
Future Generation Computer Systems 141 (2023) 269–283

D

e
t
u
d

s
(
h
t
h

C
s
c

a
t
p

(

h
0

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

SkyFlow: Heterogeneous streaming for skyline computation using
FlowGraph and SYCL
Jose Carlos Romero ∗, Angeles Navarro, Andrés Rodríguez, Rafael Asenjo
epartment of Computer Architecture, University of Málaga, Spain

a r t i c l e i n f o

Article history:
Received 1 June 2022
Received in revised form25 September 2022
Accepted 18 November 2022
Available online 24 November 2022

Keywords:
Skyline
Stream of queries
Heterogeneous computing
Integrated GPU
OneAPI
SYCL

a b s t r a c t

The skyline is an optimization operator widely used for multi-criteria decision making. It allows
minimizing an n-dimensional dataset into its smallest subset. In this work we present SkyFlow, the first
heterogeneous CPU+GPU graph-based engine for skyline computation on a stream of data queries. Two
data flow approaches, Coarse-grained and Fine-grained, have been proposed for different streaming
scenarios. Coarse-grained aims to keep in parallel the computation of two queries using a hybrid
solution with two state-of-the-art skyline algorithms: one optimized for CPU and another for GPU.
We also propose a model to estimate at runtime the computation time of any arriving data query.
This estimation is used by a heuristic to schedule the data query on the device queue in which it
will finish earlier. On the other hand, Fine-grained splits one query computation between CPU and
GPU. An experimental evaluation using as target architecture a heterogeneous system comprised of
a multicore CPU and an integrated GPU for different streaming scenarios and datasets, reveals that
our heterogeneous CPU+GPU approaches always outperform previous only-CPU and only-GPU state-
of-the-art implementations up to 6.86×and 5.19×, respectively, and they fall below 6% of ideal peak
performance at most. We also evaluate Coarse-grained vs Fine-Grained finding that each approach is
better suited to different streaming scenarios.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The skyline, initially introduced in [1], is an optimization op-
rator widely used for multi-criteria decision making. It allows
o minimize a n-dimensional dataset into the smallest subset,
sually using as a reduction metric the minimum value for each
imension.
Fig. 1 shows a toy example of a dataset and its corresponding

kyline. The skyline is the subset of points that are not eliminated
or not dominated) by any other point in the dataset. Point C
as lower values in its two dimensions with respect to point A,
hus point A is eliminated from the skyline by point C . Point B
as lower value in x than point C , but higher in y, so neither

can eliminate the other (they are incomparable), so both B and
end up in the skyline set. For large datasets with points of

everal dimensions, the computation of the skyline becomes a
omputationally expensive task.
In order to increase the skyline performance, it is key to

void the all-to-all comparison between points. To that end,
wo approaches are usually adopted: (1) sorting-based or (2)
artitioning-based. The main disadvantage of sorting-based

∗ Corresponding author.
E-mail addresses: jromero@ac.uma.es (J.C. Romero), angeles@ac.uma.es

A. Navarro), andres@ac.uma.es (A. Rodríguez), asenjo@uma.es (R. Asenjo).
ttps://doi.org/10.1016/j.future.2022.11.021
167-739X/© 2022 The Author(s). Published by Elsevier B.V. This is an open access a
algorithms is that for high dimensional skylines, the method-
ology generates a large candidate buffer, causing performance
degradation due to brute-force quadratic search. State-of-the-
art sequential algorithms use recursive, point-based partitioning
approaches. The current state-of-the-art multicore algorithm, Hy-
brid [2], is a point-based method that dynamically constructs
a quad-tree with the skyline points. One optimization of this
algorithm is that it flattens the tree into an array structure for
better access patterns, and also it processes points in blocks (tiles)
to improve parallelism. However, point-based strategies are not
well suited to heterogeneous architectures. For instance, in [2] the
tree is constructed on the fly, incrementally, and sequentially, so
frequent synchronization points are necessary to accommodate
the sequential insert phase, a strategy that adversely affects
performance on the GPU. Moreover, the uncontrolled branching
in the tree traversal tends to serialize execution within each warp
on account of branch divergence. On the other hand, the current
state-of-the-art algorithm for GPU architectures, SkyAlign [3],
initially constructs a statically-defined quad-tree, being the key
algorithmic idea that points are physically sorted by grid cells
and statically partitioned, and threads are mapped onto that
sorted layout. Additionally, the actual computation is loosely
ordered with d carefully placed synchronization points (being d
the number of dimensions). This type of order simultaneously
achieves good spatial locality, homogeneity within warps, and
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.future.2022.11.021
https://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2022.11.021&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:jromero@ac.uma.es
mailto:angeles@ac.uma.es
mailto:andres@ac.uma.es
mailto:asenjo@uma.es
https://doi.org/10.1016/j.future.2022.11.021
http://creativecommons.org/licenses/by/4.0/

J.C. Romero, A. Navarro, A. Rodríguez et al. Future Generation Computer Systems 141 (2023) 269–283

a

i
d

a
t
t
i
a
s
o
a
t
b
A
o
l
p
l

c
t
a
q
d
d
e
i
s
o
t
p
p
s
w
I
c
o
e
s
w
d
a
(

t

i
H
o
w
c
O
A
l
w
t
c
t
s
a

C
g
F
r
f
a
d

n
t
o
r
n
d
a

Fig. 1. Dataset and skyline example. Skyline points are B and C. Pivot points, ci ,
nd mask values, M and Q , are discussed in Section 3.

ndependence among threads, in particular when the number of
imensions (d) is high. This strategy creates more predictable

tree traversals that minimize branch divergence. As a novelty
in our paper, we design a new implementation of the SkyAlign
lgorithm based on SYCL [4]. SYCL is a programming standard
hat advocates for the single source code approach, which enables
o target multiple devices using the same programming model
n order to have cleaner, portable, and more easy to maintain
pplications. That way, SYCL allows using the same algorithm and
ource code both on the GPU and the CPU (contrary to CUDA),
btaining reasonable performance on both devices. This flexibility
nd portability of SYCL is evaluated in a recent work [5] where
he Rodinia benchmarks were ported to SYCL using CUDA as
ackend and compared with the native CUDA implementations.
uthors also compared SYCL on CPU with OpenMP versions
f the benchmarks. In particular, in our implementations we
everage oneAPI [6] that is a promising framework that simplifies
rogramming heterogeneous architectures by providing several
ibraries and the DPC++ (Data Parallel C++) [7] SYCL compiler.

The previously mentioned skyline algorithms are designed to
ompute skylines over static datasets rather than dynamic ones
hat occur in data streaming environments. In the context of
nalytic applications that process multi-source data streaming
ueries, or applications in data exploration and multi-criteria
ecision making that project the multi-dimensional data into
ifferent subset of the attributes (i.e., some subspaces of inter-
st) [8,9], we find that the data stream is provided with diverse
ndependent queries for each of which the computation of the
kyline operator is required. Examples include the development
f smart technologies in the context of the rapid advancement in
he Internet of Things (IoT) ecosystem. In this paper we tackle the
roblem of computing the skyline operator over a stream of inde-
endent data queries using as target architecture a heterogeneous
ystem comprised of a multicore CPU and an integrated GPU,
hich to the best of our knowledge it has not yet been addressed.

n our work, we propose a heterogeneous graph-based engine,
alled SkyFlow based on the FlowGraph feature provided by the
neAPI Threading Building Blocks library [10], which enables to
xploit graph parallelism in streaming scenarios by efficiently
cheduling the data queries computations among the devices
hile ensuring near-optimal throughput. Our proposal adapts to
ifferent streaming scenarios using two heterogeneous
pproaches: Coarse-grained (SkyFlow-CG) and Fine-grained
SkyFlow-FG).

SkyFlow-CG computes concurrently one query per device. In

his work, we experimentally validate the performance of our

270
SYCL implementations, both on the GPU and the CPU finding
that although the SYCL code is portable, it is not ‘‘performance
portable’’ because it performs better on the GPU than on the
CPU. In fact, as we will see in Section 3.4, for our platform
the original OpenMP-based Hybrid implementation is faster than
the SYCL-based SkyAling on the CPU. Also, during our research,
we found that specific datasets perform better under Hybrid on
the CPU than under SkyAlign on the integrated GPU, or vice
versa, depending on the distribution of points in the dataset and
its spatial structure, size, or number of dimensions. Moreover,
we also compared the performance of our SYCL-based SkyAlign
mplementation on a discrete GPU against the OpenMP-based
ybrid running on the CPU obtaining similar conclusions. Thus,
ur SkyFlow-CG proposal adopts a hybrid strategy: each device
ill run the algorithm best suited to the specific features of the
orresponding device, it is, Hybrid on the CPU (implemented with
penMP) and SkyAlign on the GPU (implemented with SYCL).
s we aim at optimizing system performance and resource uti-
ization in the context of a stream of independent data queries,
e must devise a scheduling strategy that at runtime is able
o consider the arriving data query characteristics and the oc-
upancy of the resources to dispatch the skyline computation
o the appropriate device. In this paper we propose different
cheduling strategies and evaluate and discuss their performance
nd optimality for different streaming scenarios.
On the other hand, SkyFlow-FG represents a heterogeneous

PU+GPU solution for the skyline computation in which each sin-
le dataset query is split between the CPU and the GPU devices.
or it, we start from the SYCL-based SkyAling implementation that
uns both on the CPU and GPU. The main challenge now is to
ind the optimal dataset partition for each arriving data query
t runtime. We also evaluate different partitioning strategies for
ifferent streaming scenarios.
In our experimental evaluations we find that our heteroge-

eous approaches always outperform baselines implementations
hat only use one device. In fact, they outperform only-GPU and
nly-CPU baselines up to 5.19x and 6.86x, respectively. These
esults tell us that exploiting both devices with our heteroge-
eous solutions is usually more profitable than using just one
evice. We will also discuss under which streaming scenarios is
dvantageous to use SkyFlow-CG, and in which ones SkyFlow-FG.
Summarizing, the main contributions of this paper are:

• We contribute with a novel SYCL-based implementation of
the SkyAlign algorithm and evaluate its performance both on
an integrated and a discrete GPU, and on CPU.
• We design a graph-based engine, SkyFlow based on oneTBB

(provided within oneAPI), and propose two heterogeneous
approaches for skyline computation over a stream of data
queries: SkyFlow-CG (Coarse-grained) and SkyFlow-FG (Fine-
grained). Coarse-grained keeps two skyline computation in
parallel, one per device, while in Fine-grained a single sky-
line computation is split between the CPU and GPU devices.
We validate the suitability of each approach for different
streaming scenarios.
• We present two policies for scheduling the skyline com-

putation of arriving data queries between devices in the
Coarse-grained approach, where each device has a queue.
The first strategy (Work Conserving) keeps the devices busy
by offloading queries to the shortest queue. The second ap-
proach (Heterogeneous Earliest Finish Time) estimates the
execution time for the arriving query on each device. To
such end, we develop a model that, taking small chunks of
points at runtime, estimates the execution time of an arriv-
ing query with negligible overhead. That estimated time is
used to enqueue the incoming query on the device queue in
which it will finish earlier.

J.C. Romero, A. Navarro, A. Rodríguez et al. Future Generation Computer Systems 141 (2023) 269–283

t
t
S
t
t
t
t
S

2

f
t
m
c
Q
s
f
g
w
c

o
a
B
t
t
l
s
d
p
t
i
s
t
t
d
b
T
a
c
f
s
a
l
d
m

a
s
d
i
s
S
G
q
t
c
d
p
a
p
a
w
t

i

D
i
a

e

a
a

This paper is organized as follows: Section 2 briefly describes
he related work regarding skyline computation. Section 3 in-
roduces the required background and the skyline algorithms.
ection 4 presents our heterogeneous approaches for computing
he skyline over a stream of data queries. Section 5 describes
he schedulers and partitioning strategies devised to optimize
he heterogeneous solutions. Section 6 discusses the experimen-
al results, ending with some conclusions and future work in
ection 7.

. Related work

The skyline operator is an optimization problem widely used
or multi-criteria decision making. It has been applied in the con-
ext of privacy-preserving skyline computation framework across
ultiple domains [11], the processing of skyline query over en-
rypted data in Cloud-enabled databases [12], an optimization of
uality-of-Services-aware big service processes with discovery of
kyline services [13,14], or a resilient drone service composition
ramework for delivery in dynamic weather conditions [15]. Also,
eneralizations of skyline computation have been proposed in [8],
here they work with all the 2d

− 1 skyline query subdomains
ombinations from a dataset of d dimensions.
Initial implementations of the skyline operator [1] were based

n the divide-and-conquer approach. Early improvements to the
lgorithm came in the form of tree-based indexing methods,
-trees [16] and R-trees [17]. In general, the optimizations of
his algorithm focus on reducing the number of operations that
ypically are comparisons to assess if a point is in the sky-
ine or not. For it, two main strategies are adopted: sorting and
pace partitioning. Sorting-based algorithms [18–20] introduce a
ata precomputation phase before entering the main loop. This
recomputation phase facilitates both the elimination of points
hat do not belong to the skyline and the reduction of compar-
sons between points. Researchers have used different sorting
trategies, such as the Manhattan norm [18], z-order [19] or
he minimum of each dimension as a sorting attribute [20]. On
he other hand, partitioning-based algorithms [21–23] divide the
ata space into regions, so that they avoid point comparisons
etween entire regions, which reduces the number of operations.
hese strategies typically are based on recursive methods such
s pivot point-based partitioning [21], being BSkyTree [22] the
urrent state-of-the-art for sequential skyline computation. The
irst multicore CPU parallel approach [23] partitioned the data
pace into blocks. Hybrid [2], the state-of-the-art in multicore
lgorithms, proposes a hybrid strategy: it applies sorting fol-
owed by partitioning with no recursion. This algorithm builds
ynamically a two-level quad-tree in tiled batches to support
ulti-threading.
Algorithms optimized for GPU avoid synchronizations to

chieve very high compute throughput. The first algorithm for
kyline computation on GPU, GNL [24], assigns a point in the
ataset to each thread without further optimization. GGS [25]
mproves on this implementation by adding a preprocessing
tage that sorts the points according to the Manhattan distance.
kyAlign [3], which represents the current state-of-the-art for
PU, outperforms previous works by building a statically-defined
uad tree. It also uses medians and quartiles of each dimension
o construct virtual pivot points, which are defined globally to
reate more predictable tree traversals that minimize branch
ivergence. By contrast, Hybrid only uses medians. Authors in [26]
ropose an alternative to SkyAlign for high dimensional datasets
nd skylines variations with more relaxed rules for pruning
oints. In any case, in our work we want to focus on a general
pproach for computing the skyline for arriving data queries
ith any number of dimensions. In addition, the experimen-
al validation of SkyAlign in [3] demonstrates that the parallel
271
scalability of this algorithm is preserved when increasing the
number of computing units, what makes it a good candidate for
heterogeneous implementations, one of the goals in this work,
so we keep SkyAlign as our algorithm of reference on the GPU.
However, as we will show in the next section, on our platform
and for specific datasets, running Hybrid on the multicore CPU
outperforms SkyAlign on the GPU. Thus, Hybrid is still considered
for the CPU in some of our heterogeneous proposals.

In any case, the second goal of this paper has to do with
providing support for the skyline computation over a stream of
independent data queries. There has been previous research on
incrementally computing the skyline for a data query for which
data points arrive over time in streams [27–33]. Typically, the
output is a sequence or incremental update of skyline computa-
tions. Sequential solutions for continuous data streams maintain
a sliding window of the most recent points [27–29]. Researchers
in [30] propose parallel implementations of a previous proposal
in [28]. Authors in [31,32] present parallel solutions on dis-
tributed systems for the sliding window approach. Nevertheless,
these approaches focus on considering a stream of dependent
sets of points to process. They need to keep and update a global
skyline over time preserving the processed historical data in
order to compare them with the new arriving points. Our work,
however, considers as input a stream of independent datasets of
points, producing as an output a stream of independent skylines,
one per input received.

Parallel implementations of skyline computation over a stream
of data queries targeting heterogeneous architectures are still an
open research issue. We focus on heterogeneous architectures
comprised of a multicore CPU and an integrated GPU. In order
to improve performance productivity for this type of architec-
tures, new programming environments such as oneAPI [6] and
programming standards as SYCL [4] have been proposed and we
consider them for the first time to solve the problem at hand.
However, these frameworks do not solve the problem of the au-
tomatic partition of the workload and scheduling of tasks among
devices, issues that we address in this paper. Thus, to the best
of our knowledge, the new heterogeneous proposals introduced
here represent novel contributions in this context.

3. Theoretical background

3.1. Definitions

Let us compute the skyline corresponding to the dataset (or
data query) S of n points, pi, with d dimensions. The value of pi
n a given dimension δ is known as pi[δ].

efinition 1 (Dominance). A point p dominates another q, p ≺ q,
f the following condition is satisfied: ∀i ∈ [0, d− 1] : p[i] ≤ q[i]
nd ∃j ∈ [0, d− 1] : p[j] < q[j]; that is, for every dimension, p is

less than or equal to q and there exists at least one dimension in
which p is strictly less than q. This operation is called dominance
test (DT).

Definition 2 (Skyline). A skyline can thus be defined as the subset
of points in a dataset S that are not dominated by any other point
in the dataset, i.e., SKY (S) = {p ∈ S | ∄q ∈ S : q ≺ p}.

Definition 3 (Incomparability). Two points p, q ∈ S, are incompa-
rable, p ∼ q, if p ⊀ q and q ⊀ p, that is, if p and q do not dominate
ach other.

The smaller the number of DTs, the better the work-efficiency
nd the faster the skyline computation. In the worst case, for
dataset of size n, the algorithm will have quadratic cost with

J.C. Romero, A. Navarro, A. Rodríguez et al. Future Generation Computer Systems 141 (2023) 269–283

1

1

1

1

1

r
a
a
M
t
o
o
a
(
t
r
t
i
T

l

t
d
p
t
d
t
T

r
l
c
t
o
r
e
t
F
a
B

n·(n−1)/2 DTs. Avoiding DTs resulting in incomparability reduces
the computational cost of the problem. Sorting and partition-
ing based algorithms work towards this goal. In sorting-based
algorithms, traversing the sorted points reduces the number of
DT operations. In partitioning-based, a partitioning of the space
avoids DT between points that are known to be incomparable
because their corresponding partitions are also incomparable.
Fig. 1 shows a partitioning-based example, where a DT between
points A and C is required because region M = 11 and region
M = 10 are comparable. On the other hand, the DT between
points B and C is unnecessary since B is in region M = 01 that
dominates in X-axis, but C is in region M = 10 that dominates in
Y -axis, resulting in the incomparability of all the points in both
regions.

As introduced in Section 2, this work is based on two skyline
algorithms: (1) Hybrid [2] initially implemented in OpenMP [34]
is the state-of-the-art for multicore CPU architectures. We will
refer to it as OpenMP-CPU. And (2) SkyAlign [3] initially developed
in CUDA [35] is the state-of-the-art for GPU architectures, having
considerable potential for scalability and a heterogeneous imple-
mentation. We have ported the implementation to SYCL to later
exploit flexibility and portability of this programming language,
so from now on, we will refer to it as SYCL-GPU. Next, we briefly
introduce both algorithms and compare their performance.

3.2. OpenMP-CPU algorithm

Alg. 1 sketches the OpenMP-CPU algorithm, which combines
two techniques to save DTs: sorting and partitioning.
Algorithm 1: OpenMP-CPU algorithm

Input: S=Dataset of n points p and d dimensions.
Output: Skyline of S: SKY (S)

1 SKY (S)← ∅
2 Prefilter, partition and sort S
3 while S ̸= ∅ do
4 Q ← next α points of S
5 S ← S\Q
6 foreach i ∈ [0,Q .size) (in parallel) do
7 if ∃p ∈ SKY (S) : p ≺ Q [i] then
8 Mark Q [i] as dominated
9 Remove dominated Q [i] from Q
0 foreach i ∈ [0,Q .size) (in parallel) do
1 if ∃j ∈ [0, i) : Q [j] ≺ Q [i] then

12 Mark Q [i] as dominated
3 Remove dominated Q [i] from Q
4 Append Q to SKY (S)
5 return SKY (S)

The algorithm is divided into three blocks. The first one is rep-
esented by the line 2 that carries out a prefiltering, partitioning
nd sorting steps that we describe next. (1) Prefiltering performs
fast parallel comparison of points in chunks according to their
anhattan norm (L1), easily pruning dominated points; (2) Parti-

ioning does the partition of the multi-dimensional space based
n a pivot point, pv . The pv is the point with the median value
f L1, which must necessarily be a skyline point. A mask, m, is
ssigned to each point for each dimension such that, m[i] =
p[i] < pv[i]?0 : 1).1 pv divides the dataset into 2d regions so
hat the binary mask of each point identifies its corresponding
egion. Thus, binary mask comparisons can be used to reduce
he number of the more expensive DT operations. (3) Sorting
s carried out according to the binary mask and the L1 norm.
his sorting maintains the property that p ⊀ q if p precedes

1 C language ternary operator: m[i]=0 if condition holds, and 1 otherwise.
272
q in the sort order. The sorting stage ensures that: (1) once a
point is appended to the SKY (S) it will not leave this set since
no subsequent point in S will dominate it; and (2) points that are
ikely pruning others are processed earlier (which remove the DT
operations corresponding to these early pruned points). See more
details in [2].

After this preprocessing, the resulting dataset, S, is traversed
in blocks of α points2 (line 4). Each block, Q , is processed by
two consecutive parallel loops. A first parallel stage (lines 6–8)
compares each point p of the block with the points of the global
skyline known so far, to check if any of them dominates p. After
he parallel stage, a synchronization stage sequentially eliminates
ominated points from the iteration space (line 9). The second
arallel stage (lines 10–12), compares the surviving points among
hem. The second synchronization stage sequentially eliminates
ominated points in line 13. The points that pass through this
wo sieves are added to the global skyline, SKY (S), in line 14.
his process is repeated for all the blocks in S updating the

global skyline after processing each block. Although not explicitly
indicated in Alg. 1, vectorization is used for the implementation
of the DT operations (lines 7 and 11).

3.3. SYCL-GPU algorithm

The SYCL-GPU follows a different approach in order to avoid
the synchronization stages that keep a global skyline in the
OpenMP-CPU algorithm. On the GPU these synchronization steps
have a higher impact on performance. As in the OpenMP-CPU al-
ternative, similar optimizations are also considered: partitioning
and sorting.

Now, the partitioning divides each dimension of the dataset in
quartiles and median. This is, three global pivot points (instead of
just one as in OpenMP-CPU) are defined for each dimension: first
quartile, c1, median, c2, and second quartile, c3 (see Fig. 1). All GPU
threads share the information of these three defined global pivot
points. It should be noted that these points are probably virtual
(i.e. c1, c2, and c3 may not belong to the dataset as it happens with
the pivot point in the OpenMP-CPU algorithm). This partitioning
esults in binary masks to classify the dataset points in two nested
evels. At the first level, a binary maskM is assigned to each point,
orresponding to its position relative to the median (equivalent
o the pivot point in the OpenMP-CPU). On a second level, an-
ther binary mask Q is assigned, corresponding to its position
elative to the first or second quartile (whichever is relevant for
ach point). The process is repeated for each dimension. These
wo binary masks per point ease locating each point’s partition.
ig. 1 shows an example with a dataset of 3 points partitioned
ccording to the quartiles and median points. For example, point
has median mask MB = 01 because in its x dimension it is

below the median value, c2x, while in the y dimension is above
the median, c2y. Its quartile mask is QB = 10 because in the x
dimension is above the c1x quartile, but below the c3y quartile for
the y dimension.

Once the points have been classified according to their region
in the space (identified by both masks M and Q) we can leverage
the fact that points located in incomparable regions are also in-
comparable and avoid the corresponding DT. In essence, we trade
DTs for MTs (mask tests). Note that MTs are computationally
cheaper than DTs since they only perform one binary operation
between two integers, while a DT requires 2·d operations (see
Definition 1). The sorting step has the same advantages that we
mentioned in the previous section.

Alg. 2 presents a simplified description of the GPU algorithm.
For a more precise explanation we refer the reader to [3]. The

2 See [2] for more details.

J.C. Romero, A. Navarro, A. Rodríguez et al. Future Generation Computer Systems 141 (2023) 269–283

i
a

1

1

1

1

s
e
l
o
a
t
a
q
t
d
t
d
t
a
o
w
O

w
<
n
g
s
S
w
t
c
s
i
w

3

t
q
G
t
a
t
c
t
S
t
l

l
t
v
c
G
d

a
i
d
f
s
i
D
w
d
a
t
o
c
d
o
t
t
O
d
i
t
m
n
T
t
s

h
b
s
h
w
O
t
t
b
n
a
e
i

a
l
T

algorithm is divided in two main stages: (1) preprocessing; and
(2) the main loop.

The preprocessing includes prefiltering, partitioning and sort-
ng. Prefiltering is carried out in lines 1–2. The idea is to first find
threshold, τ , that is calculated as the minimum of the maximum

value in all the dimensions of each point. For example, in the
Table of Fig. 1, the maximum values are computed row wise,
resulting in the vector {3, 3, 2}, from with the minimum is τ = 2.
In parallel, each point is compared with the threshold and if it
has no value less than the threshold, that point is dominated and
eliminated. For example, in Fig. 1, point A does not have any value
smaller than 2, so it is pruned. Once this prefiltering of points
finishes, the static partitioning is created (lines 3- 6), assigning
the binary masks (median and quartile) to each point. Finally, the
dataset is sorted in line 7.
Algorithm 2: SYCL-GPU algorithm

Input: S=Dataset of n points p and d dimensions.
Output: Skyline of S: SKY (S)

1 τ ← minp∈S(maxi∈[0,d)(p[i]))
2 S ← {p ∈ S|∃i ∈ [0, d) : p[i] ≤ τ }

3 foreach point pi ∈ S (in parallel) do
4 foreach dimension δ ∈ [0, d) do
5 Mi[δ] ← (pi[δ] > c2δ)
6 Qi[δ] ← (pi[δ] > (Mi[δ]? c3δ : c1δ))
7 Sort S according to M
8 foreach levels l ∈ [0, d)] do
9 foreach point pi ∈ S : |Mi| ≥ l (in parallel) do
0 foreach pj ∈ S do

11 if (!Mj ∼ Mi) then
12 if (!Qj ∼ Qi) then
13 if pj ≺ pi then
14 Mark pi dominated; terminate thread
5 Remove dominated points from S
6 SKY(S)← SKY(S) ∪{pi ∈ S : |Mi| = l}
7 return SKY (S)

The algorithm’s main loop goes from lines 8 to 16. The outer
equential loop with iterator l (level) has d iterations (line 8). In
ach iteration, a parallel loop compares every point, pi, of order
with the rest of the points, being the order, |Mi|, the number
f 1’s in the mask Mi (|Mi| == l). First, the median masks, M ,
re compared (line 11). Success in the comparison means that
he two points are incomparable (and the corresponding DT is
voided). If the comparison of the median mask fails, then the
uartile masks, Q , are compared (line 12). Only if both MT fail,
he corresponding DT is carried out (line 13). If the point is
ominated (line 14), it is marked as dominated, and the thread
erminated. At the end of each iteration of the outer loop, the
ominated points are removed. The non-dominated points for
hat order are added to the skyline. The update of SKY (S) requires
synchronization, but contrary to the OpenMP-CPU, the number
f synchronization points is equal to the number of dimensions,
hich is smaller than the number of synchronization points in
penMP-CPU for large datasets.
Parallel loops in our SYCL-GPU implementation are expressed

ith the sycl::parallel_for function and sycl::nd_range
3> (3-dimensional), so parallel work-items execute over the
d_range in work-groups of the specified size. Also the sycl::
roup_barrier is invoked to synchronize work-items in the
ame work-group. Additionally, we take advantage of the Unified
hared Memory (USM) mechanism [4], which allows reading and
riting of data with conventional pointers. In particular, as we
arget heterogeneous executions in which the CPU and the GPU
an work cooperatively, we implement the shared data using the
hared allocations strategy, which allows the runtime to automat-
cally move data, if necessary, from/to the GPU or the host CPU
hen referenced on each device.
273
.4. Initial performance assessment

Up to now we have seen two different algorithms that solve
he same problem: computing the skyline of a dataset (or data
uery). OpenMP-CPU is optimized for the CPU, whereas SYCL-
PU comes from a GPU optimized CUDA code. However, now
hat we have the GPU version written in SYCL, we can take
dvantage of the portability exhibited by any SYCL implementa-
ion. In SYCL the computation is enqueued to a device, which is
onfigured using a device_selector object. Just by changing
he device_selector from GPU to CPU and re-compiling, the
YCL code can run on the CPU. This means, that we actually have
hree versions: OpenMP-CPU, SYCL-CPU and SYCL-GPU, being the
ast two the same implementation but targeting different devices.

Remember that our overarching goal is to accelerate the sky-
ine computation on a heterogeneous CPU+integrated GPU archi-
ecture. This requires first to assess the performance of the three
ersions. To this end, we have executed the versions on a octa-
ore Intel i9-9900K CPU @ 3.60 GHz that includes an integrated
PU (Intel UHD Graphics 630 with 24 Compute Units). See more
etails of the test-bed in Section 6.
Fig. 2 shows the execution times for OpenMP-CPU, SYCL-CPU

nd SYCL-GPU on an integrated GPU, and four datasets (described
n Section 6). For each dataset, the subfigure on the left fixes
= 8 and changes n from 1 · 106 to 8 · 106. The right subfigure

ixes n = 8 · 106 and changes d from 4 to 10. In order to also
tudy the performance of our SYCL implementation on a non-
ntegrated GPU, we run the kernel on a discrete GPU (Intel Xe
G1 with 96 Execution Units), using the same datasets. In Table 1
e show a summary of the times for these executions (SYCL-
GPU) along with the previous times for OpenMP-CPU, SYCL-CPU
nd SYCL-GPU on the integrated GPU for comparison. As expected,
he discrete GPU exhibits higher performance than the integrated
ne (up to 2x of improvement). From the plots and the table we
an conclude two main takeaway messages. First, that there is no
evice (CPU or GPU) that always dominates the other. Depending
n several factors (points distribution in the dataset, n and d)
he CPU or the GPU can be the fastest device. Second, out of
he two CPU implementations (OpenMP-CPU and SYCL-CPU), the
penMP-CPU is usually faster (except for House and Covertype
atasets and larger values of n and/or d). Although the SYCL
mplementation is portable, it is not ‘‘performance portable’’ on
he CPU, and considering that it was developed with the GPU in
ind (it derives from a CUDA implementation) we found that is
ot always optimal for the multicore architecture in this platform.
herefore, from now on, we will use the OpenMP-CPU version on
he CPU and the SYCL-GPU version on the GPU, unless contrary
tated.
A work-efficiency study conducted in [3] reports that, for

igher dimension datasets, SkyAlign requires less DTs than Hy-
rid. Thus, the SkyAlign algorithm (i.e. SYCL-GPU and SYCL-dGPU)
trives to offer both more parallelism and work-efficiency for
igher dimension datasets. Therefore, except for Weather dataset,
e corroborate that SYCL-GPU (and SYCL-dGPU) outperforms
penMP-CPU for high dimensionality queries. A deeper study of
he behavior of the GPU algorithm for the Weather dataset shows
hat: (1) the preprocessing stage is not able to prefilter any point
efore entering the main loop; and (2) in the main loop the
umber of MTs is significantly smaller than in the other datasets
nd, hence, higher the number of DTs. This degrades the work-
fficiency of the GPU algorithm, causing higher execution times
n comparison to OpenMP-CPU.

On the contrary, the Hybrid algorithm (i.e. OpenMP-CPU) is less
ffected by the spatial distribution of the points. Its two parallel
oops exhibit more regularity than the GPU algorithm’s main loop.
he fact that OpenMP-CPU processes the dataset in blocks results

J.C. Romero, A. Navarro, A. Rodríguez et al. Future Generation Computer Systems 141 (2023) 269–283

t
G
l
s
i

4
q

a
o
a
I
t
l
d

Fig. 2. Execution time (in seconds) for the three versions (OpenMP-CPU, SYCL-CPU and SYCL-GPU on a integrated GPU), and four datasets (the lower the better).
Table 1
Execution time (in seconds) for the OpenMP-CPU and SYCL-CPU, versus SYCL-GPU and SYCL-dGPU versions on an integrated and a
discrete GPU, respectively, and two datasets. In bold we highlight the smallest times.
Implem. House Weather

n · 106 , d = 8 d, n = 8 · 106 n · 106 , d = 8 d, n = 8 · 106

1 2 4 4 6 8 1 2 4 4 6 8

OpenMP-CPU 1.84 4.60 15.26 22.95 41.45 80.84 5.66 13.18 21.07 16.95 45.56 31.52
SYCL-CPU 28.14 37.35 42.18 48.99 65.12 80.53 44.81 54.45 67.11 90.64 105.37 86.25
SYCL-GPU 1.82 4.23 12.81 18.99 35.95 40.80 14.37 24.65 37.97 62.26 75.90 56.08
SYCL-dGPU 1.24 2.14 7.65 10.83 20.71 22.54 9.42 18.31 30.66 34.51 55.72 38.23
in a better use of the cache hierarchy. Besides, the CPU is less
affected by data and control divergence. On the other hand, the
prefiltering step is less aggressive than in the GPU approach.
To sum up, the skyline computation is highly irregular, heavily
depending on the dataset configuration (distribution of points
in the space, size, number of dimensions) and on the particular
algorithm and target architecture.

In any case, for the rest of the paper and experimental valida-
ion, we focus on the more tightly connected CPU + integrated
PU architecture, where unified shared memory (USM) can be
everaged by advanced heterogeneous scheduling strategies. The
tudy of the efficiency of our proposals on a CPU + discrete GPU
s left for future work.

. SkyFlow: Heterogeneous skyline over a stream of data
ueries

Now that we have an efficient implementation of the skyline
lgorithm for the CPU (OpenMP-CPU) and the GPU (SYCL-GPU),
ur goal is to devise an optimal graph-based engine to deal with
stream of data queries on a CPU+ GPU architecture, like the

ntel i9-9900K described in Section 6. To this end, we rely on
he FlowGraph classes provided by the Threading Building Block
ibrary [10] (part of the oneAPI [6] framework), that is cleverly
esigned to ease the optimization of data flow problems.
274
Fig. 3. Structure of the baseline SkyFlow graphs.

In the following sections we describe several data flow solu-
tions, including the only-CPU and only-GPU baseline as well as
two CPU+GPU heterogeneous approaches.

4.1. Baseline SkyFlow

As a baseline, we have developed a ‘‘single-device’’ version
of our data flow approach, SkyFlow-CPU and SkyFlow-GPU, that
only exploit the CPU or the GPU, respectively. Fig. 3 shows the
FlowGraph that we describe next.

As we see in the figure, the graph is composed of a number of
nodes connected by edges that we classify in three main sections:
(1) Source, (2) Execution, and (3) Output.

J.C. Romero, A. Navarro, A. Rodríguez et al. Future Generation Computer Systems 141 (2023) 269–283

g
h
t
a
t

4

s

Fig. 4. Structure of Coarse-Grained SkyFlow graph, SkyFlow-CG.

• Source: It comprises a source_node, a token buffer and
a join_node. The source_node generates the stream of data
queries from which we require the skyline. However the
stream is not fed directly into the graph to avoid oversub-
scribing the HW if the input data rate is much higher than
the processing data rate. The idea is to rely on a token-
based approach to limit the resource consumption. To that
end, a buffer is pre-filled with a number of tokens and a
join_node will forward a dataset (or data query) down the
graph only if it can be paired with a token. That way, the
maximum number of data queries in flight is limited to the
number of tokens. At the output node, the token is recycled
back into the buffer so that a new dataset can be injected
into the Execution section of the graph.
• Execution: For the baseline solution, it contains a single
function_node that computes the skyline. The SkyFlow-
CPU configures this node to run the OpenMP-CPU algorithm
whereas the SkyFlow-GPU runs the SYCL-GPU code.
• Output: Finally, the last node takes care of saving the re-

sulting skyline, optionally checks that the computation is
correct and recycles the token to enable the processing of
a new dataset. It is also possible to use this node to merge
several partial skylines in the case a dataset is partitioned
into several blocks and processed separately by SkyFlow.

On our current platform with a multicore CPU and an inte-
rated GPU we have validated that oversubscription is avoided by
aving just two tokens: one computing a skyline, and a second in
he queue waiting to be dispatched as soon as the device becomes
vailable. In SkyFlow-CPU the OpenMP-CPU parallel algorithm
akes care of fully utilizing all the CPU cores.

.2. Coarse-Grained heterogeneous SkyFlow

For our first heterogeneous approach we follow the easiest
trategy that consists in combining in the Execution section the
GPU and CPU algorithms concurrently, as depicted in Fig. 4.

We call this version Coarse-Grained SkyFlow, SkyFlow-CG,
because it computes a whole dataset (or data query) either on
the GPU or on the CPU. In the next section we describe a Fine-
Grained approach in which a single dataset is split between the
CPU and the GPU. Note that the Execution section now begins by a
dispatch node that, for each dataset, decides whether it should
be processed by the SYCL-GPU or the OpenMP-CPU algorithms.
The number of tokens should be incremented in order to allow
for at least two data queries in flight. Contrary to the join node,
the indexer node (that comes after the GPU and CPU nodes)
asynchronously passes incoming tokens to the next node without
waiting for an input at each entry port, that way enabling that
CPU tokens and GPU tokens traverse the flow graph at its own
pace. This means that the resulting skylines can be computed out-
of-order, but this is not a problem if we tag each result with the ID

of the corresponding data query. If the output order is relevant it

275
is always possible to insert before the output node a sequencer
node [10] that would reorder the skyline results.

Assuming that the application bottleneck is in the Execution
section (the one we are optimizing by exploiting both the CPU
and the GPU at the same time), we implement two queues in
the dispatch node (one per device). Now the problem is to feed
these two queues so that the total execution time is minimized
(throughput maximized). Two scheduling strategies have been
considered and will be covered next: Work Conserving scheduling
(WC) and Heterogeneous Earliest Finish Time (HEFT).

The goal of a Work Conserving scheduling is to keep all the
scheduled devices busy. To that end, it strives to keep the queues
of the devices with the same length (number of pending tasks).
In our implementation we maintain two queues, GPUq and CPUq.
An arriving data query will be enqueued in the shortest queue.
If both queues have the same length, we have validated a tie-
break heuristic that enqueues a data query in the CPUq when its
dimension, d, is smaller than 6 (since in our experiments it is
probable that lower dimension datasets run faster on the CPU,
as we can see in Fig. 2), and enqueued in GPUq otherwise.

However, as we discussed in Section 3.4, this highly irregular
problem is solved in very disparate execution times, sometimes
smaller on the CPU or on the GPU, depending on many factors.
If we want to optimize the execution time, keeping busy both
devices is not enough because we could want to send the data
query to the optimal device, so a more elaborated strategy is
necessary to feed each device with the more suitable datasets.
In this regard, the Heterogeneous Earliest Finish Time [36] is
an interesting alternative. This scheduling policy also takes into
account the ‘‘expected’’ execution time of a dataset in order to
feed the queues. Now, it is not the length of the queue the
relevant factor, but the expected accumulated execution time of
all the data queries enqueued in each queue, GPUt and CPUt , and
the expected execution time of the arriving data query both on
the GPU and CPU, tgpu and tcpu. This is, an arriving data query will
be enqueued in the queue in which it will finish earlier. More
precisely, if GPUt + tgpu < CPUt + tcpu the data query will be
enqueued in GPUq, and the other way around.

This HEFT policy poses two challenges, though. First we need
an accurate enough estimation of the data query execution time.
We propose a heuristic (detailed in Section 5.1) that can infer the
total execution time after sampling the time required to compute
a first chunk of points of the dataset, both on the GPU and on the
CPU. Considering that the skyline computation for our datasets
takes more than a second, we can afford to invest around 10 ms
in precomputing the first chunk of a dataset in order to estimate
the total execution time. Moreover, the result obtained after this
precomputation is not wasted, but saved and never re-computed
later on, so as we will see in the experimental evaluation, this
strategy pays off well.

The second challenge is that estimating tgpu and tcpu is not
possible if the GPU and the CPU are already busy processing data
queries. This problem is tackled by batching the incoming data
queries so that we conduct the precomputation and estimate total
execution times for all the datasets in the batch. When the last
data query of either the GPU or the CPU queue is launched, a new
batch of data queries is sampled and HEFT is run to map them on
the right queue. This not only avoids having to wait for the GPU or
CPU to become idle to run HEFT, but also helps HEFT in having a
farther view into the ‘‘future’’, which makes HEFT more profitable.
For our experiments, we have found that a batching size of 5 data
queries provides a good trade-off between the overhead due to
the precomputation and the likelihood that one of the devices
becomes idle when one of the queues runs out of queries.

J.C. Romero, A. Navarro, A. Rodríguez et al. Future Generation Computer Systems 141 (2023) 269–283

i
h
o
i
a
q
a

d
p
m
T
t
t

e
t
i
t
d
a
f

m
d
(
p
s
S
i
d
t
B
a
w
w
t
i
p

f
u
s
t
d
d
A
b
t
d
T
c
b
t

o
t
s
t
p
t
s
t
n
b
c

p
t
a
a

λ

c
c
I
p
t
±

t

G
I
l
i
p
w
t

Fig. 5. Structure of Fine-Grained SkyFlow graph, SkyFlow-FG.

4.3. Fine-Grained heterogeneous SkyFlow

We also wanted to explore a different heterogeneous approach
n which the GPU and the CPU are more tightly coupled. Instead of
aving two different data queries being processed simultaneously
n the GPU and CPU with the SkyFlow-CG implementation, the
dea now is to have a single dataset partitioned so that the GPU
nd the CPU collaborate in the skyline computation of this data
uery. We call this version Fine-Grained SkyFlow, SkyFlow-FG,
nd the corresponding flow graph is depicted in Fig. 5.
The starting point is the SYCL-GPU implementation that was

escribed in Section 3.3. As we said, the code listed in Alg. 2 com-
rises two main stages: (1) preprocessing (lines 1–7); and (2) the
ain loop (lines 8- 16) that has d iterations (kernel invocations).
he idea now is to efficiently distribute the computation between
he GPU and the CPU, provided that the SYCL code is portable and
he SYCL-CPU version runs on the CPU.

The preprocessing stage only accounts for around 10% of the
xecution time, and it is more than 10x faster on the GPU than on
he CPU. Therefore, the slowest stage in the flow graph of Fig. 5
s not the preprocess one, which means that the preprocessing
ime can be hidden (one dataset is preprocessed and ready to be
ispatched while the previous dataset is being computed). With
ll this, it is advisable to only exploit the GPU during this small
raction of the execution time.

However, the remaining 90% of the time is consumed in the
ain loop in which the same kernel in invoked d times (it
epends on the number of dimensions). Provided that the kernel
lines 9–14 in Alg. 2) is executed over a range of (independent)
oints, it is possible to partition this range so that a number of
ub-ranges (or chunks) are executed by SYCL-GPU and the rest by
YCL-CPU. This implies constructing two SYCL queues, one target-
ng the GPU and the other attached to the CPU device (see [7] for
etails on constructing device queues). It also requires merging
he output of the GPU partial computation with the CPU one.
oth devices write in private copies of the result array (GPU_array
nd CPU_array in Fig. 5) in which dominated points are marked
ith ones (line 14 in Alg . 2). Once both arrays have been fully
ritten (note the join node after the CPU+GPU stage, instead of
he indexer node used in Fig. 4), the merge node reduces them
nto the GPU_array. Marked points in this summarized array are
runed from the dataset (line 15 in Alg. 2).
Moreover, this Fine-Grained implementation also requires

inding the right partition of the iteration space, so that load
nbalance is avoided. Again, the join node after the CPU+GPU
tage synchronizes both devices so the slowest one sets the stage
ime. The dispatch, CPU+GPU execution and merge, is repeated
times which reinforces the load balance requirement. The
ispatch node takes care of computing the right partitioning.
s we will see in the next section, a dynamic partitioning will
e necessary to consider that the optimal partition depends on
he relative speed of each device, which can change for each
imension (out of d) and during the traversal of each dimension.
his dynamic partitioning splits the iteration space into several
hunks of constant size. These chunks are processed on demand
y the CPU and GPU devices (the device that becomes idle takes
he next chunk until the iteration space is completed).
276
5. Coarse-Grained time estimation and Fine-Grained partition

5.1. Model for estimating Coarse-Grained execution times

As stated in Section 4.2, the HEFT strategy requires the esti-
mation of the execution times on the GPU and the CPU, tgpu and
tcpu, for each dataset in an incoming batch of data queries. In
this section we provide the details of the model that computes
those times, which are shown in Alg. 3. This model estimates the
execution time of a dataset by profiling a small chunk of iterations
both on the OpenMP-CPU and SYCL-GPU nodes.
Algorithm 3: Coarse-Grained HEFT model

Input: S=Dataset of n points and d dimensions;
Chcpu, Chgpu=CPU and GPU chunks.
Output: tcpu, tgpu= estimated CPU and GPU times for S.

1 (tc, ncpu)=launch_OpenMP-CPU (Chcpu)
2 ([tg0 : tgd−1], [ng0 : ngd−1], ngpu)=launch_SYCL-GPU (Chgpu)
3 λc ← Eq. (1)
4 tcpu ← Eq. (2)
5 foreach iteration i ∈ [0, d) do
6 Fi ← Eq. (4); mgi ← Eq. (5)
7 λgi ← Eq. (3)
8 tgpu ← Eq. (6)
9 return (tgpu, tcpu)

In Alg. 3 we see that the heuristic to compute our model starts
launching two chunks: Chcpu on the OpenMP-CPU node and Chgpu
n the SYCL-GPU one (lines 1–2). The size of the chunk to perform
he profiling is tuned at runtime. In our approach, by default it is
et to 1% of the dataset size. We have found that if the reported
ime is around 10 ms, then the sample will typically help to
rovide an accurate estimation in our model. In the case that
he chunk runtime is below 10 ms, then a new chunk twice the
ize of the previous one is launched. This process repeats until
he reported processing time is above 10 ms. It is important to
ote that the work computed in this profiling stage is not wasted
ecause the points computed in these chunks are recorded and
ounted for the complete execution later.
For the Chcpu chunk we record the execution time, tc , and

oints explored, ncpu. These results are used to calculate the
hroughput of the CPU chunk as we see in Eq. (1). For it, we
ssume a worst-case scenario in which all points of the chunk
re compared when computing the OpenMP-CPU algorithm.

c =
(ncpu · (ncpu − 1))/2

tc
(1)

The estimated execution time on the CPU for dataset S, tcpu,
an be computed with Eq. (2), where again we assume a worst-
ase scenario where all points of the dataset (n) are compared.
n Section 6.2 we analyze the accuracy of our assumption and
rovide results that indicate the estimated vs measured execution
imes for the OpenMP-CPU algorithm are always within the range
10% in our datasets.

cpu =
(n · (n− 1))/2

λc
(2)

For the Chgpu chunk we now record the execution time, tgi ,
and points explored, ngi , in each iteration i of the main loop that
traverses the d dimensions of the dataset (lines 8–16 in the SYCL-
PU algorithm). We also record the size of the GPU chunk, ngpu.
n the SYCL-GPU algorithm, at the end of each iteration of the d
oop, the dominated points are removed, so fewer points enter
nto the next iteration. We use this information (and the time
er iteration) to compute the throughput of the GPU chunk as
e see in lines 5–7 in Alg. 3. In particular, we compute the GPU
hroughput for each dimension i, λ as we see in Eq. (3), where
gi

J.C. Romero, A. Navarro, A. Rodríguez et al. Future Generation Computer Systems 141 (2023) 269–283

λ

t

k
i
i
S

we assume a worst-case scenario in which all the recorded points
in the corresponding dimension (ngi) are compared.

gi =
(ngi · (ngi − 1))/2

tgi
(3)

From the information collected from the GPU chunk profiling,
we can compute the ratio of points filtered when going from
dimension i− 1 to dimension i. This ratio, Fi, is shown in Eq. (4).
Again, n represents all points of the dataset.

Fi =

⎧⎪⎪⎨⎪⎪⎩
ng0

ngpu
if i == 0

ngi

ngi−1
otherwise

(4)

From this ratio of filtered points, Fi, assuming an uniform
distribution of the pruning of points for each dimension, we
can extrapolate the number of points that will enter into each
iteration of the d loop. This number of estimated points per
iteration, mgi is computed by Eq. (5).

mgi =
{
n · F0 if i == 0
mgi−1 · Fi otherwise

(5)

Both the GPU throughput and estimated number of points for
each dimension i, λgi and mgi respectively, are used to compute
the estimated execution time on the GPU for dataset S, tgpu, as we
shown in Eq. (6). Again, we assume a worst-case scenario where
all the estimated points in each dimension (mgi) are compared. In
Section 6.2 we analyze the accuracy of our assumptions and pro-
vide results that indicate that the estimated vs actual execution
times for the SYCL-GPU algorithm are within ±2% in our datasets.

gpu =

d−1∑
i=0

(mgi · (mgi − 1))/2
λgi

(6)

5.2. Strategy for the Fine-Grained partitioning

As stated in Section 4.3, the main kernel of the SkyFlow-FG
approach, which is launched d times to process the points of
the dataset, can be partitioned into sub-ranges (or chunks) of
independent points, which can be computed concurrently: while
one chunk is computed by the SYCL-CPU node, another one can
be computed by the SYCL-GPU node. We conducted a preliminary
study in which we did not partition the datasets among the
devices. Instead, we launched the main kernel d times on the
same node (either on the CPU or on the GPU), without parti-
tioning the points explored in each dimension, and measured the
throughput per dimension d. We conducted this analysis for dif-
ferent configurations of our datasets (with different dataset sizes
and dimensions) on our platform of reference (octa-core Intel
i9-9900K CPU with integrated GPU, more details in Section 6.1).
For instance, in Table 2 we show the GPU and CPU throughputs
(ThGPU, ThCPU) for the NBA dataset with a configuration of 2
Million points and 7 dimensions. In addition to the throughput
per dimension, we compute the total throughput and the relative
speed or ratio ThGPU/ThCPU per dimension (column Ratio). As
we see, the relative speed fluctuates for each dimension. A similar
result was reported for other datasets and configurations. Thus,
the partitioning strategy must be carefully designed to provide
load balance for each d iteration. In this context, a dynamic
partitioning strategy seems suitable.

In fact, in Fig. 6 we explore the behavior of a dynamic parti-
tioning strategy that feeds the SYCL-CPU (or SYCL-GPU) node with
chunks of points and see how the chunk size affects performance.
In particular, we show the throughput on the CPU (or the GPU)
277
Table 2
Throughput per dimension for the main kernel on the SYCL-GPU and SYCL-CPU
nodes (the higher the better). NBA dataset with n = 2M and d = 7.
d ThGPU ThCPU Ratio

1 7.08E+11 5.88E+11 1.20
2 5.96E+10 4.25E+10 1.40
3 4.13E+10 2.80E+10 1.47
4 3.98E+10 2.34E+10 1.70
5 3.24E+10 1.77E+10 1.83
6 1.53E+10 7.24E+09 2.11
7 2.76E+09 1.58E+09 1.75
Total 6.65E+11 5.35E+11 1.24

device, for the first dimension traversal (d = 1) of the main kernel
when a dynamic strategy partitions the iteration space in 10, 20,
30 and 40 chunks.

As we see in the figure, the throughput throughout the itera-
tion space is highly variable in both devices. The same behavior
is observed for the rest of dimensions of the main kernel, other
datasets and configurations. This result points out that adaptive
or predictive strategies based on the profiling of previous chunk
samples can be misleading at this level of work granularity. So,
it confirms that a dynamic partition strategy with a carefully
selected chunk size must be adopted. From the figure we note
that when the number of chunks is smaller, i.e. the chunk size
is bigger, the measured GPU throughput tends to be higher. In
fact, the GPU throughput degrades around 2% when the number
of chunks doubles (i.e. the chunk size is halved). However, the
CPU throughput tends to be independent of the chunk size. This
result confirms that the SkyAlign algorithm at the core of the
SYCL-GPU and SYCL-CPU implementations better exploits GPU
architecture features such as coalesced memory accesses -thanks
to the padding and re-packing of the main data structures-, as
well as divergence minimization -thanks to the static mapping of
the threads that in any given warp ensures that they work on a
small set of aligned data blocks-.

In our SkyFlow-FG approach, the dispatch node (see Fig. 5)
eeps track of the sub-range of points (chunks of Chunk_size
terations) assigned to each device for each dimension d that
s traversed. This node is responsible for sending chunks to the
YCL-GPU and SYCL-CPU nodes once the previous chunk computa-
tion has finished on the corresponding device. The last sub-range
of the iteration space (containing at most Chunk_size iterations)
is partitioned again to keep balance among devices in the final
stage of the computation. In any case, when designing our hetero-
geneous dynamic strategy we have to seek a trade-off chunk size:
big enough to fully exploit the GPU micro-architecture features
and to enable a near-optimal GPU throughput, but small enough
to provide a sufficient number of chunks able to feed both devices
while balancing the workload at the end of each dimension com-
putation. Let us note again in Fig. 5 that although the chunks of
iterations can be assigned asynchronously to the SYCL-GPU/SYCL-
CPU nodes, after the computation of all chunks by those nodes
there is a join node that synchronizes both devices.

In Section 6.3 we experimentally explore the performance
of our heterogeneous dynamic strategy when selecting different
chunk sizes for our datasets.

6. Experimental results

6.1. Experimental setting

All experiments shown in this section have been performed on
an Intel(R) Core(TM) i9-9900K CPU @ 3.60 GHz with 8 cores, an
integrated GPU (Intel UHD Graphics 630 with 24 Compute Units)
and 32 GB DDR4 RAM. OS version of the system is Ubuntu 20.04.3
LTS.

J.C. Romero, A. Navarro, A. Rodríguez et al. Future Generation Computer Systems 141 (2023) 269–283

u

C
F
m

Fig. 6. Throughput per chunk when using a dynamic partition with 10, 20, 30 and 40 chunks for the first dimension traversal of the main kernel on the SYCL-CPU
or the SYCL-GPU node (the higher the better). NBA dataset with n = 2M and d = 7.
1
a

t
t
G
c

The SYCL-GPU and SYCL-CPU kernels have been generated
sing Intel(R) oneAPI DPC++/C++ 2021.4 compiler and OpenCL 3.0

backend, while the OpenMP-CPU algorithm has been compiled
using g++ 9.3, enabling OpenMP and AVX2. Also, the SkyFlow
implementations (SkyFlow-GPU, SkyFlow-CPU, SkyFlow-CG and
SkyFlow-FG) have been compiled with the mentioned Intel(R)
oneAPI DPC++/C++ Compiler. CPU executions for OpenMP or SYCL
algorithms use 8 threads. Times are measured using the chrono
library [37]. The results shown in this section correspond to the
median of 11 runs.

We conduct the experimental evaluation of our proposals
using four real datasets, widely used in the skyline research lit-
erature: House [38], NBA [39], Covertype [40] and Weather [41].
For each dataset we can define different configurations changing
the number of dimensions and points. In particular, the number of
dimensions can go from 4 to 10 and the datasize from 1 Million to
8 Million points. This makes a total of 224 dataset configurations,
from which we will illustrate the most relevant findings in the
next sections.

6.2. Evaluation of CG-HEFT model accuracy

This section evaluates the accuracy of the time estimation
model discussed in the Coarse-Grained HEFT Heuristic detailed in
Section 5.1 and Alg. 3. Let us remember that the HEFT schedul-
ing heuristic is used by the SkyFlow-CG approach to allocate
any arriving data query on the queue that guarantees to finish
earlier. For that, it must be estimated the execution times for
computing the skyline of the incoming dataset, both under the
SYCL-GPU/OpenMP-CPU algorithms (on the GPU and CPU device,
respectively). For the evaluation of our model, we run the 224
dataset configurations first on the SYCL-GPU node (assuming that
the OpenMP-CPU node is not available), and then on the OpenMP-
PU node (assuming now that the SYCL-GPU one is not available).
or each experiment and configuration, we record the time esti-
ated by our model (Est-XXX) and the actual execution time
278
after the skyline computation (Meas-XXX), both on the GPU and
CPU devices. In Fig. 7 we show a subset of these times. For each
dataset, the subfigure on the left fixes d = 8 and changes n from
· 106 to 8 · 106. The right subfigure changes d from 4 to 10 for
fixed n = 8 · 106.
From Fig. 7 we see that the estimated and actual measured

times are very close, both on the GPU and CPU (SYCL-GPU and
OpenMP-CPU algorithms, respectively). In particular for the SYCL-
GPU results, the difference goes from [−1.2%,0.23%] for House,
[−1.6%,0.61%] for NBA, [−1.8%,0.83%] for Covertype and
[−1.9%,2%] for Weather. Now, for the OpenMP-CPU experiments
the range goes from [−6.93%,7.2%] for House, [−8.28%,9.72%]
for NBA, [−10.18%,10.45%] for Covertype and [−10.3%,10.5%]
for Weather. A negative value means the model overestimates
the actual measured time, while a positive one indicates that
the model underestimates it. Although the accuracy is slightly
worse for OpenMP-CPU compared to SYCL-GPU, our model is still
accurate enough for the CG-HEFT scheduling heuristic. We base
this claim in the fact that, for any given arriving data query the
difference between the actual execution times on each device
is much higher (from 1.5x to 4x) than the ± 10% of inaccuracy
incurred by the model when making the decision to enqueue
on one device. In other words, our model always selects the
appropriate queue.

6.3. Evaluation of the partition strategy in Fine-Grained heteroge-
neous SkyFlow

In this section we analyze the performance of the heteroge-
neous dynamic partition strategy proposed in Section 5.2 whose
goal is to find the near-optimal workload assigned to the SYCL-
GPU and SYCL-CPU nodes in order to optimize the throughput in
he SkyFlow-FG approach. As discussed in the mentioned section,
his strategy asynchronously assigns chunks of iterations to the
PU and CPU devices for each traversal d of the main loop. The
ritical design issue is to find a chunk size big enough to ensure

J.C. Romero, A. Navarro, A. Rodríguez et al. Future Generation Computer Systems 141 (2023) 269–283

a
a
b
w
s
s
d
s
t
n
w
S
t
p
o

r
d
d
a
t
a
T
d
i
u
c
n
i
t
s
d
a
t
c
s

Fig. 7. Estimated vs actual measured times for the SYCL-GPU and OpenMP-CPU algorithms and four datasets (the lower the better).
near-optimal GPU throughput, but small enough to provide
sufficient number of chunks able to feed both devices while
alancing the workload for each traversal of the d loop. In Fig. 6
e showed the evolution of the throughput on each device when
etting different number of chunks (and therefore different chunk
izes) in a dynamic partitioning on a configuration of the NBA
ataset. Now in Fig. 8, for the same dataset configuration, we
how the average throughput when running the dynamic parti-
ioning only on the SYCL-CPU node (ThCPU), only on the SYCL-GPU
ode (ThGPU), and compare them with the average throughput
hen running the heterogeneous dynamic partitioning on the
YLC-CPU+SYCL-GPU nodes (ThCPU+GPU). Also, we depict an ideal
hroughput (Ideal) computed as the aggregation of the through-
uts on the CPU and GPU without partitioning, so the partitioning
verhead and load unbalance between devices is factored out.
As explained in Section 5.2, whereas the ThCPU is constant

egardless the number of chunks, the ThGPU tends to slightly
egrade when increasing the number of chunks (i.e., when re-
ucing the chunk size). The GPU throughput degrades slightly:
round 2% when the number of chunks is doubled. Interestingly,
he heterogeneous ThCPU+GPU increases from 10 to 20 chunks,
nd then it degrades slightly from 30 onward (less than 1%).
he values we see in the figure (the percentage of performance
egradation of the heterogeneous execution with respect to the
deal throughput) helps to quantify, in part, the impact of load
nbalance on the heterogeneous performance, because smaller
hunks tend to minimize the unbalance. As we see, when the
umber of chunks is small (10, i.e. bigger chunks), load unbalance
s the main factor that explains the 5.7% of performance degrada-
ion. Increasing the number of chunks to 20 (decreasing chunk
ize) reduces load unbalance to 1.95% (the sweet spot for this
ataset configuration). However, from 30 chunks onward we see
gain degradation of the heterogeneous throughput compared
o the ideal: now the minimization of the load balance is not
ompensated by the degradation of the GPU throughput due to
maller chunks. We conducted an exhaustive exploration of the
279
Fig. 8. Average throughput for the dynamic partitioning strategy in the
SkyFlow-FG approach and different number of chunks (the higher the bet-
ter). Device-only executions (ThCPU, ThGPU) are compared with heterogeneous
execution (ThCPU+GPU) and ideal throughput (Ideal). The values represent
the percentage of performance degradation of the heterogeneous CPU+GPU
execution with respect to the ideal throughput (the lower the better). NBA
dataset with 2M points and 7 dimensions.

optimal number of chunks (chunk size) for each dataset and
configuration, and the optimal values that were found are used
for the results of the SkyFlow-FG approach that we present in the
next section.

6.4. Evaluation of heterogeneous SkyFlow approaches

In this section we present the performance results of the
SkyFlow approaches that we introduce in Section 4. We measure
the performance when streaming 100 data queries and record
the median of 11 runs. One stream of data queries consist of
mixed configurations (dataset size and dimensions) of the same
dataset. As explained in Section 3.4, the performance of the

J.C. Romero, A. Navarro, A. Rodríguez et al. Future Generation Computer Systems 141 (2023) 269–283

(
b
d
T
o
C
t
S

p
S
S
a
p
p
h
b
(
a
p
q
t

o
s
G
r
n
d
n
d
t
f
S
h
o
t
c
s
s
G
b
d
a
G
t
i
m

6
g

l

Table 3
Data queries mix for scenario R; Mean times (sec.) for baselines SkyFlow-GPU and SkyFlow-CPU (the lower the better) for scenarios
R and U in our four datasets.
Dataset R: GPU-

CPU queries
R: SkyFlow-
GPU time

R: SkyFlow-
CPU time

U: SkyFlow-
GPU time

U: SkyFlow-
CPU time

NBA 44–56 2596.70 2464.87 4659.91 8719.60
House 38–62 894.04 890.81 701.56 4841.28
Covertype 13–87 3041.16 4032.88 4495.52 24311.40
Weather 22–78 1927.74 3040.70 2100.33 7438.54
t
C
a
q
H
t
p
n
d
s
w
a
r

i
t
c
i
o
C

-
i
c
r
p
e
w

w
c
t
o
d
i
s
4
r
l
q

6

a
a
F
b

skyline computation of a data query is highly irregular, heavily
depending on the dataset configuration, algorithm and device.
Thus, to thoroughly study the efficiency of our proposals, we
evaluate two streaming scenarios: Random (R) and Unbalanced
U). Whereas the Random scenario contains a random distri-
ution of data queries, the Unbalanced scenario contains only
ata queries that run faster using SYCL-GPU than OpenMP-CPU.
he second column of Table 3 provides details of the number
f data queries that are faster with SYCL-GPU and with OpenMP-
PU under the R scenario for each dataset. The table also reports
he mean times (in seconds) that the baselines SkyFlow-GPU and
kyFlow-CPU archive for the R and U stream scenarios.
The performance improvement of our heterogeneous pro-

osals: SkyFlow-CG under WC scheduling (SkyFlow-CG WC),
kyFlow-CG under HEFT scheduling (SkyFlow-CG WC) and
kyFlow-FG under optimal dynamic partitioning (SkyFlow-FG),
re presented in Fig. 9 for the two streaming scenarios (R -
atterned bars- and U -solid bars-) in our four datasets. The
erformance improvement is presented as the speedup of each
eterogeneous proposal vs. the baseline SkyFlow-GPU and the
aseline SkyFlow-CPU (see Fig. 3), for both streaming scenarios
named R-GPU, U-GPU and R-CPU, U-CPU respectively). Evalu-
ting the performance improvement of the heterogeneous im-
lementations against the homogeneous baselines helps us to
uantify the gain of heterogeneous implementations compared
o single-devices ones in complex streaming scenarios.

As we see in Fig. 9, our heterogeneous approaches always
utperform SkyFlow-GPU and SkyFlow-CPU baselines in the two
treaming scenarios and four datasets. In fact, they outperform
PU and CPU baselines up to 5.19x and 6.86x, respectively. This
esult tells us that exploiting both devices with our heteroge-
eous solutions is usually more profitable than using just one
evice. Even if the device selected for the arriving data query is
ot the optimal one (CG approaches), or even if we partition the
ata points among devices (FG approach). For the U scenario, all
he data queries are faster on the SYCL-GPU node, so the times
or the baseline SkyFlow-CPU always take longer than for the
kyFlow-GPU (see the last two columns in Table 3). Thus, any
eterogeneous approach that considers the GPU for this stream
f data queries will show an important speedup when compared
o SkyFlow-CPU (U-CPU) vs the speedup that we obtain when
ompared to SkyFlow-GPU (U-GPU) (see yellow solid bars vs blue
olid bars). Regarding the R scenario (the patterned bars), the
peedups against baseline SkyFlow-CPU (R-CPU) and SkyFlow-
PU (R-GPU) tend to be similar for NBA and House datasets,
ecause the stream of data queries takes similar time in both
atasets, while for Covertype and Weather datasets the speedup
gainst SkyFlow-CPU is higher than the speedup against SkyFlow-
PU, because the times for SkyFlow-CPU take longer than for
he SkyFlow-GPU in these cases (see third and fourth columns
n Table 3). In any case, in the next subsections we discuss the
ain findings for our heterogeneous approaches.

.4.1. Analysis of Coarse-Grained heterogeneous scheduling strate-
ies
The SkyFlow-CG is a hybrid approach that considers two sky-

ine algorithmic implementations that are optimal for each one of
280
he two devices we target in this work: SYCL-GPU and OpenMP-
PU. As illustrated in Section 3.4, in our platform the optimal
lgorithm-device depends on characteristics of the arriving data
uery. The scheduling strategies proposed in Section 4.2, WC and
EFT, allocate any arriving data query either on the SYCL-GPU or
he OpenMP-CPU queue following two different goals. The WC
olicy tries to keep the length of the queues equalized (same
umber of pending tasks) independently of which algorithm-
evice is best suited for the arriving query. By contrast, the HEFT
trategy enqueues the incoming query in the queue in which it
ill finish earlier. While WC has minimum scheduling overhead
nd ensures that the devices are not idle if there are data queries
eady, the HEFT strategy tries to optimize the system throughput.

From Fig. 9 we see that HEFT strategy always outperforms WC
n all scenarios and datasets. Although WC scheduling minimizes
he idle time on each device, it introduces a scheduling ineffi-
iency by enqueueing queries in the non-optimal device. This
nefficiency has a larger impact in the R scenario, where HEFT
utperforms WC by 2.73x, 1.67x, 3.32x and 2.36 for NBA, House,
overtype and Weather, respectively. However, in the U scenario,

HEFT outperforms WC by 1.02x, 1.04x, 1.08x and 1.07x, respec-
tively, what demonstrates that even for non favorable situations
HEFT still makes better scheduling decisions than WC. Another
remarkable finding is that in the HEFT experiments we measure
a time standard-deviation that goes from 0.17% to 0.47%, while in
the WC runs it goes from 0.85% to 6.5%. These results point to the
fact that HEFT also produces more stable executions.

Interestingly, in the most unfavorable scenario, that is U stream
ng, WC achieves improvements between 1.08x and 1.46x when
ompared to the optimal baseline SkyFlow-GPU. This corrobo-
ates the fact that from the point of view of the whole system
erformance, trying to keep both devices busy is still more ben-
ficial that leaving the CPU idle, even if the CPU runs queries for
hich it is not the best device.
To measure the efficiency of our HEFT scheduling heuristic,

e compare its performance with an Oracle approach that first
omputes offline the optimal device for each data query and uses
his information to enqueue the query. Oracle also avoids the
verhead of precomputing the expected execution time on any
evice for any incoming data query. Thus, Oracle represents the
deal peak performance for any CG scheduling policy. The results
how that the performance of HEFT is below Oracle in 6.08%,
.84%, 5.14%, 5.14% for NBA, House, Covertype and Weather,
espectively. As we see, our scheduling heuristic introduces a
ow overhead while ensuring a near-optimal scheduling of data
ueries.

.4.2. Study of Coarse-Grained vs Fine-Grained approaches
In this section we compare the performance of the SkyFlow-FG

pproach with the SkyFlow-CG HEFT, since the last one
lways outperforms SkyFlow-CGWC. Let us recall that in SkyFlow-
G, the workload of each data query is dynamically partitioned
etween the SYCL-GPU and SYCL-CPU nodes, and that the size

(and number) of data chunks must be carefully selected, as we
discussed in Section 6.3. From Fig. 9 we see that SkyFlow-CG
HEFT always outperforms SkyFlow-FG in the R scenario, because
SkyFlow-CG HEFT takes advantage of the better adaptation of

J.C. Romero, A. Navarro, A. Rodríguez et al. Future Generation Computer Systems 141 (2023) 269–283

i
S

e
e
f
t

r
i
f
m
s
1
r
f
e
q

7

o
h
i
e
b
d
F

i
t
p

Fig. 9. Performance improvement of SkyFlow proposals for the four datasets and two streaming scenarios: R for random and U for unbalanced. The improvement
s computed as a speedup vs the baseline SkyFlow-GPU (-GPU) and the baseline SkyFlow-CPU (-CPU). Oracle represents the optimal scheduling of queries for the
kyFlow-CG approach, which has been evaluated offline. The higher the better.
a
e

ach specific query to the most suitable algorithm-device. How-
ver, fine-grained work partition in SkyFlow-FG does not pay off
or the execution of queries with suboptimal performance under
he SYCL-CPU implementation.

On the other hand, in the U scenario we get some interesting
esults. In this case all the queries run faster under the SYCL-GPU
mplementation. SkyFlow-FG will achieve optimal performance
or all the queries, while SkyFlow-CG HEFT will degrade perfor-
ance when executing queries in the OpenMP-CPU node. In this
cenario SkyFlow-FG outperforms SkyFlow-CG HEFT by 1.22x,
.5x, 1.27x and 1.37x for NBA, House, Covertype and Weather,
espectively. In other words, when the incoming data queries run
aster on the GPU device (SYCL-GPU) it can be advantageous to
xploit a dynamic fine grain partition of the workload of each
uery between the GPU and CPU devices.

. Conclusions

In this work we tackle the problem of computing the skyline
perator over a stream of independent data queries targeting a
eterogeneous architecture comprised of a multicore CPU and an
ntegrated GPU. For it, we propose a heterogeneous graph-based
ngine, called SkyFlow to efficiently schedule the data queries
etween the devices. We propose two approaches that adapt to
ifferent streaming scenarios: Coarse-grained (SkyFlow-CG) and
ine-grained (SkyFlow-FG).
SkyFlow-CG computes concurrently one query per device, us-

ng a hybrid approach: each device runs the algorithm best suited
o the specific features of the corresponding device. For our
latform this means that the CPU runs the state-of-the-art Hybrid
281
lgorithm - based on an OpenMP implementation-, while the GPU
xecutes the state-of-the-art SkyAlign - based on a SYCL imple-

mentation, novel in this paper-. Although both algorithms ex-
ploit work efficiency by reducing the number of dominance tests
required during the skyline computation, for the real datasets
evaluated in this paper we have found that on our system, some
of them performs better under OpenMP-CPU, while others un-
der SYCL-GPU. For the SkyFlow-CG approach we consider two
scheduling strategies: Work Conserving (SkyFlow-CG WC) and
Heterogeneous Earliest Finish Time (SkyFlow-CG HEFT). While
WC aims to keep all devices busy by enqueueing any arriving data
query on the shortest device queue, the HEFT strategy tries to op-
timize the system throughput by enqueuing the incoming query
on the device queue in which it will finish earlier. HEFT requires
estimating at runtime the computation time of an arriving query
on each device. For it, in this paper we introduce a novel model
that is based on an initial sampling of some points of the dataset,
executed under SYCL-GPU and OpenMP-CPU. Through exhaustive
evaluation we have found that the inaccuracy incurred by our
model is within± 10% of actual skyline computation times, which
is always smaller than the time difference between algorithm-
devices. As a result, our model always selects the optimal device.
In any case, in our evaluation of the scheduling strategies, HEFT
always outperforms WC in all streaming scenarios and datasets.
In particular, the HEFT strategy outperforms WC up to 3.32× in
random scenarios that contain a random mix of queries well
suited for each algorithm-device. Moreover, when we compare
the performance of our HEFT heuristic against an Oracle strategy
that computes offline the optimal device for each query, we find
that HEFT only degrades Oracle peak performance by 6% at most.

J.C. Romero, A. Navarro, A. Rodríguez et al. Future Generation Computer Systems 141 (2023) 269–283

w
S
d
g
w
a
H

p
o
s
w
w

C

C
v
t
c

D

c
t

D

A

P
F

R

This corroborates that our model-based heuristic introduces a low
overhead while ensures the optimality of the scheduling.

Secondly, the SkyFlow-FG approach dynamically partitions the
orkload of each arriving data query between the SYCL-GPU and
YCL-CPU. Through careful selection of the size (and number) of
ata chunks sent to each device, we have found that this fine-
rained partition strategy is beneficial in a streaming scenario
here the majority of data queries run faster under the SYCL
lgorithm. In this scenario SkyFlow-FG outperforms SkyFlow-CG
EFT up to 1.5×.
As a future work we plan on evaluate the efficiency of our

roposals on alternative platforms that include a discrete GPU,
r even an FPGA (another possible target of SYCL), which can be
uitable devices to collaborate in the skyline computation. Also, it
ould be interesting to extend the evaluation on other platforms
ith different combinations of SYCL compilers and backends.

RediT authorship contribution statement

Jose Carlos Romero: Investigation, Software, Validation, Writ-
ing – original draft, Visualization, Data curation. Angeles Navarro:
onceptualization, Methodology, Formal analysis, Writing – re-
iew & editing. Andrés Rodríguez: Software, Validation, Inves-
igation, Visualization. Rafael Asenjo: Conceptualization, Data
uration, Resources, Writing – review & editing.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

ata availability

Data will be made available on request.

cknowledgments

This work was partially supported by the Spanish projects
ID2019-105396RB-I00, UMA18-FEDERJA-108 and P20-00395-R.
unding for open access charge: Universidad de Málaga / CBUA.

eferences

[1] S. Borzsony, D. Kossmann, K. Stocker, The skyline operator, in: Proceedings
17th International Conference on Data Engineering, 2001, pp. 421–430,
http://dx.doi.org/10.1109/ICDE.2001.914855.

[2] S. Chester, D. Šidlauskas, I. Assent, K.S. Bøgh, Scalable parallelization
of skyline computation for multi-core processors, in: 2015 IEEE 31st
International Conference on Data Engineering, IEEE, 2015, pp. 1083–1094.

[3] K.S. Bøgh, S. Chester, I. Assent, SkyAlign: a portable, work-efficient skyline
algorithm for multicore and GPU architectures, VLDB J. 25 (6) (2016)
817–841.

[4] The Khronos SYCL Working Group, SYCL 2020 specification (revision 3),
2021.

[5] G. Castaño, Y. Faqir-Rhazoui, C. García, M. Prieto-Matías, Evaluation of
intel’s DPC++ compatibility tool in heterogeneous computing, J. Paral-
lel Distrib. Comput. 165 (2022) 120–129, http://dx.doi.org/10.1016/j.jpdc.
2022.03.017.

[6] I. Corporation, oneAPI Specification 1.0 Rev. 2, 2021, https://spec.oneapi.
io/versions/1.0-rev-2/ (Accessed: 05 Oct 2021).

[7] J. Reinders, B. Ashbaugh, J. Broadman, M. Kinsner, J. Pennycook, X. Tian,
Data Parallel C++: Mastering DPC++ for Programming of Heterogeneous
Systems using C++ and SYCL, A Press, 2021.

[8] K.S. Bøgh, S. Chester, D. Šidlauskas, I. Assent, Template skycube algorithms
for heterogeneous parallelism on multicore and GPU architectures, in:
Proceedings of the 2017 ACM International Conference on Management
of Data, 2017, pp. 447–462.

[9] K. Alami, N. Hanusse, P. Kamnang-Wanko, S. Maabout, The negative
skycube, Inf. Syst. 88 (2020) 101443.
282
[10] M. Voss, R. Asenjo, J. Reinders, Pro TBB: C++ Parallel Programming with
Threading Building Blocks, A Press, 2019.

[11] X. Liu, R. Lu, J. Ma, L. Chen, H. Bao, Efficient and privacy-preserving skyline
computation framework across domains, Future Gener. Comput. Syst. 62
(2016) 161–174.

[12] A. Cuzzocrea, P. Karras, A. Vlachou, Effective and efficient skyline
query processing over attribute-order-preserving-free encrypted data in
cloud-enabled databases, Future Gener. Comput. Syst. 126 (2022) 237–251.

[13] H. Liang, B. Ding, Y. Du, F. Li, Parallel optimization of qos-aware big service
processes with discovery of skyline services, Future Gener. Comput. Syst.
125 (2021) 496–514.

[14] S. Wang, L. Huang, L. Sun, C.-H. Hsu, F. Yang, Efficient and reliable service
selection for heterogeneous distributed software systems, Future Gener.
Comput. Syst. 74 (2017) 158–167.

[15] B. Shahzaad, A. Bouguettaya, S. Mistry, A.G. Neiat, Resilient composition
of drone services for delivery, Future Gener. Comput. Syst. 115 (2021)
335–350.

[16] K.-L. Tan, P.-K. Eng, B.C. Ooi, et al., Efficient progressive skyline
computation, in: VLDB, Vol. 1, 2001, pp. 301–310.

[17] D. Papadias, Y. Tao, G. Fu, B. Seeger, Progressive skyline computation in
database systems, ACM Trans. Database Syst. 30 (1) (2005) 41–82.

[18] J. Chomicki, P. Godfrey, J. Gryz, D. Liang, Skyline with presorting, in: ICDE,
Vol. 3, 2003, pp. 717–719.

[19] K.C. Lee, B. Zheng, H. Li, W.-C. Lee, Approaching the skyline in z order, in:
VLDB, Vol. 7, 2007, pp. 279–290.

[20] I. Bartolini, P. Ciaccia, M. Patella, Efficient sort-based skyline evaluation,
ACM Trans. Database Syst. 33 (4) (2008) 1–49.

[21] S. Zhang, N. Mamoulis, D.W. Cheung, Scalable skyline computation using
object-based space partitioning, in: Proceedings of the 2009 ACM SIGMOD
International Conference on Management of Data, 2009, pp. 483–494.

[22] J. Lee, S.-w. Hwang, Scalable skyline computation using a balanced pivot
selection technique, Inf. Syst. 39 (2014) 1–21.

[23] S. Park, T. Kim, J. Park, J. Kim, H. Im, Parallel skyline computation on
multicore architectures, in: 2009 IEEE 25th International Conference on
Data Engineering, IEEE, 2009, pp. 760–771.

[24] W. Choi, L. Liu, B. Yu, Multi-criteria decision making with skyline compu-
tation, in: 2012 IEEE 13th International Conference on Information Reuse
& Integration, IRI, IEEE, 2012, pp. 316–323.

[25] K.S. Bøgh, I. Assent, M. Magnani, Efficient GPU-based skyline computation,
in: Proceedings of the Ninth International Workshop on Data Management
on New Hardware, 2013, pp. 1–6.

[26] Y.-W. Peng, W.-M. Chen, Parallel k-dominant skyline queries in high-
dimensional datasets, Inform. Sci. 496 (2019) 538–552, http://dx.doi.
org/10.1016/j.ins.2019.01.039, URL https://www.sciencedirect.com/science/
article/pii/S0020025519300490.

[27] X. Lin, Y. Yuan, W. Wang, H. Lu, Stabbing the sky: Efficient skyline
computation over sliding windows, in: 21st International Conference on
Data Engineering, ICDE’05, IEEE, 2005, pp. 502–513.

[28] Y. Tao, D. Papadias, Maintaining sliding window skylines on data streams,
IEEE Trans. Knowl. Data Eng. 18 (3) (2006) 377–391.

[29] M. Morse, J.M. Patel, W.I. Grosky, Efficient continuous skyline computation,
Inform. Sci. 177 (17) (2007) 3411–3437.

[30] T. De Matteis, S. Di Girolamo, G. Mencagli, Continuous skyline queries
on multicore architectures, Concurr. Comput.: Pract. Exper. 28 (12) (2016)
3503–3522.

[31] H. Lu, Y. Zhou, J. Haustad, Efficient and scalable continuous skyline
monitoring in two-tier streaming settings, Inf. Syst. 38 (1) (2013) 68–81.

[32] S. Sun, Z. Huang, H. Zhong, D. Dai, H. Liu, J. Li, Efficient monitoring of
skyline queries over distributed data streams, Knowl. Inf. Syst. 25 (3)
(2010) 575–606.

[33] G. Mencagli, M. Torquati, M. Danelutto, Elastic-PPQ: A two-level autonomic
system for spatial preference query processing over dynamic data streams,
Future Gener. Comput. Syst. 79 (2018) 862–877.

[34] R. Chandra, L. Dagum, D. Kohr, R. Menon, D. Maydan, J. McDonald, Parallel
programming in OpenMP, Morgan kaufmann, 2001.

[35] R. Farber, CUDA Application Design and Development, Elsevier, 2011.
[36] H. Topcuoglu, S. Hariri, M.-Y. Wu, Performance-effective and low-

complexity task scheduling for heterogeneous computing, IEEE Trans.
Parallel Distrib. Syst. 13 (3) (2002) 260–274, http://dx.doi.org/10.1109/71.
993206.

[37] Chrono library, 2022, https://en.cppreference.com/w/cpp/chrono (Ac-
cessed: 05 April 2022).

[38] Dataset house, 2021, http://usa.ipums.org/usa/ (Accessed: 20 Sept 2021).
[39] Dataset NBA, 2021, http://databasebasketball.com (Accessed: 20 Sept

2021).
[40] Dataset covertype, 2021, http://archive.ics.uci.edu/ml/datasets/Covertype

(Accessed: 20 Sept 2021).
[41] Dataset weather, 2021, http://cru.uea.ac.uk/cru/data/hrg/tmc/ (Accessed:

20 Sept 2021).

http://dx.doi.org/10.1109/ICDE.2001.914855
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb2
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb2
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb2
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb2
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb2
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb3
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb3
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb3
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb3
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb3
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb4
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb4
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb4
http://dx.doi.org/10.1016/j.jpdc.2022.03.017
http://dx.doi.org/10.1016/j.jpdc.2022.03.017
http://dx.doi.org/10.1016/j.jpdc.2022.03.017
https://spec.oneapi.io/versions/1.0-rev-2/
https://spec.oneapi.io/versions/1.0-rev-2/
https://spec.oneapi.io/versions/1.0-rev-2/
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb7
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb7
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb7
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb7
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb7
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb8
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb8
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb8
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb8
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb8
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb8
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb8
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb9
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb9
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb9
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb10
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb10
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb10
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb11
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb11
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb11
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb11
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb11
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb12
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb12
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb12
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb12
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb12
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb13
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb13
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb13
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb13
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb13
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb14
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb14
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb14
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb14
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb14
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb15
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb15
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb15
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb15
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb15
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb16
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb16
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb16
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb17
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb17
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb17
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb18
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb18
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb18
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb19
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb19
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb19
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb20
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb20
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb20
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb21
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb21
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb21
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb21
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb21
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb22
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb22
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb22
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb23
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb23
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb23
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb23
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb23
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb24
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb24
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb24
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb24
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb24
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb25
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb25
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb25
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb25
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb25
http://dx.doi.org/10.1016/j.ins.2019.01.039
http://dx.doi.org/10.1016/j.ins.2019.01.039
http://dx.doi.org/10.1016/j.ins.2019.01.039
https://www.sciencedirect.com/science/article/pii/S0020025519300490
https://www.sciencedirect.com/science/article/pii/S0020025519300490
https://www.sciencedirect.com/science/article/pii/S0020025519300490
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb27
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb27
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb27
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb27
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb27
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb28
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb28
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb28
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb29
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb29
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb29
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb30
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb30
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb30
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb30
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb30
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb31
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb31
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb31
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb32
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb32
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb32
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb32
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb32
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb33
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb33
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb33
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb33
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb33
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb34
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb34
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb34
http://refhub.elsevier.com/S0167-739X(22)00382-X/sb35
http://dx.doi.org/10.1109/71.993206
http://dx.doi.org/10.1109/71.993206
http://dx.doi.org/10.1109/71.993206
https://en.cppreference.com/w/cpp/chrono
http://usa.ipums.org/usa/
http://databasebasketball.com
http://archive.ics.uci.edu/ml/datasets/Covertype
http://cru.uea.ac.uk/cru/data/hrg/tmc/

J.C. Romero, A. Navarro, A. Rodríguez et al. Future Generation Computer Systems 141 (2023) 269–283

r
I
g
m
o

Jose Carlos Romero received the engineering degree
in industrial engineering in 2016 and the Master de-
gree in mechatronics engineering in 2017, both in the
University of Malaga. He obtained the Ph.D. degree
in Computer Science in the Department of computer
Architecture, University of Malaga in 2022. His re-
search interests include heterogeneous architectures
and parallel programming.

Angeles Navarro obtained a Ph.D. in Computer Science
from the Universidad de Málaga, Spain, in 2000. She
is a Full Professor in the Department of Computer
Architecture at Universidad de Málaga. She has been a
Research Visiting Scholar in the University of Illinois at
Urbana-Champaign (UIUC), the Technical University of
Munich (TUM), the EPCC at the University of Edinburgh,
the University of Bristol, and a Research Visitor in IBM
T.J. Watson Research Center at New York and in Cray
Inc at Seattle. She has served as a program commit-
tee member for several High Performance Computing

elated conferences as PPoPP, SC, ICS, PACT, IPDPS, ICPP, EuroPar, ISPA and
SC. She is the co-lider of the Parallel Programming Models and Compilers
roup at the Universidad de Málaga. Her research interests are in programming
odels for heterogeneous systems, analytical modeling, compiler and runtime
ptimizations.
283
Andrés Rodríguez obtained a Ph.D. in Computer Sci-
ence Engineering from the Universidad de Málaga,
Spain, in 2000. From 1996 to 2002, he was an Assistant
Professor in the Computer Architecture Department at
Universidad de Málaga, being an Associate Professor
since 2003. He lectures on operating system design,
mobile devices architectures and IoT. His research in-
terests are in parallel programming models, tools for
heterogeneous architectures and edge computing.

Rafael Asenjo is Professor of Computer Architecture
at the University of Málaga. He obtained a Ph.D. in
Telecommunication Engineering in 1997. He has been
using TBB since 2008 and over the last five years, he
has focused on productively exploiting heterogeneous
chips leveraging TBB as the orchestrating framework. In
2013 and 2014 he visited UIUC to work on CPU+GPU
chips. In 2015 and 2016 he also started to research into
CPU+FPGA chips while visiting the University of Bristol.
He served as General Chair for ACM PPoPP’16 and as an
Organization Committee member as well as a Program

Committee member for several HPC related conferences (PPoPP, SC, PACT, IPDPS,
HPCA, EuroPar, and SBAC-PAD). His research interests include heterogeneous
programming models and architectures, parallelization of irregular codes and
energy consumption. He co-authored the latest book (open access) on Threading
Building Blocks (Pro TBB), is oneAPI Innovator, SYCL Advisory Panel member and
ACM member.

	SkyFlow: Heterogeneous streaming for skyline computation using FlowGraph and SYCL
	Introduction
	Related work
	Theoretical Background
	Definitions
	OpenMP-CPU algorithm
	SYCL-GPU algorithm
	Initial performance assessment

	SkyFlow: Heterogeneous Skyline over a stream of data queries
	Baseline SkyFlow
	Coarse-Grained Heterogeneous SkyFlow
	Fine-Grained Heterogeneous SkyFlow

	Coarse-Grained time estimation and Fine-Grained partition
	Model for estimating Coarse-Grained execution times
	Strategy for the Fine-Grained partitioning

	Experimental results
	Experimental setting
	Evaluation of CG-HEFT Model accuracy
	Evaluation of the partition strategy in Fine-Grained Heterogeneous SkyFlow
	Evaluation of heterogeneous SkyFlow approaches
	Analysis of Coarse-Grained heterogeneous scheduling strategies
	Study of Coarse-Grained vs Fine-Grained approaches

	Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References

