13.31|16.33| 17.9 | 21.42
Nexus 4 | Android 5.1.1 (API 22)| 13.5 |0.78| 0.0 | 0.0 |13.33|16.21
Nexus b Android 6.0 (API 23) |21.0 | 0.0 | 0.95 |36.82(40.35| 13.4
Nexus 6 | Android 6.0 (API 23) | 1.07] 0.0 | 0.21 | 0.0 | 4.05 | 7.42

Table 5.1: Results in terms of Bit Error Ratio (BER) as percentage.

5.4.2 Results

In Table 5.1, we report the performance of the decoder for processing the
received power bursts on different mobile devices. The results presented in
the table are in terms of BER in the transmission of the payload; the lower
the BER, the better is the quality of the transmission. For Nexus devices
(i.e., Nexus 4, 5 and 6), we achieve a zero or low BER of periods of 800ms
and 900ms (i.e., 1.25 and 1.11 bits per seconds, respectively). While for
Nexus 4 and 6, the BER remains under 20% and, for Nexus 5, it increases
to 37% and 40% with periods 700ms and 600ms, respectively. For Samsung
S5, the transmission BER is at 12.5% with a period of 1 second, and it
slowly increases to around 21% with a period of half a second.

The higher BER for Nexus 5 (i.e., periods 700ms and 600ms in Table 5.1)
are due to de-synchronization of the signal that the decoder was not able
to recover. To cope with this problem, we can divide the payload into
packets, where a packet header will be the preamble in order to recover
the synchronization. A quick overview of the communication literature can
show how a BER of 30% can be recovered using a simple Forward Error
Correction (FEC) technique where the transmitter encodes the data using
an Error Correction Code (ECC) prior to transmission; for example bits
redundancy or parity checks.

5.5 Discussion and Optimizations

In this section, we elaborate further on the results obtained in the exper-
imental evaluation of our proposed attack (Section 5.4). In particular, we
discuss on interesting observation made during our experiments. We also
present the optimizations that were implemented in the framework in order
to make our proposed attack more robust.

An interesting phenomenon to notice is that, as observed in our exper-
iments, the level of battery affects the quality of the transmission signal.
In Figure 5.9, we present the amount of electric current provided by the
power supplier to a Nexus 6 during recharge (i.e., the first 35 minutes) and
full battery states (i.e., after 35 minutes). Indeed, when the level for the
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battery is low (i.e., 0% to around 40%) the device consumes a high amount
of energy, and almost all of it is used to recharge the battery.

When attempting to transmit data in the aforementioned conditions, we
discover that the bursts were not easily distinguishable. In fact, the differ-
ence in terms of energy consumption between burst and rest was so small
that it cannot be distinguished from noise; thus, they can be filtered out
during the signal processing. Additionally, when the level of the battery is
increased, the amount of energy consumed to recharge the battery gradually
decreases. We observed that when the battery level is higher than 50%, the
power bursts become more and more distinguishable. However the best con-
dition under which the bursts are clear is when the battery is fully charged.
Indeed, as we can notice from Figure 5.9, the current drops down after the
battery level reaches 100%, because there is no need to provide energy to
the battery anymore - except to keep the device running.

The percentages mentioned above also depends from the power supplier
used to provide energy to the device. In our experiments, we used Monsoon
power monitor which provides as output at most 4.55V. Due to the limita-
tion of such power monitor, during the recharge of devices with fast charge
technology (e.g., Samsung S5, Nexus 6 and 6P), which are able to work with
5.3V and 2mA, the energy consumed is almost constant until the battery is
almost fully charged. Thus, we cannot decode any signal from the energy
consumption.

In order to avoid to transmit when the receiver is not able to decode
the signal, PowerSnitch checks whether the battery level is among a cer-
tain threshold w. Such threshold w can be obtained by PowerSnitch itself,
simply knowing the model in which it is running. This information can
be easily obtained without any permission (android.os.Build.MODEL and
MANUFACTURER) .
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Figure 5.9: Electric current provided to a Nexus 6 during recharge phase
and battery fully charged.

109



Security and Privacy Threats on Mobile
R. Spolaor Devices through Side-Channels Analysis

Optimizations In what follows, we elaborate on the optimizations that
were implemented in order to not be detected or make the victim suspicious.
The first optimization is to keep a duty cycle (i.e., the time of burst in a
period) under 50%. During an attack, if such optimization is not taken into
account (i.e., a duty cycle greater than 75%), the victim may be alerted by
two possible effects:

e the temperature of the device could increase significantly, in a way
that could be perceived by touching it.

o if the attack takes place during the battery charge phase, the battery
will take more time to recharge due to the high amount of energy used
by CPU.

However, as previously explained in Section 5.2.2, the duty cycle should be
50% of period (i.e., T;/2) in order to achieve a RZ. Thus, the above effects
are already taken care of in our proposed attack.

Another optimization involves the Android Debug Bridge (ADB) tool.
It is possible to monitor CPU consumption of an Android device via ADB.
Hence, one may use such debug tool to detect that something strange is
happening on the device (i.e., a transmission on the covert channel using
CPU bursts). Fortunately, PowerSnitch app could easily detect whether
ADB setting is active through Settings.Global.ADB_ENABLED, once again
provided by an Android API.

Another optimization to PowerSnitch app would be the ability to de-
tect if the power supplier is an accomplice of the attack. The accomplice
has to let PowerSnitch app know that it is listening to the covert channel
by communicating something equivalent to a “hello message”. In order to
do so, we can rely on the information about the amount of electric cur-
rent provided to recharge the battery. Such information is made available
through BatteryManager object, provided by Android API. In particular,
BATTERY PROPERTY CURRENT NOW data field (available from API 21 and on
devices with power gauge, such as Nexus series) of BatteryManager records
an integer that represents the current entering the battery in terms of mA.

On one hand, the power supplier can then variate the current in output
above and below a certain threshold 6 with a precise timing. As a practi-
cal and non-limiting example, at a point in time during the recharging, the
power supplier can output current with the following behavior: (i) below 6
for ¢ seconds, (ii) above 6 for ¢ seconds, (iii) again below 6 for ¢ seconds and
finally (iv) above 6 for good. On the other hand, since PowerSnitch app
monitors BATTERY _PROPERTY_CURRENT _NOW and knows the aforementioned
behavior (along with both 6 and ¢), it will be able to understand that at the
other end of the USB cable there is an accomplice power supplier ready to re-
ceive a transmission. This optimization is significant for reducing the chance
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to remain undetected, since PowerSnitch app will transmit data if and only
if it is sure that an accomplice power supplier is listening. With such op-
timization, we will obtain a half-duplex communication channel, since the
communication is bidirectional but only one participant (i.e., the device or
the power source) is allowed to transmit at a time. This optimization is not
currently implemented and will be considered as future work.

To summarize, the conditions under which the transmission of data is
optimal and the chance of being detected is lowest are as follows: the mobile
device has to be charged more than 50%, the screen has to be off, ADB tool
should be switched off (which is true by default) and the phone must to be
plugged with a USB charging cable to a public charging station which is
controlled by the adversary.

5.6 Summary

In this chapter, we demonstrate for the first time the practicality of using
a (power-only) USB charging cable as a covert channel to exfiltrate data
from a smartphone, which is connected to a charging station. Since there
are no visible signs of the existence of a covert channel while the battery is
recharging, the user is oblivious that data is being leaked from the device.
Moreover, our proposed covert channel defeats existing USB charging pro-
tection dongles, as described in [42] because it requires only the USB power
pins to exfiltrate data in the form of CPU power bursts.

To show the feasibility and practicality of our proposed covert channel,
we implemented an app, PowerSnitch, which does not require the user to
grant access to permissions at install-time (nor at run-time) on a non-rooted
Android phone. Once the device is plugged in a compromised public charg-
ing station, the app encodes sensitive information and transmits it via power
bursts back to the station. Our empirical results show that we are able to
exfiltrate a payload encoded in power bursts at 1.25 bits per seconds with
a BER under 1% on the Nexus 4-6 devices and a BER of around 13% for
Samsung S5.
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Chapter 6

Logging and Data Extraction Tool

Along with mobile operating systems, mobile devices are equipped with a
wide range of sensors, which collect data from the surrounding environment.
Built-in sensors such as gyroscopes, accelerometers, GPS receivers and dig-
ital compasses allow a mobile device to know its orientation, speed, and
position. As another example, built-in microphones and cameras collect
audio and visual feedback. Nowadays, all the aforementioned components
(and more) are commonly included in modern mobile devices, usually even
in low and mid-range ones.

The above mentioned hardware and software features make modern mo-
bile devices excellent data gathering devices for research purposes. In fact,
they allow us to explore whole new areas of research, spanning multiple
fields. For example, in the field of smartphone security, sensor and usage
data allows the development of new authentication techniques [54, 75, 85],
user profiling studies [192], and new attacks on user privacy that exploit side-
channel information [51,70,196]. Another interesting avenue of research is
using smartphones as portable monitoring stations, able to perform a vari-
ety of background monitoring tasks. Examples include collecting readings
from personal health sensors [166], recording ambient data like air and sound
pressure, monitoring and tracing people movements and habits [96]. Soft-
ware development can also benefit from such data from simply collecting
logs to monitor apps performance and crashes [47].

In this chapter, we categorized the types of data we can extract from
mobile devices into three main categories:

e Sensor data is data we can gather directly by querying the many sen-
sors embedded in modern mobile devices. This includes a wide variety
of information about the device itself and its surrounding environment
(e.g., the device’s position, orientation and relative speed).
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e Device/OS context data is the state of the device itself and its
operating system (e.g., battery level, list of running processes, traffic
statistics, and file system activity).

e User interaction data is related to the device’s user and her actions
and habits, such as how she interacts with the touchscreen, with the
keyboard and with elements of the User Interface.

Given the high value of this data for research, a powerful and flexible multi-
purpose logging tool would be of extreme value, as it would enables re-
searchers to make data gathering for their projects easier, effective and effi-
cient.

The contribution of our work is two fold:

1. We present a survey on the existing logging tools for mobile devices.
In particular, we select the more prominent tools present in the lit-
erature and we thoroughly compare their data collection features and
architecture, highlighting both their selling points and limitations.

2. We present DELTA - Data Extraction and Logging Tool for Android!,
our own logging solution for the Android platform. We designed and
implemented DELTA to cover the shortcomings most commonly found
in other tools. Our tool logs as many information sources as possible,
while at the same time allowing flexibility in what data is logged and
at which frequency. Moreover, DELTA’s architecture is designed to
be modular and as non-invasive as possible in regards to user privacy
and system security.

While DELTA does not introduce novel techniques in the way data is
collected from the Android operating system, we believe that the real value
of our tool is the way it makes easy for the user to collect and organize logs
from many sources without having to write her own implementation.

We make the DELTA source code and toolset available to the research
community and practitioners, so that interested people can leverage it to
streamline the process of logging data for their experiments.

Organization: The rest of this chapter is organized as follows. In Sec-
tion 6.1, we present a thorough survey on the existing data collection tools
for mobile devices. In Section 6.2, we go in-depth about the design and
inner workings of the DELTA system. Finally, in Section 6.3, we summarize
the work in this chapter.

'DELTA is open source and it is available at http://spritz.math.unipd.it/
projects/deltaloggingtool/
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6.1 Mobile Data Collection Tools

In this section, we open with a survey on existing mobile logging tools and
other related work in the literature (sections 6.1.1 and 6.1.2). We then sum
up the main limitations common to existing tools (Section 6.1.3). Finally,
we explain how our proposal outperforms existing solutions (Section 6.1.4).

6.1.1 Existing tools

While several logging tools exist that are aimed at a mainstream public (e.g.,
mSpy?2, MobiStealth?), they are generally unsuitable for research purposes.
Indeed, such tools are designed and marketed as “spy apps” and they do
not provide the precision and customization required for a research project.
In addition to that, these apps are typically designed to send data to third-
party remote servers, compromising user privacy and blocking access to the
collected data behind a pay-wall. For these reasons, we did not consider any
“spy apps” in this survey. Our solution is explicitly aimed at researchers,
and we want it to be as open and easily accessible as possible.

Data collection is also an important aspect in the field of forensics. How-
ever, in forensic analysis the aim is to extract relevant information from a
device at a certain point in time, usually in the context of a law enforcement
operation. This is why forensic tools for mobile devices (e.g., ADEL [77])
are designed to perform a one-time data extraction, rather than to continu-
ously monitor a device. This approach is very limiting for research purposes,
where researchers typically want to collect usage data over time in order to
find correlations and make predictions. In fact, a one-time extraction cannot
provide a history of sensor readings and system events because it is usually
more focused at making a snapshot of the current state of a device.

In our comparison, we focus on tools that can do continuous and/or
periodic logging of data from more than a single source or sensor: Sys-
temSens [68], DroidWatch [90], MobileSens [91], LiveLab (iOS) [179],
PhoneLab [144] and DeviceAnalyzer [202]. Tables 6.1 and 6.2 summarize
a feature comparison between the tools we tested and our solution. We
grouped the logging features in tables 6.1 and 6.2 to highlight the various
contexts from which we can gather data from (e.g., sensor readings, screen
interactions, network features). In the following paragraphs, we analyze
each of these tools in detail.

SystemSens is an open source logging application presented by Falaki
et al. in [68] that collects data from sensors and OS context, and it is de-
signed to offer some extensibility options. However, SystemSens has some
shortcomings that limit its usefulness for research purposes. Firstly, it has

mSpy - https://www.mspy.com
3MobiStealth - http://www.mobistealth.com
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Tool 2l 2|elzl85|4
#w|a|2|5|m|Aa|A

Features

Gravity sensor XX | X|X| x|/ |V
Accelerometer sensor X X| X\ /]| X |/ |V
Magnetic field sensor X|X|X|X| X |/ |V
£ | Proximity sensor XX | X|X|X|X |V
% Pressure sensor X X|X|X|X|X|V
»2 | Light sensor X|X|X|X| X | X|V
Humidity sensor XX | X|X|X|X |V
Log noise level around device X X|X|X|X|X|V
Record from microphone X X[ X|X|X|X|v
- Screen state (off/on/unlock) X VIV | X |/ |/ |V
% | Touch events logging X X[ X|X|X|X|V
5’) Keyboard state (open/close) X|X|X|X| X | X|V
Keylogging X X|X|X|X|X|V
CPU statistics SIX | XX | XX |V
Battery statistics VIX|X| /| X |/ |V
E Battery charging status I X\ VXV
© | Memory statistics I XX XXX |V
23 | System volume change XX | X|X|X|X|vV
g | Date / Time / Timezone changes | X | X |/ | X | X |/ |V
2 | Device turning on/off X X | /| X| X |/ |V
o | Storage space monitoring X X|X|X|X |/ |V
File system activity monitoring X X[ X|X|X|X |V
Alarms ringing XX X|X| x|/ |V
Z | Phone calls SNV
% Incoming SMS messages IV x| v
= Outgoing SMS messages X\ /| X |\ /| X |/ |V
& | Address book changes X X| /| V| X| X |X

Table 6.1: Feature comparison table — Part 1.
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Tool
Features
Airplane mode on/off
Cell tower ID
Cell signal strength
WiFi connection info
Scan of nearby WiFi HotSpots
Network status (3G/WiFi/none)
Network traffic statistics
Network packet sniffing
Opened URL logging
Bluetooth state changes
Bluetooth packet sniffing
NFC device scanning
NFC packet sniffing
Broadcast intents logging
Running services
Running applications and activities
Foreground activity detection
In-app Ul interactions and changes
App installs/uninstalls
Location services status
Coarse location
Precise location
Total logged features

Networking

Apps & events

Geoloc.

T30 N %N % % NN XX X XN X X NN X NN N Y| DeviceAnalyzer [202]
BIRRRKRRRRREx %x %x < xR KKK K| DELTA (our proposal)

SUXON N X X % NN XX X X X X X NN NN X N x| SystemSens [68]
SIN N NN N X % 3% %% % X X N X X X X X X X% X DroidWatch [90]
SIS X NN X NN XX XX XN XN %X N XXX MobileSens [91]
Sl N XN % % NN X% X X NN NN NN X% X N % LiveLab (10S) [179]
SN S NN NN N %X %% % X X X% X% X NN N N\ N\ X%| PhoneLab [144]

Table 6.2: Feature comparison table — Part 2.
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a monolithic design, with extensibility provided via Android Interface Defi-
nition Language (AIDL) [8]. as an optional feature. Secondly, SystemSens
uses a fixed global polling interval, set at a frequency of two minutes, which
is often not sufficient for fine grained data analysis (more on these issues in
Section 6.1.3).

Another similar tool is DroidWatch [90], an enterprise monitoring sys-
tem for Android mobile devices. Droid Watch focuses on data sources such
as phone call logs, visited websites, text messages and the user location. On
the other hand, it ignores system information and sensor readings. Droid-
Waich is also not natively extensible, and suffers from the same limitations
as SystemSens: no fine-tuning or advanced customization of logging behav-
ior and a monolithic design.

MobileSens [91] is another app for logging user behavior in Android.
The main aim of this tool is to profile user actions in order to study their
behavior. Thus, logging is geared toward user actions and how they affect
the state of the device (e.g., when the screen turns on/off, when the user
sends messages). Like DroidWatch, MobileSens is not extensible and no
source code is provided.

Developed by Wagner et al. at the University of Cambridge, Device-
Analyzer [202] is a comprehensive logging tool for Android. Among the
Android tools we analyzed, DeviceAnalyzer is the one that logs the largest
number of data sources. This tool is monolithic and not natively extensible,
nor is it open-source, making it unsuitable for researchers that want to add
their own custom logging plug-ins to the experiment. Moreover, DeviceAn-
alyzer collects all data and merges it into a global data set, controlled by its
authors. Although the authors provide access to the data set (on request),
this makes it impossible for a researcher to deploy a specific, customized
experiment to a specific group of users.

PhoneLab [144] is a full Android OS distribution that integrates logging
features into the original Android source code. The authors of PhoneLab
review and accept third party change requests to the codebase and integrate
them into the distribution, which is later deployed on a number of devices
(their testbed) under their control. This is an interesting approach, as it
allows to integrate logging at an OS level, bypassing API restrictions and
overheads. However, we also feel that such approach has some shortcomings.
Firstly, creating an experiment with PhoneLab requires non-trivial develop-
ment knowledge, as the contributors are required to branch, modify, rebuild
and merge the Android source code. On the other hand, DELTA is designed
to be usable for people that are not necessarily skilled in programming. Sec-
ondly, similarly to DeviceAnalyzer [202], PhoneLab is managed entirely by
the PhoneLab team, and contributors have no control over deployment of
their changes and over the data collection. Indeed, the PhoneLab team
has to evaluate and approve every change made to the codebase, with no
guarantees on how long the experiment will be kept running on the testbed.
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Finally, all gathered data is granted at discretion of the PhoneLab team.
We believe our approach with DELTA is more flexible, as experiments can
be distributed directly to participants and left running as long as the author
requires. Moreover the gathered data using DELTA can be collected and
accessed directly without intermediaries.

LiveLab [179] is a tool built for the iOS operating system. This tool
allows logging of various sensor readings and context data, with support for
uploading it to a remote server. Similarly to other tools we examined, Live-
Lab does not provide fine-grained tuning of polling intervals. In addition
to this, since apps not approved by the manufacturer cannot be installed
on i0S devices, it requires an unlocked (“jailbroken”) copy of iOS. This
requirement strongly limits the number of devices on which it can be de-
ployed. For our implementation, we decided to target the Android operating
system, to achieve maximum flexibility and guarantee a large potential user
base. Contrarily to LiveLab, our tool is designed to require an unlocked
(“rooted”) device only for certain advanced logging features, not obtainable
through the standard operating system API.

6.1.2 Additional Related Work

In this section, we briefly describe some additional tools and frameworks
that perform logging operations on mobile devices. We did not include these
solutions in our feature comparison, either because these solutions have a
limited scope, or because they are not straightforward logging tools, but
rather tools that log data to achieve a different primary goal.

One of the first works on device usage logging in the literature is MyEx-
perience, targeted at the Windows Mobile platform and presented in [79].
It is a logging tool capable of collecting context data and performing actions
in response to triggers configured by the experiment designer. Droid-
Tracer [108] is a Linux kernel module that hooks into the Android system
core at a low level. This tool aims to capture app interactions, logging data
such as remote method calls between apps and Android APT calls (e.g., ac-
cess to disk or telephony services). In our tool, we followed the more tradi-
tional approach of leveraging (when possible) the Android API to collect our
data. Implementing an approach similar to MyFEzperience, Ohmage [166]
is an Android tool designed to present the user with interactive surveys and
self-monitoring tasks depending on triggers such as time and location. This
tool is also capable of automatically collecting sensor data from the device,
such as accelerometer, GPS, WiFi, microphone audio recordings and cell
towers logs.

A novel solution is presented by Brouwers et al. with Pogo [36], a
middleware for Android mobile phone sensing. Pogo provides a JavaScript
API, which exposes a limited subset of the Android API. This feature allows
researchers to design experiments without being familiar with Java or the
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Android development platform. While the idea of using a simpler program-
ming language to design experiments is an interesting one, it also makes
Pogo very limited in its logging capabilities. In fact, a lot of sensor and
advanced contextual data can only be captured through calls to the native
Android API.

Finally, Dynamix [39] is an open-source extensible context-sensing
framework for Android. This tool is a plugin-based framework that collects
sensor data, processes it to build a “context”, and then makes this context
accessible to other applications via a dedicated API. While not strictly sim-
ilar to our tool its basic principles are similar to the ones present in DELTA.

6.1.3 Limitations

We encountered three limitations common to most existing tools. These
limitations greatly reduce the usefulness of such tools in a research context.
In fact, we found that researchers often opted for a custom solution, de-
veloped specifically for their project, instead of relying on existing logging
tools [51,54,85,187].

The first problem is finding a tool that single-handedly satisfies all the
data collection requirements for a particular research project. Most existing
tools concentrate on one particular area (e.g., logging data from the device’s
sensors, collecting network packets). While a combination of different tools
can be used to cover all the logging requirements of an experiment, this
approach introduces some drawbacks:

e Time consistency - different tools will operate independently, with-
out synchronization, and will timestamp data based on their internal
timings. This can cause inconsistencies in the timestamps, which in
turn can render collected data difficult to correlate precisely and thus
useless.

o Sampling rate consistency - different tools will most likely poll the
sensors/APIs of the device at different frequencies. This causes poten-
tially undesirable differences in the granularity of collected data.

e Data format consistency - different tools will use different formats to
save the logged data. This means that a researcher would have to
perform additional (and possibly non-trivial) post-processing on the
data. This post-processing can cause inconsistencies when trying to
correlate data together and is generally inefficient.

e Data collection - if different tools are used, there is no centralized
mechanism to collect gathered data and send it back to the researchers.
This means that an additional ad-hoc implementation must be devel-
oped and deployed for this purpose.
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The second common problem that existing tools have is limited support
for fine tuning the sampling rates, in all those scenarios that require periodic
polling of data (e.g., sensors reading). Existing tools tend to set a prede-
termined (and often relatively long) polling interval. While this limitation
is usually implemented with the intent of reducing energy consumption, it
can negatively impact on usefulness of collected data. In our approach, we
want the experiment designers to be in control of the sampling rates of each
logging operation, so that usefulness of collected data is maximized.

Finally, the tools we examined were not modular, instead using a mono-
lithic design which did not provide an easy way to extend their logging
capabilities. Even the ones that were extensible (e.g., SystemSens [68]) still
had a monolithic “core” that aggregated the basic logging features provided
by the tool, with extensibility being an added extra. This approach leads to
a lack of customizability and often violates the “principle of least privilege”,
i.e., the app will often require more permissions than are actually needed to
gather data for a certain experiment.

6.1.4 Comparison of DELTA with Other Solutions

Given the above premises and limitations of the existing solutions, we de-
cided to design a tool that would adhere to the following principles:

e [eature-richness - our tool aims to provide a large variety of logging
features out of the box, focusing on features that are not implemented
(or not found together) in other logging tools.

o Modularity - we are aware that it would be impossible to provide
support for every single logging need a researcher might have. Conse-
quently, our tool is designed to be easy to extend through a dedicated
plug-in system. This modular approach allows a developer to imple-
ment data collection features that are not available out of the box.

e Fine-tuning - our tool can be fine-tuned so that every single source of
data can be polled at a configurable interval (or not polled at all). This
approach allows the experiment designer to decide exactly which data
sources she wants to monitor and at which frequency. This brings
three advantages: (i) it maximizes usefulness of collected data; (ii)
it reduces overhead by only tracking data that the experiment needs
at the required intervals; (iii) the logger only requires the minimum
privileges necessary to run each experiment. This is important to
encourage user participation, especially if experiments are deployed
on a larger scale.

e Data distribution - our tool can be configured to send the collected
data back to a central server to make it accessible to the researchers
that are running the experiment. This feature is important, as it lets
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the researchers access the data as it is collected, allowing them to
monitor the logging process while it progresses. Automatic uploading
also removes the need to physically retrieve collected data from the
devices (although this is still an option, which might be more suitable
when dealing with large amounts of data).

Thus, we designed and implemented DELTA - Data Extraction and
Logging Tool for Android, an extensible Android logging framework that
aims to satisfy the aforementioned needs.

6.1.5 The “plugin problem” in Android

In this section, we integrate the background knowledge about Android op-
erating system and permissions previously introduced in Section 5.2.1: In
particular, we go more in-depth about the difficulties of developing an ex-
tensible application for Android. As stated in Section 6.1.4, we wanted
our system to be modular, so that researchers could easily implement addi-
tional logging capabilities besides the ones we provide out of the box. This
also means that we wanted our logging app (from now on referred to as
the logger) to only include the bare minimum code to fulfill the needs of
each experiment. In essence, this consists of using techniques that allow
the logger to dynamically load additional code (i.e., a plugin) at runtime.
A typical technique is using a class loader, like the one provided by the
Java Virtual Machine [115]. However, even though Android programming
is done in Java, and the class loader is still usable to load code dynamically
from an external file, the Android permission system can severely hinder its
functionality. In practice, even if the logger can technically load additional
code at runtime, this code will still run in the same process as the logger,
and thus with its permission set. Consequently, if the logger does not hold
the required permissions to run the dynamically loaded code, it will not be
able to execute it correctly. Note that this problem is not mitigated by the
new on-demand permission system introduced in Android 6.0 [10]: even if
apps can now request permissions at runtime only when needed, these still
need to be declared in the manifest, and thus known at compilation time.
This means that creating a plugin system for applications such as DELTA
is not straightforward. Our tool is designed to log a wide spectrum of data,
and access to this data is often mediated by a specific permission. There are
two ways to overcome this problem at runtime, but they both come with
specific drawbacks:

e Preemptive permission over-provisioning consists in having the
logger greedily declare the use of all existing permissions and be able
to execute any dynamically-loaded code that is permission-protected.
The advantage is that this way, the logger will be able to load any

124



Security and Privacy Threats on Mobile
Devices through Side-Channels Analysis R. Spolaor

plugin from an external file. However, this solution violates the prin-
ciple of least privilege, which as we have seen can be a security risk.
Moreover, it is not an effective solution: it needs to be constantly
updated to include new permissions and it does not cover other Man-
ifest extensions like services or GUI components that a plugin might
require.

e Full decoupling consists of having the plugins required for an exper-
iment installed as distinct, separate apps on the device, alongside the
logger. This way, the logger can be a minimal skeleton that delegates
logging operations to the plugins. Then, the logger will communicate
with them using one of Android’s built-in inter-process communication
mechanisms. This solution seems more reasonable than the former
one, but it has flaws of its own. The first one is that plugins have to
be installed on the device as separate apps, which can be extremely
annoying to the user. Secondly, inter-process communication in An-
droid relies on data serialization and message routing, which result in
overhead and consequently in a higher impact on system performance
and battery life.

6.2 Our proposal: DELTA

In this section, we present the system architecture of DELTA, and explain
how our implementation deals with the plugin problem. To better under-
stand the specific needs and concerns of researchers and users, we set up
two focus groups to help us define DELTA’s architecture and user interface.
The first group included researchers that had worked on projects that used
smartphone data as input, as well as Android developers. This group focused
on system architecture, and helped us develop a design that would be easy
to use for researchers and easy to extend for developers. The second group
focused on usability, and included people not necessarily familiar with An-
droid, such as researchers, students and other department staff. Input from
this group helped us with suggestions about the design and functionality of
the smartphone-side user interface of DELTA.

From the input received from these two focus groups, we set the following
goals that the DELTA system design should fulfill:

o Minimal knowledge required by experiment designers - we believe our
tool should be accessible to everybody, even if they are not knowledge-
able about the Android platform. DELTA provides dedicated graph-
ical tools and an automated build system, which make creating new
experiments straightforward.
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e Fase of extension for plugin developers - DELTA uses a fully modu-
lar plugin-based architecture, allowing developers to easily extend its
logging capabilities.

o Simplicity and security for users - DELTA was designed to be as easy-
to-use and non-invasive of user privacy as possible, thus encouraging
voluntary user participation.

6.2.1 System model

In this section, we illustrate the architecture of DELTA and show how each
of the above mentioned goals (Section 6.2) is achieved. Figure 6.1a shows a
high-level view of the DELTA system architecture, highlighting the various
components. Figure 6.1b explains the symbology of all diagrams in this
section.

Desktop
| DELTA Log Viewer | | DELTA Experlment Maker |
(View / Convert) :
Vlewnvert | Conflguratlon file |

[ |
| DELTA Source code |
[

Z >~ |
[ DELTA Web Service | | Android SDK |
[ 1 I 1
(Upload Logs) (_Build experiment )
|| | |
Experiment APK
| DELTA Logging Framework |[_Plugins )

Logged data

1 1
(_Download experiments ) ( Control experiments )

| DELTA Core App
Android OS

(a) Architecture of DELTA, highlighting its components and their
interactions.

[ DELTA Component | [ Module | Act/on
{Interaction> m Remote componen

(Environment )| External data / APl /component

(b) Legend for all the system architecture diagrams.
Figure 6.1: DELTA’s architecture and legend.

DELTA allows users to configure, create, deploy and manage data logging
experiments, in the form of standalone Android apps. From now on we will
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refer to these apps as DELTA Experiments, or simply erperiments. Each
DELTA Experiment is a specialized instance of DELTA Logging Framework
component, plus a variable set of additional libraries, the DELTA plugins.
Each plugin library contains one or more specialized modules that implement
the actual data gathering operations. The DELTA Logging Framework is
a generic framework that is able to instantiate and use the aforementioned
plugins to schedule and perform the data logging and storage operations
required by the author of the experiment.

Researchers who want to create new experiments can do so with the
DELTA Experiment Maker tool. DELTA Experiment Maker is a desktop
application that presents the users with a dedicated graphical interface,
through which they are able to configure and build new DELTA Experi-
ments. Depending on the chosen configuration, DELTA Experiment Maker
is able to build a custom DELTA Experiment that will include the minimal
set of plugins to log the required data. On the other hand, users that want to
participate in experiments can use DELTA Core App. DELTA Core App is
an Android app that is able to install, run, stop and remove DELTA Exper-
iments on the user device. Optionally, DELTA Core App also allows users
to download new experiments from the web or send the logged data back to
the researchers. These features are made possible by DELTA Web Service,
a simple self hosting web server that researchers can run to allow remote
collection of the logged data and remote deployment of new experiments.
Once the logged data has been collected, DELTA Log Viewer desktop appli-
cation can help researchers to merge it and convert it into different formats
for better analysis.

6.2.2 Logging Framework

The DELTA Logging Framework is the core engine that runs DELTA’s data
gathering and storage operations. It is an Android app that implements a
background service [11], the Logging Service, which is in charge of running
the experiment. When a researcher creates a new experiment a copy of
the DELTA Logging Framework, together with a configuration file and all
the necessary plugins, is compiled into a single APK file. This file is then
deployed to the user’s device, meaning the user only has to install a single
package to run an experiment. This architecture allows DELTA to reap the
benefits of a plugin system, while at the same time being as noninvasive
as possible. In particular, only the strictly required plugins are included
with the Logging Framework when building an experiment. Consequently,
the generated APK will only require the bare minimum permissions. This
minimizes overhead and complies with the principle of least privileges. The
anatomy and sub-components of a packaged DELTA Experiment are shown
in Figure 6.2a.
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The Logging Service component is in charge of governing the experi-
ment’s life cycle. The framework itself does not implement any logging
operations directly, delegating them to the various plugins instead. The ser-
vice autonomously maintains wakelocks and manages the timers that trigger
periodic logging operations. Its Storage Manager module implements facili-
ties for timestamping, formatting and storing the logged data. This relieves
plugin authors from having to manage such implementation details, so they
only have to implement the routines that actually perform the logging of
data.

Since the framework continuously runs in the background (if its exper-
iment is running) it was important to minimize its impact on system re-
sources, in order to save battery and not slow down the device. We designed
the DELTA Logging Framework so it minimizes the time it keeps the device
CPU awake. In particular, depending on the configuration of the plugins,
we can have three cases:

e Plugins that do not require periodic polling. These are plugins that log
data reactively. In this case, no wakelocks are used.

e Plugins that need to be polled periodically, but at long intervals. In case
of plugins that do require polling, but are set to a polling frequency
> 10 seconds (i.e., the average time after which the CPU goes to sleep
in Android devices), we use the energy-efficient alarms subsystem [9].
This facility allows us to schedule a periodic CPU wake-up without
keeping the device constantly awake.

e Plugins that need to be polled at fast intervals. In these cases, it is
necessary to resort to wakelocks to keep the device awake, as the
Alarms subsystem does not guarantee sufficient precision to schedule
low-latency events.

Even when using wakelocks, we aim to minimize DELTA Logging Frame-
work’s overhead, by limiting the number of timers and threads that perform
polling. In particular, the Polling Scheduler module groups all plugins con-
figured with an harmonic polling frequency into shared polling cycles, trig-
gered by a single timer. This minimizes context switches and computational
overhead. Nonetheless, the creator of an experiment can also decide to forgo
wakelocks altogether, and only let the experiment run when the device is
awake for other reasons. This is known as ”piggyback sensing” [110] and is
useful, for example, for experiments that only need to be running when the
device screen is on.

Finally, the Storage Manager module implements an internal cache, in-
visible to the plugins, in order to minimize I/O operations. On disk, data
is stored using lossless ZIP compression, to reduce occupation of the user’s
storage. Once logged and stored, data can be either uploaded remotely,
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via the Data Upload module, or dumped to a public portion of the user
storage for easy manual extraction via the Data Dump module. For more
information on data storage and format, see Section 6.2.6.

We also want to notice that our plugin architecture is designed in a way
that makes it easy for developers to modify and extend an existing plugin.
All of our plugin’s source code is freely available and our interfaces provide
entry points at various moments in an experiment life cycle (e.g., when the
experiment starts, when the plugin posts data back to storage). This allows
developers to quickly add functionality to an existing plugin with minimal
effort, e.g: adding additional checks at the start of an experiment, changing
the format in which data is stored or performing filtering/post processing
before data is sent to storage

6.2.3 Experiment Maker

The main components of DELTA Experiment Maker, and their interactions
are shown in Figure 6.2b. DELTA Experiment Maker is a graphical cross-
platform desktop tool, written in Java, that allows a researcher to easily
create and configure a new DELTA Experiment. The Experiment Maker is
designed so that the user can create a customized experiment with minimal
instructions, without any knowledge of Android or Java programming.

The Plugin Parser module leverages the Javaparser library to parse the
DELTA source tree and detect all existing plugins. Using this information,
the user interface presents the researcher with an automatically-populated
list of available plugins. The researcher can then choose which plugins to
include in the experiment, and is able to fine-tune the logging frequency of
each one, plus any other advanced logging option. The Experiment Maker is
also able to sign experiments after building, using a user-provided certificate.
This protects experiments against tampering.

Once the configuration has been decided, the Fxperiment Builder module
will invoke a series of custom build scripts to compile the experiment in a
self-contained Android APK package. This package includes the main logging
routines (the DELTA Logging Framework) and all (and only) the selected
plugins. The generated experiment packages are lightweight (usually around
1MB) and thus can be easily distributed to participants without concern for
download times.

6.2.4 Core App

The DELTA Core App is an Android app that manages DELTA Exper-
iments, aimed at end users that want to participate in experiments. Its
architecture and main modules are shown in Figure 6.2c.
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The DELTA Core App provides an intuitive graphical interface, from
which users can manage all the experiments available on their device. In
particular, the app allows them to:

e Import new experiments, either directly from a file or by acquiring
them through the DELTA Web Service (see Section 6.2.5 for details).

e Browse, install, remove and view details about stored experiments
through the Fxperiment Browser and Package Manager modules. A
detailed report is shown for each experiment, including information
such as what the experiment logs, who is the author and the certificate
used to sign it

e Monitor the status of an experiment and send commands to it, using
the Command and Control module. These commands include the
ability to start or stop the experiment at any time, plus additional
commands to extract logged data or upload it to a remote server

The DELTA Core App maintains a list of running experiments, and
is able to automatically restart them after the device is rebooted. This
way, long-running experiments do not have to be manually restarted by the
user in case they switch their phone off. The app is also able to automati-
cally schedule periodic uploads of the logged data to a remote server, if the
author of the experiment enabled this functionality when configuring the
experiment. To avoid depleting the user’s mobile data plan, this function
only runs if a WiFi connection is available.

Figure 6.3 shows the DELTA Core App’s user interface. Figure 6.3a
shows a screenshot of the main activity of our app, which shows the list
of installed experiments. In the main activity, the user can see at a glance
what experiments she has available and whether they are compatible, in-
stalled and running. For the sake of usability, we included two quick access
buttons: (i) INFO/MANAGE to view the details of an experiment and
manage it (see figures 6.3c and 6.3d); and (ii) START/STOP LOGGING to
start /stop an experiment. Moreover, a green icon (in “Net Stats” experi-
ment in Figure 6.3a) tells the user whether the experiment is running. Fig-
ure 6.3b shows the list of experiments available for download from a DELTA
Web Service (see Section 6.2.5) and allows a user to download them. The
screenshots in figures 6.3c and 6.3d show the experiment manager activity.
In this activity, the user can manage and read all the information about an
experiment. In particular, information about the author is shown (including
information on the digital certificate used to sign the experiment), together
with a description of what the experiment does and a detailed list of what
the experiment will log. This activity also allows users to easily manage
every aspect of an experiment in a single place (i.e., start/stop, download-
/remove and install /uninstall it) and its logs (i.e., request a data dump to
the local storage or trigger a data upload to the DELTA Web Service).
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6.2.5 Web Service

The DELTA Web Service is a standalone self hosting web server, written
in Java, that adds two key features to the system:

e [t allows users to download DELTA Experiments directly from
within the DELTA Core App. This greatly facilitates the distribu-
tion of experiments, as researchers can deploy them without having to
manually distribute the required files to all users.

e It allows experiments to send the logged data back to the re-
searchers. This means that researchers can collect the logged data
automatically, without needing access to the user’s device to perform
a data dump. This also makes it possible for researchers to start
analyzing incoming data while the experiment is still running, thus
allowing them to speed up their analysis. It also has the added bonus
of not clogging the user device with old data, since segments that are
uploaded to the server are deleted from the local device cache.

DELTA Web Service is provided alongside the main components, so any
experiment author can run a copy of it independently. This ensures that
the experiment author has total control over the collected data, which is not
sent to a third-party server.

Note that using the DELTA Web Service is entirely optional. Experiment
creators can still distribute experiment packages through any other mean
(e.g., email, USB side-loading), the DELTA Core App is able to import
them directly from the file system. Similarly, logged data does not have to
be uploaded to the web service: it can simply be dumped to the device’s
public storage to then be extracted manually.

6.2.6 Data format and the Log Viewer

One of the advantages of having a multi-purpose logging tool like DELTA is
that logged data has a consistent format, independent from the data source.
In our implementation, we use JSON as our format for storing data. JSON is
lightweight but at the same time, unlike the popular CSV format, it supports
nested objects, so it can be used to represent complex data.

For added flexibility, our data-reporting interface also supports logging
of raw binary data. This comes in handy, as some plugins may log data that
is not suited to be represented efficiently through strings (e.g., the audio
recording plugin).

To avoid potential data corruption or loss, the DELTA Logging Frame-
work stores data in separate chunks, which are then uploaded to DELTA
Web Service or otherwise retrieved by the interested party. To store data on
disk, we use the DEFLATE algorithm. This gives good compression for tex-
tual data, without being too heavy on the device’s CPU. This is important,
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since complex computations greatly affect the performance and battery life
of mobile devices. Our tests have shown that the output from most of our
plugins achieves an extremely high compression ratio, with compressed data
typically ranging from 2% to 6% of the size of the original. All data is
timestamped in milliseconds since Linux Epoch?.

DELTA Log Viewer is a utility that can preview, merge and convert
the logs collected by a DELTA Experiment. In particular, the user can
choose to export just a specific data chunk, all the data logged from a specific
device or all the data collected from all devices involved in the experiment.
The DELTA Log Viewer can also convert data, if requested, from its native
JSON format to a more user-readable CSV file format. DELTA Log Viewer
can also be used to preview the collected logs, and to merge together any
binary (non-textual) data collected during the logging process.

6.2.7 Plugins and extensibility model

A DELTA Plugin is a specialized Java class that logs data on behalf of
the DELTA Logging Framework. DELTA Plugins are contained in standard
Android library packages (AAR), where each library package can contain one
or more plugins. Contrary to what most other logging tools do, we designed
DELTA to be completely modular, meaning that all the logging features we
implemented are implemented as standard, optional DELTA plugins. No
logging functionality is hardcoded in the DELTA Logging Framework which
is, in fact, oblivious of the plugins. In our source code, we put plugins that
require the same set of permissions together in the same library packages.
This way we comply with the principle of the least privilege, as the final APK
will only contain the strictly necessary libraries and thus will only require
the minimum set of permissions to run the experiment.

From the point of view of a plugin developer, creating new plugins is
a straightforward process. The implementation footprint consists of only a
couple of standard interfaces and a Java annotation containing metadata
(e.g., the author of the plugin, description of what it does, developer notes).
This data is shown to experiment creators during the configuration phase.
We also employ the Java annotation system to allow developers to easily de-
fine advanced options that experiment authors can modify at configuration
time, so that plugins can be flexible in how they log data.

There are two distinct kinds of DELTA plugins that can be created,
depending on how the data is gathered:

e Event plugins log data reactively, i.e., they do not need to be polled
periodically, and are useful to subscribe to system events or other data
sources that can actively notify a plugin of content changes.

400:00:00 UTC, 1 January 1970
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e Polling plugins are polled periodically at a certain frequency, and
are typically used to log data at a fixed rate. Examples include logging
sensor readings or periodically collecting statistics about the system
or the apps running on it.

While the DELTA codebase already includes several plugins, as dis-
cussed, we also implemented support for using plugins as standard pre-
compiled Android Library AAR packages. This way, the DELTA Experiment
Maker can load the plugins even if they are not merged into the official
DELTA source tree. Plugin developers can thus easily share new plugins
with experiment creators, without necessarily having to share the source
code. Users of the DELTA Experiment Maker can add precompile plugins
to their project by simply copying them to a specific folder, without any
additional configuration needed.

6.3 Summary

In this chapter, we presented DELTA - Data Extraction and Logging Tool for
Android, our implementation of a multi-purpose logging tool for Android.
We started by comparing similar pre-existing tools, highlighting their tar-
get audience, features and common shortcomings. Then, we showed how
DELTA improves on existing solutions in terms of flexibility, customization,
extensibility and logging scope. Of the solutions we examined, our solution
is the only one that is built from the ground-up to be fully modular. DELTA
is also the only one to achieve this without either violating the principle of
least privilege or relying on inter-process communication. DELTA is also,
by far, the most complete of the examined tools, logging more than forty
different data sources.

We believe that DELTA’s feature-richness and simple extensibility model
can make it a precious tool for researchers. Writing a custom logging tool
for an experiment is often a non-trivial endeavor, requiring time and knowl-
edge about Android development. DELTA’s feature-richness and high level
of customization is often enough to create an experiment suited to a lot of
data logging needs. When the basic set of plugins does not suffice, DELTA’s
modular design makes extension easy, abstracting away most of the com-
plexities involved in developing a full-fledged custom logging tool.
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Chapter 7

Robust Sandbox Against Malware
Analysis Evasion

Among mobile operating systems, Android is the leading platform, with a
market share of 86% in 2016 [81], and it is growing as a new target for
malware and attacks against users’ privacy. The Android operating system
uses a modified version of the Linux kernel, where each app runs individually
in a secured environment, which isolates its data and code execution from
other apps. The operating system mediates apps’ access requests to sensitive
user data and input devices (i.e., enforcing a Mandatory Access Control).
Without any permission, an app can only access few system resources (e.g.,
sensors, device model and manufacturer) [17].

Although malware could escalate privileges by exploiting vulnerabilities
in the operating system, new threats arise also from apps that run unpriv-
ileged. Malware for Android often harms users by abusing the permissions
granted to it. For example, malware can cause financial loss by leveraging
features such as telephony, SMS and MMS, while with access to camera,
microphone, and GPS it can turn a smartphone into an advanced covert lis-
tening device. Moreover, the leak of confidential data, such as photos, emails
and contacts, threatens users privacy as never before [205]. Attackers usu-
ally spread malware infections by repackaging an app to contain malicious
code, and by uploading it to Google Play (i.e., the official marketplace) or
alternative marketplaces [215]. A possible approach to reveal malicious An-
droid apps consists of analyzing them one at a time. However, this may
be fighting a losing battle: Google Play counts more than 2.2 million apps
today [189]. Thus, in recent years, researchers attention moved to the study
of batch (i.e., non-interactive) analysis systems [121,193,197].

Malware analysts can examine suspicious apps through static analysis
and dynamic analysis. On one hand, static analysis consists of inspecting the
resources in the packaged app (e.g., manifest, bytecode) without executing it.
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Unfortunately, an adversary can hinder static analysis by using techniques
such as obfuscation, encryption, and by updating code at runtime. On the
other hand, dynamic analysis consists in monitoring the execution of an app
in a test system. During such analysis, the sample (i.e., an app submitted
for the analysis) runs in a sandbox. A sandbox is an isolated environment
where malware analysts can execute and examine untrusted apps, without
risking harm to the host system.

Academic and enterprise researchers independently developed many
malware analysis systems for Android. For example, Google introduced
Bouncer, a dynamic analysis system that automatically scans apps uploaded
to Google Play [123]. Such analysis systems run long queues of batch anal-
yses in parallel, and typically do not rely on real devices but on Android
emulators. Unfortunately, emulators present some hardware and software
differences (i.e., artifacts) with respect to real devices, which can also be
recognized at runtime by apps: By detecting these artifacts, an app can
easily recognize whether it is running or not on a real device. A malicious
app can exploit emulator detection to evade dynamic analysis and show a
benign behavior, instead of the malicious payload. Relying on such mech-
anism, malware authors might spread a new generation of malicious apps,
which they would be hardly detectable with current dynamic analysis sys-
tems. While researchers keep improving dynamic analysis techniques, they
are overlooking the accuracy of virtualization. In current malware analy-
sis services for Android, the coarseness of the underlying emulator hinders
researchers efforts.

The contribution of this work is a step towards the development of a
stealthier malware analysis sandbox for Android, which reproduces as much
as possible the characteristics of real devices. Our goal is to show malware
the characteristics of an execution environment that appear to be real but
are not actually there!. In this chapter, we make the following contributions:

e We define six requirements to design a sandbox that can cope with
current evasion attacks, and is easy to evolve in response to novel
detection techniques.

e We propose Mirage, an architecture that fulfills all these requirements.
Researchers can use Mirage to implement more effective malware anal-
ysis sandboxes for Android.

e We describe our proof of concept implementation of Mirage.

o We evaluate the effectiveness and the modularity of Mirage by tack-
ling a specific and representative case: address sandbox detection tech-
niques that exploit sensors capabilities and events.

'Like a mirage in a sand(box) desert, and this motivates the name of our proposed
solution.
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e We show that Mirage, with our sensors module, can cope with most
evasion attacks based on sensors that affect current dynamic analysis
systems.

Organization: The rest of the chapter is organized as follows. We start
by presenting related work in Section 7.1. In Section 7.2, we define six re-
quirements that, based on the characteristics of evasion attacks, we believe
are essential to develop a malware analysis sandbox for Android. In Sec-
tion 7.3, we present the components of Mirage. As a representative case
study, in Section 7.4, we describe our proof of concept implementation of
Mirage which addresses evasion attacks based on sensors. In Section 7.5, we
compare our system with state of the art malware analysis services, with re-
spect to sensors-based detection techniques. and we discuss its effectiveness
in Section 7.6. Finally, Section 7.7 concludes the chapter.

7.1 Related Work

Security researchers put a lot of effort in detecting PC virtualization [154,
165]. However, in the era of cloud computing, a desktop or server operating
system running inside a virtual machine is no longer a sign that dynamic
analysis is taking place. Regarding mobile devices, nowadays malware an-
alysts mainly rely on emulators, so malware can use emulator detection to
evade dynamic analysis. Therefore, we strongly believe that evasion attacks
on mobile emulators will be a hot topic for researchers in the years to come.

In what follows, we report the work related to the domain of sandbox
detection. In [199], Vidas et al. described four classes of techniques to evade
dynamic analysis systems for Android. The authors categorize such tech-
niques with respect to differences in behavior (e.g., Android API artifacts,
emulated networking), in CPU and graphical performances, in hardware
and software components (e.g., CPU bugs, sensors, emulated battery), and
in system design. Similarly, Petsas et al. in [159] presented evasion at-
tacks against Android virtual devices. The authors divide the attacks in
three categories based on static properties, dynamic sensors information
and Android emulator (modified QEMU emulator) artifacts. In the eval-
uation, the authors successfully evaded several dynamic analysis software
and online services. Jing et al. in [100] introduced Morpheus, a software
that automatically extracts and rank heuristics to detect Android emulators.
Morpheus retrieves artifacts from real and virtual devices, and it compares
the retrieved artifacts to generate heuristics. The results that the authors
achieved during their experiments are surprising: Morpheus derived 10,632
heuristics from three out of thirty-three sources of artifacts. Maier et al.
in [126] presented a tool for Android called Sand-Finger, which is able to
collect information from sandboxes that malware can use to evade dynamic
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analysis. The authors tested ten sandboxes and antivirus services and all
of them exposed some artifacts to Sand-Finger. As a result, the authors
developed a split-personality version of the AndroRAT malware relying on
their findings.

Some industry presentations examined the sandbox detection problem
as well. Strazzere, in [191], proposed detection techniques based on system
properties, QEMU pipes and content in the device, which he embedded in
an app for Android. Oberheide et al., in [151], and Percoco et al., in [158],
showed that Google Bouncer is not resilient against evasion attacks, and an
attacker can bypass it to distribute malware via Google Play marketplace. In
addition to fingerprinting Bouncer, the former managed to launch a remote
connect-back shell in its infrastructure.

Researchers proposed many dynamic malware analysis systems for An-
droid that rely on an emulator. Few examples of such systems are Cop-
perDroid [193], CuckooDroid [44], DroidBox [111] and DroidScope [209].
Other systems such as AASandbox [32], Andrubis [121], SandDroid [173]
and TraceDroid [197] perform dynamic analysis on an emulator as well, but
they also use static analysis to improve their performances. In addition to
performing both static and dynamic analysis, authors in [200] proposed to
analyze samples using an emulator that they enhanced to tackle some evasion
attacks. Although authors in [200] focus on how to perform malware analy-
sis, it presents some interesting ideas against sandbox detection techniques.
An interesting idea is to use a mixed infrastructure composed of real and
virtual devices. Mutti et al. in [143] presented BareDroid, a malware anal-
ysis system based on real devices, instead of emulators, which consequently
is more robust to evasion attacks. The authors estimated that a BareDroid
infrastructure would cost almost two times the cost of a system based on
emulators with the same capabilities. However, a virtual infrastructure is
more elastic when compared to a cluster composed only of physical devices,
which may suffer from under or over-provisioning. The authors estimated
that a BareDroid infrastructure would cost less than twice the investment
needed to deploy a system based on emulators with the same capabilities.
This thanks to their fast approach to restore devices to a clean snapshot.
However, cloud providers offer virtual machines on demand. Hence, a virtual
infrastructure is more elastic when compared to a cluster composed only of
smartphones. Indeed, a cluster of smartphones may suffer from under or
over-provisioning.

To the best of our knowledge, the work by Gajrani et al. [80] is the most
similar to our proposal. After giving a general overview on emulator detec-
tion methods, the authors present DroidAnalyst, a dynamic analysis system
that is resilient against some of them. Their system can hinder evasion at-
tacks based on device properties, network, sensors, files, API methods and
software components. We share a common goal with the authors of [80]:
the development of a malware sandbox for Android resilient against evasion
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attacks. However, we identified in [80] the following limitations (that we
instead overcome with our proposal):

e Their analysis about artifacts in Android sensors API is not exhaus-
tive. For example, they do not take some of our findings (see Sec-
tion 7.4.2) into consideration.

e They propose a solution that consists of a set of patches to their analy-
sis system based on QEMU. Therefore, it is not a general architecture
like our proposal.

e DroidAnalyst uses an approach based on emulator binary and sys-
tem image refinement, which does not allow the same emulator to
impersonate two different real devices, unless they are modified again
and restarted. Conversely, the requirements of Mirage (presented in
Section 7.2) discourage any modification to the emulator, since the
sandbox would be less flexible and hard to maintain.

To evaluate the effectiveness of our sandbox detection heuristics based on
sensors, we tried to submit to DroidAnalyst our sample, i.e., the Sand-
boxStorm app (see Section 7.5). Unfortunately, the DroidAnalyst dynamic
analysis subsystem was under maintenance, and is still not available at the
time of writing.

7.2 Sandbox Requirements

After studying state of the art sandbox detection techniques [100, 126,159,
199], we define six key requirements that we believe are essential to develop
a malware analysis sandbox for Android. Our goal is to derive the design
of an architecture from the requirements, which can consist of one or more
parts (i.e., components). We formulate the first three requirements on the
basis of desired features to cope with the evasion attacks described in the
aforementioned work (see Section 7.1). Moreover, we formulate three addi-
tional requirements taking into account that the sandbox should be flexible.
The requirements are:

e Stealthiness of sandbox components: The components of the
sandbox shall be unnoticeable by malware. Otherwise, an adversary
could recognize a component of the sandbox, and evade dynamic analy-
sis. This may seem a trivial requirement, but it serves as a cornerstone
for our work. Nowadays, virtualized environments are not realistic and
easily detectable [128,154,159,165]. Unfortunately, adding new coun-
termeasures in such environments to achieve stealthiness produces new
artifacts (e.g., processes and files). Such artifacts allow malware au-
thors to fingerprint the whole system, causing the ineffectiveness of the
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countermeasures in place to make the virtualized environment stealthy.
If the sandbox is not fully undetectable, it should be able to hide its
imperfections, hiding them to the samples.

e Consistency of bogus data: The sandbox shall provide realistic and
consistent information to the sample throughout the analysis. Other-
wise, an adversary could detect the sandbox by exploiting the discrep-
ancies in information that comes from different sources. To hide the
artifacts in the emulator, the sandbox must produce a large amount
of fake data. In this case, random generation is not an option, since
it is prone to introduce discrepancies in data. For example, telephone
numbers in contacts shall be composed of a country calling code plus
a fixed number of digits [199]. A possible solution could be to use data
collected from real mobile devices. In addition to that, the modules in
the sandbox that inject such data must coordinate with each other to
mimic a realistic environment.

e Monitor known evasion attempts: The sandbox should be able
to notice whenever a sample is likely exploiting known detection tech-
niques. Even if some artifacts are obvious but not fixable with nowa-
days technologies, it is worth to log all the suspicious attempts and
act in an alternative way. However, when an app looks for artifacts, it
does not strictly means that that app is trying to evade the analysis.

e Modularity of sandbox components: The components of the
sandbox shall be modular with respect to detection techniques that
malware exploits. We believe this is a key requirement, since re-
searchers keep reporting cutting-edge [100, 126, 159, 199] evasion at-
tacks every year. Researchers shall have the opportunity to develop,
customize and publish new parts in a modular fashion, to keep up with
the state of the art. A system designed to be open to new contribu-
tions makes it also improvable, in order to cope with emerging threats.
Furthermore, since the Android operating system and its SDK change
rapidly, sometimes new features break the compatibility with old ones
that were available in previous versions. Hence, it is necessary to di-
vide the components internally into modules. This allows to redesign
and implement again just the modules that the changes affect.

e No modifications to the Android source code: The sandbox
should not require any change of the Android source code. Although
it would possible to alter APIs by modifying the operating system,
compiling Android requires a significant amount of computational re-
sources. In fact, a single build of an Android version newer than Froyo
(2.2.x) requires more than two hours on a 64-bit consumer PC, plus at
least 250GB (including 100GB for a checkout) of free disk space [12].
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Even with the necessary resources and a semi-automated workflow,
maintaining several versions simultaneously would be an overwhelm-
ing task.

e No modifications to the Android emulator: The sandbox should
not require significant modifications to the emulator. Researchers are
using different hypervisors and virtual machines for dynamic malware
analysis, therefore we cannot focus on a specific technology. For exam-
ple, systems like CopperDroid [193] use virtual machine introspection
to reconstruct the behaviors of malware, hence such systems are po-
tentially adaptable to any emulator. Forcing the scientific community
to port the existing software to meet a modified emulator would likely
lead to failure in the adoption.

7.3 Mirage: Our System Architecture

In this section we present Mirage, our architecture for a malware analysis
sandbox robust against evasion attacks. One of the key feature of Mirage is
that it is composed of processes that execute inside the operating system,
and software that runs outside the emulator. This feature allows Mirage to
be not tied to a specific analysis system. Although in this chapter we refer
to a single instance of the sandbox, we argue that it is possible to replicate
an instance multiple times to scale out and serve more requests concurrently.
In addition to that, we could deploy a small bare metal infrastructure (i.e.,
composed of real devices), like BareDroid [143], in conjunction with our vir-
tualized environment. The analysis through a real device is useful whenever
we suspect that a sample might use sophisticated emulator detection tech-
niques. We assume that most of the requests are addressed in our sandbox,
and we consider the forwarding of the samples to a real device as a last
chance. It is worthy of note that, although we focused on the Android oper-
ating system, Mirage architecture is not operating system specific. Indeed,
Mirage could be implemented in other mobile platforms as well.

In Figure 7.1, we illustrate the four main components of Mirage which
are the Methods Hooking Layer (Section 7.3.1), the FEvents Player (Sec-
tion 7.3.2), the Coordinator and Logger (Section 7.3.3), and the Data Col-
lection App (Section 7.3.4).

7.3.1 Methods Hooking Layer

The first component of Mirage architecture is the Methods Hooking Layer.
This component executes as a process in the Android operating system.
The main function of Methods Hooking Layer is to intercept calls to
methods of Android API and manipulate their return value. Such ma-
nipulation occurs just whenever the original returned value may reveal
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Figure 7.1: Mirage architecture, highlighting its components and their in-
teractions.

the presence of the underlying emulator. Relying on this component,
we can address the majority of behavioral differences. As an example,
we can return a well-formed telephone number when a sample asks for
TelephonyManager.getLinelNumber (), instead of the default one (which in
an emulator always begin with 155552155, followed by two random digits).
Since it is possible to predict which artifacts the Methods Hooking Layer
introduces, we can use such component to hide them as well. Moreover,
hooked methods should perform minimal computation to reduce the risk of
detection via computational timing attacks.

The Methods Hooking Layer do not require a particular Android emu-
lator or modifications to the emulator. Therefore, this Mirage component
is simple to develop and to maintain across different Android versions and
emulators. The code of the Methods Hooking Layer executes directly on a
compiled operating system image. Hence, such code is debuggable without
modifying and compiling every time the Android source code. In compliance
with the modularity of sandbox components requirement (see Section 7.2),
the modular sub-architecture of the Methods Hooking Layer makes it flexible
with respect to changes. The Methods Hooking Layer divide hooks by target
artifacts, thus they are editable without touching the other hooks. Moreover,
such sub-architecture allows researchers to share their proof of concepts or
mature modules in a common framework. However, system constants ex-
pose some artifacts as well (e.g., the ones contained in android.os.Build).
As a worst case scenario, the implementation of the Methods Hooking Layer
might not be able to intercept accesses to system constants. Nevertheless, in
this case we may patch the app and redirect the accesses to system constants
toward a class that we redefined ad-hoc.

7.3.2 Events Player

Real mobile devices generate many events in response to external stimuli,
hence hooking methods calls and manipulation their return value is not
enough to simulate such asynchronous behavior. Listeners catch most of
the events in Android, and they perform an associated action afterwards.
In order to make our runtime environment as realistic as possible, we need
the Fvents Player replay recorded or generated streams of events in the
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emulator. Besides the touch screen, the main sources of events are sensors
(e.g., accelerometer, thermometer) and multimedia interfaces (e.g., camera,
microphone). The Events Player shall stimulate other hardware conditions
that change over time, such as battery drain.

The Fvents Player replays tidily the streams of events, respecting their
order. The accuracy of values domain is crucial to build a stealthy sandbox.
Indeed, the sandbox would be vulnerable to detection and fingerprinting,
whether the injected events do not resemble the ones that come from a
real sensor (e.g., they are out of range). Like the Methods Hooking Layer,
the Events Player runs along with the operating system. This means that
the FEvents Player does not require to rebuild Android from scratch or to
modify its source code. Similarly to the Methods Hooking Layer, the Fvents
Player uses only tools from Android, Android SDK and emulators, without
requiring any modification. Finally, the Fvents Player is also able to feed
the camera and the microphone with pre-recorded footage.

7.3.3 Coordinator and Logger

The Coordinator and Logger, as it results clear from its name, has two roles:
to coordinate and to log. Its first role as coordinator consists in ensuring
consistency of bogus data, which the other components inject into the emu-
lator. Whenever the Methods Hooking Layer loads a new module, or when
the Events Player opens an events stream, we have to instruct the coordi-
nator on how to manage such hooks or events stream in accordance with the
other modules. A deep study of the interaction between Android features
lead to a set of rules, which the coordinator feature is able to interpret. For
example, data that sensors acquire is interdependent (e.g., accelerometer
and GPS). Moreover, actuators on the device (i.e., the screen, the notifica-
tion LED, the flash, speakers and the vibrator) can also influence data that
sensors record (e.g., speakers may influence the microphone).

The second role of this component consists in logging what happens
inside the sandbox. This logging feature of the Coordinator and Logger
is useful to have an insight on which detection techniques the samples are
probably exploiting. In addition to that, the logging feature is even more
useful to signal whenever a sample attempts to use a known technique which
the sandbox is not able to cope with yet. In this way, Mirage is able to
monitor all possible evasion attempts. The Methods Hooking Layer reports
to the Coordinator and Logger every suspect or evidence about the analyzed
sample. The Coordinator and Logger could manage the analysis process
entirely. As an example, this component could handle tasks such as sample
submission or the presentation of results.
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7.3.4 Data Collection App

The task of the Data Collection App is to collect information from real mo-
bile devices. Then, the Coordinator and Logger will inject such information
into the Methods Hooking Layer and into the Events Player. The goal of
this process is to hide artifacts in the emulator. Indeed, acquiring data from
different smartphones and tablets models allows to create emulator instances
with different characteristics. At the same time, this approach also reduces
the risk that malware authors detect a particular image. The app is also
responsible of capturing events streams on the real device, and store them
in a compact and easy to replay representation.

The Data Collection App can retrieve information from real mobile de-
vices available in a laboratory, but a real advantage would be to collect data
with crowd-sourcing. On one hand, in a laboratory scenario researchers
could ask their colleagues or students to kindly give their help by installing
the app and uploading data. The DELTA framework (See Chapter 6) is an
example of logger for Android that may be used to collect the data from real
mobile devices. On the other hand, in a crowd-sourcing scenario companies
could include the Data Collection App in their mobile app. Adopting a
freemium pricing strategy, companies can freely distribute their software for
free in exchange for data collected from the device. With an app with a wide
user base, it is also possible to acquire “disposable” data on demand. As an
example, an antivirus app may offer to the user an extension of the license
or a month of premium features, if she agrees to share with the company
her sensors events for the next ten minutes. In both scenarios, we highlight
that data collection must be respectful of the privacy of the participants,
e.g., applying perturbation on collected data. Such perturbation is meant
to alter information in such a way that avoids to expose the contributing
user’s identity (e.g., biometrics, habits) and, at the same time, preserves the
characteristics of the device.

7.4 A Representative Case Study: Tackling Eva-
sion Attacks Based on Sensors with Mirage

In this section, we present the development process of a sensors module for
Mirage, i.e., a collection of modules that emulates sensors in one or more
Mirage components. Designing an effective countermeasure against evasion
attacks requires a deep understanding of the problem. In this case study, we
analyzed the differences in sensors characteristics between real devices and
emulators. This case study has two purposes: (i) to briefly describe how
we implemented Mirage, and (ii) to show that Mirage is effective against
the proposed detection heuristics based on sensors. With a proof of concept
implementation, we propose also an approach to carry out an investigation
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on evasion attacks. The final goal of such investigation is the development
of a module for Mirage. In this way, researchers can extend Mirage to tackle
novel evasion attacks, by following the workflow we present in this section.

In what follow, we discuss some choices about the components of our Mi-
rage implementation. First, the Methods Hooking Layer rely on the Xposed
framework as a methods hooking facility [201]. Xposed is an open source
tool that allows to inject code before and after a method call. It is worthy
of note that other hooking tools, such as Cydia Substrate [76], adbi [141]
serve the same purpose. In particular, we preferred Xposed because Cydia
Substrate is not open source and adbi supports only the instruction sets
of ARM processors. Xposed by its nature is detectable, since it introduces
some artifacts. However, subverting methods hooking detection techniques
is not difficult, as pointed out in [28]. Secondly, the Events Player relies on
a Telnet console in QEMU, which allows to remotely inject sensors events
into the emulator. During our preliminary studies, we considered multiple
alternative approaches. Unfortunately, most of the alternative approaches
we investigated are not viable due to our requirements in Section 7.2 (e.g.,
modifications to the emulator) or because they are not compatible with
recent Android versions (e.g., RERAN [87]). Although this is a QEMU-
specific feature, other emulators (e.g., Genymotion, Andy) offer a similar
events injection mechanism. Finally, we develop a custom Data Collection
App and we implement the remaining components as a set of scripts.

The case study we report in this chapter is focused on sensors artifacts.
We chose detection techniques based on sensors for three reasons:

1. Researchers pointed the feasibility of such detection techniques [159,
199] without providing any effective countermeasure.

2. A possible countermeasure against such detection techniques involves
multiple components in our system (i.e., the Methods Hooking Layer,
the Fvents Player, the Coordinator and Logger, the Data Collection

App).

3. Accessing motion, position and environmental sensors do not require
any permission. This means that the sensors-based detection tech-
niques are stealthier than the ones that do not rely on sensors. In
fact, a popular app can be repackaged to include a sensors-based de-
tection technique, without altering the original permission list in its
manifest.

Modern mobile devices embed motion sensors that measure acceleration
and rotational forces along three axes. Motion sensors are usually hardware-
based (e.g., accelerometer, gyroscope). However, some sensors are software-
based (e.g., gravity sensor), since they derive their data from hardware-based
sensors. Mobile devices embed also hardware-based sensors that measure
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the position of the device, such as orientation and other magnetometer sen-
sors (e.g., compass). In addition to that, some other hardware-based sensors
measure various environmental parameters (e.g., ambient temperature, pres-
sure, light level, and humidity). Android sensors API provides classes and
interfaces that allow to retrieve sensors characteristics and to acquire raw
data. Sensors availability varies among mobile device models. Indeed, most
of mobile devices embed an accelerometer and a magnetometer but fewer
have a barometer or a thermometer. High-end smartphones and tablets even
embed more than a single hardware-based sensor per type. In addition to
the model of the mobile device, the availability of a sensor also depends on
the Android version installed. For example, only recent platform releases
(API level greater than or equal to 14) support the humidity sensor [18].

Our workflow starts with threat modeling (described in Section 7.4.1),
continues with artifacts discovery and analysis (Section 7.4.2), and ends
with the implementation of the module (Section 7.4.3). By following the
above steps, researchers can progressively improve Mirage, toward an ideally
undetectable sandbox.

7.4.1 Threat Model

In our threat model, we assume an attacker that is running a malicious app
on a mobile device, with full access to the Android sensors API. The sen-
sors API is composed of SensorManager, Sensor, and SensorEvent classes,
plus the SensorEventListener interface. An instance of SensorManager
corresponds to the sensor service, which allows to access to the set of sensors
available on the device. An instance of Sensor is related to a specific sen-
sor, which can be hardware or software-based. The methods of the Sensor
object permit to identify sensor capabilities. To maximize the pool of po-
tential victims, the attacker may prefer to include in the malicious app a
detection technique based on a low API level for compatibility reasons. The
SensorEvent class represents a single sensor event, that contains: the sensor
type, the sensor state (i.e., value and accuracy), and the event timestamp.
The SensorEventListener is a Java interface to implement in order to re-
ceive notifications whenever a sensor state changes. In our threat model, we
also assume that the malicious app has a limited timespan before deciding
whether to execute the payload or to remain dormant. In that time interval,
the malicious app can monitor some sensors events.

We argue that sensors should only measure environmental properties,
but they expose much more information. In fact, researchers demonstrated
that it is possible to extract a reliable hardware fingerprint of a mobile device
from accelerometer calibration errors [33,58]. Moreover, the Google API for
Android provides methods that rely on sensors data to recognize the state
of the user, i.e., staying still or moving [89]. If the user is moving, such
API can even recognize her mean of transport (e.g., if she is in a vehicle,
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on a bicycle or if she is walking). Although a malware author may want
to target a specific user or device model, for the purpose of this work we
assume that malware authors’ main goal is to detect the sandbox, in order to
evade dynamic analysis. In the case we do not apply perturbation on sensor
data, the Fvents Player can replay the exact events stream to reproduce
the device-specific fingerprint. The Coordinator and Logger could also take
charge of linking sensors events to GPS, network and battery data in order
to deceive activity recognition.

7.4.2 Artifacts Analysis

Artifacts are imperfections that make a sandbox distinguishable from a real
device. To put ourselves in attacker’s shoes, we studied the Android sen-
sors API in order to find out which sensors artifacts malware could leverage
to evade dynamic analysis. First, we analyzed real smartphones such as
LG/Google Nexus 5 and 5X, Samsung Galaxy S5 and S6, Galaxy Ace Plus,
and Asus ZenFone 2. These real devices were running different operating
system versions, ranging from Android 2.3 (API level 9) to Android 7 (API
level 24), which is the most recent release at the time of writing. Then, we
analyzed how emulators supports sensors. In this analysis, we considered
Android SDK’s emulator and Genymotion (free plan), given their popular-
ity among developers. On one hand, the Android SDK provides a mobile
device emulator based on QEMU (QEMU from now on). Such emulator
uses Android Virtual Device (AVD) configurations to customize the em-
ulated hardware platform. Moreover, QEMU includes a log console and it
can simulate interrupts and latency on the network [16]. On the other hand,
Genymotion is a third party emulator, but it is compatible with Android
SDK tools. Genymotion allows developers to control features like the cam-
era, the GPS and battery charge levels. Most of the features of Genymotion
are also manageable through a Java API [83].

The first discrepancy we noticed is that both emulators support a limited
set of sensors. In Table 7.1, we show that QEMU simulates nearly as many
sensors as an entry-level smartphone embeds (e.g., Galaxy Ace), but Geny-
motion only simulates the accelerometer. Despite in Table 7.1 we report our
findings only focusing on three real mobile devices (due to lack of space),
we verified that the other devices at our disposal exhibit similar characteris-
tics. The developers of Android defined some types of sensors (i.e., the ones
whose names begin with android.sensor.*). For such sensors, the getType
method returns an integer number less than or equal to 100. Moreover, ven-
dors can introduce custom sensors, i.e., the sensors for which getStringType
returns a string that begins with com.google.sensor.* in the Nexus 5X.
Given this fact, we can argue that a malware author who wants to target as
much users as possible will not rely on device-specific sensors. In addition to
that, malware authors have to focus on sensors available in API level 9 in or-
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. API|Nexus | Galaxy | Galaxy Geny-
getStringType getType Lv. | 5X S5 Ace QEMU motion
accelerometer 1 3 v v v v v
magnetic field 2 3 v v v v X
orientation 3 3 v v v v X
gyroscope 4 3 v v X X X
light 5 3 v v X v X
pressure 6 3 v v X v X
temperature 7 3 X X X 4 X
. | proximity 8 3 v v v v X
2 |gravity 9 9 v v v X X
§ linear_acceleration 10 9 v v v X X
< |rotation_vector 11 9 v v v X X
'é' relative humidity 12 14 X X X v X
S |magnetic_field uncalibrated 14 18 4 4 X X X
® | game rotation vector 15 18 v v X X X
gyroscope_uncalibrated 16 18 v v X X X
significant motion 17 18 4 4 X X X
step_detector 18 19 v v X X X
step_counter 19 19 v v X X X
geomagnetic_rotation_vector 20 19 v X X X X
tilt_detector 22 n/a v X X X X
pick up gesture 25 n/a v X X X X
o | sensor.internal temperature| 65536 | n/a 4 X X X X
Eo sensor.sync 65537 | n/a v X X X X
& | sensor.double_twist 65538 | n/a v X X X X
g | sensor.double_tap 65539 | n/a v X X X X
3 | sensor.window orientation 65540 | n/a v X X X X
Empty String 65558 | n/a X v X X X
Total [ 24 [ 17 | 7 [ 8 [ 1 |

Table 7.1: Sensors availability in some of the tested devices.

der to target most of the devices (approximately 99.9% of the active devices
according to Google Play [13]). As an example, API levels prior to 9 do not
support the relative humidity sensor (TYPE_RELATIVE_HUMIDITY) [18].

In our analysis, we considered the sensors embedded in real devices and
the ones simulated by virtual devices. For each sensor, we called all methods
available in the Sensor class. As an example, in Table 7.2 we show the
discrepancies in terms of return values for accelerometer methods on real
and emulated Nexus 5X. In Table 7.2, we also include the return values for
our proposal, which we discuss in details in Section 7.5. Malware authors can
rely on those discrepancies to develop simple detection techniques (a single
conditional statement is enough). We refer to these techniques as static
heuristics, since they exploit an artifact due to the Android API, which is
not related to events streams. Based on such value, the app decides whether
to execute the malicious payload or to remain dormant. Another example
is the proximity sensor, which is called Goldfish Proximity sensor in
QEMU and RPR0O521 proximity in the real Nexus 5X. The accelerometer,
thanks to its wide availability, is particularly well suited for broad-spectrum
heuristics.
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A malware can leverage several methods for the same purpose, e.g.,
getFifoMaxEventCount in Algorithm 1. This second static heuristic checks
the number of events that could be batched for the accelerometer. The
number of events is not likely to be zero for real accelerometers, since they
usually support batch mode (i.e., the ability of storing events in a hardware
FIFO). Please notice that getMaxDelay may return zero on older real de-
vices, hence a zero delay does not necessarily guarantee that the execution
is taking place in an emulator [14]. In conclusion, an adversary could exploit
most of the return values from the Sensor class for sandbox detection.

if accelerometer.getFifoMaxEventCount() == 0 then
|  benign behavior

else
| malicious behavior

end

Algorithm 1: Static heuristic based on getFifoMaxEventCount method.

In the literature, researchers already pointed out the feasibility of dy-
namic heuristics, in which they exploited sensors events that emulators gen-
erate [159,199]. We investigated further: for each real mobile device at our
disposal, we registered callback methods to receive changes in sensors state.
By applying the option SENSOR_DELAY FASTEST, we got those states as fast
as possible. In our experiments, we observed that collecting an incoming
stream of events for ten seconds is enough for our purpose. We collected
sensors data from real mobile devices in three different scenarios: lying on a
table, while typing and leaving them in a pocket while walking. Then, we re-
peated the data collection task on QEMU and Genymotion emulators. Such
emulators allow only two modes of screen rotation: portrait and landscape.

During our experiments, we were able to observe some differences be-
tween real and emulated motion sensors. In real mobile devices, we noticed
that motion sensors (e.g., the accelerometer) quickly oscillate among a small
range of values, even when the device is lying on a flat surface. In emula-
tors, we noticed that it is possible to stimulate the accelerometer by changing
from landscape to portrait mode. In contrast, without rotating the screen,
each motion sensor in emulators produce the same value. As an example,
the accelerometer in QEMU constantly returns (0, 9.77622, 0.813417).
Again in QEMU, rotating the screen has the sole effect of toggling the ac-
celerometer values between (0, 9.77622, 0.813417) and (9.77622, 0,
0.813417) in portrait position and landscape mode, respectively. Table 7.3
records the constant values that each sensor in QEMU produces. It is wor-
thy of note that some sensors in QEMU produce values only along one axis,
so in Table 7.3 we mark the cells related to the other two axes as n/a.
A similar logic applies to the accelerometer in Genymotion, which toggles
between (-0, 9.81, 0) and (9.81, 6.0068924E-16, 0) in portrait and
landscape mode, respectively. Regarding the events that sensors produce
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. tFifoMax-

Device getName getVendor %}ienltoCojxm

Real BMI160 accelerometer Bosch 5736

QEMU Goldfish 3-axis The Androifi Open o

Accelerometer Source Project
Genymotion Genymotion Accelerometer | Genymobile 0
‘ QEMU + Mirage ‘ BMI160 accelerometer ‘ Bosch ‘ 5736 ‘

Table 7.2: Example of return values for Nexus 5X accelerometer in real de-
vices, vanilla emulators (i.e., QEMU and Genymotion) and QEMU enriched
with Mirage.

Portrait Landscape
getStringType values[0] | values[1] | values[2] | values[0] | values[1] | values|2]
o accelerometer 0 9.77622 | 0.813417 | 9.77622 0 0.813417
z magnetic_field 0 0 0 0 0 0
@ | light 0 n/a n/a 0 n/a n/a
% | pressure 0 n/a n/a 0 n/a n/a
g proximity 1 n/a n/a 1 n/a n/a
relative humidity 0 n/a n/a 0 n/a n/a

Table 7.3: Constant values produced by sensors in QEMU, grouped by screen
orientation.

whenever their accuracy changes, we observed no significant differences be-
tween QEMU and a real mobile device lying on a table. However, during
our experiments, Genymotion did not report any accuracy change, hence
malware may exploit such imperfection to detect the emulator.

To show the detectability of the analyzed emulators, we implemented
a fast dynamic heuristic that observes the variance of accelerometer val-
ues. This heuristic consists in observing the variance of values along one
accelerometer axis. Since by default such emulators are able to produce at
most two different accelerometer values along one axis, if the accelerometer
produces at least three different values it is likely to be on a real device.
In general, static heuristics are faster than dynamic ones, because static
heuristics do not require looping or waiting. Hence, the execution time of
our dynamic heuristics depends on how fast sensors generate events, since
it needs to retrieve at least three values in order to decide. For example,
a malicious app that monitors proximity values may have to wait a long
time before the user covers the proximity sensor. Until the user does not
bring the smartphone to her ear, or until she covers the proximity sensor
with an object, the malicious app cannot be sure that dynamic analysis is
not taking place. For this reason, motion sensors are the best choice since
they oscillate quickly even if the device is lying on a table. Unfortunately,
dynamic heuristics that rely on sensors are harder to tackle than static ones.
Indeed, an ideal countermeasure against such dynamic heuristics consist in
simulating or replaying events.
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7.4.3 Module Implementation

In order to tackle the evasion attacks in Section 7.4.2 with Mirage:

e We included in our Data Collection App the code we used for artifacts
analysis.

e We patched the discrepancies in return values using information we
obtained from the Data Collection App.

To address static heuristics, we added to the Methods Hooking Layer our
knowledge about the characteristics of real sensors. In fact, the Methods
Hooking Layer can intercept methods calls directed to the Sensor class,
returning values that we collected from sensors of a real device. Xposed ex-
ecutes a method before (pre-method) and after (post-method) each method
hooked [201]. The pre-method can evaluate and alter the arguments, or
it can return a custom result. In our implementation, we used only post-
methods. In fact, first we allow the original methods to execute, then we
inspect the sensor type, and finally we alter its return value accordingly.
After defining an hook for each method of Sensor class, for every avail-
able sensor type, Mirage is able to mimic the behavior of a real device. In
Figure 7.2a, we show the internal structure of the Methods Hooking Layer.

From revision 16 of Android SDK tools, QEMU supports “realistic”
sensor emulation [15], although it is still an experimental feature. This
feature consists of connecting the emulator to a real mobile device, which
runs a special controller app. Such app retrieves sensors values from the
real mobile device and transmits them back to the emulator, in real time.
Despite this experimental feature apparently sounds promising, it has many
disadvantages. Firstly, maintaining such connection active consumes both
bandwidth and battery power in the real device. Secondly, port forwarding
between the host and the real device can be both detectable and fragile at the
same time. Lastly, realizing an automatic batch analysis system using this
technique is not feasible since it requires continuous human interaction. The
premium plans of Genymotion offer a similar feature, which allow to stream
multi-touch, accelerometer and gyroscope events from a connected device.
Unfortunately, also this premium feature by Genymotion suffers the same
limitation above. To cope with limitations given by live events streaming,
our approach is based upon a record and replay mechanism: sensors values
are first recorded from a real device and then they are replayed offline in the
emulator.

In our proof of concept implementation, we leveraged QEMU to de-
velop the replay mechanism of FEwents Player. This is because QEMU
exposes a console via Telnet and it supports more sensors than Geny-
motion. Such console allows to control the virtualized environment, in-
cluding sensors. The syntax of a Telnet command is telnet <host>
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Methods Hooking Layer Events Player
Sensors methods Sensors events
TelephonyManager methods Geolocation events
SMS events

InetAddress methods
(a) Modules in the Methods Hooking  (b) Modules in the Events Player.
Layer.

Modules
Modules

Figure 7.2: Modular internal structure of the Methods Hooking Layer (a)
and of the Events Player (b). We mark in white and in gray the modules
implemented and not implemented yet in Mirage, respectively.

<console-port>, where the default port is 5554. Once connected, we can
set the values for a given sensor using the command set <sensorname>
<value-a>[:<value-b>[:<value-c>]]. We implemented a prototype that
reads a stream of values from a file and injects such stream (i.e., replay)
into a running emulator. Under these settings, the Coordinator and Logger
ensures that the Fuvents Player replays for each sensor a sequence that is
part of the same stream. This solution is adaptable to all Android emulators
that expose a similar injection mechanism (including the premium releases
of Genymotion), and it does not require any modification to the emulator.
We underline that our solution meets the requirements in Section 7.2 since
it does not require any modification to the emulator.

We also designed the Events Player in a modular way, and Figure 7.2b
shows an example of its internal structure.

7.5 Evaluation

For the evaluation of our proposal, we developed the SandborStorm app.
Such app includes the static and dynamic heuristics in Section 7.4.2; thus
it easily detected both QEMU and Genymotion emulators. To show that
similar artifacts are also present in state of the art systems, we submitted
our SandboxStorm app both to offline and online malware analysis services.
We picked CuckooDroid and DroidBox as offline dynamic analysis software,
mainly because they are open source. CuckooDroid adds to the Cuckoo
Sandbox a QEMU-based virtual machine to execute and analyze Android
apps [44]. Unfortunately, we were not able to determine which techniques
this package uses, because it was not open source and it lacked of documen-
tation. DroidBox relies on QEMU and it tries to understand the sample’s
behavior by repackaging the app with monitoring code [111]. Then, we
picked some state of the art online malware analysis services from [147].
Among them SandDroid [173] and TraceDroid [197] were in working order.
Moreover, we had the opportunity of testing the SandboxStorm app also
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Analysis System | Static Heuristic | Dynamic Heuristic
CuckooDroid 16 ms 70361 ms
DroidBox 18 ms 69581 ms
Andrubis 16 ms n/a
SandDroid 15 ms 73964 ms
Tracedroid 17 ms n/a

Table 7.4: Detection time by analysis system and heuristic type.

on Andrubis [121] before its shutdown. Unfortunately, CopperDroid [193]
was stuck on a long queue of unaccomplished analysis at the time of our
evaluation.

In Table 7.4, we summarize the results we obtained by running our Sand-
boxStorm app in the aforementioned malware analysis systems. The results
show that both static and dynamic heuristics of our SandboxStorm app suc-
cessfully detected the presence of an underlying emulator. In the worst case,
our dynamic heuristic took about 74 seconds to detect that the app is run-
ning on a virtual device. However, we believe that such amount of time is
still negligible in this scenario, since a malicious app can delay the start of
its malicious behavior by 74 seconds. It is worthy of note that Andrubis
and TraceDroid did not made available any sensor. However, the absence of
sensors is a clear evidence that the sample is not running on a real device.

In order to evaluate our sensors module, we executed the SandborStorm
app in QEMU enhanced with our proof of concept implementation of Mirage.
Once distributed, our Data Collection App can retrieve more information
from real smartphones and tablets, in order to build several profiles. The
static heuristics in SandboxStorm app failed to detect Mirage, because its
Methods Hooking Layer manipulates the return values of methods on the
fly. In Table 7.2, we compare some artifacts in vanilla emulators (see Sec-
tion 7.4.2) to the corresponding values we collected during the execution
inside Mirage. These values are identical to the ones provided by a real
Nexus 5X. Moreover, the methods in Sensor class return realistic values for
each sensor in the emulator. Even our dynamic heuristic in SandbozStorm
app failed to detect the sandbox. In fact, the FEwvents Player injects previ-
ously recorded sensors values, that are naturally different from the ones that
we described in Table 7.3. Overall, SandbozStorm app is not able to notice
that it is running in Mirage.

We also tested the stealthiness of our Mirage implementation against
DroidBench (version 3.0-develop) [78], an open source benchmark suite,
which includes several test cases (i.e., apps) for emulator detection. In par-
ticular, we tested our sensors module against “Sensorsl” test case. The
“Sensorsl” test successfully recognized our real devices and both vanilla
QEMU and Genymotion, but it misclassified our QEMU enhanced with Mi-
rage as a real device. Therefore, the sensors module in Mirage was able to
confuse the emulator detection heuristic in DroidBench.
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Figure 7.3: Number of events retrieved in ten seconds for several sensors
and devices.

7.6 Discussion

The core contribution of our work is Mirage, a framework that allows re-
searchers to build malware analysis systems for Android that are robust
against evasion attacks. Mirage is potentially adaptable to work with any
emulator or hypervisor. Our implementation of Mirage, is able to tackle
complex heuristics based on sensors of our SandboxStorm app (see Sec-
tion 7.5). In the rest of this section, we first discuss the effectiveness of
our sensors module and possible limitations of Mirage. Then, we present
some alternative implementations of the Fvents Player. Finally, we remark
the importance of modularity in the design of Mirage.

Effectiveness of the Sensors Module: We verified that the sensors mod-
ule is effective against our static and dynamic heuristics based on sensors
(see Section 7.5). We further investigated the reasons underneath the success
of our implementation of Mirage against the “Sensorl” heuristic of Droid-
Bench. We noticed that such heuristic checks the presence of 13 distinct
types of sensors. If DroidBench detects a number of sensors that is less
than or equal to a given threshold (the authors set this threshold to 7), it
reports the presence of an emulator. Hence, this test case consists in a static
heuristic. In Mirage, the Methods Hooking Layer is responsible to cope with
detection techniques that are purely static. Since our sensors module for
the Methods Hooking Layer can fake the presence of sensors that are not
actually there, “Sensorl” test case fails to count the number of real sensors.

Overall, the development process of the sensors module for Mirage helped
us to show that our proposal can be a useful tool to tackle evasive malware
on Android. Unfortunately, such module has some shortcomings. Given
a specific real device simulated by Mirage, the Methods Hooking Layer is
able to mimic static characteristics of sensors available in such device, even
if these sensors are not present in the underlying emulator. Similarly, Mi-
rage can also hide the sensors that are available in the emulator whenever
they are not present in the real device. Nevertheless, for sandbox detection
techniques that monitor the events stream (like the dynamic heuristic in
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SandboxStorm app), our Events Player implementation is limited to the set
of sensors supported by the underlying emulator (i.e., QEMU, in our current
implementation). If an advanced malware wants to target specific devices, it
may check the actual presence of a sensor by registering a callback method
to receive values of that sensor. In addition, researchers found that the sen-
sors in QEMU generate events on a regular time basis [159], which is less
frequently than we observed on real devices. Fortunately, since Mirage is
not tightly coupled to QEMU, we could easily adapt Mirage to work with
an emulator that does not have this limitation.

Pre-filter NDK-based Applications: The Native Development Kit
(NDK) allows embedding native code into Android apps. NDK can be useful
for developers that need reduced latency to run computationally intensive
apps (e.g., games) or to reuse code libraries written in C and C++. Unfor-
tunately, allowing developers to code using NDK enables mobile malware
authors to develop kernel-level exploits and sophisticated detection tech-
niques [159,199]. Malware that is able to measure performances at low level
(e.g., that measure the duration of time-consuming computation) can evade
analysis systems based on virtualization by performing computational tim-
ing attacks. This is because such systems insert additional layers between
the Android operating system and the CPU, with respect to real devices.
Even though all these kind of artifacts are hard to patch, we can easily
detect the usage of native code. Since Mirage cannot handle NDK-based
malware properly, it could forward these samples to a real device or to a
small bare metal infrastructure for the analysis. We assume that most of
the requests are addressed in our sandbox, and we consider the forwarding
of the samples to a real device as a last chance.

Alternative Implementations of the Events Player: Before deciding
to rely on the Telnet console in QEMU in order to implement the sensors
module in the Events Player, we considered different approaches. In order to
simulate sensor events in real time, researchers in [159] suggested to use ex-
ternal software simulators, like Openlntents Sensor Simulator (OISS) [152],
or to adopt or a record-and-replay approach, like RERAN [87]. On one
hand, OISS is an app that transmits simulated or recorded sensors streams
to an emulator. Unfortunately, to receive the generated sensors events, OISS
forces apps developers to use its own API instead of Android sensors APIL.
This constraint is unsuitable for malware analysis, because the source code
of the sample usually is not available. Given this, we are not able to rewrite
the code of the sample using OISS sensors API and then rebuild it from
scratch. Although it would be possible to replace methods calls by patch-
ing the compiled app, we believe that such intrusive approach may hinder
the behavior of the sample, and it may cause a misclassification of it. On
the other hand, RERAN is a tool that first captures an events stream from
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a real device and then injects the stream in another device. Input events
are recorded from /dev/input/event* in the source device and stored in a
trace using getevent tool of Android SDK. A custom replay agent reads the
trace and writes events to /dev/input/event* in the destination device.
Unfortunately, in recent smartphones (e.g., Nexus 5X, Galaxy S5) getevent
tool is able to get the touchscreen and buttons events, but not sensors ones.
Authors tested RERAN on smartphones released in 2011 [87] that were
running Android version 2.3.4, which newer devices and Android versions
superseded.

Modularity of Mirage Components: One of the most important lesson
we learned during our experiments is that the Android platform is rapidly
and unpredictably changing. To give a significant example, while we were
testing our heuristics, the developers of Android released an improved ver-
sion of QEMU (along with Android Studio 2.0 release). This new version
handles many more simulated events than the previous ones, actually re-
sembling a real device. To show that, in Figure 7.3 we compare the number
of events retrieved in ten seconds from real and virtual Nexus 5X. In this
experiment, we used the last releases of QEMU and Genymotion. Each sen-
sor that the two emulators support is able to generate a number of events
approximately equal or greater than the sensors on the real Nexus 5X. Un-
fortunately, the developers of Android arbitrarily decided to remove the op-
portunity to set sensors values via Telnet in the improved version of QEMU,
which we exploited in our implementation of the Fvents Player.

Although we still do not know if the developers will reintroduce such
feature in the future, this change highlights that the modularity in Mirage
components is fundamental. Now QEMU is able to produce a significant
number of sensors events on its own. Hence, it is possible to hook also meth-
ods of SensorEventListener class and manipulate the returned sensors
values directly (without injecting sensors events from the FEwvents Player).
The isolation between the modules of the Fvents Player and the Methods
Hooking Layer allows to relocate the simulation of sensors events from the
former to the latter, without modifying the other modules. Nonetheless, to
give a more comprehensive proof of concept of Mirage, we preferred to use
the previous release of QEMU (prior to Android Studio 2.0), keeping the
simulation of sensors events in the Events Player.

7.7 Summary

In this chapter, we take a step towards the stealthiness of malware analysis
sandboxes for Android. After carefully reviewing the state of the art, we
enlisted six essential requirements that an analysis system have to fulfill to
tackle evasion attacks. Hence, we proposed Mirage, a framework that ful-
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fills all these requirements. We also presented a representative case study,
which shows how Mirage can cope with sandbox detection techniques that
exploit artifacts in emulators due to sensors API. To evaluate our proposal,
we developed a proof of concept implementation of Mirage, enabled with our
sensors module. To compare our sandbox to state of the art dynamic anal-
ysis services for Android, we also developed the SandboxStorm app. This
app contains some static and dynamic heuristics to detect emulators, based
on our findings about sensors API artifacts. Our thorough evaluation shows
that all dynamic analysis systems that we tested are detectable by our Sand-
boxStorm app. Conversely, Mirage resembled a real device and, consequently,
sensors-based heuristics in SandbozStorm app and in DroidBench were not
able to detect Mirage as a sandbox.
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Chapter 8

Conclusions

In the last decade, we face the rising of mobile devices as a fundamental
tool in our everyday life. Thanks to an operating system, a wide selection
of multi-purpose application and portability, such devices can accompany
users everywhere they go and allow them to perform operations that were
only possible through a PC a few years ago. Besides, users heavily rely on
them for storing even the most sensitive information from the privacy point
of view. This aspect leads mobile them under the target of who aims to
gain financial benefits from obtaining the access to such information, such
as malware designers. If an attacker is not able to obtain a local or remote
access to the device, she can still rely on side-channel analysis to harm users
privacy. Fortunately, side-channels can be also relied on for enforcing mobile
devices’ security. In fact, benign applications of side-channel analysis range
from user behavioral authentication, to resources optimization and intrusion
detection.

In this dissertation, we focused on possible attacks and benefits of the
analysis of three side-channels: network traffic in Part I; energy consumption
in Part IT; and built-in sensors in Part I11. In what follows, we first summarize
our contributions to the state of the art in Section 8.1, and we then outline
some possible future work in Section 8.2.

8.1 Summary of Contributions

In this section, we summarize the contributions given by the work we pre-
sented in this dissertation.

8.1.1 Network Analysis

In Part I, we presented the side-channel that can be obtained from network
traffic. We assumed the attacker performed a Man-In-The-Middle (MITM)
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attack, thus she was able to observe TCP/IP traffic generated and from the
victim’s mobile device. Since such traffic has been encrypted with SSL/TLS,
hence the attacker could only observe the network traffic flows, without being
able to perform a Deep Packet Inspection (DPI). Under these setting, we
demonstrated that encryption alone is not enough to stop an attacker from
inferring private information about the victim. In particular, we focused on
identifying the action a user performs with an app and on retrieving the list
of apps installed on her mobile device.

o User Actions Recognition: In Chapter 2, we aimed to identify a set of
sensitive user actions carried out with seven popular apps only analyz-
ing encrypted network traffic. We designed and fully implemented a
machine learning-based framework to carry out the analysis. To build
our dataset, our framework uses a feature extraction procedure that is
composed of two steps: (i) we clustered network flows using an unsu-
pervised machine learning method with DTW as a similarity metric;
and (ii) for each user action, we build a vector of features according to
the presence or not of a specific type of flow in the time interval of such
action (i.e., we consider a feature for each cluster obtained at the pre-
vious step). Subsequently, the dataset is used to train a classifier that
is then able to recognize which action has been performed from unseen
network traffic. With our framework, an adversary may collect private
insight about multiple victims and aggregate them for market or intel-
ligence surveys. Moreover, a strong adversary (e.g., Government, ISP)
may profile a user’s behavior according to her actions and habits in
order to de-anonymize or track her, even if she changes mobile device.

e Mobile Apps Fingerprinting: In Chapter 3, we presented AppScanner,
a framework for automatic fingerprinting and real-time identification
of mobile apps from the encrypted network traffic they generated. In
our evaluation, we did not only show that apps can indeed be identified
with a high accuracy relying on a multi-label classifier, but we also
investigate the robustness of app fingerprints across a different period
of time, operating system versions, and mobile devices. On one hand,
our results showed that the passage of time reduces app fingerprints’
accuracy. Omn the other hand, we assessed that an app fingerprint
is not affected by the device that the app is installed on. In order
to cope with this reduction of accuracy, we proposed two methods:
ambiguity detection (i.e., flows in common among more than one app)
and classification validation. With these measures in place, we notice a
significant increase in the robustness of app fingerprints by sacrificing
the ambiguous or least representative samples. In particular, we were
able to classify apps with an accuracy of 96% and 73% in the best and
worst case, respectively.
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8.1.2 Energy Consumption Analysis

As second side-channel, we investigated the energy consumption of mobile
devices while connected to a charging cable in Part II. We proposed a sce-
nario in which the adversary was able to control the power source by measur-
ing the electric current provided. It is worth noticing that we extended the
definition of mobile devices also to laptops since they are actually portable
devices and nowadays they are more similar to smartphone and tablets than
traditional PCs. In this part, we showed two different application of energy
consumption analysis.

o Laptop Users Identification: We investigated the feasibility of recog-
nizing a specific laptop user by its energy consumption in Chapter 4.
We recall that in this work we considered as a single entity (i.e., lap-
top user) the ensemble composed of laptop model, user behavior, and
software installed. Despite our smart meters’ low sampling rate (i.e.,
1 Hz), we were able to first profile and later recognize a laptop user.
In particular, we considered a scenario of an office in which there were
several authorized users and potential intruders. We developed MT-
Plug, a framework that was able to extract features from segmented
power traces and train a multilabel classifier. Our results showed that
MTPlug were not only able to recognize with a high accuracy which
laptop user was connected to a specific socket, but also discriminate
between authorized users and intruders.

e Data Ezfiltration: In Chapter 5, we presented a novel covert-channel
that exploits the electrical current absorbed by victim’s mobile device
while it is recharging its battery through a USB cable. Such covert-
channel was established between a malicious app, named PowerSnitch,
installed on victim’s mobile device and a power supplier controlled by
the attacker. PowerSnitch app encoded the target information into
CPU bursts that could be measured from the power source. It is
worth noticing that PowerSnitch app did not require any dangerous
static or run-time permission considered as dangerous. At the other
side of the USB cable, our decoder interpreted the signal carried by
energy consumption and re-constructed the target information. We
designed and fully implemented both the PowerSnitch app and the
decoder, and we ran a thorough set of tests to prove the feasibility of
our attack.

8.1.3 Built-in Sensors Analysis

In Part ITI, we considered the analysis of built-in sensors data, a side-channel
that can be measured from inside the device. As far as concerns Android
operating system, any running app can access to sensors data without asking

163



Security and Privacy Threats on Mobile
R. Spolaor Devices through Side-Channels Analysis

any permission. At the same time, such data can be valuable for opposite
reasons to researchers and malicious users. On one hand, the former ones
use sensors data to improve mobile devices’ usability or enhance security
mechanisms (e.g., behavioral and two-factor user authentication). On the
other hand, the latter ones may use such data to track user’s movements and
habits or evading malware analysis using sensors-based sandbox detection
heuristics. In this part, we first presented a logging tool designed for re-
searchers, and we then showed possible malware analysis evasion techniques
and countermeasures.

e Logging and Data Extraction Tool: After a thorough study of the lit-
erature, we realized that researchers had to design their own app to
collect data from Android mobile devices. This because the state of
the art lacked a customizable and usable logging and data collection
tool for Android. In Chapter 6, we present DELTA, a new tool that
fills that gap. We designed DELTA to be modular and easily customiz-
able, also taking into account typical researchers’ needs. Moreover, we
showed how researchers can design their own experiment, distribute it
to the experiment’s participants, and collect fresh data directly via the
Internet. In the comparison with other proposals, we observed that
DELTA overcame all of them in terms of richness of logged features.

o Robust Sandbox Against Malware Analysis Fvasion: Dynamic analy-
sis for detecting malware for Android usually relies on emulator-based
sandboxes. Unfortunately, emulators are not specifically designed for
that usage, thus they present several artifacts. Artifacts are discrep-
ancies in terms of values or behavior between real mobile devices and
emulators. Malware may exploit such artifacts using heuristics to de-
tect whether is running on an emulator, thus it would nullify the ef-
forts of researchers on dynamic analysis. In Chapter 7, we presented
MIRAGE, a novel framework that enhances sandboxes for malware
analysis to be resilient against emulator detection techniques. MI-
RAGE was designed to be modular because it can be enriched with
additional modules to fix new artifacts as soon as they are discovered.
In particular, we presented a module that fixed artifacts generated by
built-in sensors as a representative case study. In our comparison, we
showed that both static and dynamic heuristics identified MIRAGE
as a real device, while they identified our competitors as emulators.

8.2 Future Work

In this section, we discuss possible future research directions that follow the
research contributions reported in this dissertation.
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8.2.1 Network Traffic Analysis

The literature offers lots of work related to the network traffic analysis of
mobile devices, but there is still room for significant improvements. As high-
lighted by Conti et al. in [50], many research directions have barely been
explored, such as user identification, indoor device positioning, or sociolog-
ical information inference. On one hand, we are working to overcome the
shortcoming of time needed for user actions dataset collection for the work
presented in Chapter 2. In fact, we are relying on DELTA logging tool (see
Chapter 6) for collecting network traffic synchronized with user actions from
real users. We are also evaluating to use emulators to make scalable the col-
lection of network traffic generated by apps (to further extend the work in
Chapter 3) and by simulate user actions. This in order to investigate the
similitudes and differences in terms of network traffic between simulated and
real devices. On the other hand, we also intend to investigate on possible
efficient countermeasures that can also be adopted on mobile devices. These
countermeasures may require a trade-off between power efficiency and pri-
vacy level required. In the future, we intend to explore other applications
of network traffic analysis in order to infer additional information about the
user. As an example, we will investigate whether it is feasible to extract
user habits or behavioral patterns by aggregating sequences of user actions.

8.2.2 Energy Consumption Analysis

As far as concern the work presented in Chapter 4, as a future work we
intend further investigate the impact on energy consumption traces of laptop
model, set of the applications installed and user behavior. As the first step
in this direction, our preliminary studies suggest that the energy trace is
more related to user activity rather than her laptop model. We also intend
to investigate the feasibility of re-using a user energy fingerprint even when
she changes the model of her laptop. The case is when a user adopts a
new machine, different from the one associated with her profile. This new
research will aim to evaluate if a laptop user energy fingerprint persists over
a long period, for example when a user buys a new laptop. Another possible
future work could consist of inferring the actions performed by a user with
her laptop (e.g., watching a movie, surfing the web), similarly to what has
been recently done for smartphone apps relying on network traffic analysis
presented in Chapter 2.

Regarding the work in Chapter 5, we already extended our covert-
channel attack to malicious power banks, reducing the tool to measure the
energy consumption both in terms of price and size. We will also work on the
transmitter and decoder by extending the framework to include error cor-
rection algorithms and synchronization recover mechanisms to lower down
the Bit Error Ratio of data transmission.
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As a possible future work for energy consumption side-channel, we intend
to investigate the feasibility to identify apps installed on mobile devices
relying on their background activities (e.g., push notifications). Similarly
to our work on network traffic analysis in Chapter 3, we believe that an
app also produce specific energy consumption fingerprint. Moreover, we
aim to investigate on possible countermeasures to such attacks that could
be applied both on hardware and software sides.

8.2.3 Built-in Sensors Analysis

Although, as we showed in Chapter 6, our implementation of DELTA is
stable and fully working, there are ample opportunities for future extensions.
In a possible extension, we consider very interesting is adding contextual
awareness to DELTA. This idea consists of extending the DELTA Logging
Framework’s architecture so that plugins can be dynamically started and
stopped, depending on the context provided by other plugins (e.g., running
the touch events monitor plugin only when a certain app is in the foreground,
as reported by the foreground app logger plugin). We also plan to expand
the functionality of the DELTA Web Service, in order to allow researchers
to configure and build an experiment directly from a web interface, rather
than relying on a desktop application.

As a future work to our proposal in Chapter 7, we are looking for novel
artifacts that could be exploited in heuristics to uncover sandboxes for mal-
ware analysis. After that, we will develop additional modules for MIRAGE
that aim to patch such discrepancies. For both DELTA and MIRAGE, we
are also evaluating to create two start-ups.

In the future, we plan to rely on DELTA’s extraordinary data collec-
tion capabilities to further investigate on security and usability aspects of
Human-Computer Interaction (HCI). We believe that continuously monitor-
ing users behavior and habits from multiple data sources could reveal novel
insights about HCI.

As other possible side-channels to be analyzed, we aim to exploit other
source of information that range from visual to audio feedbacks. For in-
stance, we could be able to infer user actions (e.g., taking a picture, typing
on the soft-keyboard) applying computer vision techniques on video footages
of mobile users while they interact with their mobile devices. Moreover, we
could uncover which app a user is using only relying on rely on specific
sounds produced by mobile devices (e.g., ringtone, audio or vibration feed-
backs).
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