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Abstract

Database management systems are an integral part of today’s everyday life.
Trends like smart applications, the internet of things, and business and social
networks require applications to deal efficiently with data in various data models
close to the underlying domain. Therefore, non-relational database systems
provide a wide variety of database models, like graphs and documents. However,
current non-relational database systems face performance challenges due to the
end of Dennard scaling and therefore performance scaling of CPUs. In the
meanwhile, FPGAs have gained traction as accelerators for data management.

Our goal is to tackle the performance challenges of non-relational database
systems with FPGA acceleration and, at the same time, address design challenges
of FPGA acceleration itself. Therefore, we split this thesis up into two main
lines of work: graph processing and flexible data processing.

Because of the lacking benchmark practices for graph processing accelerators,
we propose GraphSim. GraphSim is able to reproduce runtimes of these acceler-
ators based on a memory access model of the approach. Through this simulation
environment, we extract three performance-critical accelerator properties: asyn-
chronous graph processing, compressed graph data structure, and multi-channel
memory. Since these accelerator properties have not been combined in one
system, we propose GraphScale. GraphScale is the first scalable, asynchronous
graph processing accelerator working on a compressed graph and outperforms all
state-of-the-art graph processing accelerators.

Focusing on accelerator flexibility, we propose PipeJSON as the first FPGA-
based JSON parser for arbitrary JSON documents. PipeJSON is able to achieve
parsing at line-speed, outperforming the fastest, vectorized parsers for CPUs.
Lastly, we propose the subgraph query processing accelerator GraphMatch which
outperforms state-of-the-art CPU systems for subgraph query processing and is
able to flexibly switch queries during runtime in a matter of clock cycles.





Zusammenfassung

Datenbanksysteme sind essenzieller Teil unseres heutigen Alltags. Trends wie
Smarte Anwendungen, das Internet der Dinge, und gewerbliche und soziale
Netzwerke benötigen Anwendungen, die effizient mit Daten in verschiedenen,
domänenspezifischen Datenmodellen arbeiten können. Deswegen stellen nicht-
relationale Datenbanksysteme eine breite Vielfalt an Datenmodellen, wie zum
Beispiel Graphen und Dokumente, zur Verfügung. Jedoch stehen nicht-relationale
Datenbanksysteme wegen des Endes des Dennard Scaling und damit der Per-
formanceskalierung von CPUs vor Performanceherausforderungen. Gleichzeitig
haben sich FPGAs als Beschleuniger für Datenmanagement etabliert.

Unser Ziel für diese Doktorarbeit ist es diese Performanceherausforderungen
von nicht-relationalen Datenbanksystemen mit Hilfe von FPGAs als Beschleuniger
zu lösen und gleichzeitig Designherausforderungen von FPGA-Beschleunigung
zu adressieren. Diese Doktorarbeit ist in zwei Hauptarbeitsstränge aufgeteilt:
Graphverarbeitung und flexible Datenverarbeitung.

Wegen der mangelhaften Benchmarkmethoden für Graph Processing Beschleu-
niger präsentieren wir GraphSim. GraphSim kann Laufzeiten von diesen Beschle-
unigern basierend auf einem Speicherzugriffsmodell des Ansatzes reproduzieren.
Mit Hilfe dieser Simulationsumgebung haben wir drei für die Performance kri-
tische Beschleunigereigenschaften identifiziert: Asynchrone Graphverarbeitung,
eine komprimierte Graphdatenstruktur, und Multi-channel Speicher. Weil diese
Beschleunigereigenschaften noch nie in einem System kombiniert wurden, präsen-
tieren wir GraphScale. GraphScale ist der erste, skalierbare, asynchrone Graph
Processing Beschleuniger der auf einer komprimierten Graphdatenstruktur ar-
beitet. GraphScale übertrifft die Performance aller anderen State of the Art
Graph Processing Beschleuniger.

Auf die Flexibilität von Beschleunigern fokussiert, präsentieren wir PipeJ-
SON als den ersten FPGA-basierten JSON Parser für JSON Dokumente mit



beliebiger Struktur. PipeJSON kann mit Line-Speed parsen und übertrifft damit
die schnellsten, vektorisierten Parser für CPUs. Zuletzt präsentieren wir den
Subgraph Query Processing Beschleuniger GraphMatch, welcher alle State of the
Art CPU-basierten Systeme übertrifft und den Subgraph Query flexibel innerhalb
weniger Taktzyklen ändern kann.
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Introduction

Databases are an integral part of today’s everyday life and are the foundation of
almost every computer-assisted transaction, like online banking, e-government,
business processes, and text messaging. These databases are created, updated,
and analyzed by database managements systems. Traditionally, database man-
agement systems worked on data represented as tables with a fixed schema, also
called relational databases [Cod70]. More recently, trends like smart applications,
the internet of things, and business and social networks require applications
to deal more efficiently with data in various data models close to the underly-
ing domain, as highlighted by recent studies [Bes+19a; DCL18]. For instance,
the predominant data exchange format in distributed business applications is
JavaScript Object Notation (JSON) [LL19; Dan+22] and working with JSON
documents gained popularity in schema-less contexts [DCL18]. Similarly, appli-
cations like social network analysis require processing and storage capabilities of
graph data, thus increasing the model variety. Traditional relational database
systems, however, only hesitantly addressed these requirements of model variety
(i. e., expressiveness, flexibility) [Aba12; Bre12; Cat10; Sto10]. Thus, the new
class of non-relational database systems emerged to address these requirements
of model variety and additionally provide important properties like scalability.
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1.1 Non-relational Database Systems

Non-relational database systems provide a wide variety of data models, like
graphs and documents, and scalable processing by relaxing traditional relational
database system constraints. This allows for flexible and application-specific data
modeling and processing of large data sets. In line with recent non-relational
database system surveys [Bes+19a; DCL18], for this thesis, we focus on non-
relational database systems for the following important data models: graph,
document, key-value, and wide-column.

At first sight, non-relational database systems might seem distinct from one
another, with shared properties being abstract system design principles like
their application specificity and scalability. For instance, complex graph query
languages are conceptually different to the straightforward APIs of key-value
database systems (e. g., put and get [DeC+07]). Although we acknowledge these
differences, we argue that the various data models (blue boxes) are grounded
in common primitives in key-value pairs and types of operators (cf. Fig. 1.1).
These operators include lookup, traversal (e. g., breadth-first search (BFS) on
graphs, path traversal on document hierarchies), pattern matching (e. g., Cypher
[Fra+18] on graphs, XPath on documents), and indexing (e. g., PageRank on
graphs, full text document indices). These foundational primitives even align
with the relational data model. Each data model is characterized by a structural
layer of specific primitives (e. g., vertices and edges of a graph) that connect
properties or key-value pairs. For instance, the key-value data model directly

2



1.2 Challenges and Research Gap
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Fig. 1.2 Overview of challenges in FPGA-accelerated non-relational database
systems.

stores key-value pairs in a hash table or tree (e. g., [ISA17]). In contrast, the
wide-column data model employs both a column and a row name as keys to
the key-value pairs (e. g., [LM10]). The relational data model is similar to the
wide-column data model but uses tables with a fixed schema of column names
where each row has to contain the same columns. Graph database systems
use property graphs that store networks of vertices connected by edges, with
properties associated with both of those [DCL18]. Documents are built from
possibly nested objects and arrays that again refer to properties [DCL18]. Beyond
this, all data models facilitate basic lookup functions, while the more expressive
data models (graph, document, and relational) support structural traversals,
pattern matching, and indexing.

1.2 Challenges and Research Gap

The data models and operations of non-relational database systems are also
relevant when considering performance scaling of data processing because the
resulting workloads pose unique challenges. Figure 1.2 shows an abstract com-
mon database system architecture. Besides the CPU that executes the main
components of the database system, the system contains storage to persist data,
a network interface controller (NIC) for communication with other nodes of the
system and applications (e.g., receiving and answering queries and ingestion of
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data), system memory for the working data, and, more recently, one or more
accelerators. All components communicate with each other over an interconnect
(e.g., PCIe). In the following, we will introduce the challenges that non-relational
database systems face on traditional CPU-centered architectures (C1–3), high-
lighting the need for accelerators in modern database systems, and the challenges
that integrating an accelerator into the system raises (C4–6). Lastly, we discuss
how these challenges are addressed by current research and which research gaps
remain and will be tackled with this thesis.

1.2.1 Challenges for Non-relational Databases

The volume of data handled by non-relational database systems starkly increases,
for example, into gigabytes of JSON documents (e. g., [LL19; Dan+22]) and big
graph datasets (e. g., up to one trillion edges [Chi+15]). Current non-relational
database systems, primarily built for general-purpose CPUs (cf. Chapter 2),
face challenges with processing these increasing data volumes and scaling out
[DRF23b]. Since the end of Dennard scaling [Den+74], meaning transistor density
not scaling at approximately constant power consumption anymore, frequency
and therewith performance scaling of CPUs is reaching limits (cf. Fig. 1.3). To
address this, CPU vendors have turned to optimizations like instruction pipelining,
coarse-grained multi-core and hardware thread parallelism, and vectorization.
However, even with these optimizations, CPUs performance is constrained as can
be seen from the development of the number of cores of current CPUs [TS21].
In this thesis, our focus is on the broader problem of stagnating performance
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growth in non-relational database systems that rely on traditional CPU-centered
architectures. Specifically, we aim to address three challenges that are integral
to this overarching issue:

C1 Irregular memory accesses The irregular memory accesses of workloads
like graph processing cause significant performance challenges on conventional
CPU hardware. On one hand, in the DRAM, these workloads cause effects like
frequent row switching and ineffective use of fetched lines [Bes+19a; DRF23b;
Lum+07; Ahn+15]. On the other hand, the fixed cache hierarchies of CPUs
suffer from frequent cache misses and cache pollution. In total, this results in
poor memory access efficiency and underutilization of compute resources for
these workloads on CPUs.

C2 Limited parallelism The coarse-grained parallelism provided by modern
CPUs works well for task parallelism (cores and hardware threads) as well as
single instruction multiple data (SIMD) data parallelism (i. e., vectorization).
However, especially SIMD parallelism is very rigid in CPUs and only works for
particular workloads. For instance, integer parsing is very hard to parallelize in
the rigid structure of CPUs because of the tight data dependencies, e. g., making
performance of JSON parsing very unpredictable [Dan+22]. More fine-grained,
application-specific, and unstructured parallelism would greatly benefit these
kinds of workloads.

C3 Data movement Due to the centralized nature of CPU-centric computer
architectures, they require frequent data movement between different components
of the system over the interconnect (e. g., PCIe), since all data has to pass through
the CPU. This unnecessarily uses a lot of bandwidth and keeps the CPU busy
with data movement resulting in limited performance and long latencies [Vog+23].
For example, for JSON ingestion in document stores, data enters the system
through the NIC, is written into the system memory only to be read from system
memory again into the CPU, parsed, and written back to memory.

Discussion While system architects could previously rely on strong CPU
performance scaling to satisfy growing performance requirements, more sophis-
ticated, heterogeneous computer architectures, integrating different hardware
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accelerators, are explored nowadays. This trades off generality and higher design
complexity in favor of higher performance. Due to the massive popularity of
machine learning, GPUs are one popular accelerator option that offer massive
parallelism. Yet, their performance deteriorates when their internal cores do not
execute the same instruction (i. e., warp divergence), e. g., common for graphs
with high degree variance [Shi+18]. Thus, for modern non-relational (and rela-
tional) database systems, field-programmable gate arrays (FPGAs) are explored
for future performance scaling (e. g., [ISA17; Owa+17]).

1.2.2 FPGAs to the Rescue?

As such, FPGAs have gained traction for cloud-based data processing and have
found applications in areas like data centers (e. g., Project Catapult [Put+14]),
machine learning (e. g., neural network inference [Umu+17]), and also data man-
agement. Thus, FPGAs are potentially able to address the challenges faced by
non-relational database systems. FPGAs are reconfigurable computing platforms
that can implement custom massively parallel workload-specific processor archi-
tectures. Their architecture provides unmatched flexibility with no structural
restrictions on parallelism. Additionally, all data on an FPGA is bit-addressable,
and data types are not restricted to multiples of bytes, at least in on-chip regis-
ters. FPGAs give the user full control over memory accesses with custom-usable
on-chip memory. Their flexibility also means that FPGAs can be placed any-
where in the system architecture which is important for concepts like near-data
processing or processing-on-the-wire which allow for substantial reductions in
data movement. When it comes to database systems, FPGAs could potentially
even outperform the currently more prevalent GPUs for certain use cases [RL17].
However, FPGAs come with their own unique challenges of which we want to
highlight three in the following that we will address with this thesis.

C4 Hardware design In general, the hardware engineering design flow for
FPGAs is very different to that of instruction-based processors like CPUs and
GPUs. FPGA design is about minimizing data dependencies to maximize achiev-
able clock frequency. Thus, a major challenge with FPGAs is their inaccessible
programming with hardware description languages typically used being very
foreign to software engineers due to the unprecedented parallelism on FPGAs.
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C5 Low latency workload switching On FPGAs, functionality implemented
in the custom architecture spatially takes up limited resources on the chip.
Different to instruction-based processors (e. g., CPUs and GPUs), for FPGAs,
switching workloads may take reconfiguration of the whole chip for sufficiently
complex implementations. Thus, one challenge for FPGA designs is coming
up with abstractions that strike a good balance between specialization and
adaptability. For instance, parameterization can be used for low latency workload
switching foregoing costly reconfiguration of the chip.

C6 Novel memory technologies Recently, FPGA platforms with memory
subsystems with large bandwidth like high-bandwidth memory (HBM) became
available that are very difficult to leverage with CPUs. As the number of memory
types used with FPGAs rises, it increasingly becomes a challenge to design
systems that utilize the unique properties of the different types of memory.

Discussion FPGAs are not the silver bullet to instantly solve all challenges in
non-relational data processing and come with their own set of challenges. Data
processing is still relatively new for FPGAs and the tooling is not evolved to the
same degree as, e. g., CUDA for GPUs. Additionally, because most database prac-
titioners come from a software engineering background, the challenges C4–6 are
particularly prevalent for utilizing FPGAs for databases. However, FPGAs show
a lot of potential for acceleration of non-relational database systems [DRF23b]
and, thus, we will address these challenges with this thesis.

1.2.3 Research Gap Non-relational Databases on FPGAs

With the combined challenges C1–6 in mind, we surveyed the literature and found
the following gaps in existing research that need to be addressed for FPGA-based
performance scaling of non-relational database systems. In this thesis, we aim to
close the following six research gaps (an extended list of open research gaps can
be found at the end of the survey in Sect. 3.4).

Survey research There is only limited academic research in terms of survey
studies that cover the topic of non-relational database systems. While non-
accelerated non-relational database systems have been extensively studied [Cat10;
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DCL18; Gaj12; Ges+17; He15; Jin+11], and two surveys have covered FPGA-
accelerated graph processing within the context of high-performance computing
(HPC) [Bes+19b; Gui+19], there is a significant gap in survey studies on FPGA-
accelerated non-relational database systems.

Benchmarks and reproducibility There are no widely agreed-upon bench-
mark suites and depending on the domain and workload no commonly used
data sets. Especially for graph processing accelerators (e.g., [Sha+19; Zho+19;
Che+22]), the reproducibility and comparability of existing research systems is
lacking. This is due to multiple factors, the most important being almost no open
source implementations and many different FPGA platforms making it very hard
to directly compare performance measurements or alternatively implementing a
set of accelerators for the purpose of comparison (cf. challenge C4).

Bandwidth-efficient accelerators For memory-bound workloads, like graph
processing, that are challenged by irregular memory accesses (C1), FPGAs are
well suited and a number of systems have been proposed [Yao+18; Sha+19;
Zho+19; Che+22]. However, previous research has not explicitly explored how
to utilize the available memory bandwidth most efficiently even though this is
the bottleneck for these kind of accelerators. A systematic approach to design
bandwidth-efficient FPGA-based accelerators is missing.

Scalable accelerators With the progress in memory technology, accelerators
may choose from a wide range of different memory technologies. While memory
technologies like persistent memory are out-of-scope for this work, modern
memory providing high bandwidth data access like HBM and hybrid memory
cube (HMC) are relevant in pursuing more performance and providing different
memory characteristics to tackle challenges like irregular memory accesses (cf.
challenge C1). While there has been general research on utilizing HBM on
FPGAs [Wan+20b; Shi+22], in the context of non-relational database systems,
it is especially interesting to explore how HBM can be utilized for accelerating
graph processing which is notoriously memory-bound (cf. challenge C6).

Flexible data ingestion For workloads like parsing and format conversions
that work on data that is already on the move through the network, SmartNIC
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deployments of FPGAs massively reduce data movement (cf. challenge C3).
Currently the most popular data format for document database systems is
JSON. While there has been related work on XML parsing [CHL08; DNZ10;
Sid13; Hua+14] and parser generators for JSON parsing [Pel+21], there is a
gap for a flexible parser that can handle arbitrary JSON documents during
runtime. Additionally, even though modern CPU-based parsers (e. g., [LL19])
use vectorization, they are not utilizing the full potential of parallelization that
is possible with this workload (cf. challenge C2).

Flexible query processing accelerators Different to HPC that is often
targeted by FPGA accelerators, database workloads require flexible query pro-
cessing with low latency workload switching which is a challenge on FPGAs (cf.
challenge C5). There is a gap in suitable hardware abstractions that preserve the
required degree of flexibility despite high specialization of the hardware design for
optimal performance. There is related work for document and relational query
processing (e. g., [TWN12; Mog+23]), however, there are no graph database
system solutions for this challenge.

1.3 Research Questions

Based on these research gaps, this thesis answers the following research questions.

RQ1 How can non-relational database systems leverage FPGA acceleration?

RQ1.1 How do existing non-relational database systems utilize FPGAs?

RQ1.2 Which solutions and gaps exist in current research on non-relational
FPGA acceleration?

RQ1.3 Which reoccurring patterns in the literature guide the design of FPGA-
accelerated non-relational database systems?

Research question RQ1 addresses the gap of lacking survey research for non-
relational database regarding FPGA acceleration. The goal is to establish what
has already been covered by research and which overarching patterns exist in
related work. To this end, sub-question RQ1.1 explores existing commercial
database systems to find out how FPGAs are currently utilized in real world sys-
tems. Delving into the academic literature, sub-question RQ1.2 seeks to provide
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an intuition for current research. Lastly, we look for reoccurring patterns in the
previously introduced research for the design of new systems and acceleration
of existing ones with sub-question RQ1.3. Together, answering these questions
will provide a comprehensive picture of commercial use, academic solutions, and
overarching patterns for FPGA acceleration of non-relational database systems.

RQ2 How can the FPGA use the available bandwidth for irregular memory
accesses most effectively?

RQ2.1 Which crucial graph processing accelerator properties contribute to
good performance?

RQ2.2 How can the crucial graph processing accelerator properties be combined
in one system?

RQ2.3 How can accelerators be scaled to unlock the potential of novel memory
technologies like HBM?

Focusing on graph processing accelerators, sub-question RQ2.1 addresses
the gap of lacking benchmarks practices and lacking understanding of existing
accelerators. Therefore, we analyze the crucial properties that lead to good
performance in existing graph processing accelerators. Sub-question RQ2.2 then
seeks to understand how these crucial properties of existing accelerators can
be combined as a new accelerator. This addresses irregular memory accesses
and the gap of bandwidth-efficient accelerators, since graph processing is largely
memory-bound. Lastly, sub-question RQ2.3 will explore the use of HBM for
further performance scaling. In total, answering research question RQ2 will
provide a comprehensive analysis of the current graph processing accelerator
literature and use the insights from that to improve upon existing accelerators.

RQ3 How can flexible data ingestion and query processing be achieved on FPGAs?

RQ3.1 How can line-speed data ingestion of arbitrary input data be achieved
on FPGAs?

RQ3.2 How can algorithmic software approaches be useful to hardware design?

RQ3.3 How can flexible subgraph query processing benefit from FPGAs?

Research question RQ3 addresses the gaps of lacking hardware abstractions
and flexibility of current accelerators with its three sub-questions. First, we will
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look at data ingestion of arbitrary JSON documents at line speed (sub-question
RQ3.1). Thereafter, sub-question RQ3.2 targets how existing CPU-based software
solutions may be brought to FPGA designs. Answering this question, we will
focus on an example of set intersections on FPGAs. Lastly, sub-question RQ3.3
addresses query processing on FPGAs with flexible workload switching during
runtime which is motivated by the gap on missing flexible accelerators.

1.4 Contributions

The main contributions of this thesis are a survey and several systems (GraphSim,
GraphScale, PipeJSON, and GraphMatch) addressing the research questions
RQ1–3. The contributions are based on papers that have been published at
conference and journals. For each contribution, the following list shows the
research question it addresses, in which chapter the research is presented in this
thesis, and the papers that count towards it. The majority of the content of each
chapter is based on the respective papers.

1. Survey including a systematic literature review of related work and a prac-
titioners guide based on reoccurring design patterns for FPGA-accelerated
non-relational database systems (cf. RQ1; Chapter 3)

• Jonas Dann, Daniel Ritter, and Holger Fröning. “Non-relational
Databases on FPGAs: Survey, Design Decisions, Challenges”. In:
ACM Comput. Surv. 55.11 (2023), 225:1–225:37. [DRF23b]

Figures and tables from this paper are used similarly in Fig. 1.1, Figures
3.1 to 3.7, Tab. 3.1, and Tab. 3.2.

2. Simulation environment GraphSim for memory-bound graph processing
accelerators to make accelerator performance reproducible and comparable
and gain deeper insight into accelerator properties. Crucial accelerator
properties are: asynchronous graph processing, a compressed graph data
structure, and multi-channel memory (cf. RQ2.1; Chapter 4)

• Jonas Dann, Daniel Ritter, and Holger Fröning. “Exploring Memory
Access Patterns for Graph Processing Accelerators”. In: BTW. 2021,
pp. 101–122. [DRF21b]
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• Jonas Dann, Daniel Ritter, and Holger Fröning. “Demystifying Mem-
ory Access Patterns of FPGA-based Graph Processing Accelerators”.
In: GRADES-NDA. 2021, 3:1–3:10. [DRF21a]

Figures and tables from these papers are used similarly in Figures 4.1 to
4.11, Fig. 4.13, Fig. 4.14, Figures 4.16 to 4.22, and Tables 4.1 to 4.3.

3. Scalable general-purpose graph processing framework for FPGAs Graph-
Scale combining multi-channel memory, asynchronous graph processing,
and a compressed graph data structure resulting in an average speedup
of 1.86× over state-of-the-art graph processing accelerators. Additionally,
scaling to up to 16 HBM channels resulting in another average speedup of
1.53× over the base system (cf. RQ2.2 and RQ2.3; Chapter 5)

• Jonas Dann, Daniel Ritter, and Holger Fröning. “GraphScale: Scalable
Bandwidth-Efficient Graph Processing on FPGAs”. In: FPL. 2022,
pp. 24–32. [DRF22]

• Jonas Dann, Daniel Ritter, and Holger Fröning. “GraphScale: Scal-
able Processing on FPGAs for HBM and Large Graphs”. In: ACM
Trans. Reconfigurable Technol. Syst. Just Accepted (2023), pp. 1–24.
[DRF23a]

Figures and tables from these papers are used similarly in Figures 5.1 to
5.17 and Tables 5.1 to 5.4.

4. FPGA-based JSON parsing accelerator PipeJSON that is fully pipelined for
parsing of arbitrary JSON documents at line speed up to almost 20 GB/s
denoting the bandwidth of a whole memory channel, achieving an average
speedup of 12.56× over the fastest CPU parser (cf. RQ3.1; Chapter 6)

• Jonas Dann et al. “PipeJSON: Parsing JSON at Line Speed on FP-
GAs”. In: DaMoN. 2022, 3:1–3:7. [Dan+22]

Figures and tables from this paper are used similarly in Figures 6.1 to 6.10
and Tables 6.3 to 6.2.

5. Subgraph query processing system GraphMatch that is able to flexibly
switch queries in a matter of clock cycles achieving an average speedup of
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2.68× and 5.16× over the two fastest join-based subgraph query processing
systems for CPUs (cf. RQ3.2 and RQ3.3; Chapter 7)

• Jonas Dann et al. “GraphMatch: Subgraph Query Processing on
FPGAs”. In: SIGMOD. Submitted (2024), pp. 1–12.

Figures and tables from this paper are used similarly in Fig. 2.3, Figures
7.1 to 7.17, and Tables 7.3 to 7.2.

Figure 1.4 shows the contributions in the context of the abstract non-relational
database system architecture from Fig. 1.2. Combined as Part I, GraphSim and
GraphScale together contribute to increased understanding of graph processing
accelerator properties (reproducibility and comparability) and how to apply
them to the real world. Combined as Part II, PipeJSON and GraphMatch show
how to attain flexible data ingestion for arbitrary documents and flexible query
processing with on-the-fly query switching. Together, the contributions of this
thesis address the challenges (C1–6) from Sect. 1.2.

1.5 Thesis Outline

Starting with Chapter 2, we introduce the foundations of non-relational database
systems and FPGAs that are shared among the subsequent chapters. Thereafter,
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the thesis follows the structure layed out in Fig. 1.4. In Chapter 3, we focus on
related work across FPGA-based query acceleration for non-relational databases.
Based on a taxonomy proposed by us, in a detailed literature analysis, we show
existing solutions and later analyze open research gaps. Additionally, we propose
a practitioners guide based on common patterns observed in the literature analysis
to aid design of FPGA-accelerated non-relational database systems.

Starting Part I, Chapter 4 introduces the simulation environment GraphSim
and memory access models for four state-of-the-art graph processing accelerators
that are subsequently used to reproduce and compare performance along several
dimensions. The insights from this analysis are used in Chapter 5 to design
GraphScale. After we introduce the GraphScale concept, we show a detailed
evaluation and how GraphScale can be scaled to HBM.

Part II, focused on flexible data processing, introduces the PipeJSON (Chap-
ter 6) system architecture showing how it can parse arbitrary JSON documents
followed by a detailed evaluation of parsing performance. Thereafter, we propose
GraphMatch (Chapter 7). We show how set intersection, instrumental to sub-
graph query processing, benefits from FPGAs and is integrated into GraphMatch
for flexible query processing, before we finish with a performance evaluation.

Finally, we conclude the thesis in Chapter 8, revisiting the challenges C1–6
(cf. Sect. 1.2.1 and Sect. 1.2.2) and research questions RQ1–3 (cf. Sect. 1.3) and
provide an outlook on future work.
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Foundations

In this chapter, we introduce non-relational database systems and FPGAs.

2.1 Non-relational Database Systems

Non-relational databases are categorized based on their data models (as estab-
lished in Fig. 1.1). Survey research on non-relational database systems [Cat10;
DCL18; Gaj12; Ges+17; He15; Jin+11] shows that the predominant data models
for these systems are graph, document, and key-value. While there are other
data models like wide-column, spatial, object-oriented, and timeseries, they are
not explored in this thesis. In the subsequent sections, we will introduce aspects
of graph, document, and key-value database systems in that order, placing a
special emphasis on the graph data model.

2.1.1 Graph

Graphs are abstract data structures G = (V,E) comprising a vertex set V and
an edge set E ⊆ V × V . Intuitively, they are used to describe a set of entities
(vertices) and their relations (edges). Throughout this thesis, we consider graphs
to be directed by default, meaning edges have a direction from a source to a
destination vertex. In some cases, marked as such, we also consider undirected
graphs where we duplicate each directed edge as an inverse edge in the other
direction to make the graph undirected.
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Fig. 2.1 Example graph and graph data structures.

Figure 2.1 shows an example graph consisting of six vertices and ten edges
and three distinct possible data structure representations of this graph. The
graph’s adjacency matrix A is a matrix of dimensions |V |× |V |, where Aij = 1
when there is an edge between vertices vi and vj (cf. Fig. 2.1(a)). Subsequently,
Fig. 2.1(b) shows the same graph represented as a sorted edge list which stores
the graph as an array of edges with a source and a destination vertex each. The
array is sorted in ascending order by source and then destination vertex. Another
possible data structure is a set of adjacency lists where each list contains the
neighbors of a given vertex in the graph. As an exemplary implementation of this
representation, the compressed sparse row (CSR) format is shown in Fig. 2.1(c).
Used for the efficient storage of sparse matrices (in this case the adjacency matrix
of the graph), CSR uses two arrays. The values of the pointers array at position
i and i+1 delimit the range in the neighbors array that contains the neighbors of
vertex vi. For instance, for vertex v3 the neighbors are the values of the neighbors
array between indices 6 and 8, i. e., vertices v2 and v5.

For graph database systems, graph partitioning is often utilized to divide the
graph into smaller subgraphs for the purpose of distributed processing. During
graph partitioning, the graph is split up into multiple subgraphs. Within the
context of this thesis, two primary partitioning dimensions are relevant: vertical
and horizontal. The dimensions are in reference to the way the adjacency matrix
of the graph is split up. Vertical partitioning divides the vertex set into distinct
intervals such that each partition contains the incoming edges of its corresponding
interval. In contrast, while horizontal partitioning also divides up the vertex set
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into intervals, each partition contains the outgoing edges of its corresponding
interval. As a third partitioning approach, interval-shard partitioning [ZHC15]
employs both vertical and horizontal partitioning at once. These partitioning
approaches can be freely combined with the different graph data structures.

In the following, we will discuss the two main graph database workloads that
are relevant to this thesis: graph processing and subgraph query processing.

2.1.1.1 Graph Processing

Graph processing traverses a data graph with given execution directives to analyze
properties of the overall structure, its vertices, and edges. For this workload,
we consider labeled graphs, i. e., each vertex has a value associated with it,
its vertex label. Optionally, the edges may have edge weights. In the context
of this thesis, we focus on five specific graph problems [Eve11]: breadth-first
search (BFS), single-source shortest paths (SSSP), weakly-connected components
(WCC), sparse matrix-vector multiplication (SpMV), and PageRank (PR).

For BFS, the vertices of the graph are visited in a breadth-first order. Starting
with a root vertex as the frontier, in each iteration, every unvisited neighbor of
the current frontier vertices is marked as visited, assigned the current iteration
as its vertex label, and added to the frontier of the next iteration. The result
per vertex is the number of edges to the root vertex along the shortest path.

For SSSP, the shortest distance to the root vertex is determined for each
vertex v ∈ V of the data graph. The shortest distance equals the minimum sum
of edge weights of any path from the root to vertex v. If we consider each edge
to have weight 1, the result is identical to that of BFS.

WCC identifies which vertices in the data graph belong to the same weakly-
connected component. Two vertices are considered to be in the same weakly-
connected component if there is any undirected path connecting them.

SpMV multiplies a vector (equal to the vertex labels of V ) with a matrix
(equal to E) in iterations over the data graph. PR is a measure to describe
the importance of vertices in a graph originally used to rank web pages. It is
calculated by recursively applying p(i, t+1) = 1−d

|V | + d ·∑j∈NG(i)
p(j,t)
dG(j) for each

i ∈ V with damping factor d, neighbors NG, degree dG, and iteration t. The
vertex labels are initialized as p(i,0) = 1/|V |.

Depending on the underlying graph data structure, these graph problems
may be solved based on two fundamentally different approaches: edge- and
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Fig. 2.2 Example for vertex-centric, pull-based, asynchronous BFS.

vertex-centric graph processing. Edge-centric graph processing iterates over the
edges as primitives of the data graph on an underlying edge list. Vertex-centric
graph processing iterates over the vertices and their neighborhoods as primitives
of the data graph on an underlying adjacency lists data structure (e. g., CSR).
Furthermore, for vertex-centric graph processing, there are two ways for vertex
labels to flow along edges: push- and pull-based data flow. Push-based data
flow denotes that vertex label updates from the current vertex are pushed along
the forward direction of edges to update neighboring vertices. For pull-based
data flow, vertex label updates are pulled along the inverse direction of edges
from neighboring vertices to update the current vertex. Lastly, we differentiate
between two update propagation schemes: asynchronous and synchronous graph
processing. Asynchronous graph processing immediately applies updates to
vertex labels as soon as they are produced and synchronous graph processing
stores all vertex label updates in a separate data structure in memory and applies
them only after the current iteration over the graph is finished.

Figure 2.2 shows an example of vertex-centric, pull-based, asynchronous BFS
on the example graph from Fig. 2.1. The execution starts with the initialization
of the vertex labels attached to each vertex. All vertices except the root vertex
v0 (vertex label 0) are assigned the vertex label −1. Thereafter, we try to update
each vertex with the minimum of the vertex labels of the neighbors connected
to the current vertex with incoming edges plus 1. For example, in step 1, the
vertex label vertex v1 is updated with 0+1 from vertex v0. Vertex labels of −1
are filtered out. This is done until we converge on a stable result and there are
no more possible updates.

2.1.1.2 Subgraph Query Processing

Subgraph query processing seeks to find instances of a given query graph structure
in a given data graph (i. e., pattern matching). It either computes subgraph
homomorphisms or isomorphisms. Both denote subgraphs of the same shape as
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Fig. 2.3 Subgraph query processing example and all its isomorphisms.

the query graph, but homomorphisms allow duplicate vertices within matchings,
while isomorphisms do not. Figure 2.3 shows an example of an unlabeled subgraph
query processing task for directed graphs, given a data graph GD = (VD,ED)
with four vertices and seven edges and an input query graph GQ = (VQ,EQ) with
three vertices and three edges:

VD ={d0,d1,d2,d3}

ED ={(d0,d1),(d1,d2),(d2,d3),(d2,d2),(d3,d0),(d0,d2),(d3,d1)}

VQ ={q0, q1, q2}

EQ ={(q0, q1),(q0, q2),(q2, q1)} .

In the example, we identify all subgraph isomorphisms of the triangle GQ

within GD. Thus, all results of the task are triangle subgraphs of GD, where
edges of the same direction exist in the data graph and no vertex is used multiple
times. The result contains two graphs:

S0 = (VS0 ,ES0) :=({d0,d2,d1},{(d0,d2),(d0,d1),(d1,d2)})

S1 = (VS1 ,ES1) :=({d3,d1,d0},{(d3,d1),(d3,d0),(d0,d1)}) .

The homomorphisms of the example in Fig. 2.3 would include the subgraph
isomorphisms S0 and S1 and four subgraphs with multiple occurrences of vertex
d2. There are two main approaches to processing subgraph queries [SL20; Lee+12]:
exploration- and join-based.
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Exploration-Based Subgraph Query Processing For exploration-based
algorithms (also known as backtracking), the general idea is to explore the entire
graph and create candidate sets of data vertices for each query vertex based on
a set of constraints lowering the problem complexity. Thereafter, those sets are
taken and all valid isomorphisms are enumerated.

In the literature, three different enumeration variations are known [Sun+20a]:
direct-, index-, and preprocessing-enumeration. Their underlying ideas are the
same, but they avoid or handle the start of the algorithm differently (e. g.,
enumerate subgraphs directly or create an index structure on the data graph
beforehand). The general backtracking algorithm works similar for all variations.
A candidate set along a query vertex ordering (QVO) is computed containing
all data vertices that might be a valid entry for the given position. Additional
information, like edge connections between candidates, is also collected in separate
data structures. Afterwards, the algorithm uses the collected information and
data structures to recursively enumerate all subgraph isomorphisms along the
QVO. Additionally, each iteration computes a local candidate set by taking the
connections between previous and future vertices into account. The recursion
ends after the whole query graph is processed. The algorithm can also be
adapted to find homomorphisms instead by allowing duplicate vertices during
the enumeration step.

Join-Based Subgraph Query Processing Worst-case optimal joins (WCOJ)
limit their runtime complexity to the worst-case output size of the algorithm
[Ngo+18]. Join-based subgraph query processing is based on the WCOJ algorithm
Generic Join [NRR13]. Generic Join describes an iterative approach to construct
all homomorphisms (or isomorphisms with appropriate constraints) by joining
one vertex at a time to a temporary subgraph (partial matching).

A known variation of Generic Join that is used in a lot of subgraph query
processing systems is Leapfrog Triejoin [Vel12]. Leapfrog Triejoin starts with two
vertices connected with an edge and extends those step by step. To find valid
join candidates, it intersects the corresponding neighbourhoods of all previously
matched vertices that share an edge with the new vertex in the query graph. All
elements of the result set are joined to the current subgraph. This process creates
multiple new partial matchings for the next iteration with the trie structure of
the algorithm. After each of the subgraphs represents a valid matching for the
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full query graph or no partial matching can be extended anymore, the algorithm
terminates. The intersections of Leapfrog Triejoin are computed by its Leapfrog
algorithm. This algorithm searches for potential result values in ordered sets. It
leaps from one value to the next within sets and jumps from set to set to exclude
values that can not be part of the intersection result.

2.1.2 Document

Document database systems store formatted text documents in a hierarchical
binary representation. Currently, the two most popular document formats for
document database systems are Extensible Markup Language (XML) [Bra+00]
and JavaScript Object Notation (JSON) [Bra+14]. Every document in such
a database adheres to such a fixed format. Upon ingestion into the database
system, they are parsed from a string representation that is slow to process to
an internal binary representation to facilitate faster processing.

Listing 2.1 JSON example.

{

"name": {

"first": "Alan",

"last": "Turing"

},

" isAlive ": false ,

"born": 1912 ,

" almaMater ": [" University of Cambridge ",

" Princeton University "]

}

Most leading document database systems utilize JSON, which is a text-based,
language-independent data interchange format. Listing 2.1 shows an example of
a JSON document. The JSON format can be recursively formalized as follows
(omitting formal definitions of String and Number [Li+17b]):
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Text—Object|Array . . .Object|Array

Object—{String : Value, . . . ,String : Value}

Array—[Value, . . . ,Value]

Value—Object|Array|String|Number|true|false|null

A JSON Text is a sequence of one or more JSON objects or arrays. Each
Object is enclosed in curly braces (“{” and “}”), and contains a sequence of
zero or more key-value pairs, also called fields. Each key-value pair consists of
a string key, followed by a single colon (“:”), and a corresponding value. An
Array is an ordered collection of zero or more values separated by commas and
surrounded by square brackets (“[” and “]”). Lastly, a Value can be an object,
array, string in quotes (“"”), number, true, false, or null. Thus, these structures
can be used to represent nested objects and arrays.

Parsing means transforming a document represented as a raw string into a
binary representation for an underlying application like a database system. The
binary representation aids the accessing application in traversing the document
and quickly accessing values. In particular, parsing includes, among other things,
building an easily traversable token representation of the nested objects and
arrays and transforming the text-based numbers into integers and floats.

2.1.3 Key-value

Key-value database systems operate on key-value pairs. The key is used for quick
lookup of the value and the attached value may be arbitrary data. They may
be used as an underlying persistence layer of another database or standalone
depending on the use case. For this thesis, two data structures important to
key-value database systems are of particular interest, namely hash tables and
log-structured merge-trees (LSM-trees).

Hash tables are dictionary data structures that map keys to values [MS08].
Figure 2.4 shows an example hash table with a hash function that maps arbitrary
string keys to five buckets. In this simplified example, each bucket is a linked
list of key-value pairs. Thus, a hash table is able to provide quick look-ups and
inserts for a very large sets of possible keys (arbitrary strings) where only a

22



2.2 Field-programmable Gate Arrays

1
"abc"

3
4

2

0 10 Bucket

"a" 54 "cd" 107

H
as

h 
fu

nc
tio

n

"abc"
"de" 5
"e" 10

Fig. 2.4 Hash table.

Level 2

Level 1

Level 0 Memory

Disk
merge

Fig. 2.5 LSM tree.

comparably small number of keys is actually in use with a small memory footprint.
One of the main challenges for well performing hash tables are choosing a good
hash function that equally distributes keys over buckets and thus produces as
little hash conflicts as possible. A hash conflict happens when there is already a
key in the bucket where a new one is inserted. In our example, we append the
conflicting entry to the respective linked list making the look-ups for this bucket
increasingly slower as the linked list grows.

LSM-trees [ONe+96] are used by key-value database systems to avoid write
amplification and slow random write accesses to disk. The data structure is split
up into multiple levels with the first one residing in memory and all subsequent
levels residing on disk (cf. Fig. 2.5). Initially, new entries are inserted into blocks
in memory that may represent different kinds of tree data structures. After a
block of a fixed size is full, the block is merged into the first level on disk making
all writes sequential. Depending on the implementation, disk levels may be split
up into multiple blocks and blocks in disk levels may be merged into increasingly
larger blocks in subsequent levels when hitting a certain threshold size.

2.2 Field-programmable Gate Arrays

A field-programmable gate array (FPGA) is a flexible processor architecture that
can be programmed to mimic custom architecture designs, essentially imitating a
specific set of logic gates and their connections (circuit design). This is similar to
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application-specific integrated circuits (ASICs) that are custom-made to represent
a circuit design. However, FPGAs are reprogrammable, allowing developers to
modify the design at configuration time when needed. This flexibility has a trade-
off: FPGAs are less power- and area-efficient and achieve lower clock frequencies
than designs implemented as a custom ASIC. However, economic reasons as well
as the need to adapt to changes in application behavior often prevent the use of
ASICs. Thus, FPGAs emerged as accelerators for data processing (e. g., [TW13])
and are becoming increasingly important in the cloud [Bob+22]. They provide
unique opportunities to implement functionality, like custom single instruction
multiple data (SIMD) units or processing and data structure hybrids, like systolic
arrays. While CPUs and GPUs are limited by the number of instructions
performed per second, FPGAs are limited by the resources on the chip and
the parallelism achieved by the circuit designer. However, whereas CPU and
GPU programs are only practically restricted in complexity by program memory,
the limited FPGA resources require careful planning of resource utilization.
Additionally, features like synchronization among processing elements or memory
prefetching have to be implemented by the designer and are not supported
by default. In the following, we discuss the resources found on FPGA chips,
the design flow for FPGAs, and how FPGAs are integrated into the computer
architecture with FPGA boards.

2.2.1 Resources

Figure 2.6 shows an abstraction of an FPGA chip. On the chip, a custom
architecture is mapped to a grid of resources (e. g., logic elements or block RAM

24



2.2 Field-programmable Gate Arrays

Look-up table
Address Content

00 0
01 1
10 1
11 0

ab
a

b
FF

y

Fig. 2.7 Simplified FPGA logic element with look-up table and register (adapted
from [Mog23]).

(BRAM)) connected with a programmable interconnection network. Each custom
architecture uses a certain amount of resources upon configuration such that
multiple custom architectures can be deployed on the same chip.

The logic itself is implemented with logic elements (cf. Fig. 2.7) (Intel calls
them adaptive logic modules (ALMs) [Int22]) containing a look-up table (LUT)
with multiple inbound (two in this simplified example) ports and one outbound
bit port, a flip-flop (FF), which we will call register, for optional storage of the
outbound bit, and a multiplexer. Each individual LUT is configurable to map any
combination of input bits to either 0 or 1 as the output bit and is programmed
upon configuration time. The LUTs are based on SRAM and are themselves
purely combinational and stateless. Only the connection with the register makes
them sequential and statefull. In modern FPGAs, logic elements additionally
feature a carry chain connecting an additional output bit to neighboring LUTs
for the implementation of adders.

The FPGA further contains on-chip BRAM in the form of SRAM memory
components for high bandwidth and low latency (1 clock cycle) storage of
data. BRAM is organized in blocks with a read and a write port that are
simultaneously usable and, at least for Intel Stratix FPGAs, 512 entries deep of
40bit-wide values. On modern FPGAs, all BRAM blocks combined are about as
large as the caches on a CPU (∼ 30MB) but finely configurable to the mapped
architecture. Additionally, the FPGA contains hardened digital signal processors
(DSPs) that allow fast arithmetics on fixed- and floating-point numbers which
would otherwise be very resource intensive if implemented in soft reconfigurable
logic. Data enters and leaves the FPGA chip through I/O pins that are layed
out on the edges of the chip.

All of these resources are connected with a programmable interconnection
network running as bundles of wires horizontally and vertically between them (cf.
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Fig. 2.8 Simplified FPGA interconnect (adapted from [Mog23]).

Fig. 2.8). The resources are connected to the interconnect via connection boxes
that are also programmed at configuration time. In this simplified example, the
connection box connects the left resource to the middle wire and the right resource
to the right wire. Additionally, on each crossing of the wire bundles, there is a
programmable switch box implemented as a crossbar which is able to connect
arbitrary wires running through it. The switch boxes too are programmed at
configuration time to make connections between farther apart resources. Because
the number of wires is limited, wires themselves are resources and limit the
number of connections locally as well as globally.

2.2.2 Design Flow

The FPGA design flow consists of eight steps which we discuss in the following:
architecture design, verification, synthesis, mapping, place and route, timing
analysis, bitstream generation, and FPGA programming.

Custom architectures for FPGAs have traditionally been designed with hard-
ware description languages (HDLs) like VHDL (used in this thesis) and Verilog
which describe architectures at the register transfer level (RTL), meaning an
abstract description of registers and how data is transformed and transferred
between them. More recently, higher level synthesis (HLS) languages, like Intel
OneAPI, have been introduced. For OneAPI, architectures can be described in a
C++ variant for data-parallel programming (DPCPP) making the design flow
more accessible for software developers not familiar with RTL design at the cost
of resource utilization overhead. However, the higher level representation of HLS
languages is transpiled to RTL before entering the usual design flow. Interleaved
with the architecture design, its functionality is tested with verification. Usually
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verification is done with testbenches for each component of the system (e. g., the
VHDL designs in this thesis were verified with SystemVerilog testbenches).

Synthesis transforms the RTL description into a gate-based intermediate
representation and mapping maps this representation to the technology-specific
resources. Next, during the place and route step, the design is mapped to the
actual resources by first assigning each resource required by the architecture
design to a spot in the resource matrix available on the FPGA and then routing
the connections between the resources through the programmable interconnection
network. Since this is an NP-complete problem, place and route is done with a
heuristic. After place and route, the number of each resource used in relation to
the available resources on the FPGA determine the resource utilization which
limits the architecture design complexity. The result of place and route is then
run through timing analysis. Timing analysis looks at each path between two
registers and determines the path with the longest signal propagation time of the
whole design. The propagation time is influenced by two factors: delay due to
resources (e.g., LUTs) the signal has to travel through and delay due to the signal
traveling through the interconnect. This longest path (also called the critical
path) is then used to determine the maximum clock frequency the design can be
safely run at. Finally, a bitstream is generated that encodes the configuration
of all used resources, like LUT configurations, and programmed to the FPGA.
Modern FPGAs also support partial dynamic reconfiguration where only parts
of the FPGA can be reprogrammed with a bitstream.

During the design process, low resource utilization is always a goal because this
means fitting more functionality on the FPGA at once. However, oftentimes, clock
frequency is the most critical factor because it directly influences the performance
of the custom architecture. To improve clock frequency, the designer may split
up the critical path into shorter paths by introducing registers repeatedly (this
is only possible up to a certain point). This is called pipelining which trades off
resource utilization for higher clock frequency.

2.2.3 Boards

Similar to the CPU being placed on a mainboard to integrate it into the computer
architecture, FPGA chips are soldered onto a board connecting components like
network ports, DRAM chips, baseboard management controllers (BMC), and
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Fig. 2.9 Simplified FPGA board representing an Intel D5005 board (adapted
from [Int19]).

PCIe connectors to the FPGA (cf. Fig. 2.9). Concerning DRAM, FPGAs support
DDR3 and DDR4 as well as modern stacked memory, like high-bandwidth memory
(HBM) and Hybrid Memory Cube (HMC), enabling high bandwidth on-board
data processing. As an accelerator, boards containing an FPGA are most often
placed in existing hardware systems together with a CPU – the host system.
Traditionally, accelerators are connected with the CPU over PCIe but recently
there are also cache-coherent interfaces (e. g., UPI, CXL, OpenCAPI). This
allows deeper integration of the FPGA into the CPU’s data management and sets
FPGAs apart from other accelerators like GPUs that are lacking such capabilities.
Such integration potentially frees the CPU of managing all data movement to
perform other tasks. Lastly, many boards feature one or more network interfaces
(e. g., Quad Small Form-factor Pluggable (QSFP) network interface) to directly
connect the FPGA to the outside world. This enables deployment of FPGAs
as smart network interface controllers (SmartNICs) that integrate compute
capabilities into the NIC with desirable latency and throughput properties (more
placement options will be discussed in Sect. 3.3.2.1).

The components on the board are directly accessible from the FPGA through
the I/O pins. However, for example, for DDR4 memory, the user needs a memory
controller between the I/O pins and the FPGA design. Thus, there are wrappers
available for most boards that provide easy access to the board components. In
this thesis, we use Intel Open Programmable Acceleration Engine (OPAE) for
VHDL designs which provides standardized interfaces (called Avalon interfaces)
for the memory channels and PCIe bridge and the respective OneAPI board
support package (BSP) for OneAPI designs. BSPs are another wrapper on top
of OPAE providing higher abstractions for accessing board components.
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Non-relational Databases on FPGAs: State-
of-the-art

While FPGA-accelerated non-relational database systems may meet the require-
ments of emerging applications (cf. Sect. 1.2.1), there is only limited academic
work in terms of survey research. Figure 3.1 depicts recent surveys related to
FPGA-accelerated non-relational database systems. We consider surveys on
relational and non-relational database systems in the context of three kinds of
acceleration: no accelerator, FPGA-, and GPU -accelerated. The contribution to
non-relational data processing is further specified by the non-relational database
system classes (graph, document, key-value, and wide-column).

Leaving the vast amount of work on non-accelerated relational database
systems out of scope, there remain several related surveys on FPGA and GPU
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Fig. 3.1 Related surveys and this chapter.
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acceleration of such systems. In [Bec+18], Becher et al. pose the challenge of
using the on-the-fly reconfigurability of FPGAs in modern relational databases.
This results in open questions on exploitation of heterogeneous hardware, query
partitioning, and dynamic hardware reconfiguration. Papaphilippou et al. [PL18]
categorize the literature into frameworks (e. g., Centaur [Owa+17]) and specialized
accelerators for common operators in a modern relational database, and also
highlight upcoming cache-coherent connectors for FPGAs (e. g., OpenCAPI).
Most recently, Fang et al. [Fan+20] state main memory access, programmability,
and GPUs as the three biggest factors holding back FPGAs in in-memory
relational database systems in the past. Regarding GPU-accelerated relational
database systems, [Bre+14] raises challenges like the I/O bottleneck and query
planning but does not offer convincing solutions.

Non-accelerated non-relational database system are well-covered by surveys
[Cat10; DCL18; Gaj12; Ges+17; He15; Jin+11] – which are discussed in Sect. 3.1.
Additionally, there are two surveys covering FPGA acceleration of graph process-
ing as a high-performance computing (HPC) workload [Bes+19b; Gui+19]. While
this shows the feasibility of graph processing on FPGAs and the respective liter-
ature may be relevant for acceleration of graph database operators, these surveys
focus only on functional aspects and HPC applications. For FPGA-accelerated
non-relational database systems, this literature has to be reinterpreted from the
database perspective. GPU acceleration (e. g., [Shi+18] for graph) is considered
out of scope of this chapter.

In summary, the related surveys support the relevance and timeliness of
the topic but there is no survey on FPGA-accelerated non-relational database
systems. The objective of this chapter is to fill this gap in the intersection of
FPGA acceleration and non-relational database systems and answer research
question RQ1 “How can non-relational database systems leverage FPGA accelera-
tion?”. The differences and commonalities of FPGA acceleration of non-relational
database system classes result in overarching patterns that will be instrumental
to current and new systems and guide the remainder of this thesis.

In the following, we propose a taxonomy of system aspects (abstract require-
ments for FPGA-accelerated non-relational database systems) resulting from a
review of existing non-relational database systems and challenges in accelerator
design for FPGAs (Sect. 3.1). We provide a table classifying references by system
aspects (Tab. 3.2) and short solution summaries resulting from a comprehensive
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literature search (Sect. 3.2). We extract patterns from literature with regard
to tasks, placements, non-trivial accelerator design decisions, and accelerator
justification as a practitioners guide (Sect. 3.3). From the gaps in the literature,
we derive open research gaps in the field of FPGA-accelerated non-relational
database system (Sect. 3.4).

Parts of this chapter have previously been published in the ACM Computing
Surveys [DRF23b] journal.

3.1 Taxonomy

In this section, we collect important non-relational database and FPGA system
aspects of all non-relational database system classes in a taxonomy (Fig. 3.2) to
guide the subsequent literature analysis. For the non-relational database system
aspects, we discuss the non-relational database system classes in the context of
well-known, commercial systems to provide an answer to research question RQ1.1
“How do existing non-relational database systems utilize FPGAs?”.

3.1.1 Non-relational Database System Aspects

Non-relational database systems are defined according to their data models (as
established in Sect. 1.1). We found six surveys on non-accelerated non-relational
database systems (cf. Fig. 3.1) [Cat10; DCL18; Gaj12; Ges+17; He15; Jin+11].
According to these surveys, the predominant non-relational database system
classes are graph, document, key-value, and wide-column. Other non-relational
database system classes – that we do not further consider in this work – are e. g.,
spatial, object-oriented, and timeseries database systems.

To review well-known, commercial non-relational database system, we selected
the systems of each class that were at least mentioned three times in the non-
relational database system surveys and combined similar systems (e. g., Riak
KV is similar to Amazon DynamoDB). Additionally, we added OrientDB and
RocksDB (marked as “expert” in Tab. 3.1) despite them only being named in
one survey each because of their unique characteristics. OrientDB is the only
non-relational database system that successfully combines graph, document,
and object-oriented database concepts and RocksDB is based on the relevant
LSM-tree data structure. Table 3.1 shows the selection of non-relational database
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Table 3.1 Commercial non-relational database systems found in surveys.

Class System Survey references FPGA

Graph Neo4j [inc21] [Cat10; DCL18; Ges+17; He15]
OrientDB [SE22] [DCL18] (expert)

Document CouchDB [Fou22] [Cat10; DCL18; Gaj12; Ges+17; He15; Jin+11]
MongoDB [inc22a] [Cat10; DCL18; Gaj12; Ges+17; He15; Jin+11]

Key-value

Redis [inc22b] [Cat10; DCL18; Ges+17; He15; Jin+11]
DynamoDB [DeC+07] [Cat10; DCL18; Gaj12; Ges+17; He15]
BerkeleyDB [OBS99] [Cat10; DCL18; Gaj12; He15]
RocksDB [Bor+22] [Ges+17] (expert)

Wide-column Cassandra [LM10] [Cat10; DCL18; Gaj12; Ges+17; He15; Jin+11]
HBase [Tea22] [Cat10; DCL18; Gaj12; Ges+17; He15; Jin+11]

: productive FPGA usage, : explored FPGAs but no productive usage, : no FPGA
acceleration mentioned

systems by class. The review will help to establish non-relational database system
aspects by highlighting the systems’ design choices and challenges and discuss
similarities between non-relational database system classes. We considered public
documentation and publications, if available. Subsequently, the concepts of
non-relational database system classes are introduced for the systems in Tab. 3.1.

3.1.1.1 Graph

We look at the graph database systems Neo4j and OrientDB. Neither of those
systems deploy FPGA acceleration in production. However, Neo4j experimented
with the Flash accelerator CAPI SNAP [Wil17], where an FPGA is inserted into
the datapath between CPU and Flash storage to accelerate data accesses.

Neo4j [inc21] stores data as a property graph (cf. Fig. 1.1). It supports
Cypher [Fra+18] as a graph query language with a cost-based query optimizer,
traversal patterns like BFS, and algorithms to solve common graph problems
like shortest paths and centrality (e. g., PR). For solving graph problems, Neo4j
transforms the property graph into an in-memory projection that is optimized
for traversal and supports different index data structures. To provide horizontal
scalability, Neo4j can run as a cluster of core nodes that replicate all changes
between themselves. For additional read scaling, read replicas can be added
to the cluster by registering at a core node. Changes to graphs follow causal
consistency where replication to a majority of core nodes has to finish to confirm a
transaction. Optionally, ACID (atomicity, consistency, isolation, and durability)
transaction guarantees can be enforced. For multi-tenant usage (multiple users
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working on the same system), Neo4j provides role-based access control (RBAC)
and intra-cluster encryption, and encrypted backups provide further security.

Another well-known graph database is OrientDB [SE22] that allows for queries
and traversals on a property graph with native support for documents. OrientDB
provides SQL-like language support with a graph extension and operators like
BFS. For scalability, data can be replicated over a cluster of nodes and availability
is guaranteed by multi-master replication (similar to Neo4j) and auto discovery
of nodes. When multiple users are working on the database, an optimistic multi-
version concurrency control (MVCC) protocol is used and ACID transaction
guarantees can be applied.

3.1.1.2 Document

Apache CouchDB and MongoDB are the most-referenced document database
systems. We were not able to find FPGA acceleration options for these two
document database systems.

Apache CouchDB [Fou22] is a JSON document database system operating
as a cluster of master nodes with bidirectional, asynchronous replication. The
API allows create, read, update, and delete (CRUD) operators on documents
and more advanced view models for filtering and aggregation. Queries can be
accelerated with B-tree index data structures. Writes to the database are isolated
with MVCC and ACID transaction guarantees can be enforced.

MongoDB [inc22a] is another JSON document database system providing
similar query possibilities to Apache CouchDB but adds capabilities for fulltext
search and spatial queries. Availability is provided by a master-slave cluster
setup, where nodes are placed into the replication set of a master node that
handles all writes. If the master node fails, a new one is elected among the replica
nodes. Data can also be sharded over multiple replication sets for scalability.
Writes are atomic and transactions can span multiple documents.

3.1.1.3 Key-value

We subsequently discuss Redis, Amazon DynamoDB, Oracle BerkeleyDB, and
RocksDB. For Redis, there is a recent accelerator extension by Algo-Logic [Loc20]
with FPGA accelerators directly attached to the network for increased throughput,
lower latency, and less energy consumption.
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Redis [inc22b] may be used as an in-memory or persistent key-value database
system. Key-value pairs are inserted into a hash table, where the key hash is used
as the index in the table for fast lookup of values, but complex queries are not
supported. Similar to the graph and document database systems, Redis uses a
master-slave setup with sharding for scalability. Additionally, it supports request
routing on a proxy node and optional waiting on replication for consistency.

Amazon DynamoDB [DeC+07] features a distribution scheme without a
master. The key hashes denote a circular space and each node is randomly
placed in this space. Each node is then responsible for the keys preceding it in
counter-clockwise order in this circular space and answers all requests to that
partition. Data is replicated in clockwise order to a fixed number of nodes and
upon failure the node after a failed one is responsible for the failed nodes partition
of the circular space. For load balancing, Amazon DynamoDB places many more
virtual nodes on the circular space than there are nodes in the cluster. Multiple
virtual nodes are then handled by each physical node.

Oracle BerkeleyDB [OBS99] is a local key-value database system without
network capability that, in contrast to Redis and Amazon DynamoDB, uses an
underlying tree data structure instead of a hash table, specifically a B+ tree. A
B+ tree is a k-ary tree with multiple children per node. Additionally, the leaf
nodes are linked which benefits range operations.

RocksDB [Bor+22] is a tree-based key-value database system using an LSM-
tree data structure. The LSM-tree features multiple levels of pages where key-
value pairs are inserted in the first level. If the first level page reaches a certain
size, it is merged with second level pages with overlapping key ranges which is
then recursively applied to resulting full pages. RocksDB may be partitioned
over column families for scale-out to multiple nodes with a guaranteed consistent
view over column families. It also provides transactions between tenants with a
pessimistic and optimistic mode.

3.1.1.4 Wide-column

Wide-column database systems store data as pairs of keys and values, too.
However, the keys have two predefined parts: a row name and a column name.
With this predefined structure, wide-column database systems present their data
to the user as tables but unlike relational databases these are unstructured, not
materialized, and every row may have arbitrary columns. The most-referenced
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wide-column systems are Apache Cassandra and Apache HBase. For Apache
Cassandra, FPGAs may be used to accelerate the data accesses where FPGAs
may be used data proxies [Pot19].

Apache Cassandra [LM10] uses a multi-dimensional map, indexed with a key
(everything with the same row name constitutes a row) and columns that are
grouped into column families. It supports insert, get, and delete operations and
additionally has a Cassandra query language (CQL), comparable to SQL. Similar
to Amazon DynamoDB, the key hashes are used as a circular space to partition
the data to the nodes in the cluster but load balancing is done by moving nodes
in the circular space when imbalance is detected.

Lastly, Apache HBase [Tea22] is a wide-column database system based on
Apache HDFS. The supported operator set as well as binary representation is
similar to Apache Cassandra but Apache HBase distributes updates in a cluster
of nodes in a master-slave fashion.

3.1.2 FPGA System Aspects

Subsequently, based on the foundations of FPGAs (Sect. 2.2), we discuss the
system aspects of FPGA accelerator design we identified as most relevant to
this chapter. These are based on differences of designing FPGA accelerators
compared to designing CPU applications and also found to be challenging design
decisions in related surveys [Bec+18; Bes+19b; Fan+20], namely (i) software vs.
hardware design as design paradigm, (ii) tight CPU-FPGA collaboration between
existing CPU-based systems and FPGA accelerators, (iii) custom memory access
controllers, and (iv) comparability through a performance model.

Design paradigm In principle, all LUTs (>1,000,000 on modern FPGAs)
can operate in parallel. This opens up a vast design space (for RTL design)
compared to the well-formed design space of instruction-based processors (CPUs
and GPUs). While there have been efforts to simplify development and increase
programmability with higher-level languages (e. g., Intel OneAPI), they do not
seem to satisfy performance requirements for complex applications yet [Yan+17].
One key question of non-relational database system acceleration is thus how to
use constraints inherent to the non-relational database system class to reduce
the accelerator design space without performance degradation.
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CPU-FPGA collaboration Adding an FPGA to a data processing system is
justified with sufficient improvement in overall performance and energy and cost
savings. However, most systems still require a CPU, introducing data movement
overhead between the two processors. Thus, effective accelerator integration
requires not only high workload utilization of the FPGA but also little data
movement overhead. CPU-FPGA collaboration has to solve problems of task
orchestration and data management.

Memory access In contrast to CPUs, FPGAs do not access their on-board
memory through a deep cache hierarchy that assumes temporal and spatial
locality in memory accesses. Thus, FPGAs can implement unique caching
strategies and placement of critical data on-chip.

Performance model The circuit-based programs of FPGAs have very different
performance implications than instruction-based programs of CPUs. For big
designs, it is not easy to comprehend the amount of parallelism and make
performance predictions. Thus, custom performance models using the properties
of the non-relational database system class are instrumental in understanding
design decisions and comparing different approaches (e. g., [DRF21a]).

3.1.3 Discussion

Although the architectures of the systems reviewed exhibit different feature sets,
they cover a shared set of system aspects. For example, Neo4j provides an
execution engine for Cypher while Apache Cassandra provides CQL. Scalability
in Amazon DynamoDB and Apache Cassandra is achieved by partitioning data
into a circular hash space while e. g., MongoDB and Redis distribute work in a
master-slave fashion. While the query languages and scalability schemes differ in
their concrete implementation, queries and scalability are two integral system
aspects of any non-relational database system.

Figure 3.2 shows a generalized shared architecture as a component view of
the reviewed non-relational database systems capturing the system aspects we
found in the system review. The architecture is based on a set of nodes in a
networked environment, forming a cluster. Multiple different users or tenants
send requests (dotted and dashed arrows) to the system which distributes work
with the request router and load balancer in the cluster manager (scalability
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Fig. 3.2 Taxonomy of system aspects along a common non-relational database
system architecture (different line styles for requests from different tenants).

means scale out here). Changes to the underlying data are kept consistent by
the consistency manager which performs concurrency control and atomic writing.
Optionally, the transaction manager provides transactions (e. g., ACID) touching
multiple data elements. The execution engine finally processes queries – made
up of operators – on the data stored in the system. The underlying data in
memory is partitioned over the nodes in the cluster and query performance may
be improved with indices and caches. The data may be stored in persistent
storage if desired. Lastly, the replication manager aids discovery of new nodes
in the system and fault handling. While the components in general might be
similar to scale out relational database systems, non-relational database systems
emphasize different components because of different application requirements.

As an overlay in Fig. 3.2, we show the FPGA system aspects and functional
and non-functional non-relational database system aspects. A complete system
would have to satisfy most of the combined system aspects even though FPGAs
might not be able to provide improvements on all aspects. This aspect taxonomy
will be used in the literature analysis (Sect. 3.2) for classification. In summary,
there are some first experiments with FPGAs in non-relational database systems
[Wil17; Loc20; Pot19] that show the potential and feasibility but the majority of
systems have not yet considered FPGAs.
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3.2 Literature Review

In this section, we conduct a literature analysis in order to answer research
question RQ1.2 “Which solutions and gaps exist in current research on non-
relational FPGA acceleration?”. The literature analysis is based on the guidelines
described in [Kit04]. The primary selection of references is conducted in the
domain of each individual non-relational database system class and with a focus
on research papers (no patents and citations) with a connection to FPGAs,
reconfigurable hardware, and acceleration. This resulted in 443 hits before the
following selection criteria were applied: (i) focus on data processing (excluding
e. g., robotics, image processing, and graph-based FPGA design), (ii) availability
of the document, (iii) written in English, (iv) peer-reviewed (excluding Master
and PhD theses). Overall, this resulted in 96 selected papers relevant to this
literature analysis. Notably, we did not find dedicated literature for FPGA
acceleration of wide-column database systems which, however, can be seen as a
special variant of key-value database systems (cf. [DCL18]).

Subsequently, we summarize the solutions identified in the literature search.
We organize the summaries by non-relational database system class. Additionally,
we structure the papers by their strongest contribution(s) to the system aspects
(cf. Fig. 3.2). Table 3.2 shows the papers and subclassification for each non-
relational database system class and system aspect pairing. We only present
non-relational database system class and system aspect pairings that are covered
by literature.

3.2.1 Graph

The most accelerator solutions were provided for graph in the context of HPC
(i. e., not specifically tuned towards non-relational database system). In the
following, we will discuss the system aspects for graph database systems.

3.2.1.1 Operator

In the literature, we identified solutions for seven graph operators which we discuss
in the subsequent paragraphs in the following order: shortest path, breadth-
first search, maximum matchings, page rank, centrality, sparse matrix-vector
multiplication, and subgraph query processing.
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Shortest path. Bondhugula et al. present a tiled Floyd-Warshall implementa-
tion solving the all-pairs shortest-paths problem using a pipeline of B processing
elements (PEs) which can each process l elements of the adjacency matrix
[Bon+06b]. They propose a performance model with these two parameters where
B is constrained by FPGA resources and l is constrained by I/O bandwidth.
Jagadeesh et al. use a parallel, synchronous Bellman-Ford implementation where
each PE on the FPGA represents one node in the graph (severely limiting
graph size) [JSL11]. Additionally, they model the internal computation time
of their shortest path computation unit in cycles. A parallel implementation
of Bellman-Ford that considers conflicting vertex updates is presented by Zhou
et al. [ZCP15a]. The edges are processed in parallel and conflicts are resolved
by caching updates on-chip until they are applied to memory. To optimize
for sequential reads, the edges are sorted by destination vertex. In [THK14;
THK15], Takei et al. combine Dijkstra with a SIMD distance comparison unit. A
restriction of the approach is that all nodes have to fit into on-chip memory. Lei
et al. propose an eager Dijkstra algorithm based on their own memory overflow
extension of a priority queue and three memory channels (for overflow queue,
graph, and output data) [Lei+16]. This resolves the graph size restriction of the
earlier approach by Takei et al. In [Mil+07], the authors propose a solution for
all-pairs shortest-path by defining a partitioning that allows for processing the
graph with a bidirectional systolic array with an optimal number |V | of PEs.
Betkaoui et al. solve all-pairs shortest-paths with parallel BFS kernels [Bet+12b;
Bet+12a]. Multiple parallel PEs issue non-blocking memory requests to take
advantage of the multi-channel memory system of their particular FPGA setup.

Breadth-first search. Wang et al. propose a solution for a parallel BFS with
message passing on a fully-connected network between interval-partitioned soft
cores [Wan+10]. The traversal levels are synchronized with a floating barrier. The
number of random memory accesses is reduced by keeping the visited status in
on-chip memory. Additionally, their approach allows switching traversal patterns
(bottom-up and top-down) per level. TorusBFS [LRG15] proposed by Lei et al.
implements torus network-based message-passing between PEs in an interval-
partitioned graph. The PEs are similar to those in [Bet+12b], and auxiliary
data structures are stored in BRAM. In [UMJ15], BFS iterations are substituted
by matrix-vector operations on a Boolean semi-ring (i.e. multiply and add are
substituted with logical and and or). The data is horizontally partitioned but
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the matrix and vectors are never materialized. Dr. BFS [Fin+19] uses vertical
partitioning to fit metadata of large graphs into on-chip memory. The tasks of
computation and data access are separated into two different modules having a
data access module for every memory bank. The computation modules use a
pipelined combination network for sequential burst operations.

Maximum matchings. Besta et al. propose a solution for maximum matchings
in a graph which describes the maximum size set of edges that do not share a
vertex [Bes+19c]. Their substream-centric approach divides the incoming stream
of edges by their weight into multiple substreams that are processed in parallel
Afterwards, the results are merged again.

PageRank. Zhou et al. propose an implementation of PR split up into a
scatter and gather phase using horizontal graph partitioning with vertex, edge,
and update sets for each partition [ZCP15b]. The edge set of each partition is
sorted by destination vertex to reduce the number of random writes. In [Mei+20],
another PR accelerator is proposed using a two-dimensional graph partitioning
approach that scales to HBM.

Centrality. In [GSP16], the authors propose a stochastic matrix function
estimator written in OpenCL and apply it to the subgraph centrality problem.
Subgraph centrality is another measure for importance of vertices in a graph.

Sparse matrix-vector multiplication. Fowers et al. [Fow+14] propose a com-
pressed interleaved sparse row (CISR) format and a banked vector buffer to
tackle SpMV. CISR shuffles the neighbors in such a way that for each read from
memory all parallel processing pipelines in the accelerator get a new value for the
row they are currently working on. Furthermore, since rows can vary in length,
rows are greedily distributed to pipelines.

Subgraph matching. Jin et al. propose a subgraph matching accelerator on
a CPU-FPGA platform [Jin+21]. A auxiliary data structure called candidate
search tree is constructed on the CPU based on the to-be-matched subgraph and
loaded onto the FPGA where the embedding enumeration is accelerated.

3.2.1.2 Binary Representation

We found articles that leverage different partitioning schemes (horizontal, vertical,
and interval-shard) to aid data placement and parallelization, an optimization of
CSR for BFS, and other binary representations like hardware mapping and a
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dynamic graph data structure.
Horizontal partitioning. In [ZCP16], a horizontal partitioning scheme is

proposed with an improved data layout enabling more sequential write accesses.
This is achieved by sorting the edges in each partition by destination vertex.
This additionally also allows for on-chip update merging.

Vertical partitioning. Chen et al. provide a solution that features a layout
improvement to the vertically partitioned data by storing edges inbound to
the current vertex set and not storing an update list (i. e., directly streamed)
[Che+19]. The data is shuffled to graph PEs.

Interval-shard. FPGP [Dai+16] is an edge-centric graph processing framework
based on the interval-shard graph partitioning scheme. Shards Si,j and their
corresponding inbound Ii and outbound Ij vertex intervals are fetched one after
another to on-chip memory and processed by multiple PEs.

Compressed sparse row. The CyGraph architecture by Attia et al. proposes
new optimizations for utilizing the memory bandwidth in parallel BFS with a
custom CSR representation [Att+14]. The visitation status of vertices is encoded
in the row index which is replaced by the level after visitation. This produces
in-place BFS result data and leads to a lower number of memory requests overall.

Hardware mapping. In [Hue00], the complete graph with editable vertices
and edges is represented as logic on the FPGA. An extension by Mencer et al.
[MHH02] draws parallels to content-addressable memory (CAM) and extends
the idea of hardware mapping by extending it to multi-context graph processing.
Both approaches require a synthesis for each new data graph.

Dynamic. Wang et al. introduce a dynamic graph data structure that allows
for updates on the graph interleaved with workload processing [Wan+21]. They
apply packed memory array (PMA)-based edge array representation to CSR
which leaves holes in the edge array for updates.

Other. Skylarov et al. represent the graph as an adjacency matrix and use
matrix operations to calculate graph colorings [SSP06]. Wang et al. propose
an edge-centric graph streaming model on an FPGA for partitioned graphs to
deal with load balancing issues of skewed graphs [Wan+15; WZH16]. The kp

partitions are assigned to k PEs in a pre-processing step such that every PE
processes approximately the same number of edges. The graph is compressed
and streamed which results in a high effective bandwidth. When the application
permits graph sampling, the data volume and irregular memory accesses can
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be tamed with a data structure derived from CSR [TS18]. The novel data
structure allows storing multiple graphs and removal of vertices and edges with
a second pointer array. Xu et al. propose a service-oriented accelerator that
does asynchronous processing of BFS [Xu+18]. This is very different to other
approaches in that batches of so called Batch Row Vectors are streamed into
the accelerator and worked on. A Batch Row Vector contains the start and
destination vertex for each edge in the batch and a property for each source and
destination vertex.

3.2.1.3 Queries

Queries in the context of accelerator design are about flexible chaining of operators
during runtime rather than resynthesizing the accelerator for each workload.
There is an instructable softcore processor design and a system mapping graph
workloads to a flexible linear algebra accelerator.

Instructable processor. GraphSoC [Kap15] is a custom graph processor built
from a 2D array of softcore processors connected by a packet-switched network.

Linear algebra. GraphLily [Hu+21] adopts the GraphBLAS programming
interface to map graph problems to a series of linear algebra operations, namely
sparse-matrix dense-vector multiplication and sparse-matrix sparse-vector multi-
plication. This allows to map to different graph problems during runtime without
the need to synthesize a separate bitstream for each workload. Additionally,
GraphLily works on HBM, delivering massive memory bandwidth.

Subgraph query processing. GraphMatch [Dan+24] is a fully flexible subgraph
query processing accelerator for FPGAs that is able to switch workloads in a
matter of cycles. It is implemented as a flexible pipeline of set intersection
operators specifically optimized for FPGAs.

3.2.1.4 Scalability

There are no complete solutions for scalability. However, we found four articles
on graph partitioning to leverage multi-FPGA setups.

Partitioning. Babb et al. presented an early work on scalability by compiling
graph problems to whole arrays of FPGAs [BFA96]. Virtual wires are used in
between the FPGAs resulting in a multi-FPGA computing fabric. Attita et
al. propose a vertex-centric graph processing framework based on the gather-
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apply-scatter (GAS) principle [Att+15]. With partitioning and message passing,
the workload can be distributed to multiple FPGAs. ForeGraph [Dai+17] is an
edge-centric graph processing approach as a multi-FGPA extension to FPGP
[Dai+16]. For p FPGAs, the graph is partitioned into p intervals resulting in p2

shards. Each FPGA stores one interval and its outgoing p shards, additionally
partitions its subgraph into sub-intervals and sub-shards, and subsequently does
the same processing as FPGP on the sub-shards. Updates are propagated to the
corresponding FPGA over the network. Zhang et al. propose a graph partitioning
method that tries to find a balance between minimum communication overhead
due to cut edges and wait time due to partition imbalance [Zha+20a].

3.2.1.5 Consistency

The conflict management for highly concurrent systems can be problematic. We
only found one article proposing a locking scheme to achieve isolation.

Locking. Ma et al. define a multi-threaded graph processing engine using a
global, transactional shared memory which allows fine-granular locking with an
address signature table data structure [MZC17].

3.2.1.6 Design Paradigm

We found multiple graph accelerator design paradigms: vertex-, edge-centric,
hybrid, and bulk-synchronous parallel (BSP), among others. Vertex- and edge-
centric describe orthogonal approaches of traversing graphs.

Vertex-centric. GraphGen [Nur+14] compiles graph algorithms from a custom
domain specific language to RTL. The algorithms are built from user-defined
instructions. RTL implementations of these instructions have to be provided
together with an update function and a description on how those instructions
combine. Weisz et al. provide programmability by using GraphGen and CoRAM
in combination [WNH13]. CoRAM allows to port the accelerator architecture
to both Intel and Xilinx FPGAs. GraVF [ES16] shows how to compile Migen
definitions to hardware. Ozda et al. provide a solution based on a configurable
architecture template for vertex-centric graph algorithms [Ozd+16]. In [Yao+18],
conflicting updates on one vertex are resolved by accumulating updates in
one cycle, parallelizing conflicting vertex updates, and removing sequential
application of atomic protection. GraphScale [DRF22] scales the asynchronous
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graph processing approach on a compressed graph previously only applied to
single memory channel FPGAs to higher memory bandwidths. Compared to
other approaches, this leads to fewer iterations over the graph and less data
movement for more efficient bandwidth utilization.

Edge-centric. HitGraph [Zho+19; Zho+18] (based on [ZCP15b; ZCP16])
compiles edge-centric algorithms to RTL. The processing logic is split up into
multiple PEs processing the graph with alternating scatter and gather phases.
The vertices are partitioned horizontally and buffered in BRAM and partitions
are skipped if they do not contain active vertices. ThunderGP is another edge-
centric graph processing system for multi-channel DDR memory [Che+21b]. In
contrast to HitGraph, it partitions the graph vertically but also does synchronous
graph processing with alternating scatter and gather phases.

Hybrid. Chengbo proposes a hybrid approach where there is a vertex-centric
and an edge-centric module on the FPGA [Yan+20a]. A dispatcher switches the
modules depending on the workload. The graph is vertically partitioned.

Bulk-synchronous parallel. DeLorimier et al. propose an accelerator, mapping
the graph to sparse matrix operations executed in a BSP fashion [DeL+06]. The
accelerator is split up into compute leaves with BRAMs attached. Data between
the compute leaves is communicated over a network on chip. In [Ayu+18], a
design methodology based on the BSP model is proposed. Common architectural
features are represented as templates which are specified with user-defined
functions for GAS. All data flow is handled by the template.

Other. In [BFA96], problems on directed graphs are reformulated as closed
semiring problems and compiled onto multiple FPGAs. For a graph instance
the edges are mapped to summations and vertices are mapped to minimum
operators. Dandali et al. address long synthesis times with skeleton compilation
of precompiled blocks that are adapted to the problem instance [DMP99]. One
PE is used for each vertex, restricting graph size to the available FPGA resources.
GraphOps [OO16] is a general graph dataflow library that provides graph-specific
building blocks for the generation of FPGA designs. It includes a locality-
optimized property array. A dataflow-based accelerator is proposed in [Jin+17]
based on the observation that instruction-level parallelism in graph processing
workloads is low and branch mispredictions pose a challenge for traditional
instruction-based processor architectures.
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3.2.1.7 CPU-FPGA Collaboration

We found the following graph solutions for CPU-FPGA heterogeneous platforms
with different task assignments.

Socket. Bondhugula et al. propose a shortest-path hardware kernel communi-
cating with the CPU via a shared memory region [Bon+06a]. Another part of the
solution is a graph data layout for the CPU to reduce cache misses. Umuroglu
et al. propose an approach that distributes BFS iterations between CPU and
FPGA: the iterations with few active vertices are performed on the CPU while
the other iterations are performed on the FPGA [UMJ15]. Similarly, Zhou et al.
address the respective drawbacks of vertex- and edge-centric graph processing
by switching between the paradigms during execution [ZP17]. The graph is
horizontally partitioned (cf. [ZCP16]) and the paradigm is chosen individually
for each partition in each iteration based on its active vertex ratio. Partitions
with few active vertices are processed by the CPU in a vertex-centric paradigm
while partitions with many active vertices are processed by the FPGA in an
edge-centric paradigm. Wang et al. propose a general graph processing approach
with a novel worklist (priority queue) based graph computation and software
scheduler (reorders vertices to be processed) [WHN19]. The FPGA inserts work
items (vertices) into a pre-scheduled queue and the CPU reorders them into a
scheduled queue. In [OAA21], the authors propose a heterogeneous CPU-FPGA
graph processing system where the scatter phase of a synchronous scatter-gather
graph processing approach is implemented on the FPGA. The graph data is held
in main memory and the FPGA is connected with a cache-coherent interconnect.
Additionally, the work utilizes the work stealing approach presented in [AOA20].

Near-data. ExtraV [Lee+17] proposes graph virtualization. The CPU accesses
the data through a cache coherent FPGA attached to an SSD storing the graph.
Transparently to the CPU, the FPGA applies compression and multi-versioning
to writes and decompression and filtering to reads.

3.2.1.8 Memory Access

For memory access, we found solutions for request merging, custom caching,
custom data placement, and HBM, among others.

Request merging. A CAM-based approach for the BFS memory access problem
is proposed in [Kho+18]. The solution is an architecture-aware software graph

46



3.2 Literature Review

clustering algorithm that reduces bandwidth requirements for random requests
to visited flags. The clustering is applied as an offline pre-processing step. A
memory unit merges multiple requests (cache for storing recently checked flags
implemented with CAM). Asiatici and Ienne [AI21] propose utilizing a miss-
optimized memory system instead of scratch pads or caches to coalesce memory
accesses by cache line as much as possible before making requests. The proposed
memory system allows for tens of thousands of non-blocking misses to maximize
data reuse when data is actually fetched from memory.

Caching. Zhang et al. propose a map-reduce based BFS approach on hybrid
memory cube (HMC) memory [ZKL17]. With a performance model, they identify
the bottleneck as scanning the bitmap of the current frontier. Thus, a second
caching layer for the bitmap is introduced where one bit in the caching layer
represents the aggregate of many bits in the RAM bitmap. FabGraph [Sha+19;
Sha+20] is an extension of ForeGraph [Dai+17] by two-level vertex caching (level
L1 attached to pipelines and shared L2; L1 only communicates with L2). The
vertices of the current graph partition are stored in L2 and replaced in Hilbert
order such that vertices can be used for multiple graph portions.

Data placement. Zhang et al. address the problem of redundant memory
accesses caused by high-degree vertices for graph traversals [ZL18]. They cor-
relate vertex degree with data access frequency and propose degree-aware data
placement and degree-aware adjacency list compression (Exp-Golomb variable
length coding) combined with hybrid traversal approach on HMC memory.

HBM. An extension of GraphScale [DRF23a] scales the system to up to 16
channels of HBM memory. Scaling is limited by achievable clock frequency and
resource utilization of the hardware platform.

Other. Betkaoui et al. address stalling pipelines caused by memory access
latency through a memory crossbar to share off-chip memory [Bet+11]. The
solution issues many parallel memory requests and decouples memory access and
execution units. Ni et al. accelerate BFS by applying horizontal partitioning
allowing to distribute the graph and its associated metadata over multiple memory
channels [Ni+14]. In this way, multiple PEs can traverse the graph in parallel
utilizing a high memory bandwidth. Upon level synchronization, active vertices
are exchanged between the PEs. A memory access improvement for vertex-centric
graph processing is given by Yan et al. [Yan+19]. Random memory accesses are
sequenced and graph pruning is applied to prevent ongoing traversal from the
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leaves. The solutions further includes an online pre-processing step during the
apply phase when bandwidth is under-utilized. Wang et al. propose a scheduler
for conflict-free scheduling of edges to parallel processing pipelines [Wan+20a]. It
is assumed that per edge one source vertex has to be read from a BRAM scratch
pad which may cause stalls when multiple pipelines try to read a value from the
same scratch pad bank. The authors present a preprocessing step that splits up
the graph adjacency matrix into tiles and schedules them to processing pipelines
without conflicts as far as possible.

3.2.1.9 Performance Model

Performance models are about understanding effects of design decisions on a
conceptual level to aid decision making. We found the following solutions on
modeling parallelism, lower bounds, and memory access patterns.

Parallelism. Bondhugula et al. define a performance model for parallelism
in two orthogonal parameters B number of PEs, and l denoting the number of
operators in each PE (process l elements at once) [Bon+06b]. Then constraints
for different FPGA resources are modelled for the two parameters. Shao et
al. model the runtime of their design as the sum of the time of the vertex
transmission and the time of the edge streaming [Sha+19]. Both are modeled
dependent on the internal parallelism parameters of their design. The model is
used to determine the size of L1 and L2 caches in the design.

Lower bound. FPGP [Dai+16] finds the optimal number of PEs by modeling
the runtime as the maximum of the time spent on interval loading, edge loading,
and edge processing since those can be overlapped. ForeGraph [Dai+17] extends
this model by also including time to load intervals from other boards in their multi-
FPGA setup and compares theoretical performance against other systems. Zhang
et al. specify a performance model that is a slight variation of the network model
[ZKL17]. The memory system is represented by the packet size, packet overhead,
bandwidths, and internal latency of memory. A lower bound performance model
for vertex-centric graph processing on multiple FPGA systems is proposed by
Engelhardt et al. [EHS18]. The solution includes an architecture generator for
multiple FPGAs with an application kernel and fitting dataset.

Memory access. To address some of the shortcomings (e. g., mostly closed
source and opaque system parametrization) of current benchmarking practices
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in graph processing, Dann et al. propose a simulation environment [DRF21b]
based on modelling memory access patterns of graph processing accelerators
to approximately estimate their runtime on a unified benchmark. The work in
[DRF21a] expands on this with more simulated systems and deeper analysis of
important performance factors and design decisions.

3.2.2 Document

The literature on FPGA-accelerated document database systems focuses on
XML. While JSON is the predominant document format in commercial document
database systems (cf. Sect. 3.1.1.2), we did find few solutions in the literature.
In the following, we will discuss solutions we found to the system aspects for the
document non-relational database system class.

3.2.2.1 Operator

In the literature, we found operators for XML parsing, document filtering, XPath
evaluation, Twig, and JSON parsing, which we subsequently discuss.

XML parser. In [DNZ10], Dai et al. propose a solution that leverages recur-
ring idioms in XML processing (one-to-one string match, one-to-many string
membership test, one-to-many string search), and a speculative pipeline structure
skewed to provide high throughput in the common case and only stall the pipeline
for rare edge cases. The FPGA is placed close to the network on a SmartNIC. An
alternative approach by Sidhu implements tree automata as a pair of a lexical and
a tree automaton where the states of the lexical automaton form the transitions
of the tree automaton [Sid13]. Huang et al. propose a sliding window XML
parsing accelerator [Hua+14]. They assume that the XML is valid and based
on that can process multiple non-delimiter characters in one cycle. Delimiter
characters are still processed one by one.

Filter. Chalamalasetti et al. [Cha+12a] provide an implementation of docu-
ment filtering with document scoring against topic profiles. The work mainly
improves the bloom filter design of [VAM09]. The new design leverages multiple
banks and reduces contention on these.

XPath. Mitra et al. propose a solution for XPath-based filtering of XML
documents by mapping the XPath queries to regular expressions [Mit+09]. These
expressions are clustered by common profile prefixes and mapped to FPGA state
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machines (one per XPath). A global stack is used for the inherent parent-child
relationships. In [EI10], publish-subscribe systems are extended to become an
XML broker using an XPath processor. The article also provides a hardware-
based XML parser. Moussalli et al. [Mou+10] address the challenge of recursive
XML filtering. For that, each XPath is mapped into a stack whose width matches
the XPath depths in bits and the height corresponds to the depth of the document.
Open tags are handled as push events and close tags as pop events.

Twig. The same authors propose an FPGA-based solution for twig matching
on XML documents based on [Mou+10] combined with a dynamic programming
approach [Mou+11]. However, the maximum tag length supported is 2.

JSON parser. Peltenburg et al. [Pel+21] propose a JSON parser generator
for accelerators that take a document in a predetermined structure and return it
in the Apache Arrow format. However, to support multiple document formats
this requires generating and synthesizing multiple parsers which is not feasible in
the database context. Therefore, PipeJSON [Dan+22] implements a full JSON
parser able to parse arbitrary documents on FPGAs. It effectively utilizes the
pipeline parallelism achievable with FPGAs to parse at line speed.

3.2.2.2 Queries

For document stores, two different solutions for microsecond reprogrammable
state machines as integral parts of string matching were proposed. This does not
allow query processing in itself but flexible chaining of operators which can be
used for query processing with only a query parser and optimizer missing.

Skeleton automata. Teubner et al. propose the idea of skeleton automata
[TWN12] as a fixed finite state automaton structure with parameterized tran-
sitions, allowing dynamic workload changes in microseconds, instead of long
synthesis and (partial) reprogramming of the FPGA.

Other. ZuXA [Lun+04] implements a programmable state machine with a
hash index data structure on a rule table and a clustering scheme for very large
automata that is applied as an XML acceleration engine.

3.2.2.3 CPU-FPGA Collaboration

For document database systems, we found three collaboration schemes for data
movement in hybrid CPU-FPGA systems: socket, near-data, and PCIe.
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Socket. Vanderbauwhede et al. address the challenge of power consumption of
information filtering on streams of documents with a multi-FPGA setup [VAM09].
A CPU places the document stream into main memory from where it is directly
fetched by the FPGAs. An on-chip BRAM Bloom filter is used to quickly discard
irrelevant documents before the documents are matched against profiles stored
in a hash table data structure in on-board memory.

Near-data. The XLynx system [TWN13] by Teubner et al. provides a solution
for hybrid CPU-FPGA XQuery processing with dynamic XML projection. The
FPGA implements the same XML projector as in [TWN12] placed into the data
path between the document server and XQuery engine such that data is filtered
before being queried, effectively reducing load on the XQuery engine.

PCIe. In [Van+13], previous work on document filtering [Cha+12a; VAM09]
is advanced by embedding it into a CPU-FPGA system. The CPU handles
parsing the network document stream passing it to the FPGA using separator
words between documents. Additionally, the words are dictionary encoded.

3.2.3 Key-value

The most recent non-relational database system research on FPGAs concerns
key-value, arguably the conceptually simplest class. We subsequently present
the system aspect solutions for key-value database systems.

3.2.3.1 Operator

Solutions are found for insert, hash, and LSM compaction operators.
Insert. Liang et al. address the unpredictable insert performance of Cuckoo

hashing. Cuckoo hashing avoids hash collisions by computing multiple hashes
per key and reinserts one key-value pair when all hash positions are already
occupied [Lia+16]. The to-be-reinserted pair possibly triggers another pair to
be reinserted into the hash table stalling naive pipelines. The proposed solution
splits up the pipeline into an insert and reinsert pipeline.

Hash. Fast key-based value access requires reliable hash-functions like Mur-
murhash2 [App16] that are missing on FPGAs. Liu et al. contribute an imple-
mentation of Murmurhash2 for FPGAs with different kernels for different key
sizes that are applied through dynamic reconfiguration [Liu+19].
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LSM compaction. For tree-based key-value stores, LSM compaction may be
a big performance factor. Sun et al. propose an FPGA-based compaction engine
for the merging of pages during inserts [Sun+20b]. The design is integrated
with LevelDB. Similarly, Zhang et al. [Zha+20c] propose FPGA-acceleration of
LSM compaction. They describe in more detail how FPGA-accelerated LSM
compactions are done in X-Engine [Hua+19], a fully fledged key-value store.
Additionally, they also build a theoretical model for analysis of performance.

3.2.3.2 Binary Representation

The predominant binary representations are based on hash tables and B+ trees
but there is also a CAM implementation.

Hash table. Istvan et al. leverage the FPGA’s scalability and energy effi-
ciency for a hash table implementation sustaining 10Gbps by implementing a
sophisticated pipeline with concurrency control and separate key-hash and value
store [Blo+13; Ist+13]. Collision handling is done with buckets by chaining
fixed length pre-allocated memory regions for a tradeoff between probability of
collisions and memory bandwidth. Tong et al. present a hash table with one
operation per clock cycle throughput [TZP15]. They propose two hash table
access schemes. The first one provides multiple slots for each hash value to
reduce collisions where each operation scans all slots. For bandwidth limited
deployments, instead of scanning all slots, a second hash function decides the slot
to work on similar to Cuckoo hashing. The tradeoff is again between probability
of collisions and memory bandwidth. FASTHash [Yan+20b] provides even higher
throughput by processing p queries in each cycle. This is achieved by using p

parallel, data-independent PEs with eventual consistency of updates. The hash
table is split up into p partitions each owned by one of the PEs. Each partition
is replicated to all PEs but only the PE that owns it inserts new values into it.
Based on this work, Zhang et al. propose a hash-table design on XOR-based
memory in [Zha+20b]. This XOR-based memory requires the data to be stored
in on-chip BRAM at a benefit of guaranteeing a configurable parallel number of
requests irregardless of the particular access pattern.

Content-addressable memory (CAM). Lockwood et al. propose a CAM-based,
network-attached solution [LM15]. They define their own message format for
optimized hardware parsing of requests. The key-value data is either stored in

52



3.2 Literature Review

BRAM or DRAM while only BRAM guarantees low latency access and the value
addresses are looked up with an emulated CAM.

B+ tree. Yang et al. [Yan+21] propose a heterogeneous key-value store on a
CPU-FPGA platform based on a B+ tree data structure with hash table leaves.
The FPGA ingests requests over the network and implements a B+ tree used to
dispatch requests to hash tables in CPU memory.

3.2.3.3 Multi-tenancy

Multi-tenancy is about performance and data isolation between multiple users
working concurrently on a system.

Token bucket. Istvan et al. achieve this by defining traffic shapers with
token buckets (inspired by similar concepts in networking) and introducing
tenant-specific registers for temporary query data [IAS18].

3.2.3.4 Scalability

For scalability of key-value stores, there are solutions on data replication for
increased read throughput and data partitioning to aid work distribution.

Replication. The Caribou system [ISA17] addresses scalability and fault-
tolerance with data replication over a cluster of FGPA nodes. The FPGAs
are deployed as a distributed storage layer in the storage nodes and allow for
operator push-down (full scan and value predication) for near-data processing.
For scalability, key-value pairs are replicated between the nodes such that read
requests can be served by any node in the storage layer.

Partitioning. FULL-KV [Qiu+20] is a network-attached accelerator for CPU-
FPGA hybrid systems, extending [Qiu+18] to two nodes. The key-value store is
partitioned to the nodes and requests are routed by a proxy. BlueCache [Xu+16]
acts as a caching layer of distributed network-attached FPGAs. For operation
with BlueCache, all application servers are equipped with a PCIe-attached FPGA
that is connected to the other FPGAs via network and Flash for data storage.
Each CPU collects key-value store requests and passes them to its accelerator
card in batches. After parsing, requests are routed to the FPGAs containing the
data and answered there.
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3.2.3.5 Availability

Availability is about fault tolerance meaning responsiveness even when nodes fail.
In the literature, this was achieved with replication.

Replication. Besides its contribution to scalability, Caribou [ISA17] provides
availability through replication. Writes are replicated from a master node to all
other nodes in the storage layer. Data is still available when one node fails.

3.2.3.6 Consistency

For the consistency system aspect, there is one solution on isolation with MVCC,
thus covering only one facet of consistency.

Multi-version concurrency control. Ren et al. define and implement MVCC
support on top of [Qiu+18] by storing a version-value B-tree for every key
[Ren+19]. They also define atomic operations like compare and swap, compare
and get, and predecessor version.

3.2.3.7 CPU-FPGA Collaboration

We found near-data solutions with the FPGA between CPU and data and
solutions based on direct memory access to expand value storage.

Near-data. In [LAC14], the FPGA is used as an in-line accelerator for
Memcached acceleration processing 96% of the requests. The CPU is only used
as a fallback. Based on [Qiu+18], Xie et al. design an FPGA distributed memory
proxy with four pipelined data paths and a pipelined consistent hashing processor
[Xie+19]. The orchestrator for the key-value store reaches up to 100Gbps.

Direct memory access. Li et al. propose a network attached key-value store
based on SmartNICs that accesses the main memory over PCIe DMA [Li+17a].
The problems of the CPU cache hierarchy and FPGA low storage capacity are
addressed by Qiu et al. [Qiu+18]. Similar to [Li+17a], the hash table is in
on-board memory and the data in main memory (accessed with PCIe DMA).
The solution features novel memory allocation and fragmentation schemes.

3.2.3.8 Memory Access

For key-value stores, we found solutions for Bloom filters, Flash, and HBM.
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Bloom filter. Cho et al. propose a key-value store with cuckoo hashing and
decoupled hash table and values [CC14]. A Bloom filter is used to control hash
table read access and thus reduce the amount of memory requests.

Flash. Flash storage was proposed as a viable storage medium for values
by Blott et al. [Blo+15]. Values are much larger in size than keys and are only
very selectively accessed after their address has already been found over the hash
table. Thus, storing values in Flash storage allows much larger amounts of data
to be stored and persisted at the same time. Blott et al. scale out a Memcached
server to 40 Terabytes of data this way [Blo+15]. Similarly, BlueCache stores the
hash table data structure as an index cache in RAM and stores the corresponding
values on the FPGA-attached Flash storage [Xu+16].

HBM. A parallel hash table design is proposed in [YKP20] that supports
scaling to HBM. Since the many memory channels of HBM may lead to complex
memory interfaces with a monolithic design, each channel is assigned its own
processing engine (PE) allowing for decoupled, parallel processing of requests.

3.2.3.9 Performance Model

We found one solution modeling the theoretical maximum performance and
minimum latency of key-value FPGA accelerators.

Lower bound. Qiu et al. examine the theoretical performance of their system
based on the network performance as the lower bound [Qiu+20]. They split up
their analysis by put and get operator.

3.2.4 Synthesis and Discussion of System Aspects

The system review in Sect. 3.1 resulted in a taxonomy of relevant FPGA and
non-relational database system aspects (cf. Fig. 3.2) that guided the literature
analysis that addresses research question RQ1.2 “Which solutions and gaps exist
in current research on non-relational FPGA acceleration?”.

We found a large body of work on general graph operators (e. g., BFS) and
binary representation in the HPC context. While HPC has different motivations
and constraints to database processing, the work denotes a starting point for the
graph database research. Notably, when it comes to database-specific system as-
pects like queries (e. g., GraphSoC [Kap15]), scalability (most notably ForeGraph
for multi-FPGA graph traversal [Dai+17]), and consistency (e. g., simple locking
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[MZC17]) only few solutions are provided. For the FPGA system aspects, there
is a large body of work on design paradigms (e. g., HitGraph [ZCP16; Zho+19;
Zho+18]), CPU-FPGA collaboration (e. g., most notably ExtraV [Lee+17]),
memory access, and performance models. No solutions were found for availability,
multi-tenancy, and security.

In the document class, there are only few solutions for functional system
aspects. Most notable is the XLynx system [TWN12; TWN13]. Non-functional
system aspects are not covered. FPGA system aspect solutions were only found
for CPU-FPGA collaboration [TWN13; VAM09; Van+13].

For key-value stores, important functional topics like operators and binary
representation are covered (e. g., hash tables [Ist+13; TZP15; Yan+20b]). Queries
and sophisticated design paradigms are not applicable to key-value since there are
only CRUD operators. The non-functional system aspects scalability, availability,
and multi-tenancy are mainly studied in the Caribou system [IAS18; ISA17]. Fur-
ther solutions are provided for consistency (i. e., isolation with MVCC [Ren+19])
as well as CPU-FPGA collaboration, memory access, and one performance model.
We found no solutions for security.

In summary, we only found fully-featured, FPGA-accelerated non-relational
database system for key-value databases, while for the other non-relational
database system classes, most solutions are focused on purely functional system
aspects in the context of HPC. For non-relational database systems, these
solutions would have to be adapted to databases to be usable. There were only
few non-functional solutions provided. However, abstract from databases, there is
a body of work relevant to especially the non-relational aspects of non-relational
database systems that we could not include in this chapter due to brevity. For
example, there are papers on virtualization of FPGAs [KRA20; Vai+18] (e. g., for
dynamic operator switching or multi-tenancy) and secure engine design [ABK14;
Huf+08; CG03] (addressing the non-functional aspect security). Additionally,
solutions could possibly be adapted between domains or from CPU and GPU
systems to augment the gaps in Tab. 3.2. However, this has not been studied in
detail yet.
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3.3 FPGA-accelerated Non-relational Database
System Patterns

This section provides several perspectives on non-relational database system class
commonalities, addressing research question RQ1.3 “Which reoccurring patterns
in the literature guide the design of FPGA-accelerated non-relational database
systems?”. We revisit the current state in research (cf. Sect. 3.2) and discuss
overarching patterns which we found for system architecture of non-relational
database systems. We arrive at six key insights while looking at how to design
an FPGA-accelerated non-relational database system starting from the need
of accelerating a system, over its design and implementation, and finally the
evaluation of the accelerator’s impact:

1. For key-value database systems, FPGAs are most useful to accelerate the
communication layer while graph and document database systems benefit
the most from fused operator and memory access acceleration.

2. There are four fundamental patterns of FPGA placement governing data
movement in the system: extension card, near-data, SmartNIC, and socket.

3. The accelerator task in combination with the workload characteristics of
the non-relational database system class can be used to decide the FPGA
placement.

4. Workload switching is a difficult problem with strategies on a spectrum
between full reconfiguration to flexible query processing.

5. In the considered literature, there are six memory access optimization
patterns universal across non-relational database system classes.

6. Portable, relevant benchmark suites (for single classes or overarching) that
cover all necessary artifacts are missing for robust justification of accelerator
usage decisions.

3.3.1 Accelerator Task Categories

When dealing with a concrete system, either an accelerator is added to an existing
system or becomes relevant to the design of a new one. However, in both cases,
one has to decide whether an FPGA is suitable. As a first step, we analyze the
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problems typically solved by FPGAs in the different non-relational database
system classes and task categories that are well suited to FPGAs. Notice, however,
that in this section, we cannot represent all possible motivations and tasks that
are encountered by practitioners.

Graph For graph processing, FPGAs are mainly used to offload operators
because of inefficiencies in the cache hierarchy and coarse-grained memory access
of CPUs resulting from the inherent irregular memory access patterns of graph
workloads (cf. [Att+14; Dai+17; Zho+19]). An FPGA helps to alleviate the
problem of irregular memory accesses through custom memory controller design
and full control of data placement in on-chip memory (cf. Sect. 3.3.3.2).

Document FPGAs for document processing are mainly used in the literature
as bandwidth amplifiers for the CPU. Much of document processing is parsing
and filtering with large data movement costs putting heavy load on the CPU
even tough a lot of the data is discarded and pollutes the cache hierarchy. Thus,
FPGAs can be used as a flexible stream processing accelerator in the data path
to the memory (e. g., [Cha+12a]), disk, or network (e. g., [DNZ10]). Sometimes,
however, the CPU is completely bypassed and the FPGA is used as a standalone
accelerator in the network (e. g., [TWN12]).

Key-value For key-value stores, the literature mainly shows two schemes
for motivation of FPGA usage. Either a single operator instrumental to key-
value stores is accelerated (e. g., insertion [Lia+16] or hashing [Liu+19]) because
the CPU does not meet the latency requirements, or building a full system is
motivated by large roundtrip latencies of CPUs from the network through the
operating system network stack and back (e. g., [ISA17; Li+17a; Qiu+20]).

Summary The two biggest problems that FPGAs solve for the different non-
relational database system classes are: (1) data movement from peripherals (e. g.,
network or disk) to the CPU and (2) memory access inefficiencies caused by the
fixed CPU cache and memory access architecture. Figure 3.3 shows a simplified
version of the system architecture from Fig. 3.2. The tasks that FPGAs might
solve in an non-relational database system to address these problems fall into
three categories: operator, data access, and communication layer acceleration.
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Fig. 3.3 Potential FPGA tasks in non-relational database systems.

Operator acceleration focuses on improving performance for one or multiple
operators. A lot of the literature focuses on this task category with implementa-
tions of specific operators. Particularly interesting for non-relational database
system are accelerator implementations in the context of hybrid CPU-FPGA
systems (e. g., [Bon+06a; JSL11; VAM09; Van+13; WHN19]). In data-centric
applications, the FPGA can take pressure off the CPU with data access ac-
celeration. One already existing example is graph virtualization, where non
application-specific access patterns are accelerated on an FPGA near storage
[Lee+17]. Placing FPGAs in the communication layer is another promising
option. One example is a proxy layer for key-value stores where the request
router (cf. Fig. 3.2) is placed in an FPGA outside the other nodes which routes
traffic to the correct CPU nodes [Xie+19].

On Nodes 1 and 2 in Fig. 3.3, we show possible combined acceleration of
tasks that we call task fusion. Task fusion is possible when the resources on the
FPGA fit both tasks. Task fusion should be done if more than one task benefits
from FPGA acceleration. The tasks combined on one FPGA may even accelerate
the overall system more than if they would be accelerated separately because
data movement costs and thus overhead are reduced.

In the relational database literature, we found examples of operator push
down where operator acceleration and data access are fused into one (e. g.,
[Fra+11; WIA14]). This worked especially well for filter operators pushed to the
FPGA that reduce the amount of data communicated to the CPU. This kind of
accelerator uses its close proximity to memory to reduce the data load on the
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CPU. The newly presented Enzian system [Alo+20] also enables this with a cache-
coherent attachment of the FPGA and opens up questions of near-data processing
where the FPGA is used for on-the-fly conversion of binary representation. One
prominent example of fusing operators with the communication layer at data
center scale is the Microsoft Catapult project [Put+14]. There, servers push
document classification workloads to a communication layer of multiple FPGAs
connected to each other. Another example from the key-value literature is
[Qiu+18]. They use the FPGA as an entry point from the network and do
pre-processing of queries in the FPGA while – due to size – storing the actual
data values in the memory of the CPU.

In extreme cases, one to all nodes in the non-relational database system
cluster can be mapped to FPGAs (Node 3) (e. g., [ISA17]). This works well for
key-value systems (and might work for wide-column systems) since the overall
system is simple enough, and also works for providing standalone services on
FPGAs (e. g., [TWN13]). In this case, the FPGA has to be network-attached
which saves a lot of overhead by not going through the CPU cache hierarchy and
operating system network stack.

To aid the decision of how many FPGAs to put into a system, we added
cardinalities to each possible FPGA task (Fig. 3.3). In the confines that are set
by the system hardware, independent FPGAs could be added for different tasks.
One FPGA can be added for each network port, memory subsystem, and disk in
the system (p is number of network ports; m is number of memory subsystems; d

is number of disks). For operators, there is no such restriction. There can be as
many FPGAs as fit into the hardware system. Insight 1 answers which problems
FPGAs are well-suited for:

Insight 1. For key-value database systems, FPGAs are most useful to accel-
erate the communication layer while graph and document database systems
benefit the most from fused operator and memory access acceleration.

3.3.2 Accelerator Placement Patterns and Decision Tree

In this section, we discuss FPGA placement patterns in the context of a single
cluster node. In the literature, we discovered four FPGA placement patterns
which we discuss before we show how to chose a placement based on the task (cf.
Sect. 3.3.1) and characteristics of the workload.
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3.3.2.1 Placement Patterns

We differentiate between the main memory of the overall system (SysRAM) that
is possibly used by a cache-coherently attached FPGA but mainly used by the
CPU and RAM directly attached to the FPGA on the board (FRAM).

For the extension card accelerator placement (Fig. 3.4(a)), the FPGA is
attached only to the CPU (e. g., over PCIe) and an on-board FRAM much
smaller than SysRAM. Input data is directly written to FRAM by the CPU and
execution is triggered by the CPU. The FPGA works on the input data in FRAM,
and the results are transferred by the CPU to the SysRAM on notification of the
CPU by the FPGA. This placement only allows master-slave setups, and thus
can introduce a lot of overhead for acceleration because the FPGA cannot move
data in the system on its own, and CPU cycles are wasted on data movement
and orchestration. The FPGA-accelerated in-memory database survey [Fan+20]
shows this placement as IO-attached accelerator.

The second placement we found in the literature is the near-data placement
(Fig. 3.4(b)). It is defined by the way the FPGA is inserted into the data path
between the CPU and the SysRAM or disk. In this way, the FPGA provides an
interface to the CPU to interact with the underlying resource. In a more restricted
way, [Fan+20] define this as a bandwidth amplifier which decompresses data,
however this placement can accelerate more workloads than just decompression,
e. g., filtering and binary representation conversion. In [MT09], there is a similar
placement where the FPGA is placed in the data path between disk and CPU.
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Figure 3.4(c) shows the SmartNIC placement where the FPGA is directly
attached to the NIC. This placement option may even completely eliminate the
CPU in the system if there are no tasks besides what is implemented on the
FPGA. The SmartNIC placement optimizes for low latency of the overall system
by saving multiple round trips through the operating system kernel on the CPU.

In emerging systems (e. g., [Alo+20]), the FPGA may be placed as a socket
(Fig. 3.4(d)) with a cache-coherent access to SysRAM. The three previously
discussed placements can be represented with the FPGA being a socket with
little overhead. However, the socket placement also enables new work distribution
strategies where the CPU does not have to coordinate execution on the FPGA
and data movement. In [Fan+20], this placement option is called co-processor.

3.3.2.2 Placement Decision

FPGA placements discussed in the literature can be reduced to the four fun-
damental patterns. Based on these, Fig. 3.5 shows a decision tree guiding the
practitioner towards choosing an accelerator placement pattern depending on
task and workload properties. Additionally, we added CPU- and GPU-based
systems as alternative system architectures.

For tasks that incur large data movements from either memory, disk, or
network, we have introduced shortcuts (shown as blue arrows) to the near-data
and SmartNIC placements, respectively.

For workloads that do not exhibit massive parallelization opportunities, we
do not see much potential in applying an accelerator. Thus, this leads to adding
more CPUs to the system or alternatively adding more nodes to the cluster. For
compute-bound problems with structured parallelism, meaning large numbers of
homogeneous threads running in parallel, we would choose GPUs over FPGAs
because they are specifically made to handle these workloads [Lin+08]. Similarly,
for tasks with heavy reliance on unstructured floating-point operations, we would
most of the time advise against using an FPGA as an accelerator because the
DSP floating point units on the FPGA will quickly become the bottleneck.

For compute-bound problem instances that are not better suited to GPUs
or multi-CPU, an extension card accelerator approach is chosen. The data
movement is a big source of overhead in this placement model such that it only
works for compute-bound problems where data movement costs, on the slow
link between CPU and FPGA, are negligible compared to the duration of the
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computation. The extension card accelerator approach is implemented by most
of the graph literature (e. g., [Dai+17; Fin+19; Zho+19]). While we think that
the extension card pattern could be a viable option for database systems, we
focus on more significant improvements through acceleration.

In the category of memory-bound problems, we differentiate between work-
loads with simple operators (e. g., lookup) and workloads with complex operators
(e. g., graph traversal). Simple queries are defined as a combination of few simple
operators with few predicate expressions. This category includes key-value and
wide-column database systems and can include document and graph database
systems in certain scenarios (e. g., data provider for graph neural networks). If the
database system is network-attached, we choose a SmartNIC. This placement was
also found to be efficient in related data processing domains like data-intensive
messaging [Rit17; Rit+17]. If the database system is only part of a larger ar-
chitecture and not network-attached, we chose the near-data approach. This
placement option is also chosen when there are complex queries with irregular
memory accesses (e. g., in graph traversal). We think that the socket placement
will benefit FPGA-accelerated systems especially in the database context.

As shown in Fig. 3.5, adding an FPGA to the system is not always the best
strategy to improving performance of a system. For some workload character-
istic combinations, we recommend multi-CPU or GPU setups. Moreover, the
traditional approach of placing an accelerator in a system as an extension card
is often not the best option for database systems.

3.3.2.3 Summary – Accelerator Placement

In this section, we first showed how FPGAs can be attached to the other hardware
components in a system. Especially compared to a CPU, FPGAs can be placed
close to the data, whether in memory, disk, or network.

Insight 2. There are four fundamental patterns of FPGA placement govern-
ing data movement in the system: extension card, near-data, SmartNIC, and
socket.

Thereafter, we established a decision tree guiding the practitioner from the
tasks (cf. Sect. 3.3.1) and the characteristics of the operators towards choosing
a placement pattern. We have validated this decision tree with the systems
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found in the system review and literature analysis by comparing our and their
placement decision (not shown here).

Insight 3. The accelerator task in combination with the workload character-
istics of the non-relational database system class can be used to decide the
FPGA placement.

3.3.3 Accelerator Design Patterns

After looking at tasks and placements for FPGAs, we next discuss system and
operator design. Although implementation details largely depend on specific
algorithms and data structures of the non-relational database system classes, we
found patterns for two critical accelerator design considerations. In the following,
we introduce workload switching strategies and memory access optimization
patterns common for all non-relational database system classes on FPGAs.

3.3.3.1 Workload Switching Strategies

In the queries system aspect part of the literature analysis, we found little about
accelerators that are able to switch workloads without compiling a new accelerator
each time. However, it is a requirement of most non-relational database system
accelerators to process multiple different workloads in parallel and in very quick
succession on multiple different datasets in memory, since it is not sufficient for an
accelerator to improve the performance of only one workload to offset added cost
and complexity. This is easy to achieve on instruction-based architectures, like
CPUs, since their workloads are easily switched out by calling a different function
but difficult to achieve on FPGAs since they cannot switch their architecture
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without significant overhead. This is shown in Fig. 3.6(a) as full reconfiguration
where a workload switch takes seconds [PDH11].

To alleviate the overhead of full reconfiguration, the relational database
community pursued partial reconfiguration shown in Fig. 3.6(b) where only
parts of the accelerator architecture are switched out (e. g., [Owa+17; Wer+17;
Zie+16]). While this works for coarse-grained functionality switching during
runtime, the part that is reconfigured still is unavailable for seconds.

Thus, we advocate for a more elegant and expressive solution in what we
call flexible query processing shown in Fig. 3.6(c). The flexible query processing
strategy is based on a dynamic, parameterized or instructable, class-specific
accelerator (e. g., [ISA16; Kap15; Lun+04; TWN12; TWN13]) that allows to
process multiple different workloads in parallel and with only cycles switching
delay on multiple data sets by just passing new parameters or instructions instead
of a new bitstream. The added accelerator expressiveness might come at the loss
of some accelerator speed [Teu17] but saves magnitudes in workload switching
delay. The difficulty of designing such an accelerator lies in finding abstractions
of high generality without introducing too much overhead that slows down
performance. The examples we found above focus on a small set of class-specific
primitives that are combined into a flexible accelerator.

Although we did not see implementations of it in this chapter’s literature,
the workload switching strategies can be applied in combination and are not
mutually exclusive. For example, depending on the task, it might be beneficial
to partially or even fully reconfigure the FPGA as long as it is done at a low
enough frequency (e. g., if lasting workload changes are detected).

Insight 4. Workload switching is a difficult problem with strategies on a
spectrum between full reconfiguration to flexible query processing.

3.3.3.2 Memory Access Optimization Patterns

For non-relational database systems, memory accesses are one of the most
instrumental challenges to good performance (e. g., [Che+21a; DRF21b]). We
identified six memory access optimization patterns in the literature shown in
Fig. 3.7 that are applicable to all non-relational database system classes. Each
pattern is implemented in the memory controller (endpoint to memory on the
FPGA) of the accelerator design. The memory controllers performance can be
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improved along four axes: by reducing latency of accesses, reducing the number
of accesses (request volume), increasing the amount of effective data per access
(effectiveness), and increasing raw memory bandwidth. In the following, we
introduce these six combinable patterns.

Prefetching shown in Fig. 3.7(a) is a technique to hide memory access latency
that starves processing of input data. Therefore, memory requests are issued
before the data is processed to overlap computation and loading of data if the
access locations are known beforehand. By the time the data is processed, it
already resides on chip to be consumed. One example is partitioning the data
and overlapping partition loading with partition processing [Sha+19; ZCP15b].
Another is issuing large amounts of non-blocking memory requests such that
there is always data to process [Bet+12b].

Caching or automatic data placement as shown in Fig. 3.7(b) reduces high-
bandwidth utilization by storing accessed values in on-chip memory (cache). If
the cache is full, there is an automated policy (e. g., least recently used) replacing
values in the cache with new ones [JL19]. If a value in the cache is requested, it
is instantly served from on-chip memory but this only works well for workloads
with strong temporal locality. One example is multi-level caching in [Sha+19].
In [WHN19], Wang et al. combine caching with reordering to increase the spatial
locality of memory accesses.
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FPGAs provide the practitioner with full control over what data resides in
quickly accessible on-chip memory. Thus, not only custom caching techniques
can be employed but critical data can be manually placed on the FPGA as shown
in Fig. 3.7(c). This may be done for frequently accessed data structures critical
to the performance of the accelerator (e. g., [Bet+12b; Lia+16; ZKL17; ZL18]).
Another example is storing a highly efficient data structure like a bloom filter
that allows filtering of memory accesses for presence of values in a dataset in
on-chip memory (e. g., [Bec+15; CC14; VAM09]).

Coalescing as shown in Fig. 3.7(d) means merging multiple data requests into
one memory access (e. g., [Kho+18]). Since modern DRAM operates on rows of
memory that are in the kilobyte range, accessing single data items is wasteful.
If the workload exhibits strong spatial and temporal locality, coalescing can
reduce the number of memory accesses per single data item and thus decrease
the request volume by simultaneously increasing the effectiveness of each memory
access. In [Fin+19], this is done by having many more compute units than access
units that issue many accesses enabling access units to coalesce some of the
accesses. Another example is combining write requests before they are written
to memory and thus reducing the overall number of writes [ZCP15a; ZCP16].

Usable memory bandwidth suffers from irregular accesses. Reordering of
memory requests as shown in Fig. 3.7(e) can improve upon this if the workload
exhibits spatial locality. This can be done online (e. g., [Yan+19]) at the cost
of increased latency or offline (e. g., [ZCP15b; ZCP16]) if there is a correlation
between data and memory access order.

If multiple memory channels are available, the memory bandwidth can be
increased by distributing memory accesses over those channels as shown in
Fig. 3.7(f). This is a meta-pattern that can be combined with any of the
aforementioned patterns. One example of using multiple channels is placing
different data structures on different channels [Lei+16; Ni+14].

3.3.3.3 Summary – Accelerator Design

While there was no focus on workload switching in the HPC-motivated literature,
there has been some work on the topic especially in the document database system
class. We see it as a crucial consideration in FPGA-accelerated non-relational
database systems. Furthermore, the memory access optimization patterns are
especially important to non-relational database systems since memory access
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acceleration is one of the big motivations to use FPGAs. Thus, we conclude with
the following insight:

Insight 5. In the considered literature, there are six memory access opti-
mization patterns universal across non-relational database system classes.

3.3.4 Justifying Accelerator Usage

In an FPGA-accelerated system, the FPGA’s improvement on performance
must not be evaluated in isolation on the accelerated part of the workload but
in the context of the whole system. An FPGA introduces a new component
into the system that entails costs having to be justified by the performance
improvement. Costs occur in the form of cost of ownership (which might benefit
from FPGA energy efficiency), cost of programming (long design cycles and
lacking debugging capabilities) and operating a whole new hardware architecture,
and data movement in the system. While the decision if the performance
improvement outweighs the cost lies in the judgement of the practitioner, in
this section, we will elaborate on measuring performance improvements with
benchmarking and performance models for FPGA-accelerated non-relational
database systems.

3.3.4.1 Benchmarks

As a guideline to good benchmarking, we follow the four criteria for class-specific
benchmarks from [Gra93]. Benchmarks should be easy to understand (simple)
and scale from small to powerful systems in the present and future (scalable).
However, the most critical criteria (because they are the most difficult to achieve)
to FPGA-accelerated non-relational database systems is that benchmarks are
portable and relevant which we discuss in the following.

Benchmarking only works well when either comparing different systems
running the same implementation or different implementation running on the
same underlying system. Either the implementation or the system as variables
have to be fixed for comparability. This especially poses a big problem for
benchmarking on FPGAs since different FPGAs have very different specifications,
and implementations are often tuned to one specific FPGA. We did not find any
solutions for this problem in literature.
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We kept track of the data sets and workloads used in the literature (not shown
here) and considering the overall number of papers we found by non-relational
database system class, no workload or data set is widely established especially
when compared to e. g., TPC in the database literature. For key-value database
systems, in the literature, benchmarking workloads are mostly just a random
sequence of a subset of the three basic API functions (i. e., get, put, and delete).
However, a well-formed benchmark establishes not only data sets and workloads
but all of the following artifacts: (1) workloads (e. g., for graph: BFS, shortest
path, weakly connected components) (2) data sets (e. g., for graph: twitter,
rmat, live-journal) (3) class-specific performance measures (e. g., for graph:
traversed edges per second (TEPS)) (4) benchmark reference implementation or
implementation details. Thus, current performance measurements not only lack
relevance but also some of these artifacts to be regarded as complete benchmarks.

A solution could be provided by existing comprehensive benchmarks that are
not yet widely used in literature [Ren+17]. The YCSB program suite [Coo+10]
offers capabilities for benchmarking key-value and document database systems
and only recently emerged for evaluation in some key-value papers. For graph
database systems, there are the LDBC Graphalytics Benchmark, LDBC Social
Network Benchmark, LSQB Benchmark, and GAP Benchmark Suite. The
LDBC Graphalytics Benchmark and the GAP Benchmark Suite cover kernels
common in graph processing (e. g., BFS or PageRank) while the LDBC Social
Network Benchmark and LSQB Benchmark cover general querying workloads
and subgraph query processing. Recently, a cross non-relational database system
class benchmark was proposed [Zha+18]. These benchmarks, initially designed
for CPU-based systems, could also be used to benchmark new designs on FPGAs
with modifications for FPGA-specific problems to make them portable.

3.3.4.2 Performance Models

As established in Sect. 3.1.2, FPGAs exhibit unstructured parallelism exacer-
bating comprehension of performance and algorithm complexity on an abstract
performance model level. In the literature, we found different ways (cf. Tab. 3.2)
to model performance of the proposed solutions breaking down to modeling
pipeline and data parallelism in the face of constrained resources (logic resources
and memory bandwidth). This means, the system architecture is broken down
into components with known performance (i. e., pipeline steps or replicated PEs)
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where performance is measured in throughput of data which scales linearly with
pipeline steps and data parallelism. Sometimes this is embedded into a roofline
model where the performance is first capped by the amount of parallelism and
later by the available memory bandwidth.

3.3.4.3 Summary – Justification

Justification in the form of workloads and datasets performing well on FPGAs
is provided by the literature but the performance measurement landscape is
scattered and sometimes specifically tuned to the contribution of the article.
The biggest challenge, however, is the lacking portability of current benchmarks
because measurements are performed on vastly different FPGA setups without
accounting for e. g., different memory bandwidths. One possible solution could
be performance modelling like presented in Chapter 4 which provides a com-
parison of multiple state-of-the-art graph processing accelerators based on a
simulation environment to approximate graph processing accelerator runtimes
with drastically reduced implementation effort. Still, it is sometimes unclear
if performance improvements stem from better design or just better hardware.
Thus, we conclude with the following insight:

Insight 6. Portable, relevant benchmark suites (for single classes or overar-
ching) that cover all necessary artifacts are missing for robust justification
of accelerator usage decisions.

3.3.5 Discussion – Insights

Over the course of this section, we gained six insights into building an FPGA-
accelerated non-relational database system. From the motivations of the different
non-relational database system classes in Sect. 3.3.1 and resulting tasks, we
saw that two of the biggest challenges of current CPU-based systems are data
movement and memory access. With the patterns we found for placement
and memory access optimization, we guide the practitioner towards addressing
these challenges with FPGAs regardless of non-relational database system class
augmented with common operator switching strategies. However, performance
largely depends on specific algorithms and data structures designed on a use
case per use case basis. In this regard, we were not able to uncover even more
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inter-class structure at this abstraction level. Nonetheless, the insights we gained
help practitioners to apply FPGAs to existing or newly designed non-relational
database systems, regardless of data model, to take pressure off the CPU or
eliminate it from the system architecture completely.

3.4 Open Research Gaps

The literature analysis in Sect. 3.2 did not only summarize many interesting
solutions but showed several research gaps completely lacking solutions. In this
section, we summarize and discuss the important open research gaps we think
should be pursued in the near future.

Regarding the differences between the non-relational database system classes,
the research gaps vary. We found that key-value database systems are exceptional
in that there already exist complete non-relational database system (research and
commercial) and discussion on non-functional non-relational database system
aspects (e. g., [Ist20]). However, key-value database systems are arguably the
simplest non-relational database system class, and their system design leaves many
questions unanswered that come up for other classes. Wide-column database
systems are not represented in the literature at all, but solutions from the key-
value class should be applicable (cf. [DCL18]). The literature on document
and graph database systems as well as existing accelerator prototypes indicate
feasibility. However, the existing literature is rather HPC-specific and cannot
directly be applied to non-relational database system. Thus, there are in general
many gaps to be addressed towards a complete non-relational database system.

Besides these rather broad considerations, we identified several open research
gaps in the course of this chapter that we discuss subsequently.

Non-functional system aspects As a broad trend in the literature, the
coverage of non-functional non-relational database system aspects are an open re-
search gap. While consistency protocols may transferred from the non-accelerated
non-relational database system literature, it is broadly unclear how to provide
production-grade scalability, availability, multi-tenancy, and security with an
FPGA-accelerated non-relational database system. FPGAs as a relatively new
processor architecture for data processing are not integrated as deeply into
current systems and do, in contrast to CPUs, not have widely used operating
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systems providing basic functionality. Possibly some solutions can be transferred
from FPGA-accelerated relational database systems.

Flexible query processing accelerators The static implementations pre-
sented in the most of the current literature need to become more flexible and
easier to program to be useful in the database context. There are elegant solutions
(e. g., skeleton automata [TWN12]) to be found for instructable accelerators that
can process more than one rigid workload though. This follows the proposal
of domain-specific architectures in [HP19] and will also largely improve the
projected ratio of the workload processed by the accelerator leading to better
overall performance of the system.

Benchmarks and reproducibility As discussed in Sect. 3.3.4, there are no
commonly used benchmarks in the non-relational database system classes on
FPGAs yet. Standardized benchmarks will be instrumental in gaining more
credibility in performance claims, comparability, and justification of FPGAs
as non-relational database system accelerators. Moreover, better performance
measures will help uncover performance impediments in other domains like
DRAM (bank parallelism utilization analyzed in [Gho+19b]).

Collaborative memory usage Data movement overhead dominates acceler-
ated systems and narrows their potential for performance improvements. The
emergence of cache-coherent attachments of FPGAs to the system main memory
might alleviate this. FPGA-directed data movement and orchestration could
take pressure off the CPU and also make more fine-grained acceleration possible.
However, we did not find any literature on the collaborative usage of the system
main memory and smart movement of data.

Bandwidth-efficient accelerators Especially for document database systems,
we found deployments of the FPGA in the datapath between CPU and memory
or disk to reduce the volume of data being moved to the CPU. Since graph
workloads are highly memory-bound, we see big potential for a tighter integration
of FPGA and memory to hide inefficiencies of irregular memory accesses.

Accelerator integration A relatively new trend in non-relational database
systems are cross data model systems, i. e., systems that allow storing and
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accessing data in multiple data models simultaneously [LH19]. One example
is OrientDB that supports polymorphic queries over graph and document data
in one unified system. FPGAs could, e. g., be used near-data to transform and
change the binary representation on-the-fly as data is loaded to the CPU.

Heterogeneous computing As GPUs and FPGAs get more popular as accel-
erators and ever more present in the data center, there will be more performance
gains to be had in heterogeneous systems using multiple accelerator types at the
same time. There are first works on those systems in other research areas (e. g.,
[HPM12]), but none in the non-relational database system literature. This kind
of acceleration might be especially beneficial to non-relational database systems
supporting multiple data models, where different workloads are particularly
well-suited to different processor architectures.

3.5 Conclusion

FPGAs are an instrumental tool in achieving performance gains in data-centric
systems in the near future. In this chapter, we open up the field of FPGA-
accelerated non-relational database systems by studying and answering the
research question RQ1 “How can non-relational database systems leverage FPGA
acceleration?” with its three sub-questions RQ1.1 - RQ1.3 formulated in Sect. 1.3.

To start with, for research question RQ1.1 “How do existing non-relational
database systems utilize FPGAs?”, we conducted a system review of commercial
non-relational database systems. We found three experimental extensions to
existing systems using FPGAs as accelerators [Wil17; Loc20; Pot19], showing
the non-relational database system acceleration feasibility but no mainstream
adoptions of FPGAs in non-relational database systems, yet. Hence, we confirm
the potential of FPGAs as accelerators for non-relational database system, but
also conclude that this potential is not yet realized in commercial systems. To
give an answer to research question RQ1.2 “Which solutions and gaps exist in
current research on non-relational FPGA acceleration?”, we derive a system
aspect taxonomy that guides an extensive literature analysis that categorizes the
research and provides an overview of existing solutions. Taking the results of the
literature analysis as a knowledge base, we derived common patterns, answering
research question RQ1.3 “Which reoccurring patterns in the literature guide the
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design of FPGA-accelerated non-relational database systems?”. Therefore, we
propose easy-to-apply patterns for FPGA task definition, FPGA placement,
accelerator design considerations, and benchmarking.

In summary, we provide a comprehensive introduction of FPGA acceleration
and CPU offload potential for non-relational database systems and present it
in a form suitable to everybody interested in the field. However, we especially
regard this chapter as a guide for system architects in their decision making and
a reference for researchers to guide and conduct new research.
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Graph Processing on FPGAs
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GraphSim: Demystifying Memory Access
Patterns of Graph Processing on FPGAs

For graph processing, traditional CPU-centered hardware faces performance
challenges caused by irregular memory accesses and little computational inten-
sity inherent to the workload (cf. Sect. 1.2.1) [Bes+19a; DRF23b; Lum+07].
Example 1 illustrates the effect of irregular memory accesses for breadth-first
search (BFS) with an edge-centric approach. When not reading sequentially
from DRAM, bandwidth degrades quickly [Dre07], due to significant latency
introduced by DRAM row switching and partially discarded fetched cache lines.

Example 1. Let each cache line consist of two values, the current BFS iteration
be 1 with root v0, and e2 be the current edge to be processed. Figure 4.1 shows
an example graph with a simplified representation in DRAM memory. The
graphs edge array is stored in rows r0–r4 and the current value array is stored in
r5 and r6. We begin by reading edge e2 which incurs activating r1 in the memory
and reading a full cache line. Then, we activate r5 and read the first cache line
containing v0 and v1, but only use v0. Finally, we activate r6 to read v5 and
write the new value 1 to the same location, while wasting bandwidth of one value
on each request (i. e., reading and not writing the value of v4 respectively).

FPGA-based graph processing accelerators (cf. Sect. 3.2.1) emerged as one
possible solution. FPGAs enable unique memory access pattern and control
flow optimizations with their custom-usable on-chip memory and logic resources
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Fig. 4.1 Illustration of irregular memory accesses for BFS.
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that are not constrained to a predefined architecture. Additionally, modern
memory technologies like high-bandwidth memory (HBM), available for FPGAs,
help alleviate the pressure on the memory subsystem. While FPGA-based
graph processing accelerators show good results for irregular memory access
pattern acceleration (e. g., [Yao+18; Zho+19]), programming FPGAs is time-
consuming and difficult compared to CPUs and GPUs where the software stack is
much better developed [Aba+19; BRS13]. Additionally, there are deficiencies in
benchmarking of these accelerators due to a multitude of configurations regarding
available FPGAs, memory architectures, workloads, input data, and the lack
of accepted benchmark standards (cf. Sect. 3.3.4.1). This makes it difficult to
assess the implications of different design decisions and optimizations, and – most
importantly – to compare the proposed accelerators [DRF23b; Ahn+15]. This
leads us to the two main challenges in the field: (i) time-consuming and difficult
development of graph processing accelerators, (ii) reproduction and comparison
of accelerators is hard due to differences in hardware platforms and benchmark
setups and thus hinders understanding of accelerator design decisions.

To address challenges (i) and (ii) and answer research question RQ2.1 “Which
crucial graph processing accelerator properties contribute to good performance?”,
we propose a simulation environment for graph processing accelerators GraphSim
based on the idea in Fig. 4.2. GraphSim is a methodology and tool to quickly
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Fig. 4.3 Average simulation error by accelerator and workload.

reproduce and compare different accelerator approaches in a synthetic, fixed
environment. On a real FPGA, the on-chip logic implements data flow based
on on-chip (in BRAM) and off-chip state and graph data in the off-chip DRAM.
However, we observe that the access to DRAM is the dominating factor in
graph processing performance. Thus, we only implement an approximation
of the off-chip memory access pattern in GraphSim, based on the graph and
state independently of the concrete (difficult to implement) data flow on the
FPGA, and feed that into a DRAM simulator. While the performance reported
by GraphSim may not exactly match the real performance measurements, it
provides a good approximation at largely reduced implementation cost and we
see a high potential to better understand graph processing accelerators. Our
simulation approach significantly reduces the time to test new graph processing
accelerator ideas and also enables design support and deeper inspection with
DRAM statistics as well as easy parameter variation.

In Sect. 3.2.1, we found many graph processing accelerator approaches that
we may simulate with GraphSim. Based on criteria like reported performance
numbers on commodity hardware and sufficient conceptual details, we chose four
state-of-the-art systems – namely AccuGraph [Yao+18], ForeGraph [Dai+17],
HitGraph [Zho+19], and ThunderGP [Che+21b] – representing the different
approaches to graph processing on FPGAs. While AccuGraph and HitGraph are
orthogonal approaches representing the currently most relevant paradigms, edge-
and vertex-centric graph processing (both with horizontal partitioning), Fore-
Graph is one of the few systems with interval-shard partitioning and compressed
edge list, and ThunderGP uses vertical partitioning with a sorted edge list.
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With these systems, we show that GraphSim is able to reproduce results as
summarized in Fig. 4.3, denoting the simulation percentage error e = 100×|s−t|

t ,
with simulation performance s, on equal memory configurations and graph data
sets, compared to the performance numbers t taken from the respective paper
grouped by accelerators and graph problems. We get a reasonable mean error of
22.63% with two outliers in BFS on ForeGraph and single-source shortest-paths
(SSSP) on HitGraph caused by insufficient specification of root vertices which
we will further explore in Sect. 4.3.2.

In the following, we first introduce the simulation environment GraphSim
including a detailed explanation of FPGA memory hierarchies, memory access
abstractions used in GraphSim, and DRAM simulators (Sect. 4.1). Thereafter, we
provide a classification of existing graph processing accelerators from Sect. 3.2.1
and extract GraphSim memory access pattern implementations for AccuGraph,
ForeGraph, HitGraph, and ThunderGP (Sect. 4.2). With the GraphSim memory
access pattern implementations, we conduct a reproducibility study (Sect. 4.3.2)
and uncover deficiencies in performance measurement practices and a performance
comparison and analysis (Sect. 4.3.4) by comprehensively exploring the relevant
performance dimensions: (i) accelerator design decisions, (ii) graph problems,
(iii) data set characteristics, (iv) memory technology, and (v) memory access
optimizations. Additionally, we show the reduced effort of engineering new ideas
with GraphSim by example of two novel optimizations to AccuGraph (Sect. 4.4).
Finally, we discuss related work (Sect. 4.5) and finish with a discussion (Sect. 4.6).

Notably, among other insights, we discover a trade-off in the asynchronous
graph processing scheme of AccuGraph and ForeGraph compared to the syn-
chronous graph processing scheme of HitGraph and ThunderGP. Additionally,
we confirm that modern memory like HBM does not necessarily lead to better
performance (cf. [SFB16; Wan+20b]).

Parts of this chapter have previously been published in the proceedings of
BTW 2021 [DRF21b] (GraphSim simulation environment and reproducibility
study) and GRADES-NDA 2021 [DRF21a] (extensive analysis of impact of graph
processing accelerator design decisions on performance).
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4.1 Memory Access Simulation

We start this section by introducing the memory hierarchy of FPGAs and more
specifically how DRAM works internally. Thereafter, we show the abstractions
we developed to implement memory access patterns in GraphSim. Lastly, we
motivate the selection of Ramulator [KYM16] as our DRAM simulator and briefly
explain how Ramulator models memory and is configured for our purpose.

4.1.1 Memory Hierarchy of FPGAs

The memory hierarchy of FPGAs is split up into on-chip and off-chip memory. On-
chip, FPGAs implement distributed memory that is made up of single registers
and is mostly used as storage for working values and BRAM for fast storage
of data structures. For storage of larger data, DRAM is attached as off-chip
memory (e. g., DDR31, DDR42, or HBM3). Exemplary for DRAM organization,
we show the internal organization of DDR3 memory in Fig. 4.4, which at the
lowest level contains DRAM cells each representing one bit. The smallest number
of DRAM cells (e. g., 16) that is addressable is called a column. Several thousand
(e. g., 1,024) columns are grouped together into rows. Further, independently
operating banks combine several thousand (e. g., 65,536) rows with a row buffer
each. Requests to data in a bank are served by the row buffer based on three
scenarios: (1) When the addressed row is already buffered, the request is served
with low latency (e. g., tCL: 11ns). (2) If the row buffer is empty, the addressed
row is first activated (e. g., tRCD: 11ns), which loads it into the row buffer, and

1JESD79-3 DDR3 SDRAM Standard
2JESD79-4 DDR4 SDRAM Standard
3JESD235D High-Bandwidth Memory (HBM) DRAM Standard

83



GraphSim: Demystifying Memory Access Patterns of Graph
Processing on FPGAs

Row

0
1 0 1

Bank Rank Column Channel

1211 310 49 ...
1 011 0

13
0 1 0

1415 12
1

161718293031
01 01 0 1 ... ...

...
Address

Bit indices

Component

Fig. 4.5 DRAM addressing.

then the request is served. (3) However, if the row buffer currently contains a
different row from a previous request, the current row has to be first pre-charged
(e. g., tRP : 11ns) and only then the addressed row can be activated and the
request served. Additionally, there is a minimum latency between switching
rows (e. g., tRAS : 28ns). Thus, for high performance, row switching should be
avoided as much as possible. As a reference point, a last-level cache miss on
current Skylake Intel CPUs takes 17ns at 2.6GHz clock. Since one bank does
not provide sufficient bandwidth, 8 parallel banks further form a rank. Multiple
ranks operate in parallel but on the same I/O pins, thus increasing capacity of
the memory, but not bandwidth. Finally, the ranks of the memory are grouped
into channels. Each channel has its own I/O pins to the FPGA such that the
bandwidth linearly increases with the number of channels. To achieve good
performance, current DRAM additionally employ 8n prefetching (meaning 8
bursts). Thus, 64 bytes are returned for each request which we call a cache line
in the following. DDR4 doubles total number of banks at the cost of added
latency due to another hierarchy level called bank groups, which group two to
four banks. HBM as a new stacked memory technology introduces very high
bandwidth in a small package. The single channels have double as many banks
(16) as DDR3 with half the prefetch (4n) which however transport double the
data per cycle (128 bit). Additionally, HBM has smaller row buffers and can
have many more channels in a confined space.

A common misconception might be that with FPGAs, off-chip memory can be
accessed in smaller chunks than CPU cache lines. On FPGAs only the memory
usage on-chip can be customized to fit the problem-to-solve. Access granularity
cannot be reduced with FPGAs.

Data in DRAM is accessed by giving the memory a physical memory address
that is split up into multiple parts internally representing addresses for each
component in the DRAM hierarchy (cf. Fig. 4.5). Based on this, different
addressing schemes are possible. An example addressing scheme that aids
distribution of requests over channels might address the channels with the least
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significant bits of the address, meaning subsequent addresses go to different
channels, then address columns, ranks, banks, and rows.

4.1.2 GraphSim Patterns

In GraphSim, since memory access is the dominating factor in graph processing,
the necessity of cycle-accurate simulation of on-chip data flow is relaxed and
only the off-chip memory access pattern is modeled (cf. Fig. 4.2). Thus, we
reduce development time and complexity massively within reasonable error when
compared to performance measurements on real hardware. Modelling the off-
chip memory access pattern means modelling request types, request addressing,
request amount, and request ordering. Request type modelling is trivial since it
is clear when requests read and write data. For request addressing, we assume
that the different data structures (e. g., edge list and vertex values) are stored
adjacently in memory as plain arrays. We generate memory addresses according
to this memory layout and the width of the array types in bytes. Request volume
modelling is mostly based on the size n of the vertex set, the size m of the edge
set, average degree deg, and partition number k of a given graph. Lastly, we
only simulate request ordering through mandatory control flow caused by data
dependencies of requests. We assume that computations and on-chip memory
accesses are instantaneous by default. In the following we introduce memory
abstractions we developed for modelling request and control flow.

Figure 4.6 shows an overview of the memory access abstractions and their
icons grouped by their memory access role as producer, merger, and mapper.
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Producer At the start of each request stream, a producer shown in Fig. 4.6(a)
is used to turn control flow triggers (dashed arrow) into a request stream (solid
arrow). The producer might be rate limited to avoid starving other producers,
but if only a single producer is working at a time or requests are load balanced
down-stream, the requests are created in bulk.

Mergers Multiple request streams might then be merged with mergers, since
Ramulator only has one endpoint. We have deduced abstractions to merge
requests in a direct- (Fig. 4.6(b)), round-robin- (Fig. 4.6(c)), and priority-based
(Fig. 4.6(d)) fashion. If there are multiple request streams that do not operate
in parallel, direct merging is applied. If request streams should be equally
load-balanced, round-robin merging is applied. If request streams should take
precedence over each other, priority merging is applied. For this, a priority is
assigned to each request stream and requests are merged based on that.

Mappers Additionally to request creation with producers and ordering with
mergers, we also found abstractions for request mappers. Thus, we introduce
cache line buffers shown in Fig. 4.6(e) for sequential or semi-sequential accesses
that merge subsequent requests to the same cache line into one request. We
do buffering such that multiple concurrent streams of requests benefit from
it independently by placing it as far from the memory as necessary to merge
the most requests. For data structures that are placed partially in on-chip
memory (e. g., prefetch buffers and caches), and thus partially not require off-chip
memory requests, we introduce request filters shown in Fig. 4.6(f) that discard
unnecessary requests. For control flow, we use a callback (Fig. 4.6(g)) abstraction.
We disregard any delays in control flow propagation and just directly let the
memory call back into the simulation. If requests are served from a cache line or
filter abstraction, the callback is executed instantly.

Simulation environment In GraphSim, we instantiate a graph processing
simulation and a Ramulator instance, and tick them according to their respective
clock frequency. For the graph processing simulation we focus on configurability of
all aspects of the simulation such that we can quickly run differently parameterized
performance measurements. Our simulation works on multiple request streams
that are merged into one and fed into Ramulator that calls back into the
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simulation whenever a request is served. This leads us to a immensely reduced
implementation time and complexity, gives us more insight into the memory, and
provides portability of ideas developed in the simulation environment.

4.1.3 DRAM Simulator – Ramulator

To speed up the engineering of graph processing on FPGA accelerators, a DRAM
Simulator is an integral part of our simulation environment (cf. Fig. 4.2). For our
purposes, we need a DRAM simulator that supports at least DDR3 and DDR4
memory. We chose Ramulator [KYM16] for this work over other alternatives
like DRAMSim2 [RCJ11] and USIMM [Cha+12b] because – to the best of our
knowledge – it is the only DRAM simulator which supports (among many others
like LPDDR3/4 and HBM) both of those DRAM standards (DDR3 and DDR4).

Ramulator models DRAM as a tree of state machines (e. g., channel, rank,
and bank in DDR3) where transitions are triggered by user or internal commands.
However, Ramulator does not make any assumptions about data in memory.
Purely the request and response flow is modelled with requests flowing into
Ramulator and responses being called back. The Ramulator configuration
parameters that are relevant to our work are: (i) DRAM standard, (ii) channel
count, (iii) rank count, (iv) DRAM speed specification, (v) DRAM organization.

4.2 Selected Graph Processing Accelerators

We selected four graph processing accelerators from Sect. 3.2.1 to be simulated
in GraphSim. The selection is based on if (i) they support at least BFS, PR, and
WCC, (ii) they run on commodity FPGAs, (iii) the vertex set is not required to
fit into on-chip memory, and (iv) the respective paper provides enough detail to
model the memory access pattern. The accelerators fitting all but one of these
criteria can be found in Tab. 4.1. The ones we chose to include in this chapter are
highlighted in bold. We excluded the accelerators based on the Convey HC-2 and
HMC systems because they cannot be implemented with commercially available
FPGAs anymore. Additionally, support for BFS only restricts their usefulness.
Furthermore, we excluded the systems by Ayupov et al. [Ayu+18] and Yang et al.
[Yan+20a] because they did not provide sufficient detail to reproduce the results
with the simulation environment. The set of accelerators we choose for this
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Fig. 4.7 AccuGraph request and control flow.

chapter represents the currently highest performing graph processing accelerators
and all currently applied partitioning and iteration schemes. In the following,
we introduce how they can be implemented in GraphSim in alphabetical order.
Note that developing and verifying a complicated FPGA design usually takes
weeks, while the implementation of a memory access simulation for a new graph
processing accelerator in GraphSim takes only days or hours.

4.2.1 AccuGraph

AccuGraph [Yao+18] proposes a flexible accumulator based on a modified prefix-
adder able to produce and merge updates to multiple vertices per cycle. Figure 4.7
shows the request and control flow modelling of AccuGraph. The controller is
triggered and iterates over the graph until there are no more changes in the
previous iteration. Each iteration triggers processing of all partitions. Processing
of each partition starts with triggering the prefetch request producer which
prefetches the partitions n

k vertex values (with n = |V | and the partition count
k) sequentially which is passed through a cache line memory access abstraction
merging adjacent requests to the same cache line into one. Thereafter, values
and pointers of all destination vertices are fetched sequentially. Both of those
request streams are annotated with callbacks which return control flow for each
served request. Those two request streams are merged round-robin, because a
value is only useful with the associated pointers. In parallel, neighbors are read
from memory sequentially, annotated with their value from the prefetched vertex
values, and one edge is materialized for each neighbor with its corresponding
source vertex. The aforementioned accumulator thereafter produces updates
for each edge. If the source vertex value changes, the result is written back
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Fig. 4.8 ForeGraph request and control flow.

to off-chip memory (unchanged values are filtered by the filter memory access
abstraction). All of these request streams are merged by priority with write
request taking the highest priority and neighbors the second highest.

AccuGraph is parameterized by the number of vertex and edge pipelines (8
and 16 in the original paper) and the partition size. The original paper also
describes an FPGA-internal data flow optimization which allows to approximate
pipeline stalls, improving simulation accuracy significantly. The value cache used
for the prefetched values is partitioned into 16 memory banks on the FPGA
which can each serve one vertex value request per clock cycle. Since there are 16
edge pipelines in a standard deployment of AccuGraph, performance deteriorates
quickly, when there are stalls. Thus, for this particular accelerator, we model
stalls of the vertex value cache in the control flow between the neighbors and
write producers. A neighbors request callback is delayed until the memory bank
can serve the vertex value request.

4.2.2 ForeGraph

ForeGraph [Dai+17] stores the edges of the shards as compressed 32 bit edges
with two 16 bit vertex identifiers each. This is possible due to the interval size
being limited to 65,536 vertices. In each iteration, ForeGraph prefetches the
source intervals one after another and for each source interval processes its
corresponding shards by additionally prefetching the destination interval and
sequentially reading and processing the edges (Fig. 4.8). This results in purely
sequential off-chip requests with all random vertex value requests during edge
processing being served by caches on-chip. After a shard has been processed, the
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destination interval is sequentially written back to off-chip memory. To achieve
competitive performance, ForeGraph instantiates p processing elements (PE).
These each work on their own set of source intervals and share the memory access
in round-robin fashion. ForeGraph is parameterized with the number of PEs p

and the partition size k.

4.2.3 HitGraph

HitGraph [Zho+19] execution starts with triggering a controller that itself triggers
iterations of edge-centric processing until there were no value changes in the
previous iteration (Fig. 4.9). In each iteration, the controller first schedules
all k partitions for the scatter phase (producing updates), before scheduling
all partitions to the gather phase (applying updates). Partitions are assigned
beforehand to channels of the memory (four channels in [Zho+19]) and there are
p processing elements (PE), one for each channel.

The scatter phase starts by prefetching the n
kp values of the current partition.

After all requests are produced, the prefetch step triggers the edge reading step
that reads all ∼ m

kp edges of the partition. For each edge request, we attach a
callback that triggers producing an update request. The target address depends
on its destination vertex that can be part of any of the k partitions. Thus, there
is a crossbar (unique to this accelerator) that routes each update request to
a cache line access abstraction for each partition to sequentially write into a
partition-specific update queue.

Similar to scatter, the gather phase starts with prefetching the n
kp vertex

values of the current partition sequentially. After value requests have been
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produced, the prefetch producer triggers the update producer, which sequentially
reads the update queue written by the scatter phase before. For each update
we register a callback that triggers the value write. The value writes are not
necessarily sequential, but especially for iterations where a lot of values are
written, there is a lot of locality.

All request streams in each PE are merged directly into one stream without
any specific merging logic, since only one producer is producing requests at a
time. Since all PEs are working on independent channels and Ramulator only
offers one endpoint for all channels combined, we employ a round-robin merge of
the PE requests in order not to starve any channel.

HitGraph is parameterized with the number of PEs p, pipelines and the
partition size q. The number of PEs is fixed to the number of memory channels
because each PE works on exactly one memory channel. The number of pipelines
is limited by the bandwidth available per channel. Lastly, the partition size is
chosen such that p× q vertices fit into BRAM.

4.2.4 ThunderGP

Like HitGraph, ThunderGP [Che+19] is based on a asynchronous update propa-
gation scheme based on edge-centric iteration over the input graph. The graph is
vertically partitioned into k partitions and each partition is split up into p chunks
where p is equal to the number of memory channels. Each memory channel
contains the whole vertex value set of the graph, its corresponding chunk of each
partition and an update set. For each iteration, a scatter-gather phase (SG PE)
is applied for each partition before an apply phase (A PE) is executed for each
partition (Fig. 4.10). The scatter-gather phase starts by prefetching the partitions
destination vertex value set into BRAM sequentially. Upon finalization, this
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triggers sequential edge reading. Each edge callback triggers loading its source
vertex value. Since edge lists are sorted by source vertex, this is semi-sequential
and a vertex value buffer filters duplicate source vertex value requests. When
edge reading is finished, the updated values are written back to memory. The
apply stage reads all updates sequentially and combines the updates produced
by all channels in the previous phase into one value per vertex which is written
back to all channels. This step may cause many duplicate value reads and writes.

ThunderGP is parametrized with the number of scatter-gather groups and
apply PEs which matches the number of memory channels. Additionally, both of
those PEs have a parameter for edges processed in parallel. Finally, ThunderGP
has a parameter for partition size.

4.3 Evaluation

In this section, we introduce the data sets and GraphSim parameters used for
the evaluation. We validate our simulation approach by reproducing the results
reported for AccuGraph, ForeGraph, HitGraph, and ThunderGP, and explain
the simulation error observed when comparing our measurements to those on real
FPGA hardware. Thereafter, we, for the first time, comprehensively compare
these graph processing approaches producing a number of insights.

4.3.1 Setup: Data Sets & Simulation Environment

We take the graph data sets that are often used to benchmark the systems in
Tab. 4.1 for our own evaluation (cf. Tab. 4.2). Two important aspects when
working with these graphs are their directedness and the root vertices4 used (e. g.,
for BFS or SSSP) because they can have a significant impact on performance.

Regarding data types, we use 32 bit data types for all vertex identifiers,
CSR pointers, and values (integer or float). The only exception is ForeGraph
which can use 16 bit vertex identifiers due to its interval-shard partitioning. An
unweighted edge is always two vertex identifiers wide and a weighted edge is an
additional 32 bits wider due to the attached edge weight. This is sensible for

4Root vertices: tw - 2748769; lj - 772860; or - 1386825; wt - 17540; pk - 315318; yt - 140289;
db - 9799; sd - 30279; rd - 1166467; bk - 546279; r24 - 535262; r21 - 74764
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Table 4.2 Graphs used often by systems in Tab. 4.1 (real-world graphs from
SNAP [LK14]; Graph500 generator for R-MAT).

Name |V | |E| Dir. Degs. Davg ø SCC
twitter (tw) 41.7M 1,468.4M  35.25 75 0.80
live-journal (lj) 4.8M 69.0M  14.23 20 0.79
orkut (or) 3.1M 117.2M  76.28 9 1.00
wiki-talk (wt) 2.4M 5.0M  2.10 11 0.05
pokec (pk) 1.6M 30.6M  37.51 14 1.00
youtube (yt) 1.2M 3.0M  5.16 20 0.98
dblp (db) 426.0K 1.0M  4.93 21 0.74
slashdot (sd) 82.2K 948.4K  11.54 13 0.87
roadnet-ca (rd) 2.0M 2.8M  2.81 849 0.99
berk-stan (bk) 685.2K 7.6M  11.09 714 0.49
rmat-24-16 (r24) 16.8M 268.4M  16.00 19 0.02
rmat-21-86 (r21) 2.1M 180.4M  86.00 14 0.10

Dir.: Directed; Degs.: Degree distribution on log. scale; SCC: Ratio of vertices in the largest
strongly-connected component to n; : yes, : no

Table 4.3 DRAM configurations.

Identifier Type #Chan. Ranks Data rate BW Size RBS
AccuGraph DDR4 1 1 2400 MT/s 19.2 GB/s 2 Gb 8 KB
ForeGraph DDR4 1 1 2400 MT/s 19.2 GB/s 4 Gb 8 KB
HitGraph DDR3 4 2 1600 MT/s 12.8 GB/s 8 Gb 8 KB
ThunderGP DDR4 4 1 2400 MT/s 19.2 GB/s 16 Gb 8 KB
Default DDR4 1−4 1 2400 MT/s 19.2 GB/s 16 Gb 8 KB
DDR3 DDR3 1−4 1 2133 MT/s 17.1 GB/s 8 Gb 8 KB
HBM HBM 1−8 n/a 1000 MT/s 16.0 GB/s 4 Gb 2 KB

#Chan.: Number of channels; BW: Bandwidth per channel; RBS: Row buffer size; n/a: not
applicable

all accelerators we encountered, since there are no excessively large benchmark
graphs or requirements on more precision that do not fit into 32 bits.

Table 4.3 shows the DRAM configurations used in the respective paper of the
selected accelerators as well as the DRAM configurations we use in this work. The
default is the DDR4 configuration, since this is the most common in the systems
the selected accelerators run on. The DDR3 and HBM configurations are used
to compare performance on different memory technologies in Sect. 4.3.4.3. By
default, we use one channel, but also do a scale test for HitGraph and ThunderGP
due to their support for multiple channels.

As mentioned in Sect. 2.1.1.1, we consider the five graph problems BFS, PR,
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WCC, SpMV, and SSSP. However, SpMV and SSSP require edge weights which
only HitGraph and ThunderGP support.

We use Ramulator5 commit dd326 and add a function to flush the statistics
for multiple consecutive runs. To compile Ramulator and GraphSim we use
clang++ 5.0.1. For Ramulator with C++11 and for GraphSim with C++17 and
-D_FILE_OFFSET_BITS=64 to be able to read files larger than 2GB.

In subsequent performance measurements, we use the Graph500 benchmark’s
MTEPS definition, which specifies MTEPS as |E|/texec, where texec denotes the
execution time. Notably, this is the definition of MTEPS that the Graph500
benchmark uses but is different to the measure that most graph processing
accelerator papers report (i. e., total number of edges read during execution
divided by execution time), which we call MREPS. MREPS do not normalize
the runtime to graph size but rather denote raw edge processing performance.
For both MTEPS and MREPS higher is better.

4.3.2 Reproducibility Study

We measure the quality of the simulation as the percentage error e = 100×|s−t|
t ,

with simulation performance s, on equal memory configurations and graph data
sets, compared to the performance numbers t taken from the respective paper
grouped by accelerators and graph problems. The AccuGraph numbers are
taken from a chart and the ForeGraph, HitGraph, and ThunderGP numbers are
extracted from table in the respective papers. To reproduce the experiments as
closely as possible, we parameterized GraphSim according to configurations from
the original papers (cf. Tab. 4.3).

Figure 4.11 shows performance measurements for AccuGraph for BFS, PR,
and WCC as billions of read edges per second (GREPS). AccuGraph uses
unweighted graphs and an optimized 8 bit unsigned integer for BFS (problematic
for constant-degree graphs). For the reproducibility study, AccuGraph is assumed
to fit all vertices in BRAM for BFS and only for PR and WCC measurements
on live-journal and orkut, the partition size is set to 1,700,000 vertices. The
average error is very similar for all problems and fits the relative performance of
the graph data sets well.

5Ramulator, visited 10/23: https://github.com/CMU-SAFARI/ramulator
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Fig. 4.11 AccuGraph reproducibility measurements.
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Fig. 4.12 ForeGraph reproducibility measurements.

The only consistent outlier is the youtube graph which relatively performs
better in all simulation measurements than is suggested by the ground truth
measurements (error source 1 ). The original paper notes that the performance
of AccuGraph logarithmically depends on the average degree of vertices. Thus,
youtube should perform the way our measurements suggest, because it has a
slightly higher average degree than the dblp graph. This may be an anomaly in
the measurements performed by the AccuGraph authors. WCC is slightly slower
in our simulations than they are on the accelerator and PR is slightly faster.
There may be a fixed overhead that we are measuring in our experiments and
is not measured in theirs. The better performance of PR, however, is expected,
since we do not take the longer latencies and incurred pipeline stalls of floating
point arithmetics into account (error source 2 ).

Figure 4.12 shows performance measurements for ForeGraph for BFS, PR,
and WCC as runtime in seconds. Overall, we are able to reproduce the ground
truth well with our GraphSim measurements. However, BFs shows by far the
worst error, with a big difference for the youtube graph. This can be explained
by the problem’s dependence on the input root vertex (error source 3 ). The
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Fig. 4.13 HitGraph reproducibility measurements.

ForeGraph authors randomly choose only one root vertices which they do not
report in the paper. However, BFS runtime especially for asynchronous graph
processing based accelerators depends heavily on the source vertex because it
influences the number of iterations over the graph until convergence on the result.

Figure 4.13 shows the HitGraph performance measurements for SpMV, PR,
SSSP, and WCC as runtime in seconds. HitGraph uses weighted graphs and
uniformly wide value types for all problems. Overall, we observe a consistent
outlier in the twitter graph. However, we notice that the HitGraph paper reports
the diameter of the twitter graph as being 15, while we report it as being 75
(cf. Tab. 4.2). Thus, we assume that our version of the graph is different and
exclude it from all error averages in this paper while still showing it in the plots
for completeness (error source 4 ). SpMV and PR result in the same simulation
performance, but since ground truth values are slightly different, we get a different
error. In the original paper, the authors measure only a single iteration of SpMV
and PR. However, we found that for very short runtimes of single iteration
executions differences of a few cycles can already cause large deviations leading
to the errors we observe for SpMV and PR (error source 5 ). We advise using
multiple iterations of such algorithms in benchmarks in the future.

SSSP shows by far the worst error, with some executions running much
shorter in simulation than in the ground truth measurements. This can again be
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Fig. 4.14 HitGraph SSSP runtime variation study.

explained by the problem’s dependence on the input root vertex (error source 3 ).
The HitGraph authors randomly choose 20 root vertices and report the average
runtime. However, wiki-talk and the rmat graphs have many strongly-connected
components (SSCs) with just one or a few vertices (cf. Tab. 4.2). This causes
algorithms like SSSP and BFS to immediately terminate after one iteration over
the graph with very little runtime which results in large variation in performance
measurements for root vertices from many small and few big SSCs shown in
Fig. 4.14. The error is strongly correlated to the coefficient of variation in the
runtimes (given by σ

µ with the standard deviation σ and the mean µ). This leads
us to the conclusion that 20 random root vertices are not enough to stabilize the
runtime measurements for graphs with such structure. We advocate for sharing
how roots are picked in the future.6 Moreover, the HitGraph paper does not
specify how edge weights are set in the graph, which can also influence runtimes
of SSSP (error source 6 ). We initialized all weights to 1. We regard WCC as the
most reliable indicator for simulation quality because it does not depend on input
variables and runs long enough so fixed overheads are irrelevant. We observe
a low simulation error for WCC, which reassures us that the off-chip memory
access modelling works well for HitGraph. Besides the twitter graph (which we
explicitly excluded), the simulation almost perfectly matches the ground truth.

Figure 4.15 shows the simulation reproducibility measurements for Thun-
derGP for BFS, SpMV, SSSP, and WCC as MREPS. We excluded PR for brevity
in this particular case because the results are very similar to WCC. For BFS and
SSSP, the root vertices that ThunderGP used for the ground truth are always

6We generated the 20 random root vertices with the mt19937 generator in C++ with seed
3483584297.

98



4.3 Evaluation

0

25

50

75

100

Er
ro

r (
%

)

(a) BFS (c) SpMV

pk wt lj tw r24 tc
Graph

0

25

50

75

100

Er
ro

r (
%

)

(b) SSSP

pk wt lj tw r24 tc
Graph

(d) WCC
0

2000

4000

6000

0

2000

4000

M
RE

PS

0

2000

4000

0

2000

4000

M
RE

PS

Average error Error Ground truth Simulation

Fig. 4.15 ThunderGP reproducibility measurements.

zero. Thus, overall, we are able to reproduce the performance measurements
of ThunderGP with great accuracy using GraphSim. There are no patterns of
errors that are particularly pronounced.

4.3.3 Error Analysis

We saw that GraphSim is able to reproduce the ground truth performance
measurements of the original papers with reasonable error (Sect. 4.3.2). This
is possible for bandwidth-bound accelerators despite the radical approach of
disregarding FPGA internals. Especially if relative performance behaviour of
approaches is so significantly different (cf. Sect. 4.3.4), an average error of e. g.,
8.997% for WCC is reasonable to make sound relative comparisons. However,
we also identified six sources of errors which we discuss in the following. For
measurements with insufficiently specified input parameters like start vertices
(error source 3 ) and edge weights (error source 6 ) we see large errors for some
graphs. Additionally, we attribute at least some of the error to noise in the
measurements. For example, very low runtime measurements like individual
iterations of SpMV and PR (error source 5 ) can lead to significant noise. We
see underestimation of runtime due to missing modelling of pipeline bubbles that
slow down request generation or missing modelling of e. g., floating point units
that perform complicated calculations (error source 2 ). Lastly, there remain
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two graphs in twitter and youtube for which we cannot explain performance
differences based on our simulation but rather attribute these differences to
different data sets or different usage of them (error sources 4 and 1 ).

One not easily quantifiable, possible error source (error source 7 ) we want
to add here is interpretation based on understanding of the original paper’s
description of their approach. This was e. g., especially necessary for data
structures with missing data type specifications. To aid researchers trying to
understand the approaches we specified all data types and advise to completely
specify such parameters in the future to aid reproduction of results.

We get a reasonable mean error of 22.63% with only two major outliers
in BFS on ForeGraph and single-source shortest-paths (SSSP) on HitGraph
caused by insufficient specification of root vertices We advise that the simulation
should be used in use cases where relative performance behaviour is compared
rather than where absolute performance should be estimated. Additionally, if
the relative performance behaviour is close for the compared approaches our
simulation approach might lead to inaccurate conclusions.

4.3.4 Accelerator Comparison

So far, graph accelerators were compared by looking at their absolute reported
performance numbers, and thus making comparisons based on different FPGAs,
memory architectures, number of memory channels, and consequently off-chip
memory bandwidth available (e. g., [Zho+19; Yao+18]). In this section, we
compare AccuGraph, ForeGraph, HitGraph, and ThunderGP along performance
dimensions relevant for graph processing: (i) accelerator design decisions and
(ii) graph problems, (iii) data set characteristics, (iv) memory technology, and
(v) memory access optimizations.

4.3.4.1 Design Decisions & Graph Problems

Figure 4.16 shows a comparison of the four graph processing accelerators on all
graphs from Tab. 4.2 for BFS, PR (one iteration), and WCC. While we start
with a general performance analysis with respect to accelerator design decisions
and graph problems (performance dimensions (i) and (ii)) in this subsection, we
refer back to Fig. 4.16 throughout this section for more particular performance
effects. We also introduce four critical performance metrics in Fig. 4.17 to explain
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BFS, PR, and WCC (DDR4, single-channel).

our observations throughout this section. Number of iterations has the biggest
impact on performance since each iteration entails prefetching, edge, and value
reading and writing (Fig. 4.17(a)). Edge reading is the dominating factor of
each iteration. Thus, bytes per edge (Fig. 4.17(b)) and edges read per iteration
(Fig. 4.17(d)) are the two second most important performance metrics. Finally,
values read per iteration (Fig. 4.17(c)) can especially play a role for sparse and
large graphs. We only show BFS plots in Fig. 4.17 for brevity because the
numbers are very similar for PR and WCC.

Overall, performance of PR is the highest because only one iteration is
performed (cf. Fig. 4.16). BFS and WCC performance is overall similar. For
BFS and WCC, performance on the berk-stan and roadnet-ca graph – which
we break out in separate plots with a difference y-axis scale – is significantly
lower. This, however, is expected as berk-stan and roadnet-ca are graphs with a
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Fig. 4.17 Critical performance metrics (exemplary for BFS).

large diameter and thus require many more iterations to complete. We notice
that AccuGraph and ForeGraph on average perform better than HitGraph
and ThunderGP. To explain this, we additionally notice that AccuGraph and
ForeGraph finish in significantly less iterations over the graph for BFS and WCC
(not shown) than HitGraph and ThunderGP relative to the graph’s diameter
(cf. Fig. 4.17(a)). This is possible due to the asynchronous graph processing
scheme of AccuGraph and ForeGraph leading to convergence to the result in less
iterations (insight 1 ). The iteration reduction of asynchronous graph processing
is even more pronounced for WCC leading to a more pronounced performance
advantage of AccuGraph and ForeGraph over HitGraph and ThunderGP for
WCC when compared with BFS (cf. Fig. 4.16). Additionally, AccuGraph and
ForeGraph read significantly less bytes per edge on average (cf. Fig. 4.17(b)).
This is due to the CSR data structure of AccuGraph and the compressed edges
for ForeGraph (insight 2 ). For AccuGraph the exact number of bytes depends
on the density of the graph which we discuss in Sect. 4.3.4.2. ForeGraph always
needs 4 bytes per edge, 2 bytes per vertex identifier, and some additional bytes
to prefetch the value intervals. HitGraph and ThunderGP need 8 bytes for each
edge plus prefetching values and reading updates.

We also measured performance on weighted graphs for HitGraph and Thun-
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derGP on SSSP and SpMV. However, there were no significant differences in
performance besides overall longer runtimes due to bigger edge size (because of
edge weights) compared to BFS and PR respectively. Thus, we do exclude SSSP
and SpMV plots for brevity.

4.3.4.2 Data Set Characteristics: Graph Properties

In this section, we discuss performance effects observable in Fig. 4.16 due to the
graph properties (performance dimension (iii)) size (|E|), density (Davg), and
skewness of the degree distribution (as Pearson’s moment coefficient of skewness
E[(D−µ

σ )3] with D the degrees of the graph). The first trend we notice is that
AccuGraph and ForeGraph performance decreases relative to HitGraph and
ThunderGP for large graphs like rmat-24-16 and twitter. For the asynchronous
graph processing scheme, destination vertex values need to be present when
processing an edge which leads to loading these values many times instead of
just once for update application (cf. Fig. 4.17(c)). Thus, asynchronous graph
processing leads to disproportionately more value reads for large graphs (insight
3 ). Particular to AccuGraph, we see that performance is especially good for
small graphs with only one partition (|V | < 1,024,000 for our configuration) such
as slashdot, dblp, and berk-stan. AccuGraph saves vertex value reads for these
graphs with skipping the prefetch step because the values are already in on-chip
memory (cf. Fig. 4.17(c)). However, for large graphs, AccuGraph still needs
n+1 CSR pointers for each partition leading to less savings in bytes per edge
with horizontal partitioning (insight 4 ). HitGraph and ThunderGP performance
is very similar in general. We only see a significant difference in performance
for the twitter graph due to ThunderGP reading many more values because of
vertical partitioning scheme. With an optimization described in Sect. 4.3.4.4,
HitGraph counteracts excessive value reads.

All accelerator approaches benefit from dense graphs, with the effect being
more pronounced for AccuGraph and ForeGraph (only working a full potential
when Davg > 16) due to a significant amount of pipeline stalls for sparse graphs
(cf. Fig. 4.18). For asynchronous graph processing accelerators and sparse graphs
like dblp, youtube, and roadnet-ca, vertex value reads make up significantly more
of the runtime (addition to insight 3 ). Additionally, AccuGraph performance
suffers for sparse graphs because the ratio between pointers and neighbors in the
CSR data structure is higher.
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Fig. 4.19 Performance by skewness of degree distribution.

Figure 4.18 and Fig. 4.19 show raw edge processing performance in MREPS by
average degree of the graph (Davg in Tab. 4.2) and skewness of degree distribution.

We also observe performance differences by by skewness of degree distribution
(cf. Fig. 4.19). Performance for AccuGraph and ForeGraph drops for graphs with
high skewness (e. g., wiki-talk and twitter). The accelerators are only working
at their full potential at low to moderate skewness. We also identify pipeline
stalls caused by edge materialization on the CSR data structure as a problem
for AccuGraph for high degree distribution skewness, similar to sparse graphs
(insight 5 ). For ForeGraph we identify partition skew as the main cause of
reduced performance which we discuss in more detail in Sect. 4.3.4.4 but can be
observed in Fig. 4.17(d).

4.3.4.3 Memory Technology: DRAM Types

In Fig. 4.20(a), we show average speedup of DRAM types (DDR3 and HBM)
over DDR4 for all four accelerators (performance dimension (iv)). We observe
that modern memory (e. g., DDR4 or HBM) does not necessarily perform better
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Fig. 4.20 DDR3 and HBM speedup over DDR4 and bandwidth utilization for
BFS (single-channel).

than the older DDR3, despite higher theoretical throughput. This stems from
lower bandwidth utilization and higher latency of requests (insight 6 ) which
is explained by extremely low utilization of parallelism in the memory due to
mostly sequential reading of very few data structures at once. AccuGraph and
ForeGraph show more row hits due to write requests reusing rows in the row
buffer of read requests (cf. Fig. 4.20(b)). To achieve very good bandwidth
utilization, approaches have to utilize either even more locality (ForeGraph
and AccuGraph) or more memory parallelism (AccuGraph with its CSR data
structure). Additionally, there is no inherent benefit in using HBM for graph
processing accelerators when the accelerator does not scale to multi-channel
setups or scales poorly. The bandwidth utilization goes up slightly for HBM (cf.
Fig. 4.20(b)) but at a cost of significantly more latency inducing row misses and
conflicts due to HBM’s smaller row buffers. Thus, we conclude that HitGraph
and ThunderGP have higher potential adapting to HBM.

Figure 4.21 shows multi-channel scalability of HitGraph and ThunderGP.
AccuGraph and ForeGraph are not enabled for multi-channel operation and thus
excluded. For measurements on more than one channel, we assume the clock
frequency (reported by the respective paper) achieved with the 4-channel designs
for both HitGraph and ThunderGP for GraphSim simulation. However, as a
limitation of these measurements this may not be exactly representative of the
performance on real hardware because the clock speed could be slightly higher
for two channels and lower for eight channels. For HitGraph, we see almost linear
performance improvements when increasing the number of channels and see super-
linear improvements for the roadnet-ca graph. This is due to improved effect
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Fig. 4.21 Scalability over number of channels for BFS.

of partition skipping resulting in significantly less requests to memory (insight
7 ). For ThunderGP, we see mostly sub-linear improvement in performance. We
explain the ThunderGP performance with its vertical partitioning scheme which
leads to every PE working on values from all vertices such that all updates have
to be applied to all channels, limiting performance (insight 8 ). However, the
scaling seems to benefit from dense input graphs like the orkut graph. An effect
that we also observe is that DDR4 performance scales very well for two channels
due to better bank parallelism utilization compared to DDR3 and HBM leading
to better latency.

Another point we want to highlight is that HitGraph scales linearly in memory
footprint with the number of memory channels and ThunderGP scales sub-linearly.
HitGraph needs n+m+n while ThunderGP requires n∗ c+m+n∗ c space in
memory where n is the size of the vertex value array, m is the size of the edge
array and c is the number of channels. This not only means higher memory
usage but also number of reads and writes not scaling linearly with number of
channels for vertical partitioning (insight 9 ).

4.3.4.4 Memory Access Optimizations

ForeGraph, Hitgraph, and ThunderGP propose a set of optimizations to reduce
load on the memory or partition skew (performance dimension (v)). In the
following, we describe the different optimization approaches.

ForeGraph has three optimizations. Edge shuffling (Shuf.) is a preprocessing
step that repacks the edges such that the edge lists of p shards are zipped into
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one (where p is the number of PEs). This alone leads to reduced performance due
to aggravated load imbalance with partitions (due to padding in the form of null
edges) but improves PE utilization when combined with stride mapping (Map.).
Shard skipping (Skip.) is employed for shards with unchanged source intervals
compared to the previous iteration (equal to partition skipping for AccuGraph).
Finally, stride mapping renames vertices such that intervals are sets of vertices
with a constant stride instead of consecutive vertices. In total, the optimizations
improve performance for all graphs we tested on (cf. Fig. 4.22). However,
we observe lower than average performance for slashdot, dblp, and roadnet-ca.
For those graphs, among others, the interval-shard partitioning introduces a
lot of partition skew (especially in combination with edge shuffling) leading to
many more edges read than necessary to process the graph (cf. Fig. 4.17(d)).
Additionally, ForeGraph performance is higher for WCC on berk-stan and roadnet-
ca when compared to BFS which is explained by less edges read due to more
partition skipping (addition to insight 7 ).

HitGraph, like AccuGraph and ForeGraph, employs partition skipping (Skip.)
with similar effectiveness. As a second optimization, HitGraph applies edge
sorting by destination vertex (Sort), increasing locality to the gather phases value
writing. The edge sorting for HitGraph prepares the data structure for update
combining (Cmb.). Updates with the same destination vertex are combined into
one in the shuffle phase which reduces the number of updates u from u = |E| to
u < |V |×p with number of PEs p. As a second optimization to update generation,
a bitmap with cardinality n in BRAM saves for each vertex if its value was
changed in the last iteration. This enables update filtering (Filt.) of updates
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from inactive vertices, saving a significant number of update writes.
ThunderGP proposes an offline scheduling of chunks to memory channels

(Schd.) based on a heuristic predicting execution time. Chunks are greedily
scheduled such that the overall predicted execution time is as similar as possible.
Based on our measurements in Fig. 4.22 this however does not make a big
difference. Additionally, ThunderGP does zero-degree vertex removal which we
disabled for all runs because it is a pre-processing step applicable to all graph
processing systems but hides performance ramifications of highly skewed degree
distributions, e. g., for wiki-talk or rmat-21-86.

4.3.5 Insights & Open Challenges

In summary, from this comprehensive analysis of the four accelerators we gained
nine insights that we categorize and group as trade-offs where possible in this
section. Our biggest finding is a trade-off between lower iteration count of
asynchronous graph processing for graph problems like BFS and WCC when com-
pared to synchronous graph processing (insight 1, similarly on CPU [Wha+15]),
and reading vertex values many more times for large graphs (insight 3 ). As an
open challenge we propose finding an approach to reduce vertex value reads for
asynchronous graph processing (e. g., similar to update filtering for HitGraph) to
lower the impact of graph size on the accelerator performance (open challenge
(a)). As a second trade-off we found that CSR significantly reduces bytes per
edge and values read for small and dense graphs (insight 2 ) at a trade-off of
reading more bytes per edge and values for large and sparse graphs when using
horizontal partitioning (insight 4 ). As a last trade-off we found that large parti-
tions reduce partition overhead while small partitions can significantly benefit
partition skipping leading to super-linear performance increases (insight 7 ). We
noticed that high skewness in degree distribution can lead to performance degra-
dation, e. g., for accelerators using CSR or interval-shard partitioning (insight 5 ).
Additionally, vertical partitioning leads to poor channel scalability (insight 8 )
and memory footprint for multi-channel setups (insight 9 ). Regarding modern
memory (e. g., HBM), we saw that trading of more latency with higher bank-level
parallelism does not necessarily lead to better performance (insight 6, generally
for modern memory [Gho+19b]). Thus, we propose as an open challenge to
investigate schemes to improve utilization of bank-level parallelism in modern
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Fig. 4.23 Runtime improvement of optimizations over baseline.

memories (open challenge (b)). Lastly, we see and open challenge on enabling the
asynchronous graph processing scheme for multi-channel (open challenge (c)).

4.4 Example: Faster Graph Accelerator Engi-
neering

In this section, we illustrate how our approach helps to speed up graph processing
accelerator engineering by example of two optimizations for AccuGraph that we
found while analyzing the performance in the previous section. Note that instead
of implementing the optimizations on the FPGA itself, our simulation approach
is used to quickly assess the altered designs for the different data sets as well as
potentially different DRAM types, thus reducing the overall engineering time by
a form of rapid graph accelerator prototyping.

Optimization ideas AccuGraph writes all value changes through to off-chip
memory and also applies them to BRAM if they are in the current partition. Thus,
BRAM and off-chip memory are always in sync. Nevertheless, at the beginning
of processing a partition, the value set is prefetched even if the values are already
present in BRAM. Thus, the first optimization we propose is prefetch skipping
in this case. For some graphs we also saw the effectiveness of partition skipping
with ForeGraph and HitGraph (cf. Fig. 4.22). Thus as a second optimization,
we propose adding partition skipping to AccuGraph. Both optimizations can
easily be added to AccuGraphs control flow by directly triggering the value and
pointer reading producers or completely skipping triggering of execution for
certain partitions respectively. For prefetch skipping we compare the currently
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fetched partition with the next partition to prefetch and skip prefetching if they
are the same. For partition skipping we keep track if any value of the vertices of a
partition were changed and skip the partition if none changed. The optimizations
also work in combination.

Results To prove their effectiveness, we measure the effect of both optimizations
for BFS and WCC separately and combined (Fig. 4.23). For all small graphs with
only one partition we see an improvement based on prefetch skipping. Partition
skipping is not applicable to those graphs. For some other graphs we see an
improvement based on partition skipping. Prefetch skipping only sometimes
contributes a small improvement but only when combined with partition skipping.
PR as a stationary algorithm is not shown, since no partitions can be skipped by
definition. For prefetch skipping, there are similar performance improvements
on PR compared to BFS and WCC. Overall we see no decrease in performance,
suggesting that both optimizations should always be applied.

Discussion Note that these insights on the two enhancement ideas were
possible in a relatively short amount of time, compared to engineering on an
actual FPGA. Developing and verifying a complicated FPGA design usually
takes weeks, while the implementation of a new graph accelerator approach
in our simulation environment takes days or even just hours if the approach
is well understood before. Additionally, the iteration time is much improved.
Synthesis runs for compiling hardware description code to FPGA take hours up
to a day without many possibilities of incremental synthesis, while a complete
compilation of our simulation environment takes 33.5 seconds on a server with
the possibility of easily utilizing parameters and incremental compilation. As
a downside, the simulation runs longer than a synthesized design on an FPGA
would. However, the user is not limited by special hardware that is only available
in limited numbers (FPGAs). Many runs can be executed in parallel on one
or even multiple servers. Especially for the very fragmented FPGA market,
virtualized offers for FPGAs might not be available for specific boards.
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4.5 Related Work

To the best of our knowledge, there is no prior related work on using the off-chip
memory requests paired with a DRAM simulator to simulate and make graph
processing accelerators more comprehensible and performance measurements
reproducible and comparable.

Cache miss runtime estimation [MBK02] describe a cost model to ap-
proximate query runtimes in relational databases based on cache misses of
memory requests. They focus on CPU cache hierarchies which allow much less
fine-granular data placement than FPGA memory hierarchies (cf. Sect. 4.1.1).
Additionally, they do not perform simulations of requests but model performance
theoretically based on the model parameters of number of cache misses and cache
latency not applicable to FPGAs.

Modern memory technologies In line with our findings on HBM, Schmidt
et al. [SFB16] found that it is not trivial to attain good performance with
the novel memory technology hybrid memory cube (HMC). Wang et al. also
confirm in [Wan+20b] that it is crucial to consider how HBM should be used in
FPGA-based accelerator designs.

Comprehensibility [ZCP15b] introduces a DRAM model and simulation for
HitGraph. The simulation also generates the sequence of requests, but instead of
simulating DRAM runtime, it assumes that every request results in a row buffer hit
and models the performance along the cycles needed for processing the data and
approximated pipelines stalls. However, they do not show performance numbers
generated with this simulation. [Yan+19] uses Ramulator as the underlying
DRAM simulator for a custom cycle-accurate simulation of the accelerator
Graphicionado [Ham+16]. However, this incurs very high implementation time.

Reproducibility Regarding reproducibility, there is prior work on ways to
report performance results such that it suits the own approach on parallel com-
puting systems [Dav95; HB15]. The graph processing accelerator domain seems
to suffer from similar problems and lack of widely accepted standards in bench-
marking. Particularly, declarations of input parameters are often incomplete.
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Comparability Ramulator [KYM16] was previously used in a work studying
the interactions of complex workloads and DRAM types [Gho+19a]. They
uncovered how the internal structure and characteristics of DRAM (DDR3
and DDR4 in our work) relate to performance gains or losses on otherwise
fix benchmarks. This may be a future angle to improve graph processing
accelerator performance by fitting the DRAM type to the algorithms and data
sets. Similarly to our work, [Xu+17] raises awareness for lacking comparability in
graph processing approaches on CPU-based cloud platforms. They find tradeoffs
in approaches between different workloads and differently structured graphs.

4.6 Conclusion

In this chapter, we answer research question RQ2.1 “Which crucial graph pro-
cessing accelerator properties contribute to good performance?”. To this end, we
propose GraphSim, a simulation environment for graph processing accelerators.
The simulation environment models request flow fed into a DRAM simulator (i. e.,
Ramulator [KYM16]) and control flow based on data dependencies. We develop
a set of memory access abstractions and apply these to four representative graph
processing accelerators: AccuGraph, ForeGraph, HitGraph, and ThunderGP.

Even though the simulation environment disregards large parts of the graph
processing accelerator, we showed that it is able to reproduce ground truth
measurements with a reasonable error for most workloads. In our analysis of
the large errors for some workloads we found insufficiencies in benchmark setups
and attribute some error to our radical approach. This chapter addresses an
important shortcoming of graph processing accelerators, namely comparability
of graph processing performance. We approach this matter by comparing the
performance of four well-known graph accelerators (i. e., AccuGraph, ForeGraph,
HitGraph, and ThunderGP) along performance dimensions relevant for graph
processing (cf. dimensions (i)–(v)). We found performance effects based on
accelerator design decisions (insights 5, 8, 9 ), issues in utilization of modern
memory technologies (insight 6 ), and several interesting trade-offs (insights 1–4,
7 ). Additionally, we show that our simulation approach significantly reduces
the iteration time to develop and test graph processing approaches for hardware
accelerators by example of two optimizations for AccuGraph that we propose.

We propose to conduct future work on the identified open challenges (a)–
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(c), i. e., further improving the asynchronous graph processing scheme for large
graphs, leveraging the potential of HBM for graph processing, and multi-channel
scalability of the asynchronous graph processing scheme. Additionally, we see a
need for standardization of benchmark techniques in the field of graph processing
accelerators, as sketched in this chapter.
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GraphScale: Scalable Bandwidth-Efficient
Graph Processing on FPGAs

As we concluded in Chapter 4, Graph processing accelerators like AccuGraph
[Yao+18] and FabGraph [Sha+19] utilize graph compression and asynchronous
graph processing to reduce the load on the memory sub-system which is essential
for good performance. For graphs with large average degree, a compressed
graph data structure, like CSR, almost halves the number of Bytes per edge
to be processed. Asynchronous graph processing, in turn, leads to a significant
decrease in iterations over the graph. However, these approaches have not
yet been scaled to multiple memory channels, as we show in Tab. 5.1. While
AccuGraph and FabGraph enable the potential of a compressed graph data
structure and asynchronous graph processing, they do not scale to multiple
memory channels. In contrast, HitGraph [Zho+19] and ThunderGP [Che+22]
scale to multiple memory channels but do not exploit that potential.

Thus, in this chapter, we address research question RQ2.2 “How can the
crucial graph processing accelerator properties be combined in one system?”. We
propose GraphScale, the first scalable graph processing framework for FPGAs
based on asynchronous graph processing on a compressed graph. While, for
asynchronous graph processing, the challenge is handling the high-bandwidth
data flow of vertex label reads and writes to on-chip scratch pads at scale, the
CSR-compressed graph adds design complexity and higher resource utilization for
materializing compressed edges on-chip that is challenging for scaling to multiple
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Table 5.1 Related FPGA-based graph processing accelerators with classification
and feature set.

Identifier Iter. Partitioning Data structure Compr. Async. Scales Labels Frame.
AccuGraph [Yao+18] Vertex Horizontal Inverse-CSR    
FabGraph [Sha+19] Edge Interval-shard Compr. edge list    
HitGraph [Zho+19] Edge Horizontal Sorted edge list    
ThunderGP [Che+22] Edge Vertical Sorted edge list    
GraphScale Vertex Custom Inverse-CSR    

Iter.: Iteration scheme; Compr.: Compressed; Async.: Asynchronous graph processing; Frame.: Framework;
n/a: Not applicable; : yes, : no

memory channels. We tackle these challenges with a novel two level crossbar
design to handle the data flow of vertex labels and a two-dimensional partitioning
scheme to distribute the graph over the available memory channels, respectively.
To support these, GraphScale features a vertex-centric iteration scheme for more
flexibility in compression of the data structure than edge-centric and pull data
flow that is beneficial for iterations with many vertex label updates which we
expect especially for PR and WCC and more sequential memory accesses when
compared to the push data flow. For the underlying data structure, we chose
CSR because it is easy to construct with little preprocessing and allows for
efficient sequential memory accesses, too.

GraphScale shows promising scalability with a maximum speedup of 4.77×
on dense graphs and an average speedup of 1.86× over AccuGraph, FabGraph,
HitGraph, and ThunderGP on a four DDR4 channel FPGA. Additionally, we
address research question RQ2.3 “How can accelerators be scaled to unlock the
potential of novel memory technologies like HBM?” and observe that scaling
beyond four channels with modern high-bandwidth memory (HBM) provides a
further speedup of 1.53× over GraphScale running on DDR4 memory. Overall,
we conjecture that asynchronous processing on a compressed graph with multi-
channel memory scaling improves the graph processing performance, however,
leads to interesting trade-offs (e. g., for large graphs where partitioning overhead
dominates performance). Motivated by this, we show how this partitioning
overhead can be tackled with an inline binary packing decompressor with a
resulting average performance improvement of 1.25× on synthetic graphs.

We start this chapter by introducing the design of GraphScale in Sect. 5.1 with
a focus on our novel two level vertex label crossbar and novel two-dimensional
partitioning scheme for graph processing on multiple memory channels. To tackle
partitioning overhead on large graphs, we analyze which integer compression
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Fig. 5.1 GraphScale architecture.

technique is best suited to be implemented on the FPGA and provides the
best compression ratio and propose a novel inline decompressor design based on
binary packing compression in Sect. 5.2. In Sect. 5.3, we evaluated our approach
compared to state-of-the-art graph processors AccuGraph, FabGraph, HitGraph,
and ThunderGP an propose an OpenCL wrapper to enable scaling of GraphScale
to HBM. We scale GraphScale to up to 16 channels of HBM and show the
resulting performance improvements in Sect. 5.3.3, including a discussion of
the technical limitations of scalability. In Sect. 5.3.4, we evaluate the binary
packing decompressor but can only observe the performance improvements on
synthetic graphs. For real-world graphs, inherent imbalances of requests to the
GraphScale crossbar hide the performance improvements. Thus, we also propose
a performance model based on a theoretical performance bound for memory and
for the crossbar that is able to explain performance characteristics of GraphScale
based on the provided graph (Sect. 5.3.5).

Parts of this chapter have previously been published in the proceedings of
FPL 2022 [DRF22] (GraphScale base system for up to four memory channels)
and ACM Transactions on Reconfigurable Technology and Systems [DRF23a]
journal (binary packing decompressor and scaling to HBM).

5.1 GraphScale System Architecture

In this section, we describe our graph processing framework GraphScale (cf.
Fig. 5.1) at an abstract processor-scale level and subsequently explain its design
concepts. In principle, a GraphScale graph processor consists of p graph cores
(explained in Sect. 5.1.1) matched to the number of p memory channels (four in
this example). Each graph core is only connected to its own memory channel
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Fig. 5.2 Graph core architecture.

and can thus only directly read and write data on this channel. This requires
partitioning of the graph into at least p partitions. The details of partitioning and
how the graph is distributed over the memory channels is discussed in Sect. 5.1.3.
However, since graph partitioning does not eliminate data dependencies between
partitions, the graph cores are connected via a high-performance crossbar for
exchange of vertex labels enabling the scaling of the approach. The crossbar
will be explained in Sect. 5.1.2. The whole execution is governed by a processor
controller. Before execution starts, the host code passes parameters for each
partition and optimization flags to the processor controller which stores them in
a metadata store. When execution is triggered by the host code, the processor
goes through a state machine, orchestrating the control signals for the execution
of iterations over the graph.

5.1.1 Graph Core

A graph core (cf. Fig. 5.2), as the basic building block of GraphScale, processes
graphs based on the vertex-centric iteration scheme and pull data flow. It
works on a partitioned inverse-CSR data structure of the graph (cf. Sect. 2.1.1)
consisting of one vertex labels array and for each partition one pointers and
neighbors array. Furthermore, processing of the graph is structured into two
phases per iteration: prefetching and processing. In the prefetching phase, the
vertex label prefetcher reads a partition specific interval of the vertex label array
into the vertex label scratch pad, implemented as e (set to 8 in this example)
banks of on-chip BRAM. The vertex label scratch pad is used to serve all non-
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sequential read requests that occur during an iteration instead of off-chip DRAM
since BRAM has much higher bandwidth and single clock cycle latency.

Starting the data flow of the processing phase, the source builder reads vertex
labels and pointers sequentially. Vertex labels and pointers are zipped to form v

source vertices in parallel with a vertex index (generated on-the-fly), vertex label,
inclusive left bound, and exclusive right bound of neighbors in the neighbors
array each. The destination builder reads the neighbors array of the current
partition sequentially and puts e neighbor vertex identifiers in parallel through
the two level crossbar passing the vertex identifiers to the correct label scratch
pad bank of the correct graph core and returning the resulting vertex labels in
the original order (discussed in more detail in Sect. 5.1.2). The vertex label
annotated with the neighbor index is then passed to the edge builder which
combines source and destination vertices based on the left bound l and right
bound r of the source vertex and the neighbor index j of the destination vertex
as l ≤ j < r. Thus, we get up to e edges with a maximum of v source vertices as
output from the edge builder per clock cycle.

The accumulator takes the e edges annotated with their source and destination
vertex labels as input and updates vertices in four steps. First, updates are
produced in the update stage depending on the graph problem’s update function
for each edge in parallel. For BFS, this means taking the minimum of the source
vertex label and destination vertex label plus 1. If the latter is smaller, the
output is flagged as an actual update of the source vertex label. This is crucial
for algorithms that terminate when no more updates are produced in an iteration
(e. g., BFS and WCC). The pairs of source vertex identifier and updated vertex
labels are then passed to the prefix adder which reduces the updates to the most
significant element with the same source vertex identifier for each source vertex.
The most significant entry is then selected by the v selectors in the SelectMSO
stage of the accumulator and passed on to the last stage. Each selector already
only selects pairs with i mod v = I for source vertex index i and selector index
I. The sequential stage consists of v sequential operators that reduce updates to
the same vertex from subsequent cycles into one. The accumulated update is put
out when a new source vertex identifier is encountered or a higher source vertex
identifier is encountered. Thus, in total, the accumulator produces updates only
when the new label is different based on the annotated edges and reduces them
into a maximum of one update per source vertex.
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Fig. 5.3 Prefix adder with wrap-around suffix sub-accumulator (with minimum
reduce operator).

Figure 5.3 shows the parallel prefix-adder vertex-update accumulator. We
add a suffix sub-accumulator (dotted outlines) necessary to attain correct results
in some edge cases and a merged signal for non-idempotent reduce operators
like summation. The accumulator takes e pairs of source vertex identifier and
updated vertex label (split with a comma) and returns one updated vertex
label as the right-most identifier-label pair per incoming source vertex identifier
(italicized). The prefix-adder accumulator consists of log2(e)+1 pipelined levels
of registers (white) and reduce processing elements (PE). The registers take one
identifier-label pair as an input and pass this value on to the next level in the
next clock cycle. The reduce PEs (green and orange) take two identifier-label
pairs as an input and combine them according to a user defined function if the
source vertex identifiers are equal. The result is again put out in the next clock
cycle. Right reduce PEs (green) pass on the right identifier-label pair unmodified
if the identifiers are unequal and left reduce PEs (left) pass on the left pair. In
this particular example, the parallel accumulator could either be used e. g., for
BFS or WCC because it uses minimum reduce PEs which put out the minimum
of the vertex labels if they should be combined. The connection pattern of the
first log2 e levels of the accumulator represent a Ladner-Fischer prefix-adder.

Additional to the prefix adder, we also introduce a suffix sub-adder which
reduces all identifier-label pairs with source vertex identifier equal to the first one
to the first element. In an additional pipeline step, this suffix accumulation result
is reduced with the last prefix accumulation result if there have been multiple
different source vertex identifiers in the input. We do this because the sequential
source vertex identifiers can overlap from the last one to the first one as a result
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of how the edge builder works. In this edge case updated vertex labels might be
missed because only the right-most vertex label of a source vertex identifier is
further processed. Finally, we only reduce two identifier-label pairs if all pairs in
between have the same source vertex identifier which we keep track of with a
merged signal mentioned above.

The resulting updates are fed back to a buffered writer and into the label
scratch pad so they can immediately be used in the same iteration. The buffered
writer collects all updates to the same cache line and writes them back to memory
when an update to a new cache line is encountered.

All different parts of this design are orchestrated in their execution by a core
controller. The core controller gets graph-wide parameters of the execution like
number of vertices, number of edges and address of the buffer in memory and
dynamic parameters like iteration number from the processor controller. Based
on this, it starts the prefetch phase and then the processing phase and therefore
calculates the addresses to the data structure arrays. Finally it also flushes the
pipeline so all updates are written back to memory before asserting the ready
signal such that the next iteration can be started.

5.1.2 Scaling Graph Cores – Vertex Label Crossbar

To scale this very effective single-channel design with limited overhead, we propose
the graph core to memory channel assignment shown in Fig. 5.1. Each graph core
works on exactly one memory channel. However, annotating edges with vertex
labels requires communication between graph cores. Therefore, we propose a
scalable resource-efficient two level crossbar. In this section, we will describe
how we achieve the necessary high throughput of this crossbar to saturate the
accumulators of multiple graph cores with annotated edges.

We show the multi stage design of the crossbar for two cores and e = 4 in
Fig. 5.4. The first level (bank shuffle) receives e neighbors from the destination
builder each cycle for each core with a FIFO buffer for each lane in between to
reduce stalls. The neighbor indices serve as addresses to vertex labels in the
labels array. Before the processing of a partition starts, the partition’s vertex
label are prefetched to the label scratch pad. Since the on-board memory returns
e neighbors per graph core per cycle at maximum throughput, e ·p requests have
to be served by the label scratch pad per cycle. The label scratch pad of each
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Fig. 5.4 Stages of scalable two level crossbar.

graph core is split up into b banks which is at least equal to e (larger values
for b may be used to reduce contention on banks) that can serve requests in
parallel. The vertex labels are striped over these banks. The last log2 b bits of
each neighbor index are used to address the bank of the label scratch pad that
this vertex label can be requested from. Thus, the bank shuffle level puts each
neighbor index into the right bank lane based on its last log2 b bits. This can
introduce stalls because multiple neighbors from one line can go to the same
bank (i. e., a multiplexer has to output entries from the same input cycle in
multiple output cycles). However, since each neighbor only goes to one bank we
decouple the b bank shufflers and let them consume r full lines before stalling
such that labels from later lines can overtake in other banks. For most graphs,
this reduces stalls because the load is approximately balanced between banks.

In a second level, we introduce a core crossbar that shuffles the neighbor
indices annotated with their line and lane they originally came from to the core
that contains the vertex label. Core addressing is done by the first log2 p bits
of the neighbor index. However, since the neighbor indices are already in the
correct lane, this only requires p · b core shufflers with p inputs. The results are
additionally annotated with the core they originally came from and fed into the
label scratch pad. The core shufflers work independently from each other too,
allowing neighbor indices to overtake.

The banked vertex label scratch pad (each bank is 2c entries deep) returns
the vertex labels with a one clock cycle latency but keeps the annotations. A
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Fig. 5.5 Two-dimensional partitioning (two cores and three sub-intervals).

second layer of core shufflers routes the vertex labels back to their original graph
core. Thereafter, the vertex labels are unshuffled to the lane they originally came
from and fed into a final reorder stage to restore the original sequence of the
data. The sequence possibly changes because requests and responses overtook
each other in the previous steps.

The reorder stage has a fixed number of lines it can keep open at the same
time (4 in this example) which we will call reorder slots. It is passed the valid
signals of the incoming neighbors when they first enter the crossbar and puts
them into a mask FIFO to check if all responses are present. The unshuffled
labels are then still annotated with the line they originally came from modulo
the number of reorder slots which is used as the address to put them in a BRAM.
There is one BRAM for each lane of reorder slots because in each cycle we
possibly write one label and read one label per lane. The reorder stage also
maintains a pointer pointing to the next output line and compares the valid
signals of this line to the mask FIFO output. If the mask FIFO valid output
and the valid signals form the line are equal, the labels are put out, the pointer
is incremented, the mask FIFO is popped, and the valid signals of the line are
cleared. When the pointer is incremented above the last line it overflows to 0.

Finally, the mask FIFO of the reorder stage is also used to exert backpressure.
If the mask FIFO contains as many elements as there are reorder slots, the ready
signal is deasserted and all stages stop. To handle the one cycle latency of the
label scratch pad there is also an additional overflow register where the label
scratch pad result can overflow to.

5.1.3 Graph Partitioning and Optimizations

Figure 5.5 shows the partitioning of the input graph as the last missing part
of our graph processing accelerator GraphScale and why it is able to scale well.
The partitioning in done in two dimensions. In the first dimensions, the set of
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vertices is divided into p equal intervals Iq (I0 and I1 in this examples for p = 2),
one stored on each memory channel and processed by its corresponding graph
core Pq. The second dimension of partitioning divides each vertex interval into
l equal sub-intervals (J0 to J5 in this example for l = 3) that fit into the label
scratch pad of the graph core. We generate one sub-partition Si,j for each pair
of interval Ii and sub-interval Jj containing all edges with destination vertices
in Ii and source vertices in Jj and rewrite the neighbor indices in the resulting
CSR data structure such that the requests are shuffled to the correct graph
core by the two level crossbar (i. e., first log2 p bits are graph core index) and
subtract the offset of the respective sub-interval Jj . Sub-partitions Sq,q·l for
each q ∈ [0, q) additionally form a meta-partition Mq. During execution, all
sub-intervals Jq·l are prefetched by their respective graph core q before processing
of all sub-partitions of meta-partition Mq is triggered. During processing, edges
whose source and destination vertex reside in different intervals Ii produce a data
dependency between partitions and thus graph cores such that a vertex label
has to be communicated over the two-level crossbar to process that edge. This
light-weight graph partitioning, however, may introduce load imbalance because
it works on simple intervals of the vertex set.

Each graph core writes all label updates to off-chip memory through the
buffered writer while processing a partition. As a first optimization, immediate
updates, we also immediately write back the updates to the label scratch pad if
they are part of the current partition [Yao+18]. Thus, with this optimization,
BRAM and off-chip memory are always in sync. Nevertheless, at the beginning
of processing a partition, the vertex label set is unnecessarily prefetched even
if the labels are already present in BRAM. Thus, we utilize prefetch skipping
in this case as a light-weight control flow optimization which skips the prefetch
phase if the vertex label set is already present in the label scratch pad [DRF21b].
This optimization only works in conjunction with immediate updates. As a third
optimization, we apply stride mapping to improve partition balance which we
identified as a large issue during testing [Dai+17]. Because the graph cores work
in lock-step on the meta-partitions, imbalanced partitions lead to a lot of idle
time. Stride mapping is a light-weight technique for semi-random shuffling of
the vertex identifiers before applying the partitioning which creates a new vertex
ordering with a constant stride (100 in our case which results in v0,v100,v200, ...).
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Table 5.2 Integer compression techniques with feature set important to imple-
mentation of FPGAs.

Identifier Non-recursive No dictionary Blocked
Variable length  
Simple-8 [AM10]  
Binary packing [AM10]  
PFor [Zuk+06]  
Golomb [RP71]  

Huffman [Huf52]  
Interpolated [MS00]  
RePair [LM00]  

: yes, : no

5.2 Pointer Array Compression

In this section, we first show an analysis of the different compression techniques
(cf. Tab. 5.2) to determine which technique provides the highest compression
ratio and thereafter present the GraphScale inline decompressor subsystem based
on binary packing compression.

5.2.1 Integer Compression Techniques

Table 5.2 shows a selection of integer compression techniques that are often
mentioned in related work and their feature set. To make sure that inline
decompression at line rate can be achieved on the FPGA for the compression
technique we choose, we only pick those that are not recursive (meaning we do not
have to do multiple passes over the data to get the decompressed integers) and do
not require a dictionary (which would require BRAM resources that are already
very limited). This excludes Huffman [Huf52], Interpolated [MS00], and RePair
[LM00] compression. Additionally, we prefer compression techniques which work
with blocks to avoid data dependencies between values and simplify decompression
of many values per clock cycle. All of these techniques can additionally be
combined with difference encoding if the original sequence of integers is sorted.
Difference encoding means that every encoded value v′

i represents the difference
of its original value vi to its previous value vi−1. Subsequently, we will shortly
introduce the five remaining compression techniques (variable length, Simple-8,
binary packing, PFor, and Golomb).
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Fig. 5.6 Compression ratio of pointers array for different compression techniques.

Variable length For each value, there is a prefix of ones of the same length
as the subsequent packed value. This works well for very small values but can
waste a lot of bits for large values.

Simple-8 As many values as possible are packed into 64 bit blocks where the
first four bits of each block are used to determine the width of the individual
values [AM10]. One drawback is that this technique possibly wastes bits as
padding but all blocks are fixed width making FPGA implementation easier.

Binary packing and PFor Binary packing [AM10] takes a fixed number of
values as a block and determines the maximum of the minimum number of bits
needed to represent each value. Each block contains a header with this bit width
and all values encoded with that bit width. PFor [Zuk+06] works similar to
binary packing but the header of each block additionally stores a base value
against which each value is diffed. There are a number of possible optimizations
that we do not cover here.

Golomb Each value is divided by a parameter b where the quotient is encoded
in unary code and the remainder is encoded into log2(b) bits binary code [RP71].

5.2.2 Analysis

In Fig. 5.6, we show a benchmark of the five compression techniques (variable
length, Simple-8, binary packing, PFor, and Golomb) from Tab. 5.2 that we
determined to be suitable for integration into GraphScale. On the x-axis we show
the different graphs that we also use in our performance benchmarks in Sect. 5.3
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Fig. 5.7 Inline binary packing decompressor subsystem.

and on the y-axis we show the number of bits that are required per value in the
pointers array after compression. We aim for lowest average bits per value as this
provides the best compression ratio. For PFor and binary packing, we tried out
different block sizes with 2 and 4 respectively being the optimum. For Golomb
we determined b = 16 to provide the best results. Overall, we confirm that the
compression techniques are most effective for very sparse graphs and large graphs
(e. g., wiki-talk and rmat-24-16) and least effective for very dense graphs (e. g.,
mouse-gene). Variable length and binary packing perform the best with almost
the same average. Thus, due to variable length not supporting blocks, we chose
to implement binary packing.

5.2.3 Concept

Figure 5.7 shows our inline decompressor design for binary packed pointers as
a cutout of the lower left part of the graph core from Fig. 5.2. The parts that
stay the same are greyed out. We replace the sequential reader for pointers with
the inline decompressor. For the memory layout, we split off the headers of the
blocks into their own array. Otherwise it would require a lot more logic to just
extract the headers from the blocks because of the variable block length in bits.
From the bottom up, on the left side of the decompressor, the headers are read
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and fed into a mapper. To make the compression even more effective and make
header reading easier, each header is only four bits wide. However, pointer values
can be up to 32 bits wide such that we expand the 16 possible values of the four
bit wide headers to five bits. All values i are mapped to i+1 besides the value 15
which is mapped to 32, which we determined to be the best distribution. On the
right side, the decompressor reads the blocks as full lines of memory and puts
two of them through two multi-stage shifters (similar to the shifter in [Sie+19]).
Shifter 0 shifts its memory line such that position 0 of the result contains the first
bit of the to be extracted block. If the block spans two memory lines, shifter 1
additionally shifts the next memory line such that it can be joined with the result
of shifter 0. The orchestrator takes headers from the mapper and keeps track
of the next block position. With that information it controls the shifters and
pops memory lines if all blocks have been processed. The orchestrator then feeds
the joined memory line from shifter 0 and shifter 1 and the mapped header to a
number of extractors matching the number of vertex pipelines. Each extractor
extracts its corresponding value from the memory line and feeds into a dediffer.
The dediffer accumulates the values from the extractors in multiple stages and
at the end adds them to the current value to attain the original data.

5.3 Evaluation

In this section, we introduce the system used for evaluation and setup for
the performance measurements together with the system parameters and the
graph data sets used for the experiments. Thereafter, we comprehensively
explore performance in multiple dimensions. First, we look at the effects of the
optimizations introduced in Sect. 5.1.3, before highlighting the scalability of the
GraphScale framework. We compare GraphScale with the performance of the
competitors that do not scale to multiple memory channels (i. e., AccuGraph
and FabGraph) to show the scalability of GraphScale and those that do scale
(i. e., HitGraph and ThunderGP) to show the advantages and disadvantages of
asynchronous graph processing and a compressed graph. Next, we propose an
OpenCL wrapper for GraphScale and show the resulting scalability to an HBM-
enabled FPGA. Lastly, we show the performance improvements from the binary
packing compression and propose a performance model to explain data-dependent
performance characteristics of GraphScale.
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Fig. 5.8 Overall system architecture (incl. host, device, and memory).

Figure 5.8 shows the system context in which GraphScale is deployed. In
principle, the system features a CPU and an accelerator board which hosts the
FPGA, running GraphScale itself, and memory, used as intermediate data storage
for the graph during processing. The CPU manages the execution on the FPGA
and is also responsible for loading and partitioning the graph. To execute a
particular workload with a particular graph, the GraphScale framework, first, is
synthesized with user defined functions (UDFs) for the map and reduce operators
in the accumulator. Map produces an update to the source vertex label for each
edge, while reduce aggregates updates into one value for each to be updated
vertex. For a switch from BFS to WCC, the reduce UDF stays the same while
only one line has to be changed for the map UDF. PR requires changing the map
UDF significantly and replacing the reduce UDF with summation. Additionally,
PR alternatingly works on two separate vertex label arrays. Secondly, the
synthesized design is programmed to the FPGA.

For execution of the programmed algorithm on a particular graph data set,
the edge list (or any other representation) of the graph is read from disk to the
CPU and partitioned by the graph partitioner in the host code according to
the GraphScale framework parameters. Additionally, the vertex labels of the
graph are initialized with graph problem specific values. The graph partitions
and vertex labels are then transferred to the respective channels of the FPGA
memory. Thereafter, the parameters of the graph are passed to GraphScale via
a control interface which triggers execution. After the execution finished, the
results can be read back to CPU memory and used for further processing. If
desired, the partitioned graph can be used multiple times in a row by loading
new vertex labels and again triggering the execution.

For our experiments, we are working with a server equipped with an Intel
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Table 5.3 Resource utilization and clock frequency by system, graph problem,
and system parameters (D5005: 933.1K LUTs, 1.87M registers, 30.5 MB BRAM,
5760 DSPs; S10MX: 702.7K LUTs, 1.41M registers, 17.5 MB BRAM 3960 DSPs).

System Platform Problem p b c r LUTs Regs. BRAM DSPs Clock freq.

GraphScale D5005

BFS
1 16 17 4 19% 13% 40% 0% 192 MHz
2 16 16 4 30% 23% 41% 0% 186 MHz
4 16 15 4 58% 47% 43% 0% 170 MHz

PR
1 16 17 4 26% 14% 66% <1% 174 MHz
2 16 16 4 43% 43% 67% <1% 162 MHz
4 16 15 4 82% 69% 72% 1% 143 MHz

WCC
1 16 17 4 20% 14% 40% 0% 191 MHz
2 16 16 4 30% 23% 41% 0% 183 MHz
4 16 15 4 55% 45% 43% 0% 161 MHz

GraphScale-HBM S10MX

BFS

1 16 17 1 28% 25% 71% 0% 248 MHz
2 16 16 1 30% 28% 72% 0% 256 MHz
4 16 15 1 41% 38% 75% 0% 241 MHz
8 16 14 1 65% 64% 80% 0% 186 MHz

16 8 13 0 75% 78% 58% 0% 142 MHz

PR

1 16 16 1 27% 26% 64% <1% 211 MHz
2 16 15 1 34% 34% 65% <1% 211 MHz
4 16 14 1 48% 50% 68% <1% 203 MHz
8 16 13 1 89% 91% 74% 2% 148 MHz

WCC

1 16 17 1 28% 24% 71% 0% 248 MHz
2 16 16 1 30% 29% 72% 0% 257 MHz
4 16 15 1 39% 39% 75% 0% 249 MHz
8 16 14 1 65% 66% 80% 0% 210 MHz

16 8 13 0 75% 78% 58% 0% 137 MHz
GraphScale-BinPack D5005 BFS 1 16 17 1 16% 9% 40% 0% 180 MHz

LUTs: Look-up-tables; Regs.: Registers; BRAM: Block RAM; DSPs.: Digital signal processors;
Clock freq.: Clock frequency

FPGA Programmable Accelerator Card (PAC) D5005 attached via PCIe version
3. The system features two Intel Xeon Gold 6142 CPUs at 2.6 GHz and 384 GB
of DDR4-2666 memory. The D5005 board is equipped with four channels of
DDR4-2400 memory with a total capacity of 32 GB and a resulting bandwidth of
76.8 GB/s. The design itself is based on the Intel Open Programmable Execution
Engine (OPAE) platform and is synthesized with Quartus 19.4.

For the HBM experiments, we are working with a workstation equipped with
an Intel FPGA S10MX development kit attached via PCIe version 3. The system
features an Intel Xeon Gold E5-2667 CPU at 2.9 GHz and 96 GB of DDR3-1600
memory. The S10MX development kit board is equipped with 32 channels of
HBM 2 memory with a total capacity of 8 GB and a resulting bandwidth of up
to 512 GB/s. GraphScale itself is embedded into the Intel OpenCL platform as a
kernel and is synthesized with Quartus 21.2.
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Table 5.4 Graphs used often by systems in Tab. 5.1 (real-world graphs from
[LK14] and [RA15]; Graph500 generator for R-MAT).

Name |V | |E| Dir. Degs. Davg ø SCC
live-journal (lj) 4.8M 69.0M  14.23 20 0.79
orkut (or) 3.1M 117.2M  76.28 9 1.00
wiki-talk (wt) 2.4M 5.0M  2.10 11 0.05
pokec (pk) 1.6M 30.6M  37.51 14 1.00
youtube (yt) 1.2M 3.0M  5.16 20 0.98
dblp (db) 426.0K 1.0M  4.93 21 0.74
slashdot (sd) 82.2K 948.4K  11.54 13 0.87
mouse-gene (mg) 45.1K 14.5M  643.26 11 0.95
roadnet-ca (rd) 2.0M 2.8M  2.81 849 0.99
top-cats (tc) 1.8M 28.5M  15.92 258 1.00
berk-stan (bk) 685.2K 7.6M  11.09 714 0.49
rmat-24-16 (r24) 16.8M 268.4M  16.00 19 0.02
rmat-21-86 (r21) 2.1M 180.4M  86.00 14 0.10
perfect-v-e (p-v-e) 2v 2v ·e  - e - 1.00

Dir.: Directed; Degs.: Degree distribution on log. scale; SCC: Ratio of vertices in the largest
strongly-connected component to n; : yes, : no

Table 5.3 shows the different system configurations used for our experiments
for GraphScale as well as AccuGraph, FabGraph, HitGraph, and ThunderGP.
Besides the three graph problems BFS, PR, and WCC, we synthesized system
variants which utilize different numbers of memory channels p. All DDR4-based
variants (i. e., GraphScale on the D5005 platform) have a total vertex label scratch
pad size of 221, 16 scratch pad banks, and 8 vertex pipelines. All types including
pointers, vertex identifiers, and vertex labels are 32 bit unsigned integers, except
PR vertex labels which are 64 bit and consist of the degree of the vertex and
its PR value. Lastly, the depth of the reorder stage is set to 32. For HBM, we
synthesized system variants up to 16 memory channels except for PR which
did not fit on the FPGA. All variants except those for 16 channels have a total
vertex label scratch pad size of 220, 4 vertex pipelines, and an overprovisioned
crossbar with 16 vertex label scratch pad banks. The GraphScale-BinPack
variant implements binary packing compression. This parameterization results
in a moderate resource utilization with rising LUT and register utilization and
almost constant BRAM utilization because vertex label scratch pad size is shared
between the graph cores. The PR configuration has significantly higher resource
utilization due to the doubled vertex label size.
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Fig. 5.9 Effects of GraphScale optimizations for BFS.

Graph data sets that are used to benchmark our system are listed in Tab. 5.4.
This selection represents the most important graphs, currently considered, found
by a recent survey [DRF23b]. Two important aspects when working with these
graphs are their directedness and the choice of root vertices1 (e. g., for BFS or
SSSP), because they can have a significant impact on performance. We also show
graph properties like degree distribution and average degree that are useful in
explaining performance effects observed in the following. For the binary packing
compression experiments, we generated different configurations of the perfect-v-e
graph. This graph is generated in a way to perfectly utilize the GraphScale
crossbar to isolate graph loading from memory.

5.3.1 Effects of GraphScale Optimizations

Figure 5.9 shows the effects of different optimizations from Sect. 5.1.3, when
applied to the base framework. The measurements are performed on a four
channel GraphScale system and normalized to measurements with all optimiza-
tions turned off. The immediate updates optimization ensures that updates
to the vertex labels of the current partition interval are written back to the
scratch pad immediately, instead of just being written back to memory. This
makes updates available earlier and leads to faster convergence for almost all
graphs. Only the berk-stan graph does not benefit from this optimization which
is due to a specific combination of graph structure and selected root vertex.
The prefetch skipping optimization skips the prefetch phase of each iteration if
intermediate updates are enabled. Hence, the prefetch skipping measurements

1Root vertices used: lj - 772860; or - 1386825; wt - 17540; pk - 315318; yt - 140289; db -
9799; sd - 30279; mg - 20631; rd - 1166467; tc - 1405263; bk - 546279; r24 - 535262; r21 - 74764
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Fig. 5.10 GraphScale memory channel scalability from one to four channels.

have intermediate updates enabled. Additionally, prefetch skipping only works
on graphs with a single partition. Prefetch skipping is a lightweight control flow
optimization that sometimes leads to small performance improvements. Lastly,
stride mapping tries to optimize partition balance. Whenever partitions can be
balanced (e. g., youtube or slash-dot graphs), the performance improves most
significantly. However, in rare cases (e. g., berk-stan graph) this may lead to
performance degradation because with asynchronous graph processing, result
convergence is dependent on vertex order and a beneficial vertex order may be
shuffled by stride mapping. From our observation, it is beneficial if high degree
vertices are at the beginning of the vertex sequence for faster convergence. In
single channel measurements, single channel performance was better without
stride mapping for almost all graphs. This is expected because partition balance
is only important between channels but not between sub-partitions.

5.3.2 GraphScale Scalability

Figure 5.10 shows the scalability of GraphScale from a single-channel up to four
memory channels as speed-up over the baseline of single-channel operation for
BFS, PR, and WCC. For single-channel, the stride mapping optimization is
disabled. Otherwise, all optimizations discussed in Sect. 5.1.3 are always enabled.
The measurements show that there is some scaling overhead and speedup is
dependent on the data set. This may be due to partition balance but is mainly
influenced by density (i. e., average degree) of the graph for BFS. This can
e. g., be observed for the orkut, dblp, and rmat-21-86 graphs. Two interesting
exceptions are the roadnet-ca and top-cats graphs which show super-linear scaling.
This is due to stride mapping changing the vertex ordering and thus leading to
convergence on the result in significantly less iterations. Scalability speedups for
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Fig. 5.11 Comparison of GraphScale with AccuGraph and FabGraph.

WCC are similar to the BFS measurements besides the even more pronounced
super-linear scaling for roadnet-ca and top-cats.

For the comparison of GraphScale against AccuGraph, FabGraph, HitGraph,
and ThunderGP, we use the performance measure millions of traversed edge per
second (MTEPS) defined by the Graph500 benchmark as |E|/texec with runtime
texec. More is better for this performance metric. This is different than the
MTEPS* definition |E| · i/texec with number of iterations i used by HitGraph
and ThunderGP. MTEPS* eliminates number of iterations in favor of showing
raw edge processing speed. However, faster convergence to results due to lower
number of iterations has more impact on actual runtime than usually smaller
differences in raw edge processing speed [DRF21a].

Figure 5.11 shows AccuGraph and FabGraph compared to GraphScale scaled
to four memory channels. FabGraph was only measured for BFS and PR
on the youtube, wiki-talk, live-journal, and pokec graphs and the AccuGraph
measurements did not include the pokec graph. For the BFS measurements,
we use 0 as the root vertex as was done for AccuGraph and FabGraph in their
respective papers. Overall, we show an average performance improvement over
AccuGraph of 1.48× and over FabGraph of 1.47×. Especially AccuGraph benefits
from much higher clock frequency due to lower design complexity. For wiki-talk,
GraphScale scales the worst (cf. Fig. 5.10) and is, thus, not able to provide a
large improvement. FabGraph performs exceptionally well for PR on very sparse
graphs (i. e., youtube and wiki-talk).

Figure 5.12 compares the four channel GraphScale system to HitGraph.
Because HitGraph does not provide BFS performance numbers, the GraphScale
BFS results in Fig. 5.12(a) are compared to single-source shortest paths results
from HitGraph which has the same output for edge weights 1. We were not able
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to obtain the root vertices that were used for the HitGraph measurements thus we
measure with our own. Overall, we show an average performance improvement
over HitGraph of 1.89× for BFS and 2.38× for WCC. As already shown in
Fig. 5.10, GraphScale benefits from denser graphs like live-journal in contrast
to a sparse graph like wiki-talk. We also again observe the superior scaling of
our approach for the roadnet-ca graph. For graphs with a large vertex set like
rmat-24-16, our approach requires increasingly more partitions (9 for rmat-24-16),
introducing a lot of overhead.

Figure 5.13 compares the four channel GraphScale system to ThunderGP.
For this experiment, we implemented a vertex range compression proposed by
ThunderGP which removes any vertex without an outgoing edge from the graph
before partitioning it. While we apply this for the purpose of comparing the
approaches on equal footing, we criticise this compression technique because
it returns wrong results. Taking BFS as an example, vertices that only have
incoming edges also receive updates even though they do not propagate them.
ThunderGP uses random root vertices generated with an unseeded random
generator. Thus, we reproduce their root vertices and measure on the exact
same input parameters. Overall, we achieve a speedup over ThunderGP of 2.05×

135



GraphScale: Scalable Bandwidth-Efficient Graph Processing on
FPGAs

256GB/s256GB/s

 

FP
G

A
 (I

nt
el

 S
10

M
X

)

HBM Bottom
G

ra
ph

Sc
al

e

Graph core 0 

Processor controller

0 1 2 13 14 15  
HBM Top

16 17 18 29 30 31... ...

O
pe

nC
L 

K
er

ne
l

Adapter

core data addr ptr_0 ptr_1 ptr_7 ...

Graph core 1 Graph core 7 ...

3 12 19 28

Two level crossbar 

data addr 

Fig. 5.14 GraphScale adapter for OpenCL.

and 2.87× for BFS and WCC respectively. The vertex range compression makes
the wiki-talk graph much denser which our approach benefits from. The only
slowdown we observe is again for the rmat-24-16 graph due to partition overhead.

5.3.3 HBM

Figure 5.14 shows the integration of GraphScale into an OpenCL kernel enabling
usage with the S10MX development kit because Intel OPAE is not available for
this system. The integration is handled by an adapter converting the function
call interface of OpenCL kernels to the address and data based register interface
of the processor controller. This works because GraphScale, which is added to
the OpenCL kernel as a VHDL library function, retains its state between kernel
function calls. The reset signal of GraphScale is only triggered when the OpenCL
kernel is created. Additional to a core, address, and data parameter, the OpenCL
kernel also has one pointer parameter for each memory channel. For HBM, pointer
parameters are bound to a memory channel during compile time and have a
different data type than the data parameter. The core parameter multiplexes
the pointers and the address parameter multiplexes the data parameter and
the pointer parameters which is then passed to the data port of the processor
controller of GraphScale. The core and address parameters are additionally
concatenated and passed to the address port.

Figure 5.15 shows the scalability of GraphScale up to 16 channels on the HBM-
enabled system (hatched) compared against GraphScale scaled over up to four
channels of DDR4 memory (solid color). We directly compare HBM configurations
with double the number of graph cores to the DDR4 configurations because
the HBM memory channels are half as wide as the DDR4 memory channels
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Fig. 5.15 GraphScale HBM memory channel scalability from one to eight channels.

resulting in half as many edges processed per core simultaneously. There are no
DDR4 configurations matching the 1 core and 16 core HBM configurations. The
narrower data paths of the HBM channels, however, also lead to significantly
higher clock frequencies (cf. Tab. 5.3). Additionally, we overprovision the crossbar
with 16 label scratch pad banks per graph core while the graph cores only do a
maximum of 8 requests per clock cycle due to the narrower data path. If there
are no measurements shown for certain graphs (e. g., no measurement for the
HBM 1 graph core configuration for the live-journal graph), this means that the
graph did not fit into the memory of this configuration. Each HBM channel only
has 256MB of memory and different to DDR4, there is no datapath connecting
all memory channels, limiting graph size.

To fit 16 graph cores, we had to remove the ready signal decoupling registers
in the crossbar due to resource utilization constraints leading to much reduced
clock frequency, halve the label scratch pad size, and remove the overprovisioned
label scratch pad banks. For some graphs, the reduced clock frequency and
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Fig. 5.16 Compression speedup on perfect graphs.

default number of label scratch pad banks means that GraphScale-HBM with
8 graph cores runs faster than GraphScale-HBM with 16 graph cores. Further
scaling to more memory channels is limited by resource utilization of the FPGA.
For scalability to 32 channels, each graph core of GraphScale would have to
be smaller than 2% of the LUT resources. In principle, having a number of
cores that is not a power of two is also possible but does not make sense here
because 16 cores already is the limit. In the future, FPGAs with more resources
and possibly smaller board support packages (providing basic functionality like
memory and PCIe controllers) will enable scaling the system even further. When
it eventually is possible to saturate every memory channel with a graph core,
there are more methods to extract even higher performance from HBM [Hol+21].
The rmat-24-16 graph did not fit into memory at all for PR.

On average, GraphScale on HBM is able to provide a speedup of 1.53×
with a maximum of 3.49× for WCC on the road-net graph. Compared to the
theoretical HBM bandwidth of 512GB/s this may seem low. However, we are
limited by resources such that we are not able to scale to the full 32 channels
and do not achieve the best clock frequency for 16 channels due to the same
reason. Additionally, for HBM we would have to reach an unrealistic 500 MHz
clock frequency to utilize the full memory bandwidth compared to only 300 MHz
required to reach the maximum bandwidth of a DDR4 channel.

5.3.4 Compression

Figure 5.16 shows the effect of the binary packing compression on the GraphScale
performance on generated graphs for an increasing average degree and on the
other hand increasing number of partitions. The experiments are run with all
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vertex labels set to −1 to prevent updates having to be written back to memory
and the number of iterations over the graph is fixed to 1 to isolate the performance
of loading the graph. The measurements show a performance improvement for
GraphScale-BinPack(1) compared against the baseline of GraphScale(1) the lower
the average degree of the graph is (cf. perfect-21-2) and the more partitions the
graph has (cf. perfect-24-16). For the perfect-21-1 graph, we observe a drop in
performance because there are only half as many vertex pipelines in our design
as edge pipelines such that with an average degree of below 2 we are limited in
the edge builder by the number of vertex pipelines. On average, we observe a
speedup of 1.26× with the binary compression enabled and a maximum of 1.48×
for the perfect-21-2 graph achieving our goal of reducing partition overhead
for large graphs. However, for the real-world graphs that we use in our other
experiments, we do not observe this improvement.

5.3.5 Understanding Data-dependent Performance Char-
acteristics

To better understand the performance characteristics of GraphScale on different
graphs, we propose a performance model based on two components. We model
the theoretical maximum performance based on memory accesses alone (memory
bound) and also simulate the theoretical maximum performance based on the
crossbar (crossbar bound) which is mainly influenced by imbalances in accesses
to the label scratch pad both locally and globally producing bubbles in the
processing pipelines. As we observed in [DRF21a], the biggest influence on
performance are number of iterations over the graph which we optimize for with
asynchronous graph processing. Thus, we will normalize all performance numbers
in this experiment to one iteration over the graph. Additionally, imbalance of
number of edges between partitions can also cause lower performance which we
will also exclude from the experiment by only looking at one graph core.

The memory bound Mmax is mostly influenced by the average degree of the
graph and the number of meta partitions as we observed for the compression
too. It can be modeled as follows (i is the number of iterations over the graph
and d = 1 if the number of sub-intervals l is exactly one and d = i otherwise):

Mmax = n ·d+(2 ·n · l +m) · i
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We additionally simulate the crossbar bound Cmax by going over the edge
list in cycles and consuming an edge if the corresponding simulated label scratch
pad bank has spaces left in an internal queue. The lookahead is limited to the
FIFO depth from Fig. 5.4 regulated with a parameter in the simulation. We
count the cycles that the simulation needs to consume all edges (a maximum of
16 per cycles with perfect balancing of requests) and calculate the theoretical
maximum millions of read edges per second (MREPS) from that.

Figure 5.17 shows the result of our performance modeling compared against
the actual performance measurements of GraphScale with one core. The final
estimate is the minimum of the memory bound Mmax and the crossbar bound
Cmax. We observe that we can closely model the actual performance with this
estimate. For most real-world graphs, the performance is significantly limited by
the crossbar bound because there are local imbalances in the label scratch pad
accesses. This is especially prevalent for the synthetic rmat graphs. However,
the graphs do not exhibit global imbalances of accesses. This suggests that
optimizing the partitioning of the graphs taking our performance model as a
measure of quality could improve performance and unlock the performance gains
shown for the binary packing compression.

5.3.6 Discussion

Overall, we observe an average speedup of 1.48× over AccuGraph and FabGraph
and 2.3× over HitGraph and ThunderGP with a maximum speedup of 4.77×
for BFS on the wiki-talk graph over ThunderGP, confirming the potential of
scaling asynchronous graph processing on compressed data. For optimizations,
we show the importance of partition balance with stride mapping being very
effective for graphs like slash-dot and youtube at the trade-off of shuffling the
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potentially beneficial natural vertex ordering of real world graphs. In our scal-
ability measurements, we observe that GraphScale performance benefits from
denser graphs in general (e. g., orkut and dblp graphs). This was especially pro-
nounced compared against FabGraph for PR on very sparse graphs. Additionally,
compared to HitGraph and ThunderGP, we observe a significant slowdown for
graphs with a large vertex set, like rmat-24-16. This results in a trade-off in
the compressed data structure between less data required for dense graphs and
more partitioning overhead for graphs with a large vertex set. We tackle both
these challenges (sparse and large graphs) with our binary packing decompressor
with an average speedup of 1.26× on synthetic graphs. To explain the lacking
performance improvement from binary packing compression on real-world graphs,
we show a performance model forming a theoretical upper bound for GraphScale
performance. Lastly, we scale GraphScale to HBM resulting in a 1.53× average
speedup with a maximum of 3.49× speedup for WCC on the road-net graph. We
are limited by resource utilization and clock frequency by the hardware available
to us preventing us from utilizing the full HBM bandwidth. In this particular
case, turning off compression could lead to increased performance because we
are not limited by memory bandwidth.

5.4 Conclusion

We proposed GraphScale, an FPGA-based, scalable graph processing framework.
GraphScale is inspired by the insight that current graph processing accelerators
do not combine compressed graph representations, asynchronous graph process-
ing, and scalability to multiple memory channels in one design (cf. Chapter 4).
We showed the potential of such a design by defining a scalable two level crossbar
and a two-dimensional graph partitioning scheme that enable all three acceler-
ator properties in one system, addressing research question RQ2.2 “How can
the crucial graph processing accelerator properties be combined in one system?”.
Our experimental performance evaluation showed scalability and superior perfor-
mance of GraphScale compared to state-of-the-art graph processing accelerators
AccuGraph, FabGraph, HitGraph, and ThunderGP with an average speedup
of 1.86× and up to 4.77× on dense graphs. Additionally, we answer research
question RQ2.3 “How can accelerators be scaled to unlock the potential of novel
memory technologies like HBM?”. To this end, we scale GraphScale to HBM
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resulting in a 1.53× average speedup with a maximum of 3.49× speedup for
WCC on the road-net graph. We conclude that it is difficult to fully utilize
the bandwidth provided by novel memory like HBM due to clock frequency
and resource utilization constraints. To decrease partition overhead for large
graphs, we implement binary packing compression which is able to improve the
performance by another 1.26× speedup.

Based on our performance model, we conclude that it is possible to further
improve performance by exploring partitioning schemes to improve partition
balance (e. g., as in [BL18]) in future work. Additionally, we think that baking the
workload into the bitstream limits the usefulness of graph processing accelerators.
A remaining challenge is making these kinds of accelerators dynamic such that
workloads can be switched with low latency.
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PipeJSON: Parsing JSON at Line Speed on
FPGAs

In recent years, JavaScript Object Notation (JSON) [Bra+14] and its variants
have gained popularity for both data exchange and storage. Their appeal lies
in the flexible and semi-structured way they represent data (e. g., [Abi+18]).
This makes them especially interesting for analytical data processing systems
handling vast and diverse data sets (e. g., [JQZ20; DLN21; NJ03]). Although
these systems utilize efficient internal binary representations of the data for
processing and storage, ingesting raw JSON documents in the first place is
expensive due to low parsing performance [Li+17b; LL19]. Thus, due to the
relevance of semi-structured data, a number of JSON parsers have been developed
(cf. Tab. 6.3), starting with traditional libraries such as RapidJSON [Yip+15]
and sajson [Aus+12]. More recently, through advances in modern CPU technol-
ogy, performance improvements have been made by new approaches like Mison
[Li+17b] and more recently simdjson [LL19]. These parsers leverage vectorized
AVX instructions for data parallel SIMD processing.

Nonetheless, we conjecture that CPU-based parsers are still constrained in
parsing efficiency, particularly because of the rigid instruction set and limited
pipelining capabilities of CPUs (cf. Fig. 6.1). These restrictions mean that they
only achieve a fraction of the parsing performance, possible with pipelining on
FPGAs (e. g., attached via PCIe (cf. PipeJSON (PCIe))), constraining parsing
performance from reaching the practical limit of memory bandwidth. Addressing
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research question RQ3.1 “How can line-speed data ingestion of arbitrary input
data be achieved on FPGAs?”, we present PipeJSON, the first standard-compliant
JSON parser to process tens of gigabytes of data per second, by parsing mul-
tiple characters per clock cycle. PipeJSON validates structural correctness of
documents during parsing and is flexible in the sense of not requiring parser
generation, thus being able to handle arbitrary JSON documents during runtime.
Instead of relying on data parallel AVX instructions of modern CPUs, PipeJSON
leverages FPGA hardware to make extensive use of AVX-equivalent loop unrolling
complemented by deep pipelining. Conceptually, PipeJSON is based on the data
parallel simdjson tokenizer, that we extend in this chapter. We combine the
tokenizer with multiple fully pipelined components on the FPGA1. To ensure
easy integration into software projects, PipeJSON is implemented with Data
Parallel C++ [Rei+21], accessible to software developers, and compatible with
various programming languages, such as C++ and Go.

Our PipeJSON system achieves an average speed-up of 7.95× over state-of-
the-art CPU-based JSON parsers, including data transfer to the FPGA and back
via PCIe. We show that the flexible pipelining and data parallelism, achievable
with FPGAs, is ideally suited for tasks like JSON parsing and is able to overcome
CPU performance bottlenecks, such as number parsing. While, in this chapter,
we neither consider task parallelization on CPUs nor on FPGAs, in the future,
multiple CPU cores and unused FPGA resources could be used to parse multiple
documents at once. Furthermore, while we have to use the FPGA as a CPU-
attached offload accelerator in this work, due to hardware restrictions, it may

1We utilize pipeline parallelism instead of processing one block after the other as in [LL19]
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also be directly attached to the network to completely alleviate the CPU from
parsing and possibly other tasks in a data analytics context.

In this chapter, we first present the PipeJSON JSON parser concept with
data parallelism matched to the width of the off-chip memory interface (Sect. 6.1).
Additionally, we show how PipeJSON can be implemented as a prototype on an
FPGA with a simdjson-compatible interface, as a drop-in replacement for CPU
parsers (Sect. 6.1.5). In Sect. 6.2, we evaluate PipeJSON performance compared
against state-of-the-art CPU parsers and along relevant JSON-specific document
properties. We wrap this chapter up with a conclusion in Sect. 6.4.

Parts of this chapter have previously been published in the proceedings of
DaMoN 2022 [Dan+22].

6.1 PipeJSON System Architecture

In this section, we provide an architecture overview of the PipeJSON concept
which we completely designed with FPGAs in mind and define its most impor-
tant components in more detail (i. e., tokenizer, number parser, tape builder).
Additionally, we introduce the PipeJSON prototype used for performance mea-
surements in the system context.

PipeJSON consists of the parser modules shown in Fig. 6.2. Each module
denotes a pipeline on the FPGA, where each step in the pipeline processes
different data in parallel. Additionally to building deep pipelines, we utilize
the FPGA’s flexibility by adding data parallelism where state-of-the-art CPU
architectures cannot use SIMD to solve a problem in a data parallel fashion
(e. g., string filtering and number parsing). A raw JSON document is read as an
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input string from memory and output is written back in the form of a binary
representation as a combination of a tape, with JSON tokens, and arrays for
string, integer, and float values. While the output could be written in any format,
we have chosen the particular tape representation from [LL19] to guarantee
comparable results in our evaluation. The input reader reads the input string and
splits it up into blocks of 64 characters, matching the cache line width of a single
memory channel of 64B of current DRAM technology, before passing each block
into the tokenizer and a FIFO queue (i. e., on-chip memory and logic) for later
usage. The tokenizer annotates the characters in each block with bitmaps for
further processing, which are then passed to data type-specific modules. Based
on the bitmaps and the 64B data blocks from the FIFO, the string filter selects
and writes all string characters to the string array and passes the number of
strings in the block and their lengths to the tape builder. The tape builder reads
the input characters, bitmaps, and information from the string filter, and writes
corresponding tokens to the tape in memory. Lastly, the number parser reads
from the FIFO and receives bitmaps from the tokenizer, then transforms numeric
characters to integers or floats, and writes them to the corresponding arrays.
Subsequently, we discuss all components in more detail.

6.1.1 Tokenizer

The tokenizer computes the bitmaps from a given raw JSON input string block.
Figure 6.3(a) shows a subset of the bitmap computation done in the tokenizer.
In this simplified example, I denotes the input string, Q indicates the quotes,
OD the ends of odd sequences of backslashes (cf. [LL19]), TI the tokens, NR the
number characters, and DP the decimal points.
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To attain the main bitmap used for string filtering (i. e., quoted ranges QR),
the escaped quotes are removed from Q with bitmap OD and a prefix exclusive-or
is applied to the resulting QNE. The token bitmap TI is used by the tape builder
to write tokens to the tape. For the number parser, we mainly use the NR bitmap
and the FDP bitmap marking the decimal digits of floats. The latter is computed
by first adding DP to the NR bitmap and only taking the non NR bits, resulting
in the float ends FPE. To get FDP, we then again apply the prefix exclusive-or
operator on the ranges delimited by DP and FPE (i. e., FDD) and finally remove
the decimal point again from the resulting FDA bitmap.

Because the input string is split up into fixed sized blocks in the input reader,
a JSON value like a string might be part of multiple blocks (cf. Fig. 6.3(b)).
Since this changes the tokenization behavior, we introduce the following main
overflow types: (i) string, (ii) backslash, (iii) number, (iv) none. If the last
character of the current block was in a string, escaped by a backslash (as in the
example), part of a number, or neither of those, we use the respective overflow
type as the context for the next block. We implement this by appending one bit
at the end of the bitmaps to capture overflows and by pre-pending the last bit
and the overflow bit from the end of the previous block to pass this information.
For simplicity, we re-use overflow types derived from the number overflow type
for negative numbers, the decimal part of a number and the decimal part of a
negative number (not shown).

Figure 6.3(c) gives an abstract view of the tokenizer module. The sub-modules
are pipelined for better throughput, but have to wait until the overflow type of
the previous block is known. Since the bitmap computation for a block would
have to wait for the previous block to appear in the pipeline, this would degrade
performance. To circumvent this, we pre-compute the bitmaps for all overflow
types in parallel and only decide on which bitmaps to pass on based on the then
known overflow type from the previous block with a multiplexer.

6.1.2 String Filter

Figure 6.4 shows the pipelined structure of the string filter module. As input,
the string filter takes the quoted range (QR) and quoted range end (QRE) bitmaps
and a block of characters. For brevity, we only show an 8-character string filter
in Fig. 6.4. During processing, the string filter compacts all string characters of
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Fig. 6.4 String filter.

a block into one contiguous sequence and additionally keeps track of the number
of total characters, number of different strings, and for each string its length. We
achieve a throughput of one block of size b per clock cycle by having b pipeline
steps each consuming one input character and extending the output sequence by
one output character. For each step i, we have i multiplexers either forwarding
the output character from step i−1 or forwarding the currently to-be-consumed
character for multiplexer n if it is a string character. In case of a string character
(steps 1, 5, and 6), we increment the current string length pointed to by m by
one. Whenever we encounter a quoted range end (steps 2 and 7), we increment
m by one. The results of the string filter are written to the string array and the
number of strings in the block and their lengths is passed to the tape builder.

6.1.3 Number Parser

An important parser module is the two-staged number parser pipeline shown in
Fig. 6.5. In the first stage, it takes the input characters and bitmap information,
such as number ranges (NR), number range ends (NRE), and floating point decimal
parts (FDP), as input and transforms them to integers. We build a pipeline that
processes one input character of a 64 character block in each step and has an
internal counter n to keep track of the current number that is parsed. When a
number character is encountered (e. g., step 0), the temporary number currently
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pointed to by n is multiplied by 10 (i. e., shift) and added to the new number
character. The resulting new temporary number is passed to the next pipeline
step. If no number character is encountered, the old temporary value is passed on.
If a number range end is encountered (steps 2 and 7), n is incremented because the
parsing of the current number is finished. After a decimal point is encountered,
an auxiliary decimal digit counter is incremented for each subsequent number
character (steps 5 and 6). In PipeJSON, this pipeline is at least 75 steps deep to
also account for possible number overflows where characters from the previous
block are pre-pended. In a second stage, numbers with a decimal point are
multiplied by 10−d (i. e., shift) where d denotes the number of decimal digits to
transform them into float values. The results are written to the integer and float
arrays, respectively.

6.1.4 Building the Tape

For comparison reasons, we kept the binary representation generated by PipeJ-
SON similar to the tape from simdjson [LL19], shown in Fig. 6.6. The tape
contains tokens of one Byte and nested object and array structures are marked
by a begin and end token. There are tokens for strings, integers, Boolean, null
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(not shown), and floats. The six least significant bits of a string token are used
to store the length of the string. Long and overflowing strings are stored as a
series of string tokens, each with a maximum length of 64, and a delimiting string
end token. The characters of the string itself are stored in the string array, by
omitting tokens for commas and colons because they can be derived from the
context of being in an object or array.

6.1.5 Summary – PipeJSON Prototype

Figure 6.7 depicts the system architecture of our PipeJSON prototype. We
implement PipeJSON in Intel OneAPI with Data Parallel C++ [Rei+21] as a
parser stub on the host CPU that is used to communicate with the FPGA and
PipeJSON itself on a PCIe-attached FPGA. In the PipeJSON (PCIe) configura-
tion of the design that we also show in Fig. 6.1, an application directly calls the
API of the parser stub, forwarding the input string. The parser stub triggers
PipeJSON, which directly accesses the input string through PCIe and returns the
resulting binary representation. The result can then be passed back to the calling
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application without any buffer copying or unnecessary detour through FPGA
memory. This makes PipeJSON a drop-in replacement for existing CPU-based
JSON parsers, which is PCIe bandwidth-bound. Hence, we also benchmark
PipeJSON (D2D), where the input string is placed on the FPGA memory be-
forehand and the binary representation is written to FPGA memory only. This
is used to show the potential of our parser but not as conveniently usable as the
PipeJSON (PCIe) configuration.

6.2 Evaluation

In this section, we experimentally evaluate PipeJSON in the drop-in replacement
(PCIe) and FPGA on-board, device-to-device (D2D) variants on different JSON
data sets, compared to related JSON parsers. We discuss the results in the
context of the theoretical maximum bandwidth of our design.

6.2.1 Setup

For the experiments, we use our prototype (cf. Fig. 6.7), integrated with a server
equipped with two Intel Xeon Platinum 8260 CPUs at 2.40 GHz and 377 GB of
DDR4-2933 memory. The server also features an Intel programmable acceleration
card (PAC) D5005 board attached via PCIe v3 x16. The D5005 contains one
Intel Stratix 10 SX 2800 FPGA with 933,120 adaptive logic modules as the
basic logic building blocks, 3,732,480 registers, 30.5 MB of BRAM, and 5,760
DSP blocks. We use Intel OneAPI 2022.1 with the standard board support
package and Quartus 19.2 for synthesis of the FPGA bitstream. The host code
for PipeJSON is compiled with dpcpp 2022.1. For the measurements of the CPU
parsers, we set up a container with Docker version 20.10.12 and compiled the
parsers with gcc 9.1.0.

We use the same JSON parsers (cf. Tab. 6.3) and data sets (i. e., gsoc-2018
to github_events in Tab. 6.1) for our comparisons that [LL19] use, but add
synthetic documents that we generated to explore effects of document structure
on performance. For example, deep_objects contains nested JSON objects
with depth 16 and big_arrays contains nested arrays with multiple entries. The
documents ints_n, floats_n, strs_n are fixed at m = 8M, but vary by the number
of digits n of integers and floats, respectively, and string length n. Table 6.1

153



PipeJSON: Parsing JSON at Line Speed on FPGAs

Table
6.1

D
ocum

ents
used

to
benchm

ark
JSO

N
parsers

by
[LL19]and

synthetic
docum

ents
(for

m
is

8M
).

N
am

e
#

Ints
#

Floats
#

Strings
#

O
bjects

øD
epth

#
A

rrays
øA

rray
Size

Size
gsoc-2018

(gs)
0

0
34128

3793
2
.67

0
0
.00

3.33M
B

m
arine_

ik
(m

a)
130225

114950
38268

9680
4
.25

28377
8
.64

2.98M
B

canada
(cd)

46
111080

12
4

3
.00

56045
2
.98

2.25M
B

citm
_

catalog
(ci)

14392
0

26604
10937

3
.42

10451
1
.14

1.73M
B

m
esh.pretty

(m
p)

40613
32400

11
3

1.00
3610

21
.22

1.58M
B

m
esh

(m
e)

40613
32400

11
3

1.00
3610

21
.22

0.72M
B

tw
itter

(tw
)

2108
1

18099
1264

3
.23

1050
0
.54

0.63M
B

tw
itterescaped

(te)
2108

1
18099

1264
3
.23

1050
0
.54

0.56M
B

update-center
(uc)

0
0

27229
1896

3
.25

1937
1
.04

0.53M
B

random
(rd)

5002
0

33005
4001

2
.47

1001
4
.00

0.51M
B

instrum
ents

(in)
4935

0
6889

1012
2
.46

194
4
.24

0.22M
B

nu
M

B
ers

(nb)
0

10001
0

0
0
.00

1
10001

.00
0.15M

B
apache_

builds
(ab)

0
5289

26
884

1
.99

3
293

.33
0.13M

B
github_

events
(ge)

149
0

1891
180

2
.56

19
2
.53

0.07M
B

deep_
objects_

k
(do

k )
k

·55903
0

k
·83800

k
·55903

8.02
k

·27897
2
.00

k
M

B
big_

arrays_
k

(ba
k )

k
·55904

0
k

·70725
k

·31516
3.85

k
·3564

8.10
k

M
B

ints_
n

m
/(n+

2)
0

0
0

0
.00

1
m

/(n+
2)

m
B

floats_
n

0
m

/(n+
3)

0
0

0
.00

1
m

/(n+
3)

m
B

strs_
n

0
0

m
/(n+

4)
0

0.00
1

m
/(n+

4)
m

B

154



6.2 Evaluation

Table 6.2 Resource utilization, clock frequency, and theoretical bandwidth by
memory interface.

Configuration LUTs Registers BRAM DSPs f Tmax
PipeJSON (PCIe) 72.2% 34.6% 8.1% 8.6% 242 MHz 13.00 GB/s
PipeJSON (D2D) 71.1% 34.8% 7.9% 8.9% 302 MHz 19.33 GB/s

LUTs: Look-up-tables

shows all of the documents we use in the evaluation, their abbreviation used in
plots, and their properties.

6.2.2 Theoretical Performance and Resources

We consider the maximum theoretical performance for the throughput Tmax of
our design as:

Tmax = min
(

CLsize
II ·f,DTR

)
,

with JSON documents of size larger than cache line size CLsize, pipeline initial-
ization interval II (i. e., input rate of pipeline in cycles), achieved clock frequency
of the design f , and data transfer rate from buffer location to FPGA (PCIe
or FPGA memory) DTR. Overall, our design achieves an II of 1, which is
the smallest possible value. This means that a new input can be passed to all
pipelines in each clock cycle. Additionally, we fixed CLsize at 64 B which is the
interface width for PCIe or a single channel of DDR4.

Table 6.2 shows our two PipeJSON configurations with their respective
resource utilization, clock frequency f , and resulting maximum theoretical per-
formance Tmax . Even though the PCIe v3 x16 of our benchmark system has a
theoretical bandwidth limit of 16 GB/s, we measured a maximum throughput of
13 GB/s with Intel OneAPI. Thus, we use that as the DTR for PipeJSON (PCIe)
in turn limiting Tmax , making PipeJSON (PCIe) I/O-bound. PipeJSON (D2D)
has a maximum theoretical performance of 19.33 GB/s (i. e., compute-bound).
To achieve higher performance we would either have to increase the number of
interface channels (i. e., data parallelism), or clock frequency up to a theoretical
maximum of 400 MHz for our Intel OneAPI setup on Stratix 10.
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6.2.3 Experiments

In a first experiment, shown in Fig. 6.8, we compare our PipeJSON parser to the
state-of-the-art CPU parsers simdjson, sajson, and RapidJSON (cf. Tab. 6.3)
on all data sets from [LL19] (cf. gsoc-2018 to github_events), deep_objects_k,
and big_arrays_k. The results show that while sajson performs better than
the frequently used RapidJSON, the data parallel implementation of simdjson
is even faster. Overall, PipeJSON outperforms the CPU parsers with a pars-
ing speed of up to 12.22 GB/s for our PCIe-attached and 19.26 GB/s for our
D2D, on-board variant. However, on the tiny 0.07 MB github-events document,
simdjson is slightly faster than our PipeJSON (PCIe) variant. We observe the
biggest improvements over CPU parsers for the marine_ik, deep_objects_k,
and big_arrays_k documents which are the documents with the by far highest
number of integers and floats.
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To gain a better insight into the correlation between document size and
performance, we sort the documents (excluding the 50 MB and 500 MB variants
of deep_objects_k and big_arrays_k by their size in MB ascending in Fig. 6.9
and compare PipeJSON (D2D) and PipeJSON (PCIe) to the fastest CPU parser
(i. e., simdjson). We added the theoretical performance limits from Tab. 6.2 as
horizontal lines, to show by how much PipeJSON deviates. We can see that the
PipeJSON performance logarithmically approaches the theoretical performance
limit with document size for both configurations and we significantly lose per-
formance below 0.5 MB document size. This stems from an estimated latency,
introduced by Intel OneAPI, of calling PipeJSON of 25.29µ s for PipeJSON
(D2D) and 28.47µ s for PipeJSON (PCIe) and an estimated pipeline depth of
900. Regarding pipeline depth, this means that PipeJSON does not operate at
peak parallelism for the first and last 900 blocks of input data.

In a second experiment, we further explore the relatively low CPU parser
performance (cf. Fig. 6.8) for marine_ik, deep_objects_k, and big_arrays_k

documents. To this end, we plot the slowdown we observe for all parsers and
increasingly smaller elements of integers, floats, and strings in Fig. 6.10. We
measure performance on the synthetic documents ints_n, floats_n, and strs_n

for two to ten digits – a maximum of ten digits fit into 32 bit integers – and
normalize the measurements to the ten digit measurement of its respective parser.
For PipeJSON, the results suggest a robustness regarding element sizes, while
the CPU parsers are vulnerable to smaller element sizes of integers, floats, and
strings. Notably, simdjson is slightly better for integers, but slower for float and
character parsing. PipeJSON (D2D) is robust in performance, even for very

157



PipeJSON: Parsing JSON at Line Speed on FPGAs

Table 6.3 CPU and FPGA JSON parsers.

Identifier Platform Validating Data parallel
sajson [Aus+12] CPU 
RapidJSON [Yip+15] CPU 
Mison [Li+17b] CPU 
simdjson [LL19] CPU 

PipeJSON FPGA 

Supported : yes, : partially, : no

small integers, but PipeJSON (PCIe) slows down slightly for smaller integers
and floating point numbers. For this particular combination, PipeJSON has to
write back more data to memory than is read from the input string in the first
place, degrading performance with the limited PCIe bandwidth.

6.2.4 Discussion

In summary, from the analysis of PipeJSON and three state-of-the-art CPU-based
JSON parsers we gained several insights about their performance on various data
sets. The experiments on common JSON data sets, also used in [LL19], show
superior results for data parallel parsing compared to conventional approaches.
In particular, PipeJSON (D2D) achieved an average speedup of 12.56× over
simdjson, the fastest data-parallel CPU parser, with a maximum speedup of
33.37×, and PipeJSON (PCIe) 7.95× and 21.17×, respectively. We found that
PipeJSON performed especially well for larger document sizes, bound by I/O
for PCIe and compute-bound for D2D, which could be circumvented through
an increased frequency or PipeJSON instance parallelization on the FPGA. For
tiny documents, however, PipeJSON cannot reach its peak performance for the
first and last 900 ·64 characters, due to latency and an estimated pipeline depth
of 900 clock cycles. When looking into the robustness of the parsers regarding
digit scaling of integers, floats, and strings, PipeJSON is more robust than CPU
parsers, especially compared to simdjson on floats and strings.

6.3 Related Work

Due to the relevance of semi-structured data, many JSON parsers like RapidJ-
SON [Yip+15], or sajson [Aus+12] have been proposed. Through advances in
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modern CPUs, these conventional parsers have been improved by new approaches
like Mison [Li+17b] and more recently simdjson [LL19], which leverage AVX
instructions for data parallel SIMD processing. Additionally, there have also been
efforts to take pressure off the parser by filtering the raw JSON data [Pal+18].

To overcome CPU limitations, Peltenburg et al. [Pel+21] propose a parser
generator for JSON-template-specific accelerators, which denotes the only known
related work on FPGAs2. However, their approach scales in the number of JSON
document object model (DOM) nodes and requires a new generation for any
structural change in the JSON document which is impractical for semi-structured
data with flexible schema. However, prior to JSON, XML has been widely
adopted, which resulted in several FPGA-based XML parsing accelerators (e. g.,
[CHL08; DNZ10; Sid13; Hua+14]). While early work focuses on accelerating
recurring idioms of XML parsing to achieve 1 Byte per cycle performance [DNZ10],
later approaches propose tree automata for XML schema validation [Hua+14].

PipeJSON Table 6.3 lists the discussed JSON parsers, compared to PipeJSON.
While [Pel+21] and PipeJSON are both built for FPGAs, PipeJSON can parse
any document without a separate parser generation step, thus being flexibly ap-
plicable to arbitrary JSON documents and having a constant resource utilization
independent of document templates. We designed PipeJSON on data parallel
concepts similar to the currently fastest CPU parsers, i. e., Mison, simdjson (cf.
Fig. 6.1), as the first general-purpose, validating (i. e., structural correctness)
FPGA-based JSON parser to combine line-rate performance with flexibility in
the sense of not requiring parser generation.

6.4 Conclusion

This chapter addresses the important topic of JSON parsing for a growing
number of applications and data processing systems that process and store semi-
structured data. We propose a highly pipelined, data parallel JSON parser design
on FPGAs that outperforms the fastest CPU-based JSON parsers by 12.56×
with data already on the FPGA and 7.95× for our drop-in parser including data
movement, connected via PCIe, only limited by the PCIe v3 bandwidth of our

2We do not consider stream filtering or JSON field extraction on FPGAs (e. g., Fleet
[THZ20]) as parsing

159



PipeJSON: Parsing JSON at Line Speed on FPGAs

setup. Thus, PipeJSON addresses RQ3.1 “How can line-speed data ingestion of
arbitrary input data be achieved on FPGAs?”. Even though we are limited by the
hardware platform available to us, PipeJSON could fully saturate current network
bandwidths and effectively reduces data movement in the system when placed
as a SmartNIC in the system (cf. Sect. 3.3.2). Additionally, PipeJSON shows
that for some workloads, HLS languages (e. g., OneAPI) simplify integration of
FPGAs into the system context especially from a software engineer’s perspective.

For future work, we propose extending PipeJSON to multiple memory chan-
nels, which is expected to improve the parsing speed by several factors, investi-
gating optimizations for improved performance on smaller documents, exploring
more complex output formats, and employing operator push down for filtering
during parsing [Pal+18] for more efficient bandwidth utilization.
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GraphMatch: Subgraph Query Processing
on FPGAs

Subgraph query processing, used e. g., for graph pattern matching, is an important
workload in many application areas [Sah+20], like social network analysis [Sni+06]
and protein interaction network analysis [PCJ06], where all embeddings identical
to a given query graph are found in a data graph.

Subgraph query processing was mainly approached with two kinds of al-
gorithms in related work on CPUs, namely backtracking [Ull76; Bi+16] and
join-based approaches [Abe+17; MS19]. A recent study by Sun et al. [SL20] has
shown that backtracking is efficient for large and sparse query graphs, and join
approaches for smaller, dense query graphs. We focus on join-based subgraph
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query processing on FPGAs using worst-case optimal joins (WCOJs) because
recent work on WCOJ-based subgraph query processing on CPUs [MS19] was
very promising. For instance, one of the most advanced CPU-based systems,
RapidMatch [Sun+20a], is mainly based on joins, while considering graph struc-
tural information for candidate set filtering as in backtracking. When looking into
join-based approaches like RapidMatch, set intersection is the most expensive
operation despite vectorized processing, as shown in Fig. 7.1(a). This is due to
challenges like limited parallelism, expensive round trips to main memory, and
cache pollution in current general-purpose CPU hardware.

FPGAs showed that they can solve these challenges with massive, unstruc-
tured data and pipeline parallelism and flexible data movement through config-
urable data flow architectures (e. g., in relational join processing [Las+22]). For
subgraph query processing, data movement could be more efficient by keeping
partial matchings mostly on the FPGA chip. The benefits of FPGAs are shown
in Fig. 7.1(b), which denotes a comparison of RapidMatch using SIMD-based
set intersection (cf. [HZY18]) and an FPGA-based implementation that will be
explained in more detail subsequently (cf. Sect. 7.1).

Thus, in this chapter, we address research question RQ3.3 “How can flexible
subgraph query processing benefit from FPGAs?”. We propose GraphMatch, a flex-
ible, WCOJ-based accelerator for subgraph query processing fully implemented
on an FPGA. We first conceptually adapt the widely-used LeapFrog algorithm
[Vel12] to FPGAs, before specifying the novel, FPGA-native AllCompare algo-
rithm, which leverages the FPGA’s massive pipelining. With this, we address
research question RQ3.2 “How can algorithmic software approaches be useful
to hardware design?”. GraphMatch itself is designed for (i) dense, small query
graphs, (ii) supporting subgraph homomorphism and isomorphism, (iii) parallel,
efficient set intersections, and (iv) directed and undirected graphs. For that,
GraphMatch implements a number of set intersection operators with configurable
number of input sets which are connected with partial matching multiplexers
and demultiplexers able to dynamically switch matchings to a memory sink.
The GraphMatch query parser can generate query plans for arbitrary subgraph
queries on-the-fly and flexibly switch queries in a matter of cycles. With these
query plans we select how we chain together and execute the operators.

GraphFlow [MS19] and RapidMatch are two CPU-based subgraph query pro-
cessing systems that represent the state-of-the-art. GraphMatch shows promising
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scalability with an average speedup of 2.68× over GraphFlow and 5.16× over
RapidMatch with a maximum speedup of over 100×. Overall, we conjecture that
FPGAs are well suited to solve the set intersection bottleneck of CPU-based
subgraph query processing systems. However, we still see areas of improvements
for instance work balancing and for highly degree-skewed graphs.

We start this chapter by introducing the different set intersection approaches
for CPUs and FPGAs on a spectrum from a software engineer’s perspective
to a hardware engineer’s perspective in Sect. 7.1. In particular, we introduce
LeapFrog variants for FPGAs implemented with OneAPI and VHDL, propose
the AllCompare set intersector and compare these approaches comprehensively.
Thereafter, we introduce the GraphMatch system in Sect. 7.2 with its important
components and optimizations and show how GraphMatch does flexible query
processing. In Sect. 7.3, we evaluate GraphMatch scalability and optimizations
and compare it to GraphFlow and RapidMatch performance. We discuss related
work on subgraph query processing in Sect. 7.4 before we summarize and discuss
the results of this chapter with a conclusion (Sect. 7.5).

Parts of this chapter have been submitted as a conference paper to SIGMOD
2024.

7.1 Set Intersections on FPGAs

In this section, we focus on designing a parallel, efficient set intersector for FP-
GAs motivated by the observation that set intersections are the most expensive
operation of subgraph query processing systems on CPUs (cf. Fig. 7.1(a)). We
describe the different set intersection approaches for CPUs and FPGAs on a spec-
trum from a software engineer’s perspective to a hardware engineer’s perspective.
Thereafter, we introduce the novel AllCompare set intersection approach that is
highly optimized for FPGAs. Lastly, we show how the different set intersection
approaches compare to each other and characterize the performance dimensions
of the AllCompare set intersector.

7.1.1 Set Intersector Approaches for FPGAs

Figure 7.2 compares LeapFrog as the dominant approach for CPUs to the novel
AllCompare set intersection approach specifically designed for FPGAs.
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Fig. 7.2 LeapFrog and AllCompare set intersection approaches.

LeapFrog Set Intersection LeapFrog processes set intersections in turns of
searching for a new search item and syncing the search item (Fig. 7.2(a) shows
an example). The execution starts with 0 as the search item (orange box in the
middle). In each search step, the current search item is compared against each
element in each input set (two in this example). For the sync step, the next
biggest element of each input set is communicated and compared to form the
next search item and all elements that are smaller than the previous search item
are discarded. This process is repeated until the search item is bigger than all
remaining elements of one of the input sets. The rest of the set elements are then
flushed. In each search and sync loop, LeapFrog has a guaranteed progress of
only one element per set while the actual progress may be higher for real world
sets. We implement a parallelized version of LeapFrog set intersection in OneAPI
that is able to perform all comparisons in the search step in one clock cycle and
implement a VHDL version that does the same parallelization and additionally
does input set prefetching which is not easily implementable in OneAPI.

AllCompare Set Intersection With the observation in mind that on an
FPGA we can implement many comparison operators in parallel, we propose
the novel AllCompare set intersection approach for FPGAs. Figure 7.2(b) shows
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Fig. 7.3 AllCompare set intersector architecture.

how AllCompare is able to massively reduce the number of steps for the same
set intersection that is shown for LeapFrog. In each compare step, conceptually
AllCompare compares all elements of both input sets against each other. Elements
that are smaller than an element in the other set are discarded, elements that
have an equal element in the other sets are put out and discarded and all other
elements remain. In the end, the last remaining elements are flushed. AllCompare
guarantees progress of at least one full line of one of the input sets and is thus
able to process the same set intersection in under half of the clock cycles that
are required by the LeapFrog set intersection approach in this example.

7.1.2 AllCompare Set Intersector Architecture

Figure 7.3 shows the AllCompare set intersector architecture for four input sets
that implements the concept presented in Fig. 7.2. Four buffered fetchers read
the input data into the intersector and feed the input lines (4 elements per line
in this example; 16 elements per line on the actual FPGA hardware) through
line maxers. The line maxers find the maximum of the line which may not be
the last element because not all elements of a line have to be valid (e. g., set is
smaller than line width). These lines with extracted maximums are fed into the
intersect operators. In each intersect operator, in each cycle, all elements are
equal compared against all elements from the other input set (connections only
shown for one element in this example) to determine which elements should be
put out as the result of the set intersection. Additionally, the previously extracted
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maximums of both lines are compared and the line with the smaller maximum
is completely discarded as all elements are smaller than at least one element of
the other line. The results are fed into a demultiplexer which either forwards
the output to the next line maxer and intersect operator or the output port.
As the last component, each AllCompare set intersector contains a controller
that is connected to the control interface. The user may define the switches that
switch the demultiplexers and the multiplexer before the execution. This allows
dynamic reconfiguration of number of input sets during runtime.

Especially during subgraph query processing, oftentimes the same vertex
neighborhoods are accessed as input sets of the set intersectors repeatedly. Thus,
we propose a cached fetcher architecture that stores the most recently accessed
input set in a cache and serves subsequent requests to the same input set from
the cache. Figure 7.4 shows the cached fetcher architecture. The controller
receives the requests and stores the last address and number of elements accessed
in a register. If the current request is equal to the previous one, it is flagged as
cached and directly inserted into a FIFO queue which multiplexes the output
port. If the current request cannot be served through the cache, it is forwarded
to a buffered fetcher which sends the request to memory, flagged as fetched, and
inserted into the FIFO queue, too. When the request is eventually served by
memory, the data is written into the cache (implemented as BRAM) as whole
lines of memory starting from cache address 0. The FIFO queue is continuously
observed. If a new request arrives, the cached flag is read out and either the
data from the buffered fetcher is directly forwarded or the respective number of
memory lines are read from the cache again starting at address 0. The cached
fetcher has the same interface as the buffered fetcher and may thus directly
replace the buffered fetchers in the AllCompare set intersector architecture.
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7.1.3 Set Intersector Performance Characteristics

In this section, we first compare the four different set intersection approaches:
CPU-based, vectorized RapidMatch set intersection, LeapFrog implemented in
OneAPI, LeapFrog implemented in VHDL, and AllCompare set intersection.
Thereafter, we discuss the performance of AllCompare set intersection in detail
for characteristics such as input set size, output set size, and number of input
sets and degree of caching with the cached fetcher.

The benefits of adapting algorithms to FPGAs Figure 7.5 shows the
comparison of the CPU-based RapidMatch intersection function against the
different FPGA-based implementations of intersectors that we introduced.

The benchmark environment as well as the graphs used are described in
Sect. 7.3.1. For LeapFrogOneAPI, a new Agilex FPGA is used which, however,
was not enabled by Intel for the VHDL-based design flow during the work on
this chapter. The benchmark shows the runtime in milliseconds of 5000 set
intersections of neighborhoods of random vertices of the respective graphs.

Overall, we observe that LeapFrogOneAPI performs similar to the RapidMatch
set intersection function for some graphs and worse for others. The RapidMatch
set intersection function performance benefits from very small graphs that fit
mostly into the cache hierarchy of the CPU for the epinions (ep) and wiki-vote
(wv) graphs. The performance of LeapFrogOneAPI in turn is heavily influenced by
average degree of the graph, thus, the performance for the amazon (az) and wiki-
vote (wv) graphs are noticeably worse than for the other graphs. Additionally, the
VHDL FPGA implementations LeapFrogVHDL and AllCompare (i. e., specifically
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Fig. 7.6 Runtime of set intersection with AllCompare for two to four input sets
over input set size and output size as percentage of input size.

tailored to FPGAs) perform significantly better than the CPU and OneAPI im-
plementations. However, AllCompare always outperforms LeapFrogVHDL. Thus,
we can see the progression from adopting a CPU algorithm with LeapFrogOneAPI

in a software engineer-friendly HLS environment over a VHDL implementation of
the CPU algorithm (LeapFrogVHDL) to a highly optimized FPGA implementation
in AllCompare. In the remainder of this paper, we proceed with the tailor-made
AllCompare set intersector.

Characteristics of the tailor-made FPGA intersector Figure 7.6 shows
the runtime of AllCompare in milliseconds with two, three, and four input sets
on 5000 set intersections with varying input set and output set size. AllCompare
on two input sets where 0% of the input set are part of the output set (blue
solid line) forms a memory-bound baseline. This baseline is not influenced by
fine-granular input set size changes but by the number of memory lines it has
to fetch. For this implementation, 16 elements of an input set fit into one line.
Thus, the runtime increases each time the last element is part of a new line.
For the measurements where 15%, 20%, and 30% of the input sets are in the
output sets, the runtime is additionally bounded by the output set size because
AllCompare only puts out one element per clock cycle. More is not required by
GraphMatch. For three and four input sets, the runtime is increasingly more
bound by memory because more data has to be fetched from memory per set
intersection. For four input sets, only the measurement where 30% of the input
set are part of the output set (orange dotted line) is bound by output size.
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Figure 7.7 shows how input set caching (cf. Fig. 7.4) influences set intersection
performance for the AllCompare set intersector for different number of input
sets. Again, we measure the runtime in milliseconds over 5000 set intersections.
Each set intersection intersects sets of size 64 without overlap such that output
size does not influence performance. Additionally, we vary cache hit rate from
0% to 80% in steps of 20%. Overall, we observe that at the latest of 80% cache
hit rate, the performance reaches the same baseline for each number of input
sets denoting a compute-bound baseline set by the cycles the FPGA logic needs
to perform the intersection itself. For larger numbers of input sets this baseline
is reached later with higher cache hit rate. This is because more data has to
be fetched from memory in the first place but the number of comparison steps
stays the same. It is important to note that AllCompare has the same runtime
irregardless of number of input sets if memory requests do not play a role.

7.1.4 Discussion

This section provided a detailed look at the hardware design process in parts
from the perspective of a software engineer to understand where FPGAs can
provide benefits and that algorithms and data structures have to be specifically
designed for the FPGA to provide good performance. From the benchmarks,
we conclude that the novel AllCompare set intersection approach provides the
best performance and is thus used for our full subgraph query processing system
GraphMatch. The AllCompare set intersector performance is bound by memory
which we optimize with a cached fetcher implementation that is able to provide
increased performance for set intersections with repeated input sets.
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7.2 GraphMatch

In this section, we first introduce the instance architecture of GraphMatch, our
subgraph query processor, and its components. We then describe how subgraph
queries can be flexibly switched in GraphMatch during runtime and suitable
performance optimizations that we applied to the base system.

7.2.1 GraphMatch Instance Architecture

Figure 7.8 depicts the architecture of a GraphMatch instance for subgraph
matchings with up to five levels / vertices. The flow of matchings through the
architecture’s components is depicted with bold arrows. It starts at the matching
source – producing matchings with two query vertices – runs through a matching
filter and multiple matching extenders (i. e., a configuration with three extenders
results in five levels overall), demultiplexers and multiplexers (trapezoids), and
ends at the matching sink. The matching source reads all outgoing pointers
and neighbors of each vertex in the graph and combines them as edges, thereby
forming the initial partial matchings. Then the matching filter discards initial
matchings that do not fit certain criteria like vertices not being distinct in the
case of graph isomorphisms. Each matching extender extends input partial
matchings by one query vertex in order of the query vertex ordering, which
most often means set intersections. After each matching extender, there is a
matching demultiplexer, which either forwards the incoming partial matchings to
the next matching extender, or through a matching multiplexer to the matching
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sink. Finally, the matching sink writes complete matchings to the designated
matchings array in the FPGA’s on-board memory.

The on-board memory contains in total five data arrays: one CSR data
structure consisting of a pointers array and a neighbors array for both incoming
and outgoing edges of each vertex, and the matchings array. The matching source
and matching extenders only read from memory, whereas the matching sink only
writes to memory. These accesses are shown in Fig. 7.8 as dashed lines and are
combined into one request stream fed to memory by a request merger (white
oval box). The request merger also routes the memory read responses to the
corresponding requesters.

The query graph is configured by providing GraphMatch with parameters.
All system components with white dots have parameters which are connected
to the control interface operated by the CPU (shown by the dotted lines). The
matching source is parameterized with the addresses of the arrays it has to
read. The matching filter can be turned on and off with parameters and the
matching extenders are also parameterized with memory addresses but also, for
example, with the number of input sets and which the neighborhoods of which
partial matching vertices they should intersect. Finally, the instance controller
manages the query’s execution. It has a parameter for query size that switches
the demultiplexers and multiplexer, is responsbile to trigger the execution when
all components are ready, and finally returns relevant statistics to the CPU.

Matching data type Figure 7.9 depicts the component design of a matching
extender in the context of the matching data type. Matchings each consist of a
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configurable number of vertices with a vertex identifier, left bound for pointers,
and size that denotes the neighborhood size. The number of vertices in the
matching data type is equal to the number of levels in the GraphMatch instance
(e. g., five for the instance in Fig. 7.8). The left bound and neighborhood size
are kept in the partial matching as metadata between matching extenders. Only
when the query, for instance, first requires intersection on the outbound edges
of a vertex and then an intersection on the inbound edges or the other way
around, we do have to fetch new metadata for this particular vertex from the
respective pointers array. The metadata is discarded when writing to memory in
the matching sink, since only the vertex identifiers are relevant for the result.

Matching extender The matching extender component at level l takes a
matching with l vertices where the vertex at position l is still missing the metadata.
It then fetches the required metadata and tries to extend the matching to vertex
l + 1. To do this, the partial matching is acquired through a pointer fetcher,
retrieving required metadata, a first matching filter, a matching intersector
performing the set intersection required and extending the matching by a vertex,
and lastly another matching filter. The pointer fetcher takes a partial matching
and a mapping as a parameter and fetches the respective metadata. Dictated by
the mapping, a buffered fetcher (fetch.) fetches the lines containing the pointers
at positions v and v +1, where v is the vertex identifier. These form the left (l)
and right (r) bound of the neighborhood. The pointer fetcher subtracts l from
r to get the neighborhood size s and, finally, combines the new metadata with
the partial matching. The first matching filter filters out empty sets, i. e., sets
where any of the neighborhood sizes used in the following intersection are 0. The
matching intersector maps the partial matching vertices to intersector spots in
the AllCompare intersector, specified in Sect. 7.1, based on a mapping parameter
extracted from the query graph. For example, if there is an intersection between
vertices 0 and 2, the AllCompare intersector is configured to do a 2 set intersection
mapping vertex 0 to spot 0 and vertex 2 to spot 1. During the intersection, the
partial matching is stored in a FIFO queue and the combined subcomponent
extends the current partial matching until the intersection is finished. It then
proceeds with the next partial matching from the FIFO queue. Depending on
whether the workload is subgraph isomorphism or homomorphism, the second
matching filter sieves out partial matchings for which the newly added vertex is
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different from all vertices already part of the partial matching.

7.2.2 Flexible query processing & Optimizations

Based on the GraphMatch architecture, we specify flexible query processing with
our query parser and transformations of a query graph into query parameters for
GraphMatch. We also explain our four key optimizations for GraphMatch: input
set caching, failing set pruning, instance parallelization, and stride mapping.

Flexible query processing Figure 7.10 shows how the example query on the
left side is deconstructed by the query parser to get the GraphMatch parameters
to map the query graph to the system. The instance controller receives the
number of query vertices and address of the matchings array. Each query
starts with two vertices connected via an edge. This forms levels 0 and 1 of
the GraphMatch instance in the matching source which is parameterized with
the addresses of the outgoing pointers and neighbors of q0. Additionally, the
matching filter after the matching source receives the neighborhood size of q0

in the complete query graph as a parameter. On level 2, the first matching
extender is parameterized with a mapping to fetch the metadata for q1 and the
address to outgoing pointers for the pointer fetcher. Additionally, the matching
intersector receives a mapping to intersect the neighborhoods of q0 and q1 as a
two-set intersection on outgoing neighbors. Finally, for level 3, the pointer fetcher
should load the incoming pointers for q2 and we pass a mapping to intersect the
neighborhoods of q1 and q2 as a two set intersection on outgoing neighbors. If a
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query is larger than the number of levels of the instance, we can materialize the
partial matchings into memory, read them back to the beginning of the matching
extender pipeline, and feed them through the levels again. However, details of
this are beyond the scope of this work.

Input set caching As a first optimization, we implement input set caching
(cf. Sect. 7.1.3). We suspect that locality of accesses exists for the input sets
of the AllCompare intersector, as found in each matching intersector, as well
as in the accesses of the pointer fetcher. This is especially the case when new
metadata for existing vertices has to be loaded for a partial matching. Thus, all
instances of the AllCompare intersector and the pointer fetcher employ caching.

Failing set pruning As a second optimization, we introduce failing set pruning
[Han+19]. In GraphMatch, we implement this inside the matching filter, after
the matching source, and in the first matching filter of each matching extender.
In addition to filtering out empty sets, we can also filter partial matchings when
the neighborhood of a vertex is not at least as big as the corresponding vertices
neighborhood in the query graph. For example, for graph isomorphisms on Q5
(cf. Fig. 7.13), for q0 the neighborhood size needs to be at least 2. Thus, we
parameterize the matching filters for each vertex such that we can customize
them for the query vertex neighborhood size.

Instance parallelization Figure 7.11 shows the GraphMatch system scaled to
four instances. Each instance is assigned its own memory channel and otherwise
only connected to the control interface. The data graph is copied to each memory
channel in whole such that the instances can work truly independent. The
system can, thus, either process a query on one data graph in parallel such that
the vertex set is split up into four intervals each assigned to one instance or
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process different combinations of queries and data graphs on the four instances
independently.

Stride mapping As a last optimization, we apply stride mapping [Dai+17]
to improve load balancing across GraphMatch instances. Load balancing was
found to be crucial when processing complex data sets. As the GraphMatch
instances cannot communicate partial matchings among each other, each vertex
interval should require roughly equal amount of work. Unfortunately, this is
not a realistic assumption when working with real world graphs [DRF22] which
are often skewed. Here, our optimization for stride mapping comes into play
by doing a light-weight vertex reordering. Stride mapping is a technique for
semi-random shuffling of the vertex identifiers to create a new vertex ordering
with a constant stride. In our case, we use a stride of 100 which results in a new
vertex order v0,v100,v200, ... which virtually results in each vertex being mapped
to a different GraphMatch instance.

7.3 Evaluation

In this section, we first introduce the system used for the evaluation, the bench-
mark setup and key metrics such as resource utilization and clock frequency
of the design, the graph data sets, and the graph queries. We then report
benchmark results scaling GraphMatch from one up to four instances, compare
GraphMatch against the state-of-the-art CPU-based subgraph query process-
ing systems GraphFlow and RapidMatch, and evaluate the effects of different
optimizations employed in GraphMatch on overall performance.

7.3.1 Setup

Figure 7.12 shows how GraphMatch is deployed in the system context. In
principle, the system features a CPU and an accelerator board – connected via
PCIe – which hosts the FPGA, running GraphMatch itself, and memory, used as
intermediate data storage for the data graph during subgraph query processing.
The CPU loads and prepares the data graph, parses and programs the query
graph to GraphMatch and manages the execution on the FPGA. To execute a
particular workload with a particular data graph, the GraphMatch framework is
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first synthesized with the query parameter registers, a fixed number of instances
and maximum query size (i. e., levels). Afterwards, the synthesized design is
programmed to the FPGA.

For the execution of a particular subgraph query on a particular graph data
set, the edge list (or any other representation) of the graph is read from disk
to the CPU and transformed into two CSR data structures, one for outgoing
edges and one for incoming edges of each vertex (cf. step (1)). For undirected
graphs, both CSR data structures are the same and one may be omitted. During
loading of the data graph, we transform the set of vertex identifiers to be dense
(i. e., excluding vertices that have degree 0). The data graph is then replicated to
each channel of the FPGA memory (cf. step (2)). Thereafter, the query graph is
parsed and the respective parameter registers of GraphMatch are programmed
via the control interface such that GraphMatch is configured for the subgraph
query matching the query graph. The host code also triggers the execution via
the control interface (cf. step (3)). After the execution finished, the resulting
matchings can be read back to CPU memory and used for further processing. If
desired, the data graph or parameter register values can be used multiple times
in a row by loading new query parameters or a new data graph respectively and
again triggering the execution.

For our experiments, we work with a server equipped with an Intel FPGA
Programmable Accelerator Card (PAC) D5005 attached via PCIe version 3. The
system features two Intel Xeon Gold 6142 CPUs at 2.6 GHz and 384 GB of
DDR4-2666 memory, while the D5005 board is equipped with four channels of
DDR4-2400 memory with a total capacity of 32 GB and a resulting bandwidth of
76.8 GB/s. The design itself is based on the Intel Open Programmable Execution
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Table 7.1 Resource utilization and clock frequency by graph problem and number
of graph cores.

System p l c LUTs Registers BRAM DSPs Clock frequency

GraphMatch 4 6  48% 26% 21% 0% 187 MHz
4 6  54% 33% 34% 0% 191 MHz

LUTs: Look-up tables, BRAM: Block RAM, DSPs: Digital signal processors, : yes, : no

Table 7.2 Graphs used often by systems in Tab. 7.3 (real-world graphs from
[LK14] and [RA15]).

Name |V | |E| Davg ø SCC
patents (pt) 3.8M 16.5M 4.34 22 1.00
wiki-talk (wt) 2.4M 5.0M 2.10 11 0.05
youtube (yt) 1.2M 3.0M 5.16 20 0.98
google (go) 875.7K 5.1M 5.82 21 0.50
dblp (db) 426.0K 1.0M 4.93 21 0.74
amazon (az) 403.3K 3.4M 8.43 21 0.98
epinions (ep) 75.9K 508.8K 6.70 14 0.43
wiki-vote (wv) 7,115 103.7K 14.56 7 0.18
synn,d n n ·d d - 1

SCC: Ratio of vertices in the largest strongly-connected component to |V |

Engine (OPAE) platform and is synthesized with Quartus version 19.4.
Table 7.1 shows the two different system configurations used for the bench-

marks. We synthesized one system variant without input set caching (c) and
one with input set caching for the pointer fetchers and set intersectors. Both
variants have p = 4 instances of GraphMatch, one for each memory channel,
with a maximum query graph size of l = 6. Note that, without further resource
utilization optimization, up to 8 instances could be placed onto the chip – derived
from Tab. 7.1 – however, which could not adequately leverage the available
memory channels (cf. discussion on increasing memory bandwidth with HBM in
Sect. 7.3.6). Since the instances are not connected, the resource utilization scales
linearly excluding the fixed resource utilization of the Intel OPAE wrapper. All
types including pointers and vertex identifiers are 32 bit unsigned integers. The
resource utilization leaves room to scale to more memory bandwidth or include
more functionality, like graph processing (cf. Chapter 5), in the accelerator.

Table 7.2 show the graph data sets used to benchmark GraphMatch. This
selection represents the most important graphs considered by the other state-
of-the-art subgraph query processing systems (cf. Tab. 7.3). We additionally
show graph properties like size (|V | and |E|), average degree (Davg), and ratio
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Fig. 7.13 Query graphs (adapted from [MS19]).

of vertices in the largest strongly-connected component (SCC) that are useful
to explain different performance effects observed in the benchmarks. For the
intersection benchmark, we generated different configurations of a synthetic graph
synn,d with a parameter for graph size in number of vertices n and a parameter
for output size of the resulting intersection between two adjacent vertices d.

Figure 7.13 shows the query graphs we use in our evaluation, taken from
[MS19]. These can be classified as cliques (Q1, Q6, and Q7), cycles (Q1, Q2, and
Q3), and other graphs (Q4 and Q5).

7.3.2 GraphMatch Scalability

Figure 7.14 shows the scalability of GraphMatch as we increase from a single
instance up to four instances. We report the speedup over a baseline using a
single instance for all data graphs and queries. When using a single instance,
the stride mapping optimization is disabled because it makes no difference for
measurements on a single instance. Otherwise, all optimizations discussed in
Sect. 7.2.2 are enabled by default. The measurements show that the speedup
is mostly dependent on the properties of the data set itself. For example, we
observe a linear scalability on the patents and amazon graphs, which is not
the case for the other graphs, where scalability is influenced by the number
of intermediate (and actual matchings) in the range of vertices assigned to an
instance. This effect is particularly pronounced for the highly degree-skewed
wiki-talk and youtube graphs. Scalability could be improved in future work, e. g.,
with work stealing where an idling instance takes over partial matchings from a
busy instance to balance out the load. However, this would also introduce data
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Fig. 7.14 Scalability of GraphMatch from 1 to 4 instances.
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dependencies between the instances and could potentially lead to significantly
higher design complexity.

7.3.3 Comparison to GraphFlow and RapidMatch

The predominant CPU-based subgraph query processing systems are GraphFlow
and RapidMatch which we compare GraphMatch to subsequently.

GraphFlow Figure 7.15 compares the performance of GraphMatch with four
instances to GraphFlow [MS19] running on 16 threads (a full CPU on our server)
with numactrl that restricts all threads to one NUMA node. The plots show the
performance in seconds of runtime on a logarithmic scale. For GraphMatch, we
tried out different QVOs for each query and data graph combination and show
the best one. This makes a huge difference and as future work a query optimizer
step could be added to the query parser that does this automatically. GraphFlow
finds the best QVO with a preprocessing step. GraphFlow uses directed graphs
and only supports subgraph homomorphisms. Thus, to make a fair comparison,
we have turned off distinct vertex checking and changed the failing set pruning
optimizations to match the subgraph homomorphism workload in GraphMatch.
We note that for GraphFlow, we had to execute three scripts that prepare the
graphs beforehand for each graph. It was not clear to us how much these scripts
optimize the graph layout and compute auxiliary data structures beforehand.

When looking at the performance numbers, overall we observe big performance
improvements with GraphMatch. This is especially pronounced for Q1 on all
data graphs. GraphMatch also performs exceptionally well for Q4-Q6 on many
graphs. Another interesting observation is that Q2 and Q3 pose a challenge
for GraphMatch on all graphs. We attribute that to their low intermediate
selectivity, which leads to a large number of partial matchings after extending
to q2. Finally, we note that the graph structures of wiki-talk and youtube are
more problematic for GraphMatch than for GraphFlow. These graphs exhibit
highly exponential (i. e., skewed) degree distributions, which lead to some very
large vertex neighborhoods which are used often in partial matchings and poor
scalability of GraphMatch (cf. Fig. 7.14). The large vertex neighborhoods cannot
be cached with our design which has relatively small caches and are able to
be cached by the more sophisticated cache hierarchy of CPUs. In particular,
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Fig. 7.15 GraphMatch (four instances) vs. GraphFlow (16 threads) on directed
graphs computing subgraph homomorphisms.
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GraphMatch outperforms GraphFlow by an average of 2.68× for all graphs with
a maximum of 100× for query-1 on wiki-vote.

RapidMatch Figure 7.16 compares GraphMatch ran with four instances to
RapidMatch [Sun+20a]. We were not able to find any configuration parameter
to make RapidMatch run in parallel, so it only uses vectorized instructions for
intra-intersection parallelism but no multi-threading. The plots show the runtime
of both systems in seconds on a logarithmic scale. RapidMatch only works with
undirected graphs, so we also make the graphs undirected for GraphMatch and
compute subgraph isomorphisms (even though RapidMatch can also compute
homomorphisms). Overall, we observe significantly better performance for Graph-
Match compared to RapidMatch, with an average speedup of 5.16×. Similar to
the comparison to GraphFlow, GraphMatch performs exceptionally well for Q1.
As before, the system performs worse for Q2, Q3, and Q7. We further note that
the performance results for Q2 and Q3, as well as for Q4 and Q5 are similar,
because in an undirected graph the orientation of the query edges makes no
difference. Once again, we note the wiki-talk and youtube graphs are challenging
for GraphMatch because of their heavy exponential degree distribution.

7.3.4 Effects of GraphMatch Optimizations

Figure 7.17 shows the effects of the failing set pruning, stride mapping, and
input set caching optimizations on GraphMatch performance on the example
of the patents and the youtube data graphs. The baseline is GraphMatch with
four instances with all optimizations turned off (none). The failing set pruning
optimization effectiveness depends on the query graph. For most query graphs
it has a small effect but gets more effective with larger query graphs (e. g., Q7).
Stride mapping has the largest effect because it balances out the work required
between the GraphMatch instances. The effectiveness of input set caching mostly
depends on the data graph. It has the biggest effect on the youtube data graph
benchmarks. The optimizations work well together to provide a significant
performance boost when all of them are turned on (all).

182



7.3 Evaluation

Q1 Q2 Q3 Q4 Q5 Q6 Q7

100

101

Se
co

nd
s

(a) patents

Q1 Q2 Q3 Q4 Q5 Q6 Q7

101

102

103

(b) wiki-talk

Q1 Q2 Q3 Q4 Q5 Q6 Q7
100

101

102

Se
co

nd
s

(c) youtube

Q1 Q2 Q3 Q4 Q5 Q6 Q7

100

101

(d) google

Q1 Q2 Q3 Q4 Q5 Q6 Q7

100

102

Se
co

nd
s

(e) dblp

Q1 Q2 Q3 Q4 Q5 Q6 Q7

10 1

100

101

(f) amazon

Q1 Q2 Q3 Q4 Q5 Q6 Q7
Query

10 1

100

101

Se
co

nd
s

(g) epinions

Q1 Q2 Q3 Q4 Q5 Q6 Q7
Query

10 1

101

(h) wiki-vote

RapidMatch GraphMatch(4)

Fig. 7.16 GraphMatch (four instances) vs. RapidMatch on undirected graphs
when computing subgraph isomorphisms.
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Fig. 7.17 Effects of GraphMatch optimizations for four instances for the patents
and youtube data graphs.

7.3.5 Performance Model

The effectiveness of caching showed that memory accesses are the bottleneck
of GraphMatch. Thus, we propose a performance model that is based on the
number of memory requests with l denoting the number of vertex identifiers or
pointers that fit into one line of memory. For instance, for 32 bit values and a
512 bits wide memory interface, l equals 16. To materialize the initial edges in
the matching source, we need the following number of memory requests:

(|V |+1)/l + |E|/l

We need to read |V | +1 pointers and |E| edges sequentially. Thus, we can
divide these numbers by l. For each extension of the partial matchings we need
approximately the following additional amount of memory requests, where f

is the number of vertices for which new pointers have to be fetched, m is the
number of partial matchings going into this extension, and s is the number of
sets being intersected:

f ·m+ s · (m ·Davg/min(l,Davg))

We need to fetch f ·m pairs of pointers which however mostly are part of the
same line of memory such that we only need one request. For each intersector, we
need to make m ·Davg/min(l,Davg) requests. The minimum term is because if
the neighbor hood is smaller than l, we still have to fetch a whole line of memory.
However, this may be lowered with caching. For example, s = 1 for an extension
by one edge and m = |E| for the first extension after the matching source.
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Table 7.3 Subgraph query processing systems, design principles, and properties.
Name PlatformApproach Key data structure General Parallel Dir. Hom. Iso.
CFLMatch [Bi+16] CPU Backtracking Compact path index    
DAF [Han+19] CPU Backtracking Candidate space    
FAST [Jin+21] FPGA

& CPU
Backtracking Candidate search tree    

GraphZero [Maw+21] CPU Nested loops Adjacency lists    
EmptyHeaded [Abe+17] CPU WCOJ Trie    
GraphFlow [MS19] CPU WCOJ & BJ Adjacency lists    
CECI [BLH19] CPU Intersections Compact embedding

cluster index
   

RapidMatch [Sun+20a] CPU WCOJ & HJ Encoded trie    
GraphMatch FPGA WCOJ Compressed sparse row    

Dir.: Directed graphs; Hom.: Subgraph homomorphisms; Iso.: Subgraph isomorphisms; WCOJ: Worst-case
optimal join; BJ: Binary join; HJ: Hash join; : yes; : no

7.3.6 Discussion

This section provided an in-depth analysis of the performance of GraphMatch
on various data and query graphs. We observe that the system exhibits lin-
ear scalability when the graphs have close to uniform degree distribution; and
that the relative performance can be significantly improved with our proposed
optimizations (up to 5x on the patents dataset and close to 3x on youtube).
A detailed ablation study has demonstrated the effect of each individual op-
timization strategy and how their effects differ depending on the given query
and data graphs. When compared to state-of-the-art systems (GraphFlow and
RapidMatch), we have shown that GraphMatch has superior performance, on
average outperforming GraphFlow by 2.68×, and RapidMatch by 5.16× across
all query and data graphs. When zooming in on the performance for individual
queries, we observe that GraphMatch exhibits an excellent performance for all
queries when working with graph data sets that have an only slightly skewed
degree distribution, and that there is room for improvement when handling cyclic
queries like Q2 and Q3 on highly skewed graphs (e.g., youtube and wiki-talk).
Additionally, we think because of the moderate resource utilization, almost linear
scalability and independence of the instances that GraphMatch is ideal to scale
to HBM in the future, possibly delivering another big speedup.

7.4 Related work

Computing subgraph isomorphisms and homomorphisms is an important task
studied in related work. Surveys, like Sun et al. [SL20], explored different
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methods, approaches, and optimizations of subgraph query processing. Lee at
al. [Lee+12] introduced generalized models and techniques for subgraph query
processing. The result of the increased attention in research for subgraph query
processing is a variety of approaches and systems. Table 7.3 depicts an overview
of the current state-of-the-art of subgraph query processing systems, their design
principles, and how they relate to GraphMatch.

For backtracking-based systems, CFLMatch [Bi+16] and DAF [Han+19] are
instrumental and use their custom candidate data structures to allow subgraph
matching of general query graphs. CFLMatch decomposes the query graph into
a core, a forest, and leaves that are matched in that order because of their
decreasing selectivity. DAF uses a candidate space data structure with dynamic
programming, an adaptive query vertex ordering, and failing set pruning. FAST
[Jin+21] introduces a subgraph query processing system for hybrid CPU-FPGA
hardware platforms. It computes its candidate search tree data structure on the
CPU prior to moving it to the FPGA [Jin+21]. After the transfer of the structure
to the FPGA’s BRAM, the FPGA enumerates all subgraphs of the data graph
for the given query [Jin+21]. Additionally, it allows concurrent computation
with the host CPU to further speedup the computation [Jin+21]. GraphZero
[Maw+21] is a compilation-based approach that tries to eliminate redundant
computations in a nested loop structure.

EmptyHeaded [Abe+17] introduced the WCOJ approach to subgraph query
processing systems as a compilation-based system and uses its trie data structure
to support subgraph queries on directed graphs. Additionally, EmptyHeaded
supports graph processing. GraphFlow [MS19] extends EmptyHeaded’s approach
by combining it with binary joins into a hybrid approach with a query optimizer.
This allows query plans which combine multiple partial embeddings with the
binary join operator. CECI [BLH19] splits up the data graph into embedding
clusters to parallelize execution and employs pruning to reduce the number of
intermediate matchings. RapidMatch [Sun+20a] is the most recent subgraph
query processing system that proves that the backtracking and WCOJ approaches
are complexity-wise equal. Based on this observation, it combines a join-based
approach with backtracking-like candidate pruning.
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7.5 Conclusion

We proposed GraphMatch, an FPGA-based flexible subgraph query processing
accelerator and therewith answer research question RQ3.3 “How can flexible
subgraph query processing benefit from FPGAs?”. GraphMatch is inspired by the
insight that current CPU-based subgraph query processing systems are limited
by set intersections which FPGAs are well suited for. We showed the potential of
such a design by first introducing a novel set intersector AllCompare specifically
developed for FPGAs that is able to outperform state-of-the-art CPU intersectors
and FPGA adaptations of CPU set intersection algorithms (partially answering
research question RQ3.2 “How can algorithmic software approaches be useful
to hardware design?”). Thereafter, we introduce the GraphMatch architecture
with flexible query reconfiguration and four key performance optimizations.
Finally, our experimental performance evaluation showed scalability and superior
performance of GraphMatch compared to state-of-the-art CPU-based subgraph
query processing systems GraphFlow and RapidMatch with an average speedup
of 2.68× and 5.16×, respectively.

In future work, we want to extend GraphMatch to benchmarks with labeled
graphs and further improve performance for highly degree skewed graphs with
more sophisticated caching. Additionally, we consider connecting the GraphMatch
instances with a matching crossbar that enables work-stealing and exploring query
plan optimization for GraphMatch that could unlock even higher performance.
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Conclusion

In this chapter, we summarize how we answered the research questions set out
in Chapter 1 with the contributions of this work. Additionally, we provide an
outlook on promising directions for future work.

8.1 Summary

Databases are an integral part of today’s everyday life and non-relational database
systems in specific are important for many growing application scenarios. With
the ever growing amounts of data, acceleration of non-relational database systems
is crucial to meet the performance requirements of future workloads. The
main goals of this thesis were to address performance challenges C1–3 of CPU-
based non-relational database systems (i. e., irregular memory accesses, limited
parallelism, and data movement) with FPGA acceleration and accelerator design
challenges C4–6 for FPGA acceleration of such systems (i. e., hardware design,
low latency workload switching, and novel memory technologies). We achieve
this with our work on the state-of-the-art of non-relational databases on FPGAs
(survey), graph processing on FPGAs, and flexible data processing on FPGAs.

Survey The aforementioned challenges are motivated by our survey of related
work on FPGA-based query acceleration for non-relational databases in Chapter 3.
To provide a structure for related work, we proposed a taxonomy of system
aspects for non-relational database systems. In a detailed literature analysis, we
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showed existing solutions to these system aspects. Additionally, we provided a
practitioners guide of patterns observed in the literature analysis to aid the design
of FPGA-accelerated non-relational database systems. Lastly, we identified open
research gaps that we partially addressed with the subsequent chapters.

In summary, we provided an answer to research question RQ1 “How can
non-relational database systems leverage FPGA acceleration?”. Most existing
non-relational database systems do not yet leverage FPGA acceleration even
though the potential has been proven. This is due to the extensive gaps in the
existing literature that we identified as open research gaps. However, with our
practitioners guide we presented patterns that can already be used today to
design FPGA-accelerated non-relational database systems.

Graph processing Based on the observation that all graph processing accelera-
tors are inherently memory-bound, in Part I, Chapter 4 introduces the simulation
environment GraphSim and memory access models for four state-of-the-art graph
processing accelerators. These were subsequently used to reproduce and compare
performance along several dimensions. Regarding reproducibility, we are able to
approximately simulate the runtime of the selected graph processing accelera-
tors with a reasonable simulation error of 22.63% with only two major outliers.
With GraphSim, we were then able to perform an extensive comparison of the
accelerator approaches with deep insights into memory accesses. Among other
insights and trade-offs, we found three design decisions that are crucial for good
performance of graph processing accelerators: asynchronous graph processing, a
compressed graph data structure, and scalability to multiple memory channels.

These insights from the GraphSim analysis were used in Chapter 5 to design
GraphScale. GraphScale is the first scalable graph processing framework for
FPGAs based on asynchronous graph processing on a compressed graph. We
achieved this with our novel two level vertex label crossbar design and novel two-
dimensional partitioning scheme. Overall, GraphScale achieves 1.86× average
speedup over state-of-the-art graph processing accelerators and is only limited by
workload-inherent imbalances in crossbar accesses. Additionally, we showed how
GraphScale can be scaled to up to 16 HBM memory channels with an average
speedup of 1.53× over GraphScale running on just four channels of DDR4 memory.
However, this still only partially utilizes the memory bandwidth available with
HBM due to severely limited clock frequency and resource utilization on the
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FPGA platform available to us. We think that future FPGA hardware will solve
these issues. However, we also discussed another possibility. In this particular
case, where the accelerator is not limited by the memory bandwidth anymore,
we could remove the highly complex graph compression again in favor of lower
resource utilization and thus potentially better scalability.

In summary, in Part I, we addressed research question RQ2 “How can the
FPGA use the available bandwidth for irregular memory accesses most effec-
tively?”. For graph processing in particular, we identified – among other op-
timizations – two crucial accelerator design decisions for bandwidth efficiency:
asynchronous graph processing and a compressed graph data structure. We
showed how these design decisions can be scaled on FPGAs with GraphScale. In
our measurements, this lead to up to 2.22× fewer memory requests compare to
other state-of-the-art approaches which is a massive improvement in bandwidth
efficiency for this workload bottlenecked by irregular memory accesses.

Flexible data processing With Part II, we focused on flexible data ingestion
and query processing. We first introduced the PipeJSON FPGA-based JSON
parser in Chapter 6. PipeJSON is able to parse arbitrary JSON documents with
a flexible, pipelined, data parallel system architecture. With the evaluation, we
showed that PipeJSON outperforms the fastest, vectorized, CPU-based JSON
parsers by 12.56× when all data is already on the FPGA and 7.95× including
data transfers to the FPGA for our drop-in parser configuration, connected via
PCIe, only limited by the PCIe version 3 bandwidth of our setup.

Thereafter, in Chapter 7, we proposed GraphMatch as a flexible subgraph
query processing accelerator. The performance defining operation of subgraph
query processing is set intersection. We showed how set intersection benefits from
acceleration with the novel AllCompare set intersector specifically designed for
FPGAs. AllCompare provides an average speedup of 4.77× over vectorized, CPU-
based set intersection. We then showed how this flexible set intersector can be
chained together as a parameterized pipeline in GraphMatch. Our experimental
performance evaluation showed linear scalability and an average speedup of
2.68× and 5.16× over the state-of-the-art CPU-based subgraph query processing
systems GraphFlow (scaled to 16 threads) and RapidMatch, respectively. All
while being able to flexibly switch queries in a matter of clock cycles. GraphMatch
performance is currently only limited by memory bandwidth.
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In summary, in Part II, we addressed research question RQ3 “How can
flexible data ingestion and query processing be achieved on FPGAs?” We showed
how to design flexible data flow abstractions for FPGAs with PipeJSON and
GraphMatch. Both of these accelerators provide a significant speedup over the
fastest CPU-based systems currently available.

Overall contribution Altogether, this thesis contributes new insights into the
related work in the research area of FPGA-accelerated non-relational database
systems (survey) and graph processing on FPGAs in particular (GraphSim). The
three FPGA accelerators GraphScale, PipeJSON, and GraphMatch further show
the benefits of using FPGAs for non-relational database systems and how to
design scalable, flexible accelerators for non-relational database workloads.

8.2 Outlook

Besides the system-specific future work that we discuss in the conclusion of each
chapter, we identify six additional overarching directions for future work.

Non-functional system aspects As a broad trend in the literature, the
coverage of non-functional non-relational database system aspects like cluster
scalability, availability, multi-tenancy, and security is lacking. While, for instance,
consistency protocols may transferred from the non-accelerated non-relational
database systems literature, it is broadly unclear how to provide production-grade
solutions for most non-functional system aspects with an FPGA-accelerated non-
relational database system. Additionally, FPGAs as a relatively new processor
architecture for data processing are not integrated as deeply into current systems
and do, in contrast to CPUs, not have widely used operating systems providing
basic functionality [KRA20]. Thus, we see investigation of non-functional system
aspects as one possible direction for future research.

Benchmarks We want to reiterate that benchmarking in the FPGA accelerator
related work is very much lacking. There are no generally accepted complete
benchmarks and almost no generally accepted data sets and workloads that enable
comprehensive comparison of accelerator approaches. Additionally, performance-
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critical input parameters are often not specified in detail. Future work should
establish accepted benchmarks to stop cherry-picking of performance results.

Collaborative memory usage Data movement overhead dominates accelera-
tor performance for certain workloads and narrows their potential for performance
improvements. The emergence of cache-coherent attachments (e. g., CXL) of
FPGAs to the system main memory might alleviate this. FPGA-directed data
movement and orchestration could take pressure off the CPU and also make
more fine-grained acceleration possible.

Dynamic data structures One remaining issue with FPGA accelerators is
query answering latency and data freshness due to necessary data movement
between main memory and FPGA memory if the data cannot be permanently
kept on the FPGA. This can be solved with dynamic data structures that
tolerate updates. With such a data structure, for instance, a dynamic graph
data structure, updates (e. g., new edges) can be communicated to the FPGA as
small packages – massively reducing data movement – but have to be integrated
into the existing data structure which increases the design complexity.

Accelerator integration We see potential in integrating accelerators in general
and the accelerators presented in this thesis in particular. For instance, for graph
database systems integrating GraphScale for graph processing and GraphMatch
for subgraph query processing could potentially cover most of the performance
defining parts of the workload. The challenge for this lies in finding common
abstractions to be able to integrate the functionality for both accelerators on the
same resource-constrained FPGA. Additionally, PipeJSON could be used for cross
data model processing of document graphs with GraphScale and GraphMatch.

Heterogeneous computing With the increasing availability of GPUs and
FPGAs in the data center and the emergence of ever more specialized hardware,
we see potential for heterogeneous computing to satisfy the performance require-
ments of future database management systems [Kou+21]. This poses unique
challenges especially with data movement and control flow inside the computer
architecture between accelerators and the CPU. FPGAs are in a unique position
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because of their flexibility in deployments and roles they can take in the computer
architecture (cf. Sect. 3.3).
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