18 research outputs found

    On-chip Magnetic 3D Soft Microactuators Made by Gray-scale Lithography

    Get PDF
    2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, Acropolis Convention Center, Nice, France, Sept, 22-26, 200

    Micromachining

    Get PDF
    To present their work in the field of micromachining, researchers from distant parts of the world have joined their efforts and contributed their ideas according to their interest and engagement. Their articles will give you the opportunity to understand the concepts of micromachining of advanced materials. Surface texturing using pico- and femto-second laser micromachining is presented, as well as the silicon-based micromachining process for flexible electronics. You can learn about the CMOS compatible wet bulk micromachining process for MEMS applications and the physical process and plasma parameters in a radio frequency hybrid plasma system for thin-film production with ion assistance. Last but not least, study on the specific coefficient in the micromachining process and multiscale simulation of influence of surface defects on nanoindentation using quasi-continuum method provides us with an insight in modelling and the simulation of micromachining processes. The editors hope that this book will allow both professionals and readers not involved in the immediate field to understand and enjoy the topic

    An overview of multiple DoF magnetic actuated micro-robots.

    No full text
    International audienceThis paper reviews the state of the art of untethered, wirelessly actuated and controlled micro-robots. Research for such tools is being increasingly pursued to provide solutions for medical, biological and industrial applications. Indeed, due to their small size they o er both high velocity, and accessibility to tiny and clustered environments. These systems could be used for in vitro tasks on lab-on-chips in order to push and/or sort biological cells, or for in vivo tasks like minimally invasive surgery and could also be used in the micro-assembly of microcomponents. However, there are many constraints to actuating, manufacturing and controlling micro-robots, such as the impracticability of on-board sensors and actuators, common hysteresis phenomena and nonlinear behavior in the environment, and the high susceptibility to slight variations in the atmosphere like tiny dust or humidity. In this work, the major challenges that must be addressed are reviewed and some of the best performing multiple DoF micro-robots sized from tens to hundreds m are presented. The di erent magnetic micro-robot platforms are presented and compared. The actuation method as well as the control strategies are analyzed. The reviewed magnetic micro-robots highlight the ability of wireless actuation and show that high velocities can be reached. However, major issues on actuation and control must be overcome in order to perform complex micro-manipulation tasks

    Transparent magnetic photoresists for bioanalytical applications

    Get PDF
    Microfabricated devices possessing magnetic properties are of great utility in bioanalytical microdevices due to their controlled manipulation with external magnets. Current methods for creating magnetic microdevices yield a low-transparency material preventing light microscopy-based inspection of biological specimens on the structures. Uniformly transparent magnetic photoresists were developed for microdevices that require high transparency as well as consistent magnetism across the structure. Colloidal formation of 10 nm maghemite particles was minimized during addition to the negative photoresists SU-8 and 1002F through organic capping of the nanoparticles and utilization of solvent-based dispersion techniques. Photoresists with maghemite concentrations of 0.01 to 1% had a high transparency due to the even dispersal of maghemite nanoparticles within the polymer as observed with transmission electron microscopy (TEM). These magnetic photoresists were used to fabricate microstructures with aspect ratios up to 4:1 and a resolution of 3 μm. Various cell lines showed excellent adhesion and viability on the magnetic photoresists. An inspection of cells cultured on the magnetic photoresists with TEM showed cellular uptake of magnetic nanoparticles leeched from the photoresists. Cellular contamination by magnetic nanoparticles was eliminated by capping the magnetic photoresist surface with native 1002F photoresist or by removing the top layer of the magnetic photoresist through surface roughening. The utility of these magnetic photoresists was demonstrated by sorting single cells (HeLa, RBL and 3T3 cells) cultured on arrays of releasable magnetic micropallets. 100% of magnetic micropallets with attached cells were collected following release from the array. 85–92% of the collected cells expanded into colonies. The polymeric magnetic materials should find wide use in the fabrication of microstructures for bioanalytical technologies

    Capturing, Analyzing and Collecting Adherent Cells Using Microarray Technologies

    Get PDF
    Effective separation of a particular cell of interest from a heterogeneous cell population is crucial to many areas of biomedical research including microscopy, clinical diagnostics and stem cell studies. Examples of such studies include the analysis of single cells, isolation of transfected cells and cell transformation studies. Biological technologies can have skewed results if cells outside of the type of interest are present. Additionally, in many instances the targeted cells are of low abundance with respect to the heterogeneous population. For these reasons, it is important to have a technique capable of identifying the desired cells, separating these cells from unwanted cells and collecting the marked cells for further analysis. Two biotools, referred to as micropallets and microrafts, have recently been introduced for sorting adherent cells. These devices comprise arrays of microelements weakly attached to a substrate. Following culture of adherent cells on the elements, individual microstructures are selectively detached from the array while still carrying the cells. These technologies have shown success in sorting single cells from small heterogeneous cell populations with high post sorting viabilities. However, previous device designs employed gravity-based collection methods and small microelement arrays which substantially reduced the collection yields, purities and sample sizes. In this dissertation new approaches are described for capturing, examining and isolating individual cells by micropallet and microraft technologies. Initially a new approach was developed to isolate released microstructures from the array employing magnetism. Microstructures were embedded with uniformly dispersed magnetic nanoparticles which allowed collection by an external magnet immediately following release. Application of a magnetic field permitted microstructure collection with high yield, precision and purity. This improved collection efficiency enabled isolation of very rare cell types. Large arrays constituting over 106 micropallets were developed along with imaging analysis software to identify and sort low abundance target cells. This system was employed to isolate breast cancer stem cells from a heterogeneous cell population and circulating tumor cells directly from peripheral blood. Additionally, an array-based cell colony replication strategy was established which allowed highly efficient colony splitting and sampling.Doctor of Philosoph

    Oscillating Dispersed-Phase Co-Flow Microfluidic Droplet Generation: Effects on Jet Length and Droplet Size

    Get PDF
    Droplet-based microfluidics have emerged as versatile platforms offering unique advantages in biology and chemistry. Although there is adequate control on size and monodispersity, most conventional microfluidic techniques cannot generate more than one droplet size at a time in a continuous and high-throughput manner. Moreover, the widely used co-flow microfluidic droplet generation technique is bottlenecked with droplet polydispersity at high throughputs due to the transition from a more-stable dripping regime to an instable jetting regime at high d-phase flow rates. We applied nozzle oscillatory motion to generate an axial shear gradient as well as inducing an additional transverse drag force. We hypothesized that the combined effects of axial and transverse drags can be used for overcoming the aforementioned limitations of co-flow systems. Nozzle oscillation effect was studied in both dripping and jetting regimes to generate repeatable patterns of multi-size monodisperse droplets and jet length reduction in different biphasic systems, respectively

    Lab-on-a-Chip Fabrication and Application

    Get PDF
    The necessity of on-site, fast, sensitive, and cheap complex laboratory analysis, associated with the advances in the microfabrication technologies and the microfluidics, made it possible for the creation of the innovative device lab-on-a-chip (LOC), by which we would be able to scale a single or multiple laboratory processes down to a chip format. The present book is dedicated to the LOC devices from two points of view: LOC fabrication and LOC application

    Annual report / IFW, Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden

    Get PDF
    corecore