3,343 research outputs found

    Finding Top-k Dominance on Incomplete Big Data Using Map-Reduce Framework

    Full text link
    Incomplete data is one major kind of multi-dimensional dataset that has random-distributed missing nodes in its dimensions. It is very difficult to retrieve information from this type of dataset when it becomes huge. Finding top-k dominant values in this type of dataset is a challenging procedure. Some algorithms are present to enhance this process but are mostly efficient only when dealing with a small-size incomplete data. One of the algorithms that make the application of TKD query possible is the Bitmap Index Guided (BIG) algorithm. This algorithm strongly improves the performance for incomplete data, but it is not originally capable of finding top-k dominant values in incomplete big data, nor is it designed to do so. Several other algorithms have been proposed to find the TKD query, such as Skyband Based and Upper Bound Based algorithms, but their performance is also questionable. Algorithms developed previously were among the first attempts to apply TKD query on incomplete data; however, all these had weak performances or were not compatible with the incomplete data. This thesis proposes MapReduced Enhanced Bitmap Index Guided Algorithm (MRBIG) for dealing with the aforementioned issues. MRBIG uses the MapReduce framework to enhance the performance of applying top-k dominance queries on huge incomplete datasets. The proposed approach uses the MapReduce parallel computing approach using multiple computing nodes. The framework separates the tasks between several computing nodes that independently and simultaneously work to find the result. This method has achieved up to two times faster processing time in finding the TKD query result in comparison to previously presented algorithms

    Doctor of Philosophy

    Get PDF
    dissertationOxy-coal combustion technology has been suggested as the most promising strategy for retrofitting conventional coal power plants to generate electric power while capturing carbon dioxide. The current research addresses three issues in oxy-coal combustion, namely: 1- What is the effect of coal composition on the stability of co-axial turbulent diffusion oxy-flames? 2- What are the stability criteria for turbulent diffusion oxy-coal flames in an advanced triple concentric co-axial burner allowing directed streams of pure oxygen to be introduced into the combustion mix? 3- How does minimization of CO2 diluent affect radiant heat flux in the combustion chamber? It is hoped that data produced in this investigation can be used for validation of advanced simulations of the appropriate configurations considered. In order to address Issue #1 listed above, the consequences of differences in coal composition on flame stability for two types of coal in oxy-combustion were explored: Utah Skyline Bituminous and Illinois #6 Bituminous. Differences in flame stand-off distances at equivalent experimental input conditions were interpreted through differences in the structure of the two coals as well as differences in their pyrolysis behavior, as determined by fundamental solid state 13C NMR and Thermal Gravimetric Analysis (TGA), respectively. In addressing Issue #2, the consequences of segregating all the input oxygen into one stream composed of 100% oxygen were determined using the co-axial burners with different oxygen stream configurations. Flame stability, heat flux, and NOx formation measurements were taken to evaluate the differences. Flame stability was quantified through flame probability density functions (PDF) of the stand-off distance (determined using photo-imaging techniques). The PDFs obtained from these simplified prototype configurations led to physical insight into coal flame attachment mechanisms and the significant effects of fine coal particles and their radial transportation by large eddies on flame stability. Finally, in addressing Issue #3, impacts of reducing the amount of injected diluent CO2 (mimicking the minimization of the recycle ratio) on the radiation heat flux were explored. Radiant heat flux, gas temperature, and wall temperature measurements were taken, and a simple radiation model was developed to correlate the average gas temperature and radian heat flux. This study provided a better understanding of the radiation mechanism and the significant effects of soot radiation on the total heat transfer in the next generation of oxy-coal combustion

    SkyFlow: heterogeneous streaming for skyline computation using FlowGraph and SYCL

    Get PDF
    The skyline is an optimization operator widely used for multi-criteria decision making. It allows minimizing an n-dimensional dataset into its smallest subset. In this work we present SkyFlow, the first heterogeneous CPU+GPU graph-based engine for skyline computation on a stream of data queries. Two data flow approaches, Coarse-grained and Fine-grained, have been proposed for different streaming scenarios. Coarse-grained aims to keep in parallel the computation of two queries using a hybrid solution with two state-of-the-art skyline algorithms: one optimized for CPU and another for GPU. We also propose a model to estimate at runtime the computation time of any arriving data query. This estimation is used by a heuristic to schedule the data query on the device queue in which it will finish earlier. On the other hand, Fine-grained splits one query computation between CPU and GPU. An experimental evaluation using as target architecture a heterogeneous system comprised of a multicore CPU and an integrated GPU for different streaming scenarios and datasets, reveals that our heterogeneous CPU+GPU approaches always outperform previous only-CPU and only-GPU state-of-the-art implementations up to 6.86×and 5.19×, respectively, and they fall below 6% of ideal peak performance at most. We also evaluate Coarse-grained vs Fine-Grained finding that each approach is better suited to different streaming scenarios.This work was partially supported by the Spanish projects PID2019-105396RB-I00, UMA18-FEDERJA-108 and P20-00395-R. // Funding for open access charge: Universidad de Málaga / CBUA

    I/O-Efficient Planar Range Skyline and Attrition Priority Queues

    Full text link
    In the planar range skyline reporting problem, we store a set P of n 2D points in a structure such that, given a query rectangle Q = [a_1, a_2] x [b_1, b_2], the maxima (a.k.a. skyline) of P \cap Q can be reported efficiently. The query is 3-sided if an edge of Q is grounded, giving rise to two variants: top-open (b_2 = \infty) and left-open (a_1 = -\infty) queries. All our results are in external memory under the O(n/B) space budget, for both the static and dynamic settings: * For static P, we give structures that answer top-open queries in O(log_B n + k/B), O(loglog_B U + k/B), and O(1 + k/B) I/Os when the universe is R^2, a U x U grid, and a rank space grid [O(n)]^2, respectively (where k is the number of reported points). The query complexity is optimal in all cases. * We show that the left-open case is harder, such that any linear-size structure must incur \Omega((n/B)^e + k/B) I/Os for a query. We show that this case is as difficult as the general 4-sided queries, for which we give a static structure with the optimal query cost O((n/B)^e + k/B). * We give a dynamic structure that supports top-open queries in O(log_2B^e (n/B) + k/B^1-e) I/Os, and updates in O(log_2B^e (n/B)) I/Os, for any e satisfying 0 \le e \le 1. This leads to a dynamic structure for 4-sided queries with optimal query cost O((n/B)^e + k/B), and amortized update cost O(log (n/B)). As a contribution of independent interest, we propose an I/O-efficient version of the fundamental structure priority queue with attrition (PQA). Our PQA supports FindMin, DeleteMin, and InsertAndAttrite all in O(1) worst case I/Os, and O(1/B) amortized I/Os per operation. We also add the new CatenateAndAttrite operation that catenates two PQAs in O(1) worst case and O(1/B) amortized I/Os. This operation is a non-trivial extension to the classic PQA of Sundar, even in internal memory.Comment: Appeared at PODS 2013, New York, 19 pages, 10 figures. arXiv admin note: text overlap with arXiv:1208.4511, arXiv:1207.234

    Location- and keyword-based querying of geo-textual data: a survey

    Get PDF
    With the broad adoption of mobile devices, notably smartphones, keyword-based search for content has seen increasing use by mobile users, who are often interested in content related to their geographical location. We have also witnessed a proliferation of geo-textual content that encompasses both textual and geographical information. Examples include geo-tagged microblog posts, yellow pages, and web pages related to entities with physical locations. Over the past decade, substantial research has been conducted on integrating location into keyword-based querying of geo-textual content in settings where the underlying data is assumed to be either relatively static or is assumed to stream into a system that maintains a set of continuous queries. This paper offers a survey of both the research problems studied and the solutions proposed in these two settings. As such, it aims to offer the reader a first understanding of key concepts and techniques, and it serves as an “index” for researchers who are interested in exploring the concepts and techniques underlying proposed solutions to the querying of geo-textual data.Agency for Science, Technology and Research (A*STAR)Ministry of Education (MOE)Nanyang Technological UniversityThis research was supported in part by MOE Tier-2 Grant MOE2019-T2-2-181, MOE Tier-1 Grant RG114/19, an NTU ACE Grant, and the Singtel Cognitive and Artificial Intelligence Lab for Enterprises (SCALE@NTU), which is a collaboration between Singapore Telecommunications Limited (Singtel) and Nanyang Technological University (NTU) that is funded by the Singapore Government through the Industry Alignment Fund Industry Collaboration Projects Grant, and by the Innovation Fund Denmark centre, DIREC
    corecore