705 research outputs found

    The Pierre Auger Observatory: Contributions to the 34th International Cosmic Ray Conference (ICRC 2015)

    Get PDF
    Contributions of the Pierre Auger Collaboration to the 34th International Cosmic Ray Conference, 30 July - 6 August 2015, The Hague, The NetherlandsComment: 24 proceedings, the 34th International Cosmic Ray Conference, 30 July - 6 August 2015, The Hague, The Netherlands; will appear in PoS(ICRC2015

    Operations of and Future Plans for the Pierre Auger Observatory

    Full text link
    Technical reports on operations and features of the Pierre Auger Observatory, including ongoing and planned enhancements and the status of the future northern hemisphere portion of the Observatory. Contributions to the 31st International Cosmic Ray Conference, Lodz, Poland, July 2009.Comment: Contributions to the 31st ICRC, Lodz, Poland, July 200

    Simulation of proton-induced and iron-induced extensive air showers at extreme energies

    Full text link
    The development of extensive air showers at extreme energies is studied using a simulation model much simpler and cruder, but also more transparent and flexible, than existing sophisticated codes. Evidence for its satisfactory performance is presented. As an illustration, shower elongation rates are evaluated in the 101810^{18} to 102010^{20} eV region and compared with recently published data. Lateral distribution functions of both muons and electrons/photons are also briefly discussed. Reliable results are obtained in the comparison between proton-induced and iron-induced showers.Comment: 22 pages, Preprint submitted to Astroparticle Physic

    Reconstruction of inclined air showers detected with the Pierre Auger Observatory

    Full text link
    We describe the method devised to reconstruct inclined cosmic-ray air showers with zenith angles greater than 60∘60^\circ detected with the surface array of the Pierre Auger Observatory. The measured signals at the ground level are fitted to muon density distributions predicted with atmospheric cascade models to obtain the relative shower size as an overall normalization parameter. The method is evaluated using simulated showers to test its performance. The energy of the cosmic rays is calibrated using a sub-sample of events reconstructed with both the fluorescence and surface array techniques. The reconstruction method described here provides the basis of complementary analyses including an independent measurement of the energy spectrum of ultra-high energy cosmic rays using very inclined events collected by the Pierre Auger Observatory.Comment: 27 pages, 19 figures, accepted for publication in Journal of Cosmology and Astroparticle Physics (JCAP

    A search for point sources of EeV photons

    Full text link
    Measurements of air showers made using the hybrid technique developed with the fluorescence and surface detectors of the Pierre Auger Observatory allow a sensitive search for point sources of EeV photons anywhere in the exposed sky. A multivariate analysis reduces the background of hadronic cosmic rays. The search is sensitive to a declination band from -85{\deg} to +20{\deg}, in an energy range from 10^17.3 eV to 10^18.5 eV. No photon point source has been detected. An upper limit on the photon flux has been derived for every direction. The mean value of the energy flux limit that results from this, assuming a photon spectral index of -2, is 0.06 eV cm^-2 s^-1, and no celestial direction exceeds 0.25 eV cm^-2 s^-1. These upper limits constrain scenarios in which EeV cosmic ray protons are emitted by non-transient sources in the Galaxy.Comment: 28 pages, 10 figures, accepted for publication in The Astrophysical Journa

    Enhancing the Pierre Auger Observatory to the 10^{17} to 10^{18.5} eV Range: Capabilities of an Infill Surface Array

    Get PDF
    The Pierre Auger Observatory has been designed to study the highest-energy cosmic rays in nature (E > 10^{18.5} eV). The determination of their arrival direction, energy and composition is performed by the analysis of the atmospheric showers they produce. The Auger Surface Array will consist of 1600 water Cerenkov detectors placed in an equilateral triangular grid of 1.5 km spacing. The aim of this paper is to show that the addition of a "small" area of surface detectors at half or less the above mentioned spacing would allow a dramatic increase of the physical scope of this Observatory, reaching lower energies at which the transition from galactic to extragalactic sources is expected.Comment: 21 pages, 5 figures, accepted for publication in Nucl. Instr. & Meth. in Phys. Res.

    Enhancing the cosmic-ray mass sensitivity of air-shower arrays by combining radio and muon detectors

    Get PDF
    The muonic and electromagnetic components of air showers are sensitive to the mass of the primary cosmic particle. The sizes of the components can be measured with particle detectors on ground, and the electromagnetic component in addition indirectly via its radio emission in the atmosphere. The electromagnetic particles do not reach the ground for very inclined showers. On the contrary, the atmosphere is transparent for the radio emission and its footprint on ground increases with the zenith angle. Therefore, the radio technique offers a reliable detection over the full range of zenith angles, and in particular for inclined showers. In this work, the mass sensitivity of a combination of the radio emission with the muons is investigated in a case study for the site of the Pierre Auger Observatory using CORSIKA Monte Carlo simulations of showers in the EeV energy range. It is shown, that the radio-muon combination features superior mass separation power in particular for inclined showers, when compared to established mass observables such as a combination of muons and electrons or the shower maximum Xmax. Accurate measurements of the energy-dependent mass composition of ultra-high energy cosmic rays are essential to understand their still unknown origin. Thus, the combination of muon and radio detectors can enhance the scientific performance of future air-shower arrays and offers a promising upgrade option for existing arrays

    The Pierre Auger Observatory III: Other Astrophysical Observations

    Full text link
    Astrophysical observations of ultra-high-energy cosmic rays with the Pierre Auger ObservatoryComment: Contributions to the 32nd International Cosmic Ray Conference, Beijing, China, August 201
    • 

    corecore