608 research outputs found

    Formal semantics and analysis of control flow in WS-BPEL

    Get PDF
    Web service composition refers to the creation of new (Web) services by combination of functionality provided by existing ones. This paradigm has gained significant attention in the Web services community and is seen as a pillar for building service-oriented applications. A number of domain-specific languages for service composition have been proposed with consensus being formed around a process-oriented language known as WS-BPEL (or BPEL). The kernel of BPEL consists of simple communication primitives that may be combined using control-flow constructs expressing sequence, branching, parallelism, synchronisation, etc. As a result, BPEL process definitions lend themselves to static flow-based analysis techniques. In this report, we describe a tool that performs two useful types of static checks and extracts meta-data to optimise dynamic resource management. The tool operates by translating BPEL processes into Petri nets and exploiting existing Petri net analysis techniques. It relies on a comprehensive and rigorously defined mapping of BPEL constructs into Petri net structures

    Formal semantics and analysis of control flow in WS-BPEL

    Get PDF
    Web service composition refers to the creation of new (Web) services by combination of functionality provided by existing ones. This paradigm has gained significant attention in the Web services community and is seen as a pillar for building service-oriented applications. A number of domain-specific languages for service composition have been proposed with consensus being formed around a process-oriented language known as WS-BPEL (or BPEL). The kernel of BPEL consists of simple communication primitives that may be combined using control-flow constructs expressing sequence, branching, parallelism, synchronisation, etc. As a result, BPEL process definitions lend themselves to static flow-based analysis techniques. In this report, we describe a tool that performs two useful types of static checks and extracts meta-data to optimise dynamic resource management. The tool operates by translating BPEL processes into Petri nets and exploiting existing Petri net analysis techniques. It relies on a comprehensive and rigorously defined mapping of BPEL constructs into Petri net structures

    Parsing for agile modeling

    Get PDF
    Agile modeling refers to a set of methods that allow for a quick initial development of an importer and its further refinement. These requirements are not met simultaneously by the current parsing technology. Problems with parsing became a bottleneck in our research of agile modeling. In this thesis we introduce a novel approach to specify and build parsers. Our approach allows for expressive, tolerant and composable parsers without sacrificing performance. The approach is based on a context-sensitive extension of parsing expression grammars that allows a grammar engineer to specify complex language restrictions. To insure high parsing performance we automatically analyze a grammar definition and choose different parsing strategies for different parts of the grammar. We show that context-sensitive parsing expression grammars allow for highly composable, tolerant and variable-grained parsers that can be easily refined. Different parsing strategies significantly insure high-performance of parsers without sacrificing expressiveness of the underlying grammars

    Reasoning about XML with temporal logics and automata

    Get PDF
    We show that problems arising in static analysis of XML specifications and transformations can be dealt with using techniques similar to those developed for static analysis of programs. Many properties of interest in the XML context are related to navigation, and can be formulated in temporal logics for trees. We choose a logic that admits a simple single-exponential translation into unranked tree automata, in the spirit of the classical LTL-to-BĆ¼chi automata translation. Automata arising from this translation have a number of additional properties; in particular, they are convenient for reasoning about unary node-selecting queries, which are important in the XML context. We give two applications of such reasoning: one deals with a classical XML problem of reasoning about navigation in the presence of schemas, and the other relates to verifying security properties of XML views

    FPGA-based Query Acceleration for Non-relational Databases

    Get PDF
    Database management systems are an integral part of todayā€™s everyday life. Trends like smart applications, the internet of things, and business and social networks require applications to deal efficiently with data in various data models close to the underlying domain. Therefore, non-relational database systems provide a wide variety of database models, like graphs and documents. However, current non-relational database systems face performance challenges due to the end of Dennard scaling and therefore performance scaling of CPUs. In the meanwhile, FPGAs have gained traction as accelerators for data management. Our goal is to tackle the performance challenges of non-relational database systems with FPGA acceleration and, at the same time, address design challenges of FPGA acceleration itself. Therefore, we split this thesis up into two main lines of work: graph processing and flexible data processing. Because of the lacking benchmark practices for graph processing accelerators, we propose GraphSim. GraphSim is able to reproduce runtimes of these accelerators based on a memory access model of the approach. Through this simulation environment, we extract three performance-critical accelerator properties: asynchronous graph processing, compressed graph data structure, and multi-channel memory. Since these accelerator properties have not been combined in one system, we propose GraphScale. GraphScale is the first scalable, asynchronous graph processing accelerator working on a compressed graph and outperforms all state-of-the-art graph processing accelerators. Focusing on accelerator flexibility, we propose PipeJSON as the first FPGA-based JSON parser for arbitrary JSON documents. PipeJSON is able to achieve parsing at line-speed, outperforming the fastest, vectorized parsers for CPUs. Lastly, we propose the subgraph query processing accelerator GraphMatch which outperforms state-of-the-art CPU systems for subgraph query processing and is able to flexibly switch queries during runtime in a matter of clock cycles

    First-Order and Temporal Logics for Nested Words

    Get PDF
    Nested words are a structured model of execution paths in procedural programs, reflecting their call and return nesting structure. Finite nested words also capture the structure of parse trees and other tree-structured data, such as XML. We provide new temporal logics for finite and infinite nested words, which are natural extensions of LTL, and prove that these logics are first-order expressively-complete. One of them is based on adding a "within" modality, evaluating a formula on a subword, to a logic CaRet previously studied in the context of verifying properties of recursive state machines (RSMs). The other logic, NWTL, is based on the notion of a summary path that uses both the linear and nesting structures. For NWTL we show that satisfiability is EXPTIME-complete, and that model-checking can be done in time polynomial in the size of the RSM model and exponential in the size of the NWTL formula (and is also EXPTIME-complete). Finally, we prove that first-order logic over nested words has the three-variable property, and we present a temporal logic for nested words which is complete for the two-variable fragment of first-order.Comment: revised and corrected version of Mar 03, 201

    Programming Using Automata and Transducers

    Get PDF
    Automata, the simplest model of computation, have proven to be an effective tool in reasoning about programs that operate over strings. Transducers augment automata to produce outputs and have been used to model string and tree transformations such as natural language translations. The success of these models is primarily due to their closure properties and decidable procedures, but good properties come at the price of limited expressiveness. Concretely, most models only support finite alphabets and can only represent small classes of languages and transformations. We focus on addressing these limitations and bridge the gap between the theory of automata and transducers and complex real-world applications: Can we extend automata and transducer models to operate over structured and infinite alphabets? Can we design languages that hide the complexity of these formalisms? Can we define executable models that can process the input efficiently? First, we introduce succinct models of transducers that can operate over large alphabets and design BEX, a language for analysing string coders. We use BEX to prove the correctness of UTF and BASE64 encoders and decoders. Next, we develop a theory of tree transducers over infinite alphabets and design FAST, a language for analysing tree-manipulating programs. We use FAST to detect vulnerabilities in HTML sanitizers, check whether augmented reality taggers conflict, and optimize and analyze functional programs that operate over lists and trees. Finally, we focus on laying the foundations of stream processing of hierarchical data such as XML files and program traces. We introduce two new efficient and executable models that can process the input in a left-to-right linear pass: symbolic visibly pushdown automata and streaming tree transducers. Symbolic visibly pushdown automata are closed under Boolean operations and can specify and efficiently monitor complex properties for hierarchical structures over infinite alphabets. Streaming tree transducers can express and efficiently process complex XML transformations while enjoying decidable procedures
    • ā€¦
    corecore