
 -i-

Distributed Algorithms for
Skyline Computation using
Apache Spark

Papanikolaou Ioanna

SID: 3308170016

SCHOOL OF SCIENCE & TECHNOLOGY

A thesis submitted for the degree of

Master of Science (MSc) in Data Science

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Hellenic University: IHU Open Access Repository

https://core.ac.uk/display/328007006?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

-ii-

DECEMBER 2018

THESSALONIKI – GREECE

Distributed Algorithms for
Skyline Computation using
Apache Spark

Papanikolaou Ioanna

SID: 3308170016

Supervisor: Prof. Apostolos Papadopoulos

Supervising Committee Mem-

bers:

Assoc. Prof. Name Surname

Assist. Prof. Name Surname

SCHOOL OF SCIENCE & TECHNOLOGY

A thesis submitted for the degree of

Master of Science (MSc) in Data Science

 -iii-

DECEMBER 2018

THESSALONIKI – GREECE

Abstract

This dissertation was written as a part of the MSc in Data Science at the International

Hellenic University. During the last decade, database technologies have been studied ex-

tensively to comply to the Big Data era and the demands for results that lead to complex,

decision making processes. The implementation of an efficient skyline computation al-

gorithm has gained a lot of attention because it offers interesting results from multi-crite-

ria queries. In this thesis, different skyline algorithms are implemented in the Apache

Spark platform and their performance in a distributed environment is evaluated and dis-

cussed.

Ioanna Papanikolaou

07/12/2018

 -v-

Contents

ABSTRACT ... III

CONTENTS ... V

1 INTRODUCTION .. 7

1.1 THE SKYLINE PROBLEM .. 7

1.2 THE MAXIMAL VECTOR COMPUTATION AND THE PARTIALLY ORDERED SET 8

1.3 SKYLINE COMPUTATION IN THE APACHE SPARK PLATFORM 10

2 LITERATURE REVIEW ON THE SKYLINE CALCULATION 11

2.1 SKYLINE COMPUTATION IN DISTRIBUTED ENVIRONMENTS 17

2.1.1 Distributed computing systems ... 17

2.1.2 Distributed file systems .. 18

2.1.3 Distributed skyline algorithms ... 20

2.1.4 Distributed Skyline computation in Apache Spark 24

3 SPARK .. 25

3.1 SPARK ARCHITECTURE .. 25

3.1.1 Programming Languages... 25

3.1.2 Spark Libraries... 25

3.1.3 Spark Execution .. 26

3.1.4 Cluster Managers .. 27

3.1.5 Storage Systems ... 27

3.2 SPARK PROGRAMMING ENVIRONMENT .. 27

3.2.1 RDDs ... 27

3.2.2 Application initialization .. 32

3.2.3 RDD Persistence ... 33

3.2.4 Shared Variables ... 33

4 ALGORITHMIC TECHNIQUES FOR DISTRIBUTED SKYLINE

COMPUTATION ON SPARK .. 35

-vi-

4.1 PROBLEM DESCRIPTION .. 35

4.2 ALGORITHMIC APPROACHES ... 35

4.2.1 All Local Skyline .. 35

4.2.2 Nested SQL Query using Spark SQL .. 38

4.2.3 Grid Partitioning Algorithm .. 41

4.3 SKYLINE CALCULATION TECHNIQUES .. 46

4.4 OPTIMIZATION OF THE ALGORITHMS ... 47

5 PERFORMANCE EVALUATION USING A MULTI-CORE MACHINE AND

A CLUSTER OF MACHINES .. 49

5.1 ALGORITHMS STRENGTHS AND WEAKNESSES .. 49

5.1.1 ALS ... 49

5.1.2 Nested SQL ... 50

5.1.3 Grid Partitioning .. 50

5.2 DATASET .. 50

5.3 PERFORMANCE ON STANDALONE MODE ... 53

5.4 PERFORMANCE ON A HADOOP CLUSTER .. 54

6 CONCLUSIONS AND FUTURE WORK ... 60

BIBLIOGRAPHY ... 63

APPENDIX ... 67

FIGURES TABLE .. 67

6.1 CODE ... 68

 -7-

1 Introduction

Today, after years of radical technological evolution data are everywhere. They come at

large volumes, in many forms and are easily accessible. Individuals and organizations are

challenged to adjust to this fact and change their process of decision making. A com-

pany’s manager is now able to base their decision regarding the location of a potentially

new store on collected information rather than their personal instinct. A consumer that

wishes to buy a new device, is more equipped to take the right decision when they rely

on the actual data rather than the seller’s suggestions. On the other hand, it is not always

the case that a decision can be made by simply processing data and retrieving the optimal

suggestion. A very common challenge is to process the data in a way that yields a wide

range of useful suggestions the user can review and base their decisions on.

Skyline vectors were introduced in 2001 as a way of satisfying this need and are still

widely discussed in scientific literature.

1.1 The skyline problem

The skyline as a term was introduced by Borzsonyi [1] who issued the maximal vector

computation problem in database applications. Given a set of tuples having an ordering

relation on each dimension, Skyline is a subset of all the tuples that are not dominated by

any other tuple of the original set. A tuple 𝑎 dominates another tuple 𝑏 (𝑎 ≺ 𝑏) when

the values of each of 𝑎’s attributes are bigger than or equal to the corresponding values

of 𝑏. A real-world example of Skyline exists in an online mobile-phone store. A user is

browsing the database aiming to find the best results for a non-expensive phone with an

adequately large screen size. These two characteristics are most probably highly anti-

correlated, therefore if the results of the user’s search query were ordered based on the

prices of the available phones, the user would have to ignore many of the top results due

to their small screen size and vice versa. A Skyline query, set to maximize the screen

attribute and minimize the price, would return to the user a variety of phone options with

the property that no other phone exists having the same or smaller price and the same or

bigger screen at the same time. The user could then examine their options and decide their

-8-

preference between cheaper phones with smaller screens or more expensive phones with

larger screens. An interesting property of the Skyline operator is that any point 𝑝𝑀 that

maximizes a monotone scoring function applied on the data, is included in the skyline.

Therefore, the example’s user will find the best phone according to their preference, re-

gardless of whether this preference is mostly towards cheap phones or phones with big

screens. Additionally, every point of the skyline is a maximal point of a monotone func-

tion. This means that each of the phones returned from the example’s skyline query could

match at least one user’s specific preference.

Figure 1 The price versus size skyline points

Although the term skyline calculation was not present earlier, the problem roots to the

older mathematical problem of finding the maximal vectors on a set of n d-dimensional

vectors in the Cartesian product 𝑈1 × 𝑈2 × … × 𝑈𝑑 .

1.2 The maximal vector computation and the par-
tially ordered set

Maximal vectors have grown a lot of attention to mathematicians between 1970 – 1980

because they compose a set of interesting vectors in a partially ordered set [2][3]. Partial

orders help generalizing the concept of total orders, (where a binary comparison exists

between every element, e.g. one-dimensional sets), to multidimensional sets. In a partially

ordered set, there exists a comparison between two elements, 𝑥 ≥ 𝑦, if and only if 𝑥𝑖 ≥

 -9-

𝑦𝑖 for every dimension 𝑖. Thus, not all elements of the set are comparable. The relation

≤ in a partially ordered state is reflexive, antisymmetric, and transitive. [30]

 An element 𝑥 is a maximal vector of a set when exists no 𝑦 for which 𝑦 ≥ 𝑥. For

example, between the (2,3,1), (4,2,3), (1,6,3), (2,4,3) elements of a set, (2,3,1) is the

only element which is not a maximal vector. The computational complexity of the maxi-

mal vector problem is calculated to be

• 𝐶𝑑(𝑛) ≤ 𝑂(𝑛𝑙𝑜𝑔2𝑛) for 𝑑 = 2, 3,

• 𝐶𝑑(𝑛) ≤ 𝑂(𝑛(log2 𝑛)𝑑−2) for 𝑑 ≥ 4, and

• 𝐶𝑑(𝑛) ≥ 𝑂(⌈log2 𝑛!⌉) for 𝑑 ≥ 2. [1]

The algorithms for calculating the maximal vector can be easily adjusted to return the

minimal vector of a set. The union of those two sets produces the convex hull of the set

which is relevant to several problems in areas like computer graphics, design automation

and pattern recognition.

Figure 2 Example of a 2d convex hull graph (source:

https://www.originlab.com/fileExchange/details.aspx?fid=355)

One-dimensional sets can be easily calculated after 𝑛 − 1 comparisons (𝑛 being the num-

ber of elements) using a 𝑚𝑎𝑥 operator. 2-dimensional sets can be also computed effort-

lessly by firstly pre-sorting the set according to one dimension. Thus, the skyline compu-

tation mostly concerns > 2 −dimensional datasets.

-10-

1.3 Skyline computation in the Apache Spark plat-
form

Designing an efficient skyline calculation algorithm becomes gradually more difficult as

the volume of data increases. For a limited size of data, a simple SQL query is able to

return results in a satisfying period of time. When the input of the algorithm becomes

bigger, more sophisticated algorithms must be introduced. Moreover, in the era of Big

Data, a single processing machine cannot always handle such calculations and the need

for algorithms that are designed for distributed execution are more than necessary.

 This thesis aims to implement efficient skyline calculation algorithms in Apache

Spark, a cluster-based platform for parallel and distributed programming. Those algo-

rithms are designed with respect to the skyline literature but are adjusted to the unique

architecture of Apache Spark. In chapter 2 previous research conducted on the Skyline

problem will be introduced. The literature’s algorithms, designed for single machines,

distributed environments and Apache Spark, will be analyzed while the characteristics of

a distributed computing system are set forth. Chapter 3 pertains to the Apache Spark plat-

form, focusing on Spark’s architecture and programming environment. Inside chapter 4,

the algorithms designed for this thesis are analyzed. Spark’s execution plans formed for

those algorithms are shown and optimization techniques used to improve the algorithms’

efficiency are described. In chapter 5 the algorithms’ performance in a single unit and in

the Hadoop environment is recorded, discussing each algorithms’ results. The final chap-

ter contains the thesis’ conclusions regarding the Spark architecture’s effect on the pro-

cess of designing an efficient Skyline calculation algorithm as well as suggestions for

future work.

 -11-

2 Literature review on the sky-
line calculation

Stephan Borzsonyi et al. [1] were the first to propose several algorithms for constructing

a skyline operator as an extension of the core SQL operators. Those algorithms were able

to consider only specified attributes of the database and their domination preference (𝑚𝑖𝑛

or 𝑚𝑎𝑥). The user of our example would be able to ignore other attributes like weight

and battery consumption and aim to minimize the price and maximize the screen size.

 Borszonyi presented a baseline Skyline nested SQL query, composed by the core SQL

operators, stating that it performs poorly on a large amount of data, and new algorithms

need to be developed for the skyline problem. The algorithms proposed are based on

block-nested loops and divide-and-conquer methods, while the use of R-trees is also

shortly introduced.

 The block-nested algorithm uses the driver’s memory to temporarily store non-dom-

inated points that are then compared and replaced (in case of domination) from an incom-

ing, previously unexamined point. Timestamps are used to determine the order of the

comparisons and temporary files to store candidate skyline points in case of memory

overloads.

 The Divide-and-Conquer algorithm recursively partitions the dataset based on the me-

dian of some dimension until a partition contains one or a few points and the skyline

computation is easily applied. The skyline of the whole dataset is obtained by recursively

merging those partitions while eliminating dominated points

SELECT * FROM Hotels h

WHERE h.city = ’Nassau’ AND NOT EXISTS(

SELECT * FROM Hotels h1 WHERE h1.city = ’Nassau’

AND h1.distance <= h.distance AND h1.price <= h.price

AND (h1.distance < h.distance OR h1.price < h.price));

Script 1: example of skyline computation using nested SQL [1]

-12-

𝑀 Input; a set of 𝑑-dimensional points

𝑅 Output; a set of 𝑑-dimensional points

𝑇 Temporary file; a set of 𝑑 −dimensional points

𝑆 Main memory; a set pf 𝑑 −dimensional points

𝑝 ≺ 𝑞 Point 𝑝 is dominated by point 𝑞

function SkylineBNL(𝑀)

begin

//initialization

𝑅 ≔ ∅, 𝑇 ≔ ∅, 𝑆 ≔ ∅

𝐶𝑜𝑢𝑛𝑡𝐼𝑛 ∶= 0, 𝐶𝑜𝑢𝑛𝑡𝑂𝑢𝑡 ≔ 0

//Scanning the database repeatedly

while ¬𝐸𝑂𝐹(𝑀) do begin

 foreach 𝑝 ∈ 𝑆 do

 if 𝑇𝑖𝑚𝑒𝑆𝑡𝑎𝑚𝑝(𝑝) = 𝐶𝑜𝑢𝑛𝑡𝐼𝑛 then 𝑠𝑎𝑣𝑒(𝑅, 𝑝), 𝑟𝑒𝑙𝑒𝑎𝑠𝑒(𝑝)

 𝑙𝑜𝑎𝑑(𝑀, 𝑝), 𝑇𝑖𝑚𝑒𝑆𝑡𝑎𝑚𝑝(𝑝) ≔ 𝐶𝑜𝑢𝑛𝑡𝑂𝑢𝑡

 𝐶𝑜𝑢𝑛𝑡𝐼𝑛 ≔ 𝐶𝑜𝑢𝑛𝑡𝐼𝑛 + 1

 foreach 𝑞 ∈ 𝑆\{𝑝} do begin

 if 𝑝 ≻ 𝑞 then 𝑟𝑒𝑙𝑒𝑎𝑠𝑒(𝑝), break

 if 𝑝 ≺ 𝑞 then 𝑟𝑒𝑙𝑒𝑎𝑠𝑒(𝑞)

 end

 if ¬𝑀𝑒𝑚𝑜𝑟𝑦𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 then begin

 𝑠𝑎𝑣𝑒(𝑇, 𝑝), 𝑟𝑒𝑙𝑒𝑎𝑠𝑒(𝑝)

 𝐶𝑜𝑢𝑛𝑡𝑂𝑢𝑡 ≔ 𝐶𝑜𝑢𝑛𝑡𝑂𝑢𝑡 + 1

 end

 if 𝐸𝑂𝐹(𝑀)then begin

 𝑀 ≔ 𝑇, 𝑇 ≔ ∅

 end

end

//Flushing the memory

foreach 𝑝 ∈ 𝑆 do 𝑠𝑎𝑣𝑒(𝑅, 𝑝), 𝑟𝑒𝑙𝑒𝑎𝑠𝑒(𝑝)

return 𝑅

end

Script 2: the BNL algorithm [1]

 -13-

During the same year Kian-Lee Tan et al. [4] proposed Bitmap and B+-tree based algo-

rithms that produced, in contrast to BNL and DC, progressive results. The first, converts

each tuple p to a sequence of 𝑚 bits. Those bits are calculated based on the total distinct

values each dimension contains throughout the dataset. The bitmaps are then stored and

processed as bit-slices. The decision over a skyline point is calculated much more effi-

ciently because the calculations are conducted on bits. Moreover, a point calculated to be

a skyline point can be instantly output as such and deleted from memory and further con-

sideration.

 The B+-tree based algorithm transforms and maps multi-dimensional into one-dimen-

sional data. B+-trees are used to index the transformations. That results to excluding

function SkylineBasic(𝑀, 𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛)

begin

if |𝑀| = 1 then return 𝑀

𝑃𝑖𝑣𝑜𝑡 ≔ 𝑀𝑒𝑑𝑖𝑎𝑛{𝑚𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛|𝑚 ∈ 𝑀}

(𝑃1, 𝑃2) ∶= 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛(𝑀, 𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛, 𝑃𝑖𝑣𝑜𝑡)

𝑆1 ≔ 𝑆𝑘𝑦𝑙𝑖𝑛𝑒𝐵𝑎𝑠𝑖𝑐(𝑃1, 𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛)

𝑆2 ≔ 𝑆𝑘𝑦𝑙𝑖𝑛𝑒𝐵𝑎𝑠𝑖𝑐(𝑃2, 𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛)

return 𝑆1⨃𝑀𝑒𝑟𝑔𝑒𝐵𝑎𝑠𝑖𝑐(𝑆1, 𝑆2, 𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛)

end

function MergeBasic(𝑆1, 𝑆2, 𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛)

begin

if 𝑆 == {𝑝} then 𝑅 ≔ {𝑞 ∈ 𝑆2|𝑝 ⊀ 𝑞}

else if 𝑆2 = {𝑞} then begin

 𝑅 ≔ 𝑆2

 foreach 𝑝 ∈ 𝑆 do if 𝑝 ≺ 𝑞 then 𝑅 ≔ ∅

end else begin

 𝑃𝑖𝑣𝑜𝑡 ≔ 𝑀𝑒𝑑𝑖𝑎𝑛{𝑝𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛−1|𝑝 ∈ 𝑆1}

 𝑆1,1, 𝑆1,2 ≔ 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛(𝑆1, 𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 − 1, 𝑃𝑖𝑣𝑜𝑡)

 𝑆2,1, 𝑆2,2 ≔ 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛(𝑆2, 𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 − 1, 𝑃𝑖𝑣𝑜𝑡)

 𝑅1 ≔ 𝑀𝑒𝑟𝑔𝑒𝐵𝑎𝑠𝑖𝑐(𝑆1,1, 𝑆2,1, 𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛)

 𝑅2 ≔ 𝑀𝑒𝑟𝑔𝑒𝐵𝑎𝑠𝑖𝑐(𝑆1,2, 𝑆2,2, 𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛)

 𝑅3 ≔ 𝑀𝑒𝑟𝑔𝑒𝐵𝑎𝑠𝑖𝑐(𝑆1,1, 𝑆2, 𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 − 1)

 𝑅 ≔ 𝑅1⨃𝑅3

end

return 𝑅

end

Script 3: Divide-and-Conquer algorithm [1]

-14-

points that are obviously dominated as well as producing some skyline points in a short

period of time.

foreach point 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑑) in the database

let 𝑥𝑖 be the 𝑞𝑖th distinct value in dimension 𝑖

𝐴 ≔ 𝐵𝑖𝑡𝑆𝑙𝑖𝑐𝑒(𝑞1, 1)

for 𝑖 = 2 to 𝑑

𝐴 ≔ 𝐴 & 𝐵𝑖𝑡𝑆𝑙𝑖𝑐𝑒(𝑞1, 𝑖)

𝐵 ≔ 𝐵𝑖𝑡𝑆𝑙𝑖𝑐𝑒(𝑞1 − 1, 1)

for 𝑖 = 2 to 𝑑

𝐵 ≔ 𝐵 | 𝐵𝑖𝑡𝑆𝑙𝑖𝑐𝑒(𝑞1 − 1, 𝑖)

𝐶 ≔ 𝐴 & 𝐵

If 𝐶 == 0

 Output 𝑥

Script 4: Bitmap algorithm [4]

Script 5: B+-tree algorithm

 -15-

At 2002 Donald Kossmann also focused on progressive skyline computation, and more

specifically on online implementations [5]. In these cases, the user focuses on receiving

the first skyline points in an efficient period and does not demand the whole skyline vector

until they investigate those points. In contrast to the Bitmap and B+-tree based algorithms,

Kossmann designs an algorithm that returns fair early results. That is, results that are

balanced and not in favor of one specific dimension. In addition, it provides the possibility

to the user to adjust their preferences while the algorithm is running (to accelerate the

return of skyline points that are neighbors of a returned one). It uses Nearest Neighbor

Script 5: B+-tree-based algorithm [4]

for 𝑖 = 1 to 𝑑

𝑓𝑖 ≔ 𝑇𝑟𝑢𝑒

𝑡𝑖 ≔ 𝑡𝑟𝑎𝑣𝑒𝑟𝑠𝑒𝑇𝑟𝑒𝑒𝑀𝑎𝑥(𝑟𝑜𝑜𝑡, 𝑖)

 𝑚𝑎𝑥𝑖 ≔ 𝑚𝑎𝑥𝑉𝑎𝑙𝑢𝑒(𝑡𝑖)

 𝑚𝑖𝑛𝑖 ≔ 𝑚𝑖𝑛𝑉𝑎𝑙𝑢𝑒(𝑡𝑖)

𝑚𝑛 ≔ 𝑚𝑎𝑥𝑖=1
𝑑 𝑚𝑖𝑛𝑖

𝑚𝑥 ≔ 𝑚𝑎𝑥𝑖=1
𝑑 𝑚𝑎𝑥𝑖

for 𝑖 = 1 to 𝑑

 if 𝑚𝑛 > 𝑚𝑎𝑥𝑖

 𝑓𝑖 ≔ 𝐹𝑎𝑙𝑠𝑒

𝑗 ≔ 1

𝑆 ≔ ∅

while there are some partitions to be searched

 for 𝑖 = 1 to 𝑑

 if 𝑚𝑎𝑥𝑖 == 𝑚𝑥

 𝑃𝑗 ≔ 𝑡𝑖

 𝑆𝑗 ≔ ∅

 𝑡𝑖 ≔ 𝑔𝑒𝑡𝑁𝑒𝑥𝑡𝐿𝑒𝑓𝑡𝐸𝑙𝑒𝑚𝑒𝑛𝑡(𝑡𝑖)

 while (𝑚𝑎𝑥𝑉𝑎𝑙𝑢𝑒(𝑡𝑖) == 𝑚𝑥)

 𝑚𝑛 ∶= max(𝑚𝑛, 𝑚𝑖𝑛𝑉𝑎𝑙𝑢𝑒(𝑡𝑖))

 𝑃𝑗 ≔ 𝑃𝑗 ∪ 𝑡𝑖

 𝑡𝑖 ≔ 𝑔𝑒𝑡𝑁𝑒𝑥𝑡𝐿𝑒𝑓𝑡𝐸𝑙𝑒𝑚𝑒𝑛𝑡(𝑡𝑖)

 𝑚𝑎𝑥𝑖 ≔ 𝑚𝑎𝑥𝑉𝑎𝑙𝑢𝑒(𝑡𝑖)

 𝑆𝑗 ≔ 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑘𝑦𝑙𝑖𝑛𝑒(𝑃𝑗)

 𝑆 ≔ 𝑆 ∪ 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑁𝑒𝑤𝑆𝑘𝑦𝑙𝑖𝑛𝑒(𝑆𝑗 , 𝑆)

 𝑗 ≔ 𝑗 + 1

 𝑚𝑥 ≔ 𝑚𝑎𝑥𝑖=1
𝑑 𝑚𝑎𝑥𝑖

 for 𝑖 = 1 to 𝑑

 if 𝑚𝑛 > 𝑚𝑎𝑥𝑖

 𝑓𝑖 ≔ 𝐹𝑎𝑙𝑠𝑒

-16-

methods to partition the dataset into regions and to exclude those regions that are evi-

dently dominated by other.

Some papers proposed alterations on the previous algorithms to further improve optimi-

zation. Dimitris Papadias, in his paper “An Optimal and Progressive Algorithm for Sky-

line Queries” [6] also uses a tree-based Nearest Neighbor technique that avoids redundant

calculations. Jan Chomicki [7] proposed pre-sorting the tuples before performing BNL,

taking into advantage the fact that in a pre-sorted dataset, a tuple cannot be dominated by

subsequent tuples. Other papers focus on different types on databases. [8] focuses on

streaming data. [9],[10] and [11] propose algorithms for uncertain data (due to measure-

ment/quantization errors, data staleness, and multiple repeated measurements etc.).

 All the above approaches offer effective results when applied on traditional RDBM

systems, where data are stored and processed from single machines. The architecture of

those machines though creates limitations regarding the volume of data they can store and

process in main memory as well as the coordination of the processes. Figure 3 shows that

since 2004, skyline computation in distributed environments is an emerging field of re-

search and will be discussed further in the next paragraph.

Input: Dataset 𝐷

 Distance function 𝑓 (e.g., Euclidean distance)

𝑇 ≔ {(−∞, ∞)}

while 𝑇 ≠ ∅ do

(𝑚𝑥 , 𝑚𝒚) ≔ 𝑡𝑎𝑘𝑒𝐸𝑙𝑒𝑚𝑒𝑛𝑡(𝑇)

 if ∃ 𝑏𝑜𝑢𝑛𝑑𝑒𝑑𝑁𝑁𝑆𝑒𝑎𝑟𝑐ℎ(𝑂, 𝐷, (𝑚𝑥, 𝑚𝑦), 𝑓)) then

 (𝑛𝑥, 𝑛𝑦) ≔ 𝑏𝑜𝑢𝑛𝑑𝑒𝑑𝑁𝑁𝑆𝑒𝑎𝑟𝑐ℎ(𝑂, 𝐷, (𝑚𝑥, 𝑚𝑦), 𝑓)

 𝑇 ≔ 𝑇 ∪ {(𝑛𝑥, 𝑚𝑦), (𝑚𝑥, 𝑛𝑦)}

 return n

 end if

end while

Script 6: NN-based algorithm [5]

 -17-

Figure 3: distributed and centralized Skyline publications per year [12]

2.1 Skyline computation in distributed environ-
ments

Before reviewing the recent research on skyline algorithms for distributed systems, it is

important to clarify what a distributed system is.

2.1.1 Distributed computing systems

While many definitions exist until now, their common ground is that distributed systems

require the use of multiple processors. This paper will follow the definition of Henri E.

Bal et la [13]:

 The subject of the distribution varies among different architectures. Some systems

distribute processing logic and elements, while others distribute tasks based on the func-

tion of the system’s hardware unit (printers, fax, etc.) Based on this definition the pro-

cessors of a distributed system do not share primary memory. This differentiates the

Definition. “A distributed computing system consists of multiple autonomous proces-

sors that do not share primary memory but cooperate by sending messages over a

communications network.”

-18-

systems’ processors from multi-processors (processors that share the same memory) and

therefore distinguishes the terms distributed and parallel processing, although in many

cases, the distributed processors use parallel computations. The types of communication

networks between the distributed systems’ processors vary among different architectures.

Closely coupled distributed systems contain processors physically near each other, there-

fore their communication cost is minimal. Loosely coupled systems are set in LAN work-

stations or even more globally set in WAN networks, like the Internet.

 Distributed systems provide many benefits as opposed to local systems. They offer

higher performance, due to the parallel execution over multiple processors depending on

the volume of the dataset and the task an application is set to execute. They provide higher

fault tolerance in the case of a processor’s failure. While the risk of this failure is low, it

can sometimes be critical and lead to data loss and require the termination and restart of

the application. Contemporary distributed systems often provide duplications of data be-

tween the processors, and a partial failure of one processor does not affect the functioning

of the others, while the lost data can be replaced instantly by their duplicates. Moreover,

some applications require exclusively the use of a distributed environment, for example

multi-national company applications and email services. [13]

2.1.2 Distributed file systems

Distributed computing systems initiated the need for sharing data mechanisms across the

multiple processors. The first limited and inconvenient approach was to use user-initiated

file transfer for remote file access. Until the early ‘80s the distributed file systems litera-

ture started to recognize the need of resembling the local filesystem user experience (net-

work transparency). A major evolution breakthrough came with LOCUS, a discontinued

distributed filesystem which was created at UCLA between 1980 – 1983. The two inno-

vative properties of LOCUS were the location transparency and the data replication, as a

fault tolerance method. [14]

The Hadoop Distributed File System

Today, one of the most preferred DFSs for distributed computing is the Hadoop Distrib-

uted File System (HDFS). Together with the Hadoop MapReduce, the Hadoop Ecosystem

was created as an open source alternative of Google’s File System and MapReduce, that

were used as a model for processing and generating large data sets.

 -19-

 HDFS follows a master/slave architecture, consisting of a Namenode, several

Datanodes, and the HDFS client. The NameNode is responsible of the namespace struc-

ture and the filesystem metadata. The Datanodes store the HDFS data in the form of

blocks in the local file systems. The blocks that are physically close are organized in

racks. The Datanodes receive commands from the Namenode for data block replication,

removal of replicas, re-registrations or shutdowns and reporting node information to the

Namenode. The HDFS client is responsible for exporting the HDFS file system interface

to applications, reading data directly from Datanodes and setting node-to-node pipelines

in which it enters data and writes the output result. HDFS uses block replication as a fault-

tolerance method assuring by default that none of the Datanodes contains more than one

replica of any block and none of the racks contains more than two replicas of the same

block.

 Hadoop MapReduce, like Google’s MapReduce, is a software framework for pro-

cessing and generating large data sets. It most effectively performs on top of the HDFS.

A job in MapReduce separates the data into chunks and using map performs parallel tasks

in each of them. The outputs of the chunks are sorted by the framework and then proceed

to the reduce tasks. The MapReduce framework forces the input and output to be formed

as < 𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒 > pairs sets. [15]

Figure 4: HDFS architecture [15]

-20-

2.1.3 Distributed skyline algorithms

Skyline computation in a distributed environment offers important advantages. The size

of the dataset is not restrictive because it does not need to fit into a single machine’s

memory. It is easily scalable; the integration of an additional node into the system requires

less cost and effort than to upgrade the core machine’s hardware. Most importantly, par-

allel processing decreases significantly the computational cost of an algorithm. Local-

based algorithms though, do not exploit the above benefits, being optimized for the hard-

ware characteristics of a single machine. The research of skyline algorithms that apply

well in distributed systems has gained a lot of attention, aiming to decrease the high pro-

cessing cost of a skyline algorithm.

 According to A. Vlachou [12], all the distributed skyline algorithms literature aims to

minimize the execution time of the algorithm taking into consideration the total pro-

cessing time, the number of queried peers and the network traffic of the execution and the

contradiction towards each other.

 A baseline approach proposes the horizontal partitioning of the dataset into chunks

and locally calculating the skyline points of each chunk. The results are then collected by

the coordinator which calculates the final skyline tuples. This approach, called all local

skylines (ALS) [16] does not guarantee that the local skylines are few enough to fit and

be processed in main memory. Additionally, the algorithm calculates and transfers all the

local skylines, without using smart methods to distinguish those that are dominated by

tuples of another partition. This leads to expensive bandwidth consumption. The effec-

tiveness of this approach depends on the local and centralized skyline algorithms used.

 In 2006, Zhiyong Huang et al. was the first to research skyline algorithms in non-

centralized, share-nothing systems [17]. His paper concerned constrained skyline query-

ing in distributed mobile systems and more specifically in wireless mobile ad hoc net-

works (MANETs). By using a breadth-first approach, the device that produces the query,

sends it to all its neighbors which then return their local skylines and transfer the query

to their neighbors. If a depth-first approach is used, the querying device sends the query

to only one of its neighbors which propagates it to one of their neighbors. The skyline

tuples are collected once the device does not find another neighbor and are being merged

 -21-

through the same path. For further traffic optimization, along with the query, a significant

tuple is sent to the next device to help pruning their local dataset.

Vlachou et al. introduced Skypeer [18], a subspace skyline query algorithm for peer-to-

peer systems that consist of many peers and fewer super-peers (peers with enhanced ca-

pabilities). The algorithm aims to decrease the workload of the simple peers by relying

on the super-peers. The term ext-domination and ext-skyline are presented. Ext-domina-

tion of a tuple q by a tuple p exists when 𝑝[𝑖] > (instead of ≥) 𝑞[𝑖] for each dimension 𝑖

of the set. It also uses mapping functions and thresholds to further optimize the algorithm.

algorithm local_skyline(𝑝𝑜𝑠𝑜𝑟𝑔, 𝑡𝑝𝑓𝑙𝑡)

input: 𝑝𝑜𝑠𝑜𝑟𝑔 is the location of the query originator

 𝑑 is the distance of interest

 𝑡𝑝𝑓𝑙𝑡 is the filtering tuple

Output: reduced local skyline and updated filtering tuple

If (𝑚𝑖𝑛𝑑𝑖𝑠𝑡(𝑝𝑜𝑠𝑜𝑟𝑔, 𝑀𝐵𝑅𝑖) > 𝑑) return;

𝑠𝑘𝑖𝑝 ∶= 𝑇𝑟𝑢𝑒

foreach attribute 𝑗 of 𝑅𝑖

 If (𝑡𝑝𝑓𝑙𝑡 . 𝑝𝑗 > 𝑙𝑗) 𝑠𝑘𝑖𝑝 ≔ 𝐹𝑎𝑙𝑠𝑒 break;

if (𝑠𝑘𝑖𝑝) return; else 𝑆𝐾𝑖 ≔ ∅

foreach tuple 𝑡𝑝𝑗 in 𝑅𝑖

 if (𝑑𝑖𝑠𝑡(𝑝𝑜𝑠𝑜𝑟𝑔, 𝑡𝑝𝑗) > 𝑑) continue;

 𝑜𝑢𝑡 ∶= 𝐹𝑎𝑙𝑠𝑒

 foreach skyline point 𝑠𝑝𝑘 in 𝑆𝐾𝑖

 if ∀𝑙 > 1, 𝑠𝑝𝑘 . 𝑖𝑑𝑙 < 𝑡𝑝𝑗 . 𝑖𝑑𝑙) 𝑜𝑢𝑡 ≔ 𝑇𝑟𝑢𝑒 break;

 if (! 𝑜𝑢𝑡) add 𝑡𝑝𝑗 into 𝑆𝐾𝑖

𝑖𝑑𝑥 ∶= 𝑛𝑢𝑙𝑙, 𝑉𝐷𝑅𝑀 ≔ 0

foreach skyline point 𝑠𝑝𝑘 in 𝑆𝐾𝑖

 if (∀𝑙, 𝑡𝑝𝑓𝑙𝑡 . 𝑝𝑡 < 𝑠𝑝𝑘. 𝑝𝑙) remove 𝑠𝑝𝑘 from 𝑆𝐾𝑖

 else if (𝑉𝐷𝑅𝑘 > 𝑉𝐷𝑅𝑚) 𝑖𝑑𝑥 ≔ 𝑘, 𝑉𝐷𝑅𝑚 = 𝑉𝐷𝑅𝑘

if (𝑉𝐷𝑅𝑚 > 𝑉𝐷𝑅𝑓𝑙𝑡) 𝑡𝑝𝑓𝑙𝑡 = 𝑡𝑝𝑖𝑑𝑧

Script 7: Zhiyong Huang’s algorithm [17]

-22-

The paper of Bin Cui et al. presents PaDSkyline [19], which aims to optimize distributed

constrained skyline queries in a network environment without assuming any overlay

structures. PaDSkyline at first uses MBR (n-dimensional minimum bounding box of the

local relation Ri) to partition the dataset into incomparable groups and eliminate groups

that disjoint with the query’s constrains.

Algorithm 1 local subspace skyline computation

input: 𝑈 is the location of the query originator

𝑆𝐾𝑌𝑈 ≔ {∅}

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ∶= 𝑀𝐴𝑋_𝐼𝑁𝑇

𝑝 ≔ 𝑛𝑒𝑥𝑡 𝑝𝑜𝑖𝑛𝑡 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑓(𝑝)

while (𝑓(𝑝) < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) do

 if 𝑝 is not dominated by any point in 𝑆𝐾𝑌𝑈 based on 𝑈 then

 remove from 𝑆𝐾𝑌𝑈 the points dominated by 𝑝

 𝑆𝐾𝑌𝑈 ≔ 𝑆𝐾𝑌𝑈 ∪ {𝑝}

 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ≔ 𝑚𝑖𝑛𝑝𝑖∈𝑆𝐾𝑌𝑈
(𝑑𝑖𝑠𝑡𝑈(𝑝𝑖))

 end if

 𝑝 ≔ 𝑛𝑒𝑥𝑡 𝑝𝑜𝑖𝑛𝑡

end while

return 𝑆𝐾𝑌𝑈

Algorithm 2 Super-peer merging of subspace skylines

input: 𝑈 denotes the query dimensions

𝑆𝐾𝑌𝑈 ≔ {∅}

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ∶= 𝑀𝐴𝑋_𝐼𝑁𝑇

𝑆𝐾𝑈𝑈1
… 𝑆𝐾𝑌𝑈𝑁𝑠𝑝

 the super-peers’ set of local subspace skyline points

𝑆𝐾𝑌𝑈𝑎
≔ the list whith the minimum first element

𝑝 ≔ next point based on 𝑆𝐾𝑌

𝑝 ≔ 𝑛𝑒𝑥𝑡 𝑝𝑜𝑖𝑛𝑡 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑓(𝑝)

while (𝑓(𝑝) < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) do

 if 𝑝 is not dominated by any point in 𝑆𝐾𝑌𝑈 based on 𝑈 then

 remove from 𝑆𝐾𝑌𝑈 the points dominated by 𝑝

 𝑆𝐾𝑌𝑈 ≔ 𝑆𝐾𝑌𝑈 ∪ {𝑝}

 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ≔ 𝑚𝑖𝑛𝑝𝑖∈𝑆𝐾𝑌𝑈
(𝑑𝑖𝑠𝑡𝑈(𝑝𝑖))

 end if

 𝑝 ≔ 𝑛𝑒𝑥𝑡 𝑝𝑜𝑖𝑛𝑡 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑆𝐾𝑌

end while

return 𝑆𝐾𝑌

Script 8: The Skypeer algorithms [18]

 -23-

 DSL (Distributed SkyLine) proposed by Wu et al. [20] partitions the tuples based on

regions using a multi-level hierarchy. The low-level partitions calculate the local skylines

which are then merged to the higher-level partition. The data partitioning is determined

by CAN, a distributed, decentralized P2P infrastructure, based on a logical d-dimensional

Cartesian coordinate space, which incorporates a distributed hash table (DHT) for point

and server multi-dimensional indexing. Next an intra-group query execution takes place

in each group.

Algorithm icmpPartition(𝑆, 𝐶)

input: 𝑆 is the set of data sites

 𝐶 is the set of constrains in the skyline query

Output: an incomparable partition of 𝑆

foreach 𝑆𝑖 ∈ 𝑆

 𝑟𝑀𝐵𝑅𝑖 ≔ 𝑀𝐵𝑅𝑖 ∩ 𝐶𝑖

 If (𝑟𝑀𝐵𝑅𝑖 == ∅) 𝑆 ≔ 𝑆 − {𝑆𝑖}

∏ 𝑆 = {{𝑆1′}} // 𝑆1′ is the current 1st element in 𝑆

foreach 𝑆𝑖 ∈ 𝑆 − {𝑆1′}

 𝑆𝑖̅ = ∅

 foreach 𝑆𝑖 ∈ ∏ 𝑆

 if (∃𝑆𝑗 ∈ 𝑆𝑖 𝑠. 𝑡. 𝑆𝑗 𝑎𝑛𝑑 𝑆𝑖 𝑎𝑟𝑒 𝑛𝑜𝑡 𝑖𝑛𝑐𝑜𝑚𝑝𝑎𝑟𝑎𝑏𝑙𝑒)

 ∏ 𝑆 = ∏ 𝑆 − {𝑆𝑖}; 𝑆𝑖̅ = 𝑆𝑖̅ ∪ 𝑆𝑖

 ∏ 𝑆 = ∏ 𝑆 ∪ {{𝑆𝑖} ∪ 𝑆𝑖̅}

Script 9.1: group partitioning phase of PaDSkyline [19]

Algorithm groupSkyline(𝐶, 𝑆𝑜𝑟𝑔, 𝑝𝑙𝑎𝑛)

input: 𝑆𝑜𝑟𝑔 is the query originator site identifier

 𝐶 is the set of constrains in the skyline query

 𝑝𝑙𝑎𝑛 is the query execution plan in the group

Output: the constrained skyline within the group

Compute local skyline 𝑅𝑔 and get the initial filtering points set 𝐹𝑐

Send 〈𝐶, 𝑆𝑔, 𝑝𝑙𝑎𝑛′, 𝐹𝑐〉 to next site(s) in 𝑝𝑙𝑎𝑛

repeat

 Receive result reply from a group member 𝑆𝑖

 Merge 𝑆𝑖 . 𝑅𝑖 with 𝑅𝑔, remove duplicates and false positives

until all group members have replied

return 𝑅𝑔 to 𝑆𝑜𝑟𝑔

Script 9.2: local skyline execution of PaDSkyline [19]

-24-

Wang et al.’s objective was the proposition of effective distributed skyline queries in

BATON networks. The peers organized in a binary tree and each peer is responsible for

a certain region of the dataspace. Load balancing is achieved by splitting and merging

techniques and sampling. Later the algorithm was generalized further with Skyframe [22].

2.1.4 Distributed Skyline computation in Apache Spark

Although Spark is one of the most popular frameworks for parallel data processing, few

attempts have been made in literature for implementing a skyline operator in Spark.

Spark’s architecture differentiates from those of the systems used in the publications men-

tioned in the previous chapter. One of the core differences is that Spark’s nodes do not

exchange information with each other, but all the communication appears between the

cluster’s manager and the nodes. In addition, Spark implements optimization techniques

during the execution of the scripts.

In 2015, a skyline operator was introduced for Spark as part of a correlation framework

for spatio-temporal events [24]. It followed the ideas presented in [23]. A grid partition-

ing schema is created which is then represented as a bitstring. This is then used to prune

the data of the partitions. The details of this implementation are not described in literature.

In 2016 Konstantinos Paparidis [25] evaluated the processing time of angle, random and

grid partitioning skyline algorithms in Apache Spark using the standalone deploy mode.

Algorithm PaDSkyline(𝑆, 𝐶)

input: 𝑆 is the set of data sites

 𝐶 is the set of constrains in the skyline query

Output: the constrained skyline

∏ 𝑆 ≔ 𝑖𝑐𝑚𝑝𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛(𝑆, 𝐶)

foreach group 𝑔𝑖 ∈ ∏ 𝑆 in parallel

 send 〈𝐶, 𝑆𝑜𝑟𝑔, 𝑔𝑖 , 𝑝𝑙𝑎𝑛〉 to 𝑔𝑖’s group head

repeat

 receive result reply from a group 𝑔𝑖’s head

 report 𝑔𝑖 . 𝑟𝑒𝑠𝑢𝑙𝑡

until all group heads have replied

Script 9.3: The PaDSkyline algorithm [19]

 -25-

3 Spark

Apache Spark started as a research project at UC Berkeley in the AMPLab, which focuses

on big data analytics. Spark’s goal is to expand the MapReduce capabilities while still

being a highly fault-tolerant cluster computing framework. The main disadvantage of

MapReduce is that it uses acyclic data flow. Τhe distinctive jobs are run sequentially and

between them, the jobs’ input/output is read from and written to the stable memory, in-

creasing the I/O cost. In Spark, on the other hand, the data are transferred in-memory

between transformations, which makes it efficient for data mining, iterative programming

and streaming applications. [31]

3.1 Spark architecture

Figure 5 The Spark Architecture (source: https://www.youtube.com/watch?v=ZTFGwQaXJm8)

3.1.1 Programming Languages

Spark’s early versions (2012) were written exclusively in Scala, a concise and fast

programming language that is both object-oriented and functional. Scala is statically

typed and interoperates well with the Java Runtime Environment. In 2013 a Python API

was included in the Spark Core release and since 2015 Spark provides an API for the R

programming language.

3.1.2 Spark Libraries

Spark provides four libraries, each serving different purposes:

-26-

Spark SQL, first released in 2014, provides a DataFrame API for relational oper-

ators that can accept SQL queries, offering high optimization level due to Spark’s lazy

evaluation. It introduces Catalyst, an extensible optimizer through which a variety of data

sources can be used including semi-structured JSON data, and data manipulation is pos-

sible via user-defined functions. (source: https://spark.apache.org/sql/)

GraphX is used for graphs and graph-parallel computation. It offers an abstraction

extending Spark’s RDD abstraction which is discussed in the next paragraphs, named Re-

silient Distributed Graph which links records with vertices and edges in a graph and pro-

vides a set of graph computations. (source: https://spark.apache.org/graphx/)

MLlib is a library for distributed machine learning. It consists of a variety of

broadly used machine learning algorithms written in a scalable and fast manner, taking

into advantage the parallelisms of Spark. (source: https://spark.apache.org/mllib/)

Spark Streaming provides scalable and fault-tolerant processing of data

streams. It divides the input streams into batches that are then processed using Spark’s

functionalities, and lead to the result streams. This library contains a high-level abstrac-

tion called discretized stream (DStream) that is internally represented as a collection of

RDDs. (source: https://spark.apache.org/streaming/)

3.1.3 Spark Execution

Spark applications are coordinated by the SparkContext object in the user’s driver (main)

program. SparkContext is then connected to the cluster manager, which is responsible for

the resource allocation. Via the manager, Spark sets executors that run computations and

store local data on each node. Finally, it sends the driver’s code to the executors and

SparkContext sends tasks to the executors to run. (source:

https://spark.apache.org/docs/latest/cluster-overview)

Figure 6 Spark execution (source:

https://spark.apache.org/docs/latest/cluster-overview.html)

 -27-

3.1.4 Cluster Managers

The Spark engine is unable to identify the cluster manager responsible for the application.

Currently four different cluster managers are supported. The standalone manager is

integrated in Spark and it allows the application to be deployed in cluster mode if Spark

is built in each of the cluster’s nodes. Moreover, the application can be deployed locally,

in a single machine, for testing and debugging reasons. The Apache Mesos cluster

manager, which supports Hadoop MapReduce, enables building and running applications

in a distributed system by abstracting CPU, memory and other resources from machines.

Mesos can perform dynamic resource allocation between Spark and other frameworks as

well as dynamically scale the application’s partitions. Hadoop Yarn manager, which

supports Hadoop 2, separates the functionalities of resource management and job

scheduling/monitoring into different daemons. Spark can also be built on Kubernetes, an

open-source system for automating deployment, scaling, and management of

containerized applications, although this manager is still in experimental mode. (source:

https://spark.apache.org/docs/latest/cluster-overview)

3.1.5 Storage Systems

Like cluster managers, Spark is agnostic regarding the storage system used in an applica-

tion. This allows the processing of existing data as well as the combination of data from

different data sources. It can use local, distributed file systems (like HDFS), key-value

stores like S3 and Cassandra and also connect with Apache Hive as a data catalogue.

3.2 Spark programming environment

Spark’s two main abstractions are resilient distributed datasets (RDD) and parallel trans-

formations applied on them.

3.2.1 RDDs

RDDs are fault-tolerant, parallel data structures that represent a read-only collection of

objects partitioned across a set of machines. The intermediate results of RDD calculations

are stored and processed in-memory, which leads to massive improvement of the appli-

cations’ performance. A user is equipped with a large amount of available RDD opera-

tions and can control an RDD’s persistence and partitioning procedure. They are based

-28-

on coarse-grained transformations like map, reduce, filter etc. Spark uses lazy evaluation

for these transformations, seeking an efficient plan for implementing the user’s instruc-

tions; The transformations return an RDD object which represents the transformation’s

result without processing the data. Only when an action is set on an RDD, Spark creates

an execution plan for the transformations that result to it. Actions are operators that return

a result in the base memory or write into the storage system. In a case of a node failure,

Spark uses the transformation pipeline log rather than the actual data, to revive the data

in a former safe state. This improves the fault tolerance of the application. Internally,

each RDD is characterized by five main properties:

• A list of partitions

• A function for computing each split

• A list of dependencies on other RDDs

• Optionally, a Partitioner for key-value RDDs

• Optionally, a list of preferred locations to compute each split on

(source: https://github.com/apache/spark/blob/mas-

ter/core/src/main/scala/org/apache/spark/rdd/RDD.scala)

A word count example

• In the first line, a local file is parallelized into an RDD object according to the

Spark configuration. Each element of this RDD is a line of the text.

• Next, each line of the RDD is split into different words and the RDD now consists

of ‘word’ elements.

• In the last line, each word is transformed into a < 𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒 > pair where key is

the word and value is the integer ‘1’. All the pairs that share the same word (𝑘𝑒𝑦)

are then aggregated, having as value the addition of their separate values.

• Finally, all the RDD elements (different text words) are returned to the driver.

val text = sc.textFile("mytextfile.txt")

val counts = text.flatMap(line => line.split(" "))

.map(word => (word,1)).reduceByKey(_+_).collect()

Script 10: Example of a word count using Spark RDDs in Scala

 -29-

Creating an RDD object

RDD variables can be created by pointing to an existing RDD of the cluster, distributing

a main-memory Array-like object or distributing a file that is placed in the driver.

In the first two examples, the SparkContext object separates the data into blocks and cre-

ates a partition for each one of them. By default, each partition is 128MB. If the program-

mer decides to split the data into more partitions, they add the number of partitions as an

argument to the function.

RDD transformations

Transformations are functions that are acted upon an RDD object and return one or more

RDD objects. RDDs are immutable objects, which means that the transformations do not

change the parent RDD object they are acted upon but result to another child RDD(s)

containing the applied changes. By applying multiple transformations, a Directed Acyclic

Graph (DAG) of transformations is built for all the RDDs that resulted to the final RDD.

The DAG is used as a logical execution plan.

Figure 7 linage of RDD objects (source: https://jaceklaskowski.gitbooks.io/mastering-apache-

spark/content/spark-rdd-lineage.html)

One way to categorize transformations is to divide them into narrow and wide transfor-

mations. Narrow transformations only require processing the data of a single partition.

Spark interprets a sequence of narrow as a pipeline that results to a single stage to be

executed. Examples of narrow operators are map and filter. Wide transformations may

val data = Array(1, 2, 3, 4, 5)

val distData = sc.parallelize(data) // RDD from Array object

val distFile = sc.textFile("data.txt") // RDD from textFile

val newRDD = distFile.map(x => x + 1) // RDD from another RDD

Script 11: different ways of creating an RDD

-30-

need data from more partitions to be executed. Spark must execute a shuffle event to

reform the partitions of the RDD. Shuffle is used when regrouping is necessary across the

partitions. This operator is costly and complex since it containts disk I/O, data serializa-

tion, and network I/O and should be used only if necessary. Examples of wide transfor-

mations are groupByKey and reduceByKey.

Most common transformations:

General

• map(func): a function is executed for each element of an RDD object and the result

is another distributed RDD object

• filter(func): results to an RDD object that does not contain those elements that

when inputted in the function return False.

Figure 8 Example of a narrow transformation blue: partition of

parent RDD, orange: partition of child RDD (source: Transfor-

mations and actions a visual guide training http://training.data-

bricks.com/visualapi.pdf)

Figure 9 Example of a wide transformation (source: Trans-

formations and actions a visual guide training http://train-

ing.databricks.com/visualapi.pdf)

 -31-

• flatmap(func): It has the same logic as map but returns the result of a function as

a single element. For that reason, the function should return an array type rather

than a single element.

• mapPartitions(func): performs an action to the elements of each partition. The out-

put is the transformed partition.

• reduceByKey(func, [numPartitions]): The input is a set of (𝐾, 𝑉) pairs and the

function aggregates the 𝑉 values that share the same key (𝐾). The type of the

function is (𝑉, 𝑉) → 𝑉. Optionally, the result is repartitioned to the number of

partitions.

Math / Statistical

• sample(withReplacement, fraction, seed): Operates like any sample operator, re-

turning a random fraction of the elements with, or without replacement.

Set Theory / Relational

• union(otherDataset): Returns the pairs (𝐴, 𝐵) of two datasets, 𝐴 and 𝐵

• intersection(otherDataset): returns the intersection of two datasets 𝐴 and 𝐵

Data Structure / I/O

• coalesce(numPartitions): reduces the number of partition of an RDD object.

• repartition(numPartitions): Performs shuffling of the elements and repartitions

them to a given number of partitions. Source: [27]

RDD Actions

Actions are functions that input an RDD and result to non-RDD objects. They trigger the

execution of the DAG formed for this RDD object. Since they return a non-RDD object

no further transformations can be performed on an action result.

Most common actions

General

• reduce(func): Aggregates the elements of an object using a (𝐴, 𝐵) → 𝐶 function.

• collect(): Returns to the driver an array of the RDD’s elements.

• forEach (func): Forces a function to each element of the object.

Math / Statistical

• count(): Counts and returns the number of the RDD object’s elements

Data Structure / I/O

-32-

• saveAsTextFile(path): Writes the object to a local, or HDFS text file depending

on the type of the String path. Source: [27]

RDD functions

By observing the list of actions and transformations available, it is noticeable that many

operators (like map, filter, flatMap, mapPartitions) require a function argument, that

specifies how the operator should work. Those functions can be anonymous syntax func-

tions or static functions of a global singleton object.

In this example, 𝑓𝑙𝑎𝑡𝑀𝑎𝑝 takes as an argument an anonymous function: 𝑙𝑖𝑛𝑒𝑠 =>

 𝑙𝑖𝑛𝑒𝑠. 𝑠𝑝𝑙𝑖𝑡(" "). The left part of the function (before =>) is equivalent to the parameter

of a function. The right part is equivalent to the body of a function. Anonymous functions

are able to identify the returned argument when it is needed and writing a ‘return’ com-

mand is not necessary. The same example using an external function:

3.2.2 Application initialization

Regardless of the supported programming languages Spark supports, in order to build

Spark applications, the programmer needs to add the Spark distribution dependency on

the project, with respect to the compatibility of the distribution and the language versions.

Inside the script, the SparkContext, an object that tells Spark how to access the cluster, is

initialized having a SparkConf object as an argument. With SparkConf, the programmer

can adjust all the parameters needed for the Spark application.

val data = sc.textFile("spark_test.txt")

val flatmapFile = data.flatMap(lines => lines.split(" "))

Script 11.1: Anonymous syntax function

def tokenize (lines: String): Array[String] = {

return lines.split() }

val data = sc.textFile("spark_test.txt")

val flatmapFile = data.flatMap(tokenize)

Script 11.2: External function

val conf = new SparkConf().setAppName(appName).setMaster(master)

Val sc = new SparkContext(conf)

 -33-

Each Spark application can have only one SparkContext object. The appName of this

example code is the name that the programmer wants to be displayed on the cluster UI.

The master contains the URL of the cluster which is managed either by Spark, Yarn, or

Mesos. [27]

3.2.3 RDD Persistence

As aforementioned, once the RDD object is created, the user can transform or apply an

action on it. The data of the object are not loaded in memory and the transformations are

not executed until an action is applied on the object. Then Spark creates computation

tasks that run on each node machine and return only the result of the computation. If more

than one actions are performed throughout the program’s code for a single RDD object,

the tasks are re-executed to create each of the actions result. In some cases, Spark is able

to persist the intermediate data of the RDD in order not to be recalculated. To optimize

the application’s performance though, the programmer can demand that an RDD is per-

sisted in memory and un-persist it when it is no longer necessary by calling rdd.persist()

and rdd.unpersist() respectively. [27]

3.2.4 Shared Variables

A user inserts functions to each transformation they use. These functions can use variables

in the scope they are created, which in most cases is the worker node where these variables

are copied. For further optimization, Spark provides two shared variable abstractions,

broadcast variables and accumulators. The former, ensures that a variable which is

wrapped in a broadcast object is sent to the workers only once instead of packaging it

with every closure. Accumulators are variables which are read only from the driver, which

concentrates values from workers using an associative operation. They are useful for

counting and summing elements. [27]

Script 12: Spark initialization

 -35-

4 Algorithmic techniques for
distributed skyline computa-
tion on Spark

During this chapter the thesis’ algorithms for distributed skyline calculation in Apache

Spark are described and the RDD transformations and functions used are presented.

4.1 Problem description

The algorithms aim to input a dataset of multidimensional numerical points and return

the minimum skyline points taking into consideration the dominance in every dimension.

The algorithms aim to provide an efficient and scalable solution without previous

knowledge of the dataset’s distribution and size. The code is written in Scala using the

Spark API. All the proposed algorithms follow the literature’s common patterns for de-

signing distributed skyline computation algorithms. In this manner, three stages are per-

formed:

• Partition the dataset into chunks

• Perform skyline calculation in each chunk

• Gather the local skyline tuples locally and perform skyline computation in the

driver

4.2 Algorithmic approaches

4.2.1 All Local Skyline

The first algorithm is the implementation of the baseline approach for distributed skyline

calculation called ALS [16]. According to it, the skyline points of each node are calcu-

lated in parallel and are then returned to the core machine. Then a skyline calculation is

performed for all the returned points and the result is output. This approach offers mini-

mum interference for optimization reasons from the programmer and relies on the opti-

mization tools of Spark.

-36-

Spark implementation

The first step of the algorithm’s implementation in Spark is the parallelization of the input

source into an RDD object. Primarily, each element of the source is a 〈𝑆𝑡𝑟𝑖𝑛𝑔〉 line con-

taining 𝑑 float numbers, separated by space (where 𝑑 is the number of the dataset’s di-

mensions). Through a sequence of map functions this element is split and the 〈𝑆𝑡𝑟𝑖𝑛𝑔〉

elements of the split are converted to 〈𝐷𝑜𝑢𝑏𝑙𝑒〉. In order to perform a parallel skyline

calculation for each partition as the algorithm dictates, 𝑚𝑎𝑝𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠 is used and the

skyline calculation method is passed as an argument.

Algorithm SparkALS

Input: 𝐷 a multidimensional database

Output: 𝑆 a set of skyline points

𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑅𝐷𝐷 ≔ 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑖𝑧𝑒 𝐷 𝑖𝑛𝑡𝑜 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠

foreach 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 in 𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑅𝐷𝐷 do in parallel

 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 ≔ 𝑔𝑒𝑡𝑆𝑘𝑦𝑙𝑖𝑛𝑒𝑃𝑜𝑖𝑛𝑡𝑠(𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛)

𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑀𝑎𝑖𝑛 ≔ 𝑐𝑜𝑙𝑙𝑒𝑐𝑡_𝑡𝑜_𝑚𝑎𝑖𝑛_𝑚𝑒𝑚𝑜𝑟𝑦(𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑅𝐷𝐷)

𝑆 ≔ 𝑔𝑒𝑡𝑆𝑘𝑦𝑙𝑖𝑛𝑒𝑃𝑜𝑖𝑛𝑡𝑠(𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑀𝑎𝑖𝑛)

return 𝑆

val rdd2 = rdd

 .map(x=>x.split(" "))

 .map(x => x.map(y => y.toDouble))

 .mapPartitions(skylineCalculation.calculate)

Figure 10 graph representation of ALS in Spark

Script 13: Pseudocode of ALS in Spark

 -37-

The result is an RDD object whose elements are arrays of 〈𝐷𝑜𝑢𝑏𝑙𝑒〉 numbers, that repre-

sent the Skyline points of each partition.

 Next, those elements are collected in main memory as an 〈𝐼𝑡𝑒𝑟𝑎𝑡𝑜𝑟〉 object and the

same skyline calculation method is executed for this object. Finally, the result is written

in a *.csv file.

There is only one action programmed, therefore, Spark execution manager creates one

job having a single stage. The DAG created from the ALS algorithm is displayed below.

val mainMemorySkylines = skylineCalculation.calculate(

 rdd2.collect().toIterator)

 val write = new writeOutputToCSV(mainMemorySkylines, "ALS.csv")

Figure 11: DAG of ALS

-38-

4.2.2 Nested SQL Query using Spark SQL

This algorithm explores the functionalities and optimization techniques of Spark SQL.

An SQL query for skyline calculation is passed to the Dataframe object, which is then

optimized by the Catalyst optimizer that Spark SQL contains. The result of the query is

the Skyline Dataframe.

Spark Implementation

The parallelization of the input source for this algorithm, does not create an RDD object

but the Spark SQL’s Dataframe abstraction which is handled differently. Initially, after

the Dataframe object creation, a database table is formed that includes the object’s con-

tent. The table is then used for the Skyline SQL query execution. Finally, in order to save

the query’s result in a single file, the Dataframe object is coalesced into one partition

which is then collected in the driver’s memory and written in file.

The skyline query String is formed inside the 𝑐𝑟𝑒𝑎𝑡𝑒𝑆𝑘𝑦𝑙𝑖𝑛𝑒𝑄𝑢𝑒𝑟𝑦𝑆𝑡𝑟𝑖𝑛𝑔 function.

This takes as an argument the number of the dimensions and compares each dimension

of the tuples as described in the pseudocode script.

Algorithm SparkNestedSQLSkylineCalculation

Input: 𝐷 a multidimensional database

Output: 𝑆 a set of skyline points

𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑅𝐷𝐹 ≔ 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑖𝑧𝑒 𝐷 𝑖𝑛𝑡𝑜 𝑎 𝑆𝑝𝑎𝑟𝑘 𝐷𝑎𝑡𝑎𝑓𝑟𝑎𝑚𝑒 𝑂𝑏𝑗𝑒𝑐𝑡

𝑆 ≔ 𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑅𝐷𝐹. 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑆𝑄𝐿𝑄𝑢𝑒𝑟𝑦(

 “SELECT * FROM dataframe df

 WHERE NOT EXISTS(

 SELECT * FROM dataframe df1 WHERE

 df1.i <= df.i for each dimension i

 AND (df1.i < df.i for at least one dimension i);”

)

return 𝑆

df.createOrReplaceTempView("dataset") //table creation

val datasetLength = df.columns.length //extracting the dimensions size

//executing the skyline query

val df2 = confsql.sql(createSkylineQueryString(datasetLength,false))

//writing the result to a space separated csv

df2.coalesce(1)

 .write.format("com.databricks.spark.csv")

 .option("delimiter"," ").save("./output")

 -39-

The Catalyst optimizer at first analyses the logical plan of the execution which then seeks

to optimize it into a new, more effective plan. The primal logical plan is following the

script’s instructions:

Figure 12 DAG of pre-optimization Nested SQL

def createSkylineQueryString(length: Int, header: Boolean): String = {

 var query = "SELECT * FROM dataset AS d WHERE NOT EXISTS (" +

 "SELECT * FROM dataset AS d1 WHERE "

 var i = 0

 for (i <- 0 to length -2) {

 query = query + "d1._c" + i + " <= d._c" + i + " AND "

 }

 query = query + "("

 var j = 0

 for (j <- 0 to length -3) {

 query = query + "d1._c" + j + " < d._c" + j + " OR "

 }

 query = query + "d1._c" + (length-2) + " < d._c" + (length-2) + "))"

 return query

 }

-40-

The optimized plan instead of filters uses LeftAntiJoin, a powerful operator that finds

values from one table that are not present in another table.

Figure 13 DAG of post-optimization Nested SQL

The final DAG Spark creates is a physical representation of the optimized plan.

 -41-

Figure 14 Physical representation of Nested SQL DAG

4.2.3 Grid Partitioning Algorithm

This algorithm aims to reduce the points collected in main memory. It projects the points

of the dataset into equally sized cells. Each cell may contain 0 or more points of the da-

taset.

Figure 15 Dataset separated into cells

-42-

The cells are then examined and those that certainly cannot contain skyline points are

eliminated. For the rest of the cells each partition’s skylines are calculated in parallel and

their results are merged in main memory when the final skyline points are calculated.

Grid formation

For the formation of the grid, the 𝑚𝑖𝑛 and 𝑚𝑎𝑥 values of every dimension of the database

are necessary. The programmer sets the number of divisions each dimension should have.

The matrix is then formed by calculating the boundaries of each cell for each dimension.

A point of the dataset belongs to a cell when the value of each of its dimensions lied inside

the cell’s boundaries.

Cell elimination

For a cell to be eliminated, it should be certain that another cell’s points are dominating

one-by-one all its points. In order to avoid further calculations and memory usage, the

elimination process takes into consideration only the cells’ index which reveals their rel-

ative position. For example, if the dataset has three dimensions, 𝑐𝑒𝑙𝑙1,3,1 is the first cell

in the dimension-1, third in dimension-2 and first in dimension-3.

 Based on the Skyline definition, it can be derived that:

Corollary: A cell a with index x1, x2, … , xn where n is the number of dimensions, cannot

contain skyline points if and only if there exists a cell b with index y1, y2, … , yn where

yi < xi for each dimension i and b is non-empty.

Algorithm gridMatrixCreation

Input: 𝐷: a multidimensional database

 𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝑇𝑦𝑝𝑒: the number of divisions each dimension should have

Output: 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑖𝑒𝑠: a matrix containing the boundaries of each dimension

𝑚𝑖𝑛𝑖 ≔ 𝐷𝑖 . 𝑚𝑖𝑛, 𝑚𝑎𝑥𝑖 ≔ 𝐷𝑖 . 𝑚𝑎𝑥 for each 𝐷’s dimension 𝑖

foreach dimension 𝑖 of 𝐷

 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 ≔ (𝑚𝑎𝑥𝑖 − 𝑚𝑖𝑛𝑖)/𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝑇𝑦𝑝𝑒

 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑖𝑒𝑠𝑖0 ≔ 𝑚𝑖𝑛𝑖

 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑖𝑒𝑠𝑖𝑗 ≔ 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑖𝑒𝑠𝑖,𝑗−1 + 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 for every j until 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑖𝑒𝑠𝑖𝑗 == 𝑚𝑎𝑥𝑖

return 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑖𝑒𝑠

𝑆 ≔ 𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑅𝐷𝐹. 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑆𝑄𝐿𝑄𝑢𝑒𝑟𝑦(

 “SELECT * FROM dataframe df

 WHERE NOT EXISTS(

 SELECT * FROM dataframe df1 WHERE

 df.i <= df1.i for each dimension i

 AND (df.i < df1.i for at least one dimension i);”

)

return 𝑆

 -43-

Following the corollary, an algorithm is constructed that takes as an argument the index

of all the non-empty cells and returns the eliminated cells. The algorithm contains a vol-

ume of data small enough to be executed efficiently in the driver’s machine and avoid

network and I/O cost.

After the eliminated cells are extracted, they are sent to the nodes and the points each

node contains are filtered not to be contained in those cells. Using the remaining nodes,

the skyline nodes are calculated, at first in parallel for each node, and then in main

memory.

Algorithm getEliminatedCells

Input: 𝐶: an array of the index value of every non-empty cell (𝑒. 𝑔. 𝑖𝑛𝑑𝑒𝑥 = (1,0,3)

Output: 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑𝐶𝑒𝑙𝑙𝑠: an array containing the indexes of the dominated cells

𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑𝐶𝑒𝑙𝑙𝑠 ≔ {∅}

foreach 𝑖𝑛𝑑𝑒𝑥 ∈ 𝐶

 𝑖𝑓 ∃ 𝑖𝑛𝑑𝑒𝑥2 ∈ 𝐶 such that 𝑖𝑛𝑑𝑒𝑥2. 𝑖 < 𝑖𝑛𝑑𝑒𝑥. 𝑖 for each dimension 𝑖:

 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑𝐶𝑒𝑙𝑙𝑠. 𝑎𝑑𝑑(𝑖𝑛𝑑𝑒𝑥)

return 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑𝐶𝑒𝑙𝑙𝑠

Figure 16 Dominated cells in

Grid Partitioning

-44-

Spark implementation

Once the source file is read and parallelized, the programmer sets the number of divisions

each dimension should have. Then the division boundaries of each dimension are calcu-

lated.

Using the divisions’ boundaries, each node calculates the cells their elements belong to.

Then all the not empty cells are collected from this RDD object and the dominated cells

are calculated.

Algorithm sparkGridPartitioning

Input: 𝐷 a multidimensional database

Output: 𝑆 a set of skyline points

𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑅𝐷𝐷 ≔ 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑖𝑧𝑒 𝐷 𝑖𝑛𝑡𝑜 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠

𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑖𝑒𝑠 ≔ 𝑔𝑟𝑖𝑑𝑀𝑎𝑡𝑟𝑖𝑥𝐶𝑟𝑒𝑎𝑡𝑖𝑜𝑛(𝐷, 𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝐷𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝑠)

do in parallel: append to each point of 𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑅𝐷𝐷 its cell index

𝑛𝑒𝐶𝑒𝑙𝑙𝑠 ≔ collect all the distinct cell indexes found in 𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑅𝐷𝐷

𝑒𝑙𝑖𝑚𝑖𝑛𝑎𝑡𝑒𝑑𝐶𝑒𝑙𝑙𝑠 ≔ 𝑔𝑒𝑡𝐸𝑙𝑖𝑚𝑖𝑛𝑎𝑡𝑒𝑑𝐶𝑒𝑙𝑙𝑠(𝑛𝑒𝐶𝑒𝑙𝑙𝑠)

𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝑅𝐷𝐷. 𝑓𝑖𝑙𝑡𝑒𝑟𝐼𝑛𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙(𝑑𝑒𝑙𝑒𝑡𝑒 𝑝𝑜𝑖𝑛𝑡𝑠 𝑤𝑖𝑡ℎ 𝑐𝑒𝑙𝑙 𝑖𝑛𝑑𝑒𝑥 𝑖𝑛 𝑒𝑙𝑖𝑚𝑖𝑛𝑎𝑡𝑒𝑑𝐶𝑒𝑙𝑙𝑠)

foreach 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 in 𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑅𝐷𝐷 do in parallel

 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 ≔ 𝑔𝑒𝑡𝑆𝑘𝑦𝑙𝑖𝑛𝑒𝑃𝑜𝑖𝑛𝑡𝑠(𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛)

𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑀𝑎𝑖𝑛 ≔ 𝑐𝑜𝑙𝑙𝑒𝑐𝑡_𝑡𝑜_𝑚𝑎𝑖𝑛_𝑚𝑒𝑚𝑜𝑟𝑦(𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑅𝐷𝐷)

𝑆 ≔ 𝑔𝑒𝑡𝑆𝑘𝑦𝑙𝑖𝑛𝑒𝑃𝑜𝑖𝑛𝑡𝑠(𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑀𝑎𝑖𝑛)

 val divisionType=3

 val cellGrid = new CellGrid(rdd, divisionType)

 val divisionBoundaries = cellGrid.getDivisionBoundaries()

 -45-

 Each node filters its tuples and returns only the points that are not a part of the dominated

cells.

Then, for each partition, the algorithm calculates the local skyline points using the SFS

Skyline calculation technique which is described in the next paragraph. Finally, the re-

sulted local skylines are collected into the driver and the global skyline points are calcu-

lated and extracted.

The execution plan Spark creates consists of 4 core jobs. The first two, return the min

and max values of the dataset and are executed for each dimension during the creation of

the grid boundaries. The next job is terminated once the distinct non-empty cells are ex-

tracted from the RDD object and written in main memory. The last job terminates when

each local skyline tuple is collected and is used for the final skyline calculation. Minor

jobs are not mentioned because they do not affect significantly the efficiency of the algo-

rithm.

val zippedRdd = addLocalDivisionPoints(rdd)

 .map(x => x

 .map(y => (y._1._1, y._1._2, gridCalculation.getDimensionGridCell(y))))

 .map(x => (x, x.map(y => y._3)))

 .map(x => x.swap)

 .map(x => (x._1.toList, x._2))

 .map(x => (x._1, x._2.toIterable))

def addLocalDivisionPoints(rdd:RDD[Array[Double]]) =

 {

 rdd.map(x => x.zipWithIndex)

 .map(x => x.map(y => (y, divisionPointsB.value(y._2))))

 }

val necells = zippedRdd.map(x => x._1).distinct().collect()

val dominatedCells = getDominatedCells(necells.toList)

val filteredCellsRDD = filterDominated(zippedRdd)

 .map(x => x._2.map(y => y._1).toArray)

-46-

4.3 Skyline calculation techniques

Regardless of whether the skyline points are calculated for each node in parallel, or in the

driver, the inputs and outputs of the skyline calculation are of the same object type. When

performing a node skyline calculation, the input is the points of a single partition of an

RDD object. The output is stored in the same partition before being merged with every

partition’s output in the driver. In main memory, the input is a collection of local skyline

points and after the calculation the output is written in file. Two approaches for the skyline

calculation were examined. The first, simpleSkylineCalculation compares each point of

the input with the rest. If a domination condition exists during the comparison, the dom-

inated point is deleted from the dataset. The second SFSkylineComputation, is the imple-

mentation of Ilaria Bartolini’s algorithm [29];It first sorts the dataset in ascending order

according to a monotone preference function. The first point is inserted to a candidate list

and the components of the list are compared with the rest of points. If a point dominates

one or more points of the list, that points are deleted. If the point is not dominated by any

point of the list, it is inserted in the list.

 During the first experiments, it became appreciable that SFSkylineComputation was

a lot more efficient than the simpleSkylineCalculation and was for that reason integrated

in each of the thesis’ algorithms.

Algorithm simpleSkylineCalculation

Input: 𝐷 a set of points

Output: 𝑆 a set of skyline points

𝑆 ≔ 𝐷

foreach point 𝑝1 in 𝑆 \\loop1

 foreach point 𝑝2 ≠ 𝑝1 \\loop2

 if 𝑝1. 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑠(𝑝2)

 remove 𝑝2 from 𝑆

 else if 𝑝2. 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑠(𝑝1)

 remove 𝑝1 from 𝑆

 exit loop2

return 𝑆

 -47-

4.4 Optimization of the algorithms

The Apache Spark architecture and its components’ functionalities have a key role to the

effectiveness of the algorithms. It is highly important that the algorithms are programmed

so that they take advantage of the Spark capabilities in an optimal manner.

 As aforementioned in chapter 3, a major cause of delays in a Spark program is the

shuffling operators. They result to highly expensive data movements and replications

across different nodes and should be avoided whenever possible. The cost of each

Algorithm SFSkylineCalculation

Input: 𝐷 a set of points

Output: 𝑆 a set of skyline points

Add score on each tuple of 𝐷

Sort 𝐷 according to their score

Initiate 𝑆 ∶= 𝐷(0)

foreach point 𝑝1 in 𝐷 except 𝐷(0) \\loop1

 𝑡𝑜𝐵𝑒𝐴𝑑𝑑𝑒𝑑 ≔ 𝑇𝑟𝑢𝑒

 foreach 𝑝2 in 𝑆 \\loop2

 if 𝑝1. 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑠(𝑝2)

 remove 𝑝2 from 𝑆

 else if 𝑝2. 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑠(𝑝1)

 𝑡𝑜𝐵𝑒𝐴𝑑𝑑𝑒𝑑 ≔ 𝐹𝑎𝑙𝑠𝑒

 exit loop2

 if 𝑡𝑜𝐵𝑒𝐴𝑑𝑑𝑒𝑑 == 𝑇𝑟𝑢𝑒

 𝑆. 𝑎𝑑𝑑(𝑝1)

return 𝑆

Algorithm dominates

Input: 𝑝1,𝑝2 points

Output: 𝑏𝑜𝑜𝑙𝑒𝑎𝑛𝑉𝑎𝑙𝑢𝑒 True or False

𝑏𝑜𝑜𝑙𝑒𝑎𝑛𝑉𝑎𝑙𝑢𝑒 ≔ (𝑝1. 𝑖 ≤ 𝑝2. 𝑖 for each dimension 𝑖) AND

 (𝑝1. 𝑖 < 𝑝2. 𝑖 for at least one dimension 𝑖)

Return 𝑏𝑜𝑜𝑙𝑒𝑎𝑛𝑉𝑎𝑙𝑢𝑒

-48-

shuffling operator varies, with groupByKey being the most expensive. For that reason, in

all three algorithm implementations, the -byKey algorithms are avoided. For example, in

the grid partitioning algorithm the tuples are not grouped or aggregated according to their

grid cell, but each tuple’s cell is appended to the RDD element. The non-empty cells are

extracted from the RDD object by a distinct operator which causes minor shuffling be-

tween the nodes.

 The algorithms take advantage of the Broadcast functionality of Spark. Some of the

algorithms’ operators require data that are stored in the driver’s memory. Spark requires

those data to be copied in each node in order to participate in an RDD function’s result.

When the data are broadcasted instead, they are stored in each machine rather than each

node, and the redundant memory allocation is avoided. For that reason, variables neces-

sary for some parallel calculations like the dominated grid cells and the dimension’s

boundaries are broadcasted instead of copied.

 The grid partitioning algorithm, being the most complex of the three, requires a se-

quence of actions and transformation to be executed in the same RDD objects. By default,

when Spark recognizes an action, it plans a job that contains all the transformations ap-

pearing between the RDD object’s creation and action. When those transformations ap-

pear again later in the program, Spark re-executes them resulting to unnecessary calcula-

tions. The grid partitioning algorithm uses the persist function when suitable, to maintain

the transformed object after an action is performed on it.

 One of the costliest phases of all the algorithms is the collection and skyline calcula-

tion executed in the driver. By using the simple skyline calculation, every tuple is com-

pared with every other tuple until a domination relation between them appears. In order

to collect and compute the final skyline points efficiently and not overload the driver’s

memory, an adjustment of the SFS Skyline method is used. The first tuple collected in

the driver, is inserted into an 〈𝐴𝑟𝑟𝑎𝑦𝐵𝑢𝑓𝑓𝑒𝑟〉 object. Each new collected tuple is com-

pared only with this object which is updated when a skyline point is detected or domi-

nated. The elements of the Buffered Array, after all the points are examined, form the

final skyline points of the dataset. This method achieves to avoid redundant comparisons

between the tuples.

 -49-

5 Performance evaluation us-
ing a multi-core machine and
a cluster of machines

During this chapter, the results of experiments on the three algorithmic approaches are

presented and discussed. Each approach offers different pros and cons and it is difficult

to weight their efficiency without testing them in various environments using different

input sources.

5.1 Algorithms strengths and weaknesses

5.1.1 ALS

Advantages

The All Local Skyline algorithm implements the simplest approach to distributed skyline

computation. By relying on Spark’s default partitioning method, the data do not need to

be accessed before the computation of the local skyline points. It is also highly likely that

each partition follows the same distribution with the whole dataset, which means that the

skyline points retrieved from every partition are at a certain level relative to the final

skyline points. In addition, costly shuffling operations between partitions are not present.

Likewise, the collection of those points and the driver’s skyline computation is not based

on complex procedures.

Disadvantages

The main disadvantage of ALS is that the local skyline points are calculated for each

partition without performing a prior mass elimination of points, as opposed to the grid

partitioning approach. Moreover, scaling the volume of the local skyline points that are

finally collected in main memory affects dramatically the skyline computation time.

While the computational cost of distributed calculations can be easily reduced by append-

ing more nodes in the cluster, the hardware of the central machine is restrictive to high

scalability.

-50-

5.1.2 Nested SQL

Advantages

This approach relies heavily on the optimization techniques of SparkSQL’s Catalyst op-

timizer. While single-machine SQL commands perform redundant non-scalable calcula-

tions, SparkSQL is designed to efficiently use the cluster’s distribution and optimize the

queries’ plan according to it.

Disadvantages

The Catalyst optimizer seeks to optimize the application’s queries for an effective, dis-

tributed execution. The query itself though is not always capable of transforming the

problem’s solution in the most detailed and efficient approach, unlike the RDDs and the

agility they offer to the programmer. In other words, the optimization and execution of

the algorithm’s plan is a black box to the programmer, who is provided with limited meth-

ods of affecting it.

5.1.3 Grid Partitioning

Advantages

Grid partitioning is able to perform early eliminations of tuples the volume of which de-

pends highly on the distribution of the dataset. While this adds more tasks to be executed,

the calculations for grid elimination are applied in a small volume of data in the driver,

without network delays. By filtering the eliminated cells from the RDD object the local

skyline calculations are executed more quickly in each partition and finally the tuples

returned for the main memory skyline calculation are reduced as well.

Disadvantages

It is controvertible whether the addition of the grid elimination tasks and the filtering

methods to the execution plan reduces the volume data in such level that the performance

of the algorithm increases. In addition, the programmer must optimally adjust the number

of divisions each dimension should have according to the volume and distribution of the

dataset, the characteristics of the cluster and the hardware capabilities of the driver.

5.2 Dataset

To evaluate the efficiency of the algorithms, a collection of datasets is created. Each da-

taset contains randomly generated float numbers following a specific distribution. Figures

 -51-

17-20 display the distributions used for the algorithms’ evaluation and the skyline tuples

each produces.

Figure 17 skyline points in a uniform dataset

Figure 18 skyline points in a correlated dataset

-52-

As the figures indicate, the distribution of a database highly affects the number of Skyline

points it contains. While the majority of the tuples in correlated data are dominated, in

anticorrelated data a significant number of tuples is skyline points. An efficient skyline

calculation algorithm should perform well on any type of distribution without prior

knowledge of this type.

Figure 19 skyline points in an anticorrelated dataset

Figure 20 skyline points in a gaussian dataset

 -53-

Since the thesis’ algorithms are implemented in Spark, which is a platform for parallel

and distributed data processing, the scalability of the algorithms is evaluated by applying

them on databases of various sizes, from 1.000.000 to 100.000.000 tuples.

5.3 Performance on Standalone mode

The algorithms are firstly evaluated on a single machine, with Intel Core I7 having 4 cores

and 8 threads. The data examined have 100.000 3-dimension (small), 500.000 4-dimen-

sion (medium) and 1.000.000 5-dimension (large) tuples.

Figure 21 Execution duration in standalone mode

The Nested SQL algorithm is always slower than the other two algorithms. It should be

noted that the algorithm’s results were able to be retrieved only for small and medium

data and exclusively large uniform data. When excluding Nested SQL, the graph becomes

more interesting regarding the efficiency of ALS and Grid Partitioning.

0

100

200

300

400

500

600

700

800

U
n

if
o

rm

C
o

rr
el

at
e

d

A
n

ti
co

rr
el

at
e

d

G
au

ss
ia

n

U
n

if
o

rm

C
o

rr
el

at
e

d

A
n

ti
co

rr
el

at
e

d

G
au

ss
ia

n

U
n

if
o

rm

C
o

rr
el

at
e

d

A
n

ti
co

rr
el

at
e

d

G
au

ss
ia

n
small medium large

Standalone mode - execution duration

ALS nested SQL GP

-54-

Figure 22 Execution duration of ALS and Grid Partitioning in standalone mode

The figure shows that the difference between the two algorithms in standalone mode is

small at all cases. ALS is always slightly better with the exception of large anticorrelated

data. Moreover, anticorrelated data require more time to be processed since they contain

more skyline tuples.

5.4 Performance on a Hadoop cluster

The algorithms are executed using Hadoop’s Yarn with 1.000.000 and 10.000.000 tuples,

and 4 and 8 executors. The datasets used are retrieved from the Hadoop Distributed

Filesystem, and consist of 3-dimensional tuples of each distribution type. The local sky-

line calculation and the total processing time can be compared by observing figures 23-

26. Nested SQL algorithm was not able to return results due to time-out errors.

0

50

100

150

200

250

300

350

400
U

n
if

o
rm

C
o

rr
el

at
e

d

A
n

ti
co

rr
el

at
e

d

G
au

ss
ia

n

U
n

if
o

rm

C
o

rr
el

at
e

d

A
n

ti
co

rr
el

at
e

d

G
au

ss
ia

n

U
n

if
o

rm

C
o

rr
el

at
e

d

A
n

ti
co

rr
el

at
e

d

G
au

ss
ia

n

small medium large

Standalone mode - ALS and Grid Partitioning

ALS GP

 -55-

Figure 23 Algorithms’ performance in 1000000 tuples, 4 executors

Figure 24 Algorithms’ performance in 10000000 tuples, 4 executors

0,0000

100,0000

200,0000

300,0000

400,0000

500,0000

600,0000

700,0000

uniform correlated anticorrelated gaussian

1.000.000 tuples, 4 executors

ALS time of extracting local skyline points ALS total time elapsed

GP time of extracting local skyline points GP total time elapsed

0

100

200

300

400

500

600

700

800

900

1000

uniform correlated anticorrelated gaussian

10.000.000 tuples, 4 executors

ALS time of extracting local skyline points ALS total time elapsed

GP time of extracting local skyline points GP total time elapsed

-56-

Figure 25 Algorithms’ performance in 100000 tuples, 8 executors

Figure 26 Algorithms’ performance in 10000000 tuples, 4 executors

Regarding the distribution of the datasets, it is noticed that under these circumstances it

does not affect noticeably the total execution of the algorithms.

An easy observation is that ALS is significantly more efficient in both cases. Although

Grid Partitioning offers sophisticated ways of early elimination of tuples and calculates

the local skylines in a slightly shorter period, this is achieved with a serious cost. Figure

27 shows in detail on which stages, during the execution, Grid Partitioning delays the

execution time.

0

100

200

300

400

500

600

uniform correlated anticorrelated gaussian

1.000.000 tuples, 8 executors

ALS time of extracting local skyline points ALS total time elapsed

GP time of extracting local skyline points GP total time elapsed

0

100

200

300

400

500

600

700

uniform correlated anticorrelated gaussian

10.000.000 tuples, 8 executors

ALS time of extracting local skyline points ALS total time elapsed

GP time of extracting local skyline points GP total time elapsed

 -57-

Figure 27 Grid Partitioning Stages Duration

The figure shows that although the local skyline calculation in Grid Partitioning is quicker

than in ALS, the cost of calculating each dimension’s boundaries is very high. Indeed, for

this calculation, costly 𝑚𝑖𝑛 and 𝑚𝑎𝑥 actions are performed for each tuple’s dimension,

requiring coordination between the nodes. On the other hand, the driver calculates the

dominated cells instantly, confirming that its memory and executors are adequate for this

task. Another costly procedure of Grid Partitioning is the collection of the non-empty

cells from the RDD object to driver’s memory.

 Next, the scalability of the algorithms is examined. They are executed using 8 execu-

tors in 1.000.000, 10.000.000, 50.000.000 and 100.000.000 uniform distributed tuples.

The results are displayed below.

0

20

40

60

80

100

120

140

160

180

uniform correlated anticorrelated gaussian

Grid Partitioning Stages Duration

time for division points calculation time of dominated cells calculation

time of local skyline calculation

-58-

Figure 28 Scalability of ALS and Grid Partitioning

It is clear that the performance of the ALS algorithm, unlike Grid Partitioning, is almost

not affected by the volume of the input data, despite the fact that more skylines tuples are

returned to the driver program.

 The overall results were in favor of the ALS algorithm and along with the insights

gained from multiple attempts before reaching to the final structure of the algorithms can

indicate some inferences:

• Apache Spark’s architecture allows pipelined calculations performed on each

node to be executed in a fairly short time. This can be noticed by the minor dif-

ference of ALS and Grid Partitioning when computing the local skyline calcula-

tions, although Grid Partitioning’s tuples at that point are significantly reduced.

• Multiple actions add a cost to the execution of the algorithms that should not be

neglected. The calculation of the grid cells almost doubles the duration of the ex-

ecution due the 𝑚𝑖𝑛 and 𝑚𝑎𝑥 values extracted for each dimension of the dataset.

The collection of the non-empty from the RDD object to the driver cells is also

very time consuming.

• Persist, unpersist and broadcast functions increased the efficiency of the algo-

rithms.

• Shuffling operators, on the other hand, increase the execution time and should

only be used if completely necessary.

0

500

1000

1500

2000

2500

3000

3500

1000000 tuples 10000000 tuples 50000000 tuples 100000000 tuples 500000000 tuples

Scalability of ALS and GP

ALS GP

 -59-

• SparkSQL’s optimizer was not able to adapt efficiently to the given query. While

the SQL approach was able to handle adequately small-sized datasets, it failed

during the scaling of the data, due to its expensive broadcast operations.

-60-

6 Conclusions and future work

This chapter presents the conclusions derived after the completion of the thesis and offers

ideas for potential future work.

 The objective of this dissertation was the implementation and evaluation of efficient,

scalable Skyline calculation algorithms using the Apache Spark framework and the Scala

programming language. It provided motivation for the basic acquisition of the Scala pro-

gramming environment, the Skyline calculation problem and more importantly the archi-

tecture and programming environment of the constantly evolving Apache Spark frame-

work. The algorithms designed where based on propositions from related scientific liter-

ature and where adapted to Apache Spark’s architecture.

The three algorithmic approaches implemented are ALS, Nested SQL and Grid Par-

titioning. In ALS, local skyline tuples are calculated for each node which are then merged

in main memory to result to the final skyline tuples. In nested SQL, the result is retrieved

by performing an SQL query, which is automatically optimized by Spark’s Catalyst op-

timizer. The Grid Partitioning algorithm separates the data space into cells and performs

early elimination of tuples that are contained in dominated cells. Those algorithms where

executed in both a single machine and a Hadoop environment using multiple executors.

The results have shown that ALS is the most suitable approach among the three for Sky-

line calculation on Spark, due to the simplicity of the execution’s DAG. Nested SQL has

proven inadequate on large-scale datasets while the Grid Partitioning algorithm’s cell

elimination cost was not counterbalanced by the minor cost reduction of the local Skyline

calculation. Choosing to use alterations of the SFS skyline calculation rather than the

basic skyline calculation, reduced significantly the driver’s and partitions’ calculation

time, thus is proven to be suitable for Skyline querying in Spark.

Overall, the experiments have shown that designing an efficient Spark Skyline calcu-

lation algorithm cannot entirely rely on the propositions of the existing distributed Sky-

line calculation research papers because of Spark’s distinct architecture. The lack of com-

munication between the worker nodes compels for mostly pipelined workflows and min-

imized data exchanges among the workers, and between the nodes and the driver.

 Besides the three implemented algorithms, there are many other algorithmic ap-

proaches that can be adjusted in the Spark platform and be evaluated. Angle-based Space

 -61-

Partitioning, Kian-Lee Tan’s [4] approach of transforming the tuples into bitmaps, are

just a few examples of approaches potentially useful for Spark.

The SparkSQL abstraction of Spark, could also benefit by the addition of a Skyline

query operator that is programmed to return rapid, efficient and scalable results, instead

of relying to the restrictive SQL commands. Since Spark supports streaming data, skyline

algorithms can also be designed for data of such type, allowing the application of Skyline

calculation to real world problems just like the search of a mobile phone between multiple

different stores .

 In general, distributed Skyline calculation literature, which until today consists mostly

of approaches based on peer-to-peer environments, can be enriched with publications

concerning efficient Skyline calculation on Apache Spark, and other master/worker-based

distributed systems.

 -63-

Bibliography

[1] S. Borzsony, D. Kossmann and K. Stocker, "The Skyline operator," Proceedings

17th International Conference on Data Engineering, Heidelberg, Germany,

2001, pp. 421-430. DOI=https://doi.org/10.1109/ICDE.2001.914855

[2] H. T. Kung, F. Luccio, and F. P. Preparata. 1975. On Finding the Maxima of a

Set of Vectors. J. ACM 22, 4 (October 1975), 469-476.

DOI=http://dx.doi.org/10.1145/321906.321910

[3] Christian Buchta, On the average number of maxima in a set of vectors, Infor-

mation Processing Letters, Volume 33, Issue 2, 1989, Pages 63-65.

DOI=https://doi.org/10.1016/0020-0190(89)90156-7

[4] Tan, Kian-Lee & Eng, Pin-Kwang & Chin Ooi, Beng. (2001). Efficient Progres-

sive Skyline Computation. 301-310

[5] Kossmann, Donald & Ramsak, Frank & Rost, Steffen. (2002). Shooting Stars in

the Sky. 275-286. DOI=http://dx.doi.org/10.1016/B978-155860869-6/50032-9

[6] Dimitris Papadias, Yufei Tao, Greg Fu, and Bernhard Seeger. 2003. An optimal

and progressive algorithm for skyline queries. In Proceedings of the 2003 ACM

SIGMOD international conference on Management of data (SIGMOD '03).

ACM, New York, NY, USA, 467-478.

DOI=https://doi.org/10.1145/872757.872814

[7] Chomicki, Jan & Godfrey, Parke & Gryz, Jarek & Liang, Dongming. (2003).

Skyline with presorting. Proceedings - International Conference on Data Engi-

neering. 717- 719. DOI=http://dx.doi.org/10.1109/ICDE.2003.1260846

[8] Xuemin Lin, Yidong Yuan, Wei Wang, and Hongjun Lu. 2005. Stabbing the

Sky: Efficient Skyline Computation over Sliding Windows. In Proceedings of

the 21st International Conference on Data Engineering (ICDE '05). IEEE Com-

puter Society, Washington, DC, USA, 502-513.

DOI=https://doi.org/10.1109/ICDE.2005.137

[9] Mikhail J. Atallah and Yinian Qi. 2009. Computing all skyline probabilities for

uncertain data. In Proceedings of the twenty-eighth ACM SIGMOD-SIGACT-

-64-

SIGART symposium on Principles of database systems (PODS '09). ACM, New

York, NY, USA, 279-287. DOI=https://doi.org/10.1145/1559795.1559837

[10] Jian Pei, Bin Jiang, Xuemin Lin, and Yidong Yuan. 2007. Probabilistic sky-

lines on uncertain data. In Proceedings of the 33rd international conference on

Very large data bases (VLDB '07). VLDB Endowment 15-26.

[11] X. Ding and H. Jin, "Efficient and Progressive Algorithms for Distributed

Skyline Queries over Uncertain Data," in IEEE Transactions on Knowledge and

Data Engineering, vol. 24, no. 8, pp. 1448-1462, Aug. 2012. doi=

http://dx.doi.org/10.1109/TKDE.2011.77

[12] Hose, Katja & Vlachou, Akrivi. (2012). A survey of skyline processing in

highly distributed environments. The Vldb Journal - VLDB. 21. 1-26.

DOI=http://dx.doi.org/10.1007/s00778-011-0246-6

[13] Henri E. Bal, Jennifer G. Steiner, and Andrew S. Tanenbaum. 1989. Pro-

gramming languages for distributed computing systems. ACM Comput. Surv.

21, 3 (September 1989), 261-322. DOI=http://dx.doi.org/10.1145/72551.72552

[14] Satyanarayanan, Mahadev. (1995). A Survey of Distributed File Systems.

Annual Review of Computer Science. 4. DOI=http://dx.doi.org/10.1146/an-

nurev.cs.04.060190.000445

[15] HDFS Architecture Guide (source: https://ha-

doop.apache.org/docs/r1.2.1/hdfs_design.html)

[16] L. Zhu, Y. Tao and S. Zhou, "Distributed Skyline Retrieval with Low Band-

width Consumption," in IEEE Transactions on Knowledge and Data Engineer-

ing, vol. 21, no. 3, pp. 384-400, March 2009.

DOI=http://dx.doi.org/10.1109/TKDE.2008.142

[17] Huang, Zhiyong & Jensen, Christian & Lu, Hua & Chin Ooi, Beng. (2006).

Skyline Queries Against Mobile Lightweight Devices in MANETs. Proceedings

- International Conference on Data Engineering. 2006. 66- 66.

DOI=http://dx.doi.org/10.1109/ICDE.2006.142

[18] Vlachou, C. Doulkeridis, Y. Kotidis and M. Vazirgiannis, "SKYPEER: Effi-

cient Subspace Skyline Computation over Distributed Data," 2007 IEEE 23rd

International Conference on Data Engineering, Istanbul, 2007, pp. 416-425.

DOI=http://dx.doi.org/10.1109/ICDE.2007.367887

[19] Cui, H. Lu, Q. Xu, L. Chen, Y. Dai and Y. Zhou, "Parallel Distributed Pro-

cessing of Constrained Skyline Queries by Filtering," 2008 IEEE 24th

 -65-

International Conference on Data Engineering, Cancun, 2008, pp. 546-555.

DOI=http://dx.doi.org/10.1109/ICDE.2008.4497463

[20] Wu, Ping & Zhang, Caijie & Feng, Ying & Y. Zhao, Ben & Agrawal,

Divyakant & El Abbadi, Amr. (2006). Parallelizing Skyline Queries for Scalable

Distribution. 3896. 112-130. DOI=http://dx.doi.org/10.1007/11687238_10

[21] Vlachou, Akrivi & Doulkeridis, Christos & Kotidis, Yannis. (2008). Angle-

based space partitioning for efficient parallel skyline computation. 227-238.

DOI=http://dx.doi.org/10.1145/1376616.1376642

[22] S. Wang, B. C. Ooi, A. K. H. Tung and L. Xu, "Efficient Skyline Query Pro-

cessing on Peer-to-Peer Networks," 2007 IEEE 23rd International Conference

on Data Engineering, Istanbul, 2007, pp. 1126-1135.

DOI=http://dx.doi.org/10.1109/ICDE.2007.36897

[23] Mullesgaard, K, Pederseny, JL, Lu, H & Zhou, Y 2014, Efficient Skyline

Computation in MapReduce. in Proc. 17th International Conference on Extend-

ing Database Technology (EDBT), Athens, Greece, March 24-28, 2014.. EDBT,

pp. 37-48. DOI=https://doi.org/10.5441/002/edbt.2014.05

[24] Hagedorn, Stefan & Sattler, Kai-Uwe & Gertz, Michael. (2015). A Frame-

work for Scalable Correlation of Spatio-temporal Event Data.

DOI=http://dx.doi.org/10.1007/978-3-319-20424-6_2

[25] Konstantinos Paparidis (2016), Parallel and Distributed Skyline Computa-

tion on Spark System, source=http://ikee.lib.auth.gr/record/285311/?ln=el

[26] Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tathagata Das, Michael

Armbrust, Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman,

Michael J. Franklin, Ali Ghodsi, Joseph Gonzalez, Scott Shenker, and Ion Sto-

ica. 2016. Apache Spark: a unified engine for big data processing. Commun.

ACM 59, 11 (October 2016), 56-65. DOI=https://doi.org/10.1145/2934664

[27] RDD programming Guide, source=https://spark.apache.org/docs/latest/rdd-

programming-guide.html

[28] Jacek Laskowski, Mastering Apache Spark, source=https://jaceklaskow-

ski.gitbooks.io/mastering-apache-spark/content/

[29] Bartolini, I., Ciaccia, P., & Patella, M. (2008). Efficient sort-based skyline

evaluation. ACM Trans. Database Syst., 33, 31:1-31:49.

[30] Schröder, Bernd S. W. (2003). Ordered Sets: An Introduction. Birkhäuser

Boston 2003. DOI= https://doi.org/10.1007/978-1-4612-0053-6

https://doi.org/10.1007/978-1-4612-0053-6

-66-

[31] Zaharia, Matei & Chowdhury, Mosharaf & J. Franklin, Michael & Shenker,

Scott & Stoica, Ion. (2010). Spark: Cluster Computing with Working Sets. Pro-

ceedings of the 2nd USENIX conference on Hot topics in cloud computing. 10.

10-10.

 -67-

Appendix

Figures table

Figure 1 The price versus size skyline points .. 8

Figure 2 Example of a 2d convex hull graph (source:

https://www.originlab.com/fileExchange/details.aspx?fid=355) 9

Figure 3: distributed and centralized Skyline publications per year [12] 17

Figure 4: HDFS architecture [15] ... 19

Figure 5 The Spark Architecture (source:

https://www.youtube.com/watch?v=ZTFGwQaXJm8) ... 25

Figure 6 Spark execution (source: https://spark.apache.org/docs/latest/cluster-

overview.html) ... 26

Figure 7 linage of RDD objects (source:

https://jaceklaskowski.gitbooks.io/mastering-apache-spark/content/spark-rdd-

lineage.html).. 29

Figure 8 Example of a narrow transformation blue: partition of parent RDD,

orange: partition of child RDD (source: Transformations and actions a visual

guide training http://training.databricks.com/visualapi.pdf).................................... 30

Figure 9 Example of a wide transformation (source: Transformations and actions

a visual guide training http://training.databricks.com/visualapi.pdf) 30

Figure 10 graph representation of ALS in Spark ... 36

Figure 11: DAG of ALS.. 37

Figure 12 DAG of pre-optimization Nested SQL ... 39

Figure 13 DAG of post-optimization Nested SQL ... 40

Figure 14 Physical representation of Nested SQL DAG .. 41

Figure 15 Dataset separated into cells ... 41

Figure 16 Dominated cells in Grid Partitioning .. 43

Figure 17 skyline points in a uniform dataset .. 51

Figure 18 skyline points in a correlated dataset .. 51

file:///C:/Users/Ιωάννα/Documents/ΕΡΓΑΣΙΑ-first-complete-attempt.docx%23_Toc531981885
file:///C:/Users/Ιωάννα/Documents/ΕΡΓΑΣΙΑ-first-complete-attempt.docx%23_Toc531981887
file:///C:/Users/Ιωάννα/Documents/ΕΡΓΑΣΙΑ-first-complete-attempt.docx%23_Toc531981887
file:///C:/Users/Ιωάννα/Documents/ΕΡΓΑΣΙΑ-first-complete-attempt.docx%23_Toc531981889
file:///C:/Users/Ιωάννα/Documents/ΕΡΓΑΣΙΑ-first-complete-attempt.docx%23_Toc531981889
file:///C:/Users/Ιωάννα/Documents/ΕΡΓΑΣΙΑ-first-complete-attempt.docx%23_Toc531981889
file:///C:/Users/Ιωάννα/Documents/ΕΡΓΑΣΙΑ-first-complete-attempt.docx%23_Toc531981890
file:///C:/Users/Ιωάννα/Documents/ΕΡΓΑΣΙΑ-first-complete-attempt.docx%23_Toc531981890
file:///C:/Users/Ιωάννα/Documents/ΕΡΓΑΣΙΑ-first-complete-attempt.docx%23_Toc531981891
file:///C:/Users/Ιωάννα/Documents/ΕΡΓΑΣΙΑ-first-complete-attempt.docx%23_Toc531981892
file:///C:/Users/Ιωάννα/Documents/ΕΡΓΑΣΙΑ-first-complete-attempt.docx%23_Toc531981897
file:///C:/Users/Ιωάννα/Documents/ΕΡΓΑΣΙΑ-first-complete-attempt.docx%23_Toc531981898
file:///C:/Users/Ιωάννα/Documents/ΕΡΓΑΣΙΑ-first-complete-attempt.docx%23_Toc531981899

-68-

Figure 19 skyline points in an anticorrelated dataset ... 52

Figure 20 skyline points in a gaussian dataset .. 52

Figure 21 Execution duration in standalone mode .. 53

Figure 22 Execution duration of ALS and Grid Partitioning in standalone mode

 ... 54

Figure 23 Algorithms’ performance in 1000000 tuples, 4 executors 55

Figure 24 Algorithms’ performance in 10000000 tuples, 4 executors 55

Figure 25 Algorithms’ performance in 100000 tuples, 8 executors 56

Figure 26 Algorithms’ performance in 10000000 tuples, 4 executors 56

Figure 27 Grid Partitioning Stages Duration .. 57

Figure 28 Scalability of ALS and Grid Partitioning .. 58

6.1 Code

skylineMain.scala

object skylineMain {

 def main(args: Array[String]) {

 val conf = new SparkConf().setAppName("skylineCalculator

 val sc = new SparkContext(conf)

 val now = System.nanoTime

 val algorithm = args(1)

 algorithm match {

 case "nestedSQL" => new nestedSQL(args(0), args(2).toDouble)

 case "gp" => new gridPartitioning(args(0), sc, args(2).toDouble)

 case "rddBasicSFS" => new rddBasicSFS(args(0), sc, args(2).toDouble)

 case _ => println("algorithm not yet implemented")

 }

 val timeElapsed = System.nanoTime - now

 println("total time elapsed: "+ timeElapsed.asInstanceOf[Double] / 1000000000.0)

 }

}

file:///C:/Users/Ιωάννα/Documents/ΕΡΓΑΣΙΑ-first-complete-attempt.docx%23_Toc531981900
file:///C:/Users/Ιωάννα/Documents/ΕΡΓΑΣΙΑ-first-complete-attempt.docx%23_Toc531981901

 -69-

algorithms.ALS.scala

class ALS(inputPath: String, sc: SparkContext, samplingRate: Double) extends Serializable {

 val inputingTime = System.nanoTime

 val rdd = sc.textFile(inputPath).sample(withReplacement = false, samplingRate)

 println("rdd created")

 println("number of tuples: "+1000000000*samplingRate)

 println("number of rdd's partitions:" + rdd.getNumPartitions)

 val rdd2 = rdd.map(x=>x.split(" ")).map(x => x.map(y => y.toDouble)).mapPartitions(SFSSkyline-

Calculation.addScoreAndCalculate)

 rdd2.persist()

 println("number of local skylines: "+rdd2.count())

 val localSkylinesTime = System.nanoTime

 println("time of extracting local skyline points:"+(localSkylinesTime-inputingTime).asIn-

stanceOf[Double] / 1000000000.0)

 var partitionSkylines = ArrayBuffer[Array[Double]]()

 rdd2.collect.foreach(x => SFSSkylineCalculation.calculatePartition(partitionSkylines, Itera-

tor(x))

)

 println("skyline completed. total skylines:"+partitionSkylines.length)

 println("time of extracting final skylines:"+(System.nanoTime-localSkylinesTime).asIn-

stanceOf[Double] / 1000000000.0)

}

-70-

algorithms.gridPartitioning.scala

class gridPartitioning (inputPath: String, sc: SparkContext, samplingRate: Double) extends Seri-

alizable {

 val rdd = sc.textFile(inputPath).sample(withReplacement = false, samplingRate: Double)

 .map(x=>x.split(" "))

 .map(x => x.map(y => y.toDouble))

 println("number of tuples:"+1000000000*samplingRate)

 println("rdd created")

 println("number of rdd's partitions: " + rdd.getNumPartitions)

 val divisionType=5

 val beforeGridCalculation = System.nanoTime

 val partition = new Partition(rdd, divisionType)

 val divisionPoints = partition.getDivisionPoints()

 val afterGridCalculation = System.nanoTime

 println("time for division points calculation: "+(afterGridCalculation-beforeGridCalcula-

tion).asInstanceOf[Double] / 1000000000.0)

 val divisionPointsB = sc.broadcast(divisionPoints)

 val emptySet = List[Array[(Double, Int, Int)]]()

 val zippedRdd = addLocalDivisionPoints(rdd)

 .map(x => x.map(y => (y._1._1, y._1._2, gridCalculation.getDimensionGridCell(y))))

 .map(x => (x, x.map(y => y._3)))

 .map(x => x.swap)

 .map(x => (x._1.toList, x._2))

 .map(x => (x._1, x._2.toIterable))

 zippedRdd.persist()

 rdd.unpersist()

 val necells = zippedRdd.map(x => x._1).distinct().collect()

 println("total number of cells:" + necells.length)

 val beforeCellElimination = System.nanoTime

 val dominatedCells = getDominatedCells(necells.toList)

val afterCellElimination = System.nanoTime

 println("number of dominated cells:" + dominatedCells.size)

 println("time of dominated cells calculation:"+(afterCellElimination-beforeCellElimina-

tion).asInstanceOf[Double] / 1000000000.0)

 val dominatedCellsB = sc.broadcast(dominatedCells)

 val filteredCellsRDD = filterDominated(zippedRdd)

 .map(x => x._2.map(y => y._1).toArray)

 -71-

 filteredCellsRDD.persist()

 zippedRdd.unpersist()

 val nOfTuples = filteredCellsRDD.count()

 println("number of tuples after cell elimination:" + nOfTuples)

 val beforeLocalSkylines = System.nanoTime

 val skylinedRDD=filteredCellsRDD.mapPartitions(SFSSkylineCalculation.addScoreAndCalculate)

 val skylinedRDDwithIndex = addLocalDivisionPoints(skylinedRDD)

 .map(x => x.map(y => (y._1._1, y._1._2, gridCalculation.getDimensionGridCell(y))))

 .map(x => (x, x.map(y => y._3)))

 .map(x => x.swap)

 .map(x => (x._1.toList, x._2))

 .map(x => (x._1, x._2.toIterable))

 skylinedRDDwithIndex.persist()

 filteredCellsRDD.unpersist()

 println("number of local skylines in all the partitions:"+skylinedRDDwithIndex.count())

 val afterLocalSkylines = System.nanoTime

 println("time of local skyline calculation:"+(afterLocalSkylines-beforeLocalSkylines).asIn-

stanceOf[Double] / 1000000000.0)

var partitionSkylines = ArrayBuffer[Array[Double]]()

 skylinedRDDwithIndex.map(x => x._2.map(y => y._1).toArray).collect.foreach(x=>SFSSkylineCalcu-

lation.calculatePartition(partitionSkylines,Iterator(x)))

 println("skyline completed. total skylines:"+partitionSkylines.length)

 println("time of extracting final skylines:"+(System.nanoTime-afterLocalSkylines).asIn-

stanceOf[Double] / 1000000000.0)

def filterDominated(rdd:RDD[(List[Int], Iterable[(Double,Int,Int)])]): RDD[(List[Int], Itera-

ble[(Double,Int,Int)])]={

 return rdd.filter(x => !(dominatedCellsB.value contains x._1))}

def addLocalDivisionPoints(rdd:RDD[Array[Double]]) = {

 rdd.map(x => x.zipWithIndex)

 .map(x => x.map(y => (y, divisionPointsB.value(y._2))))}

def getDominatedCells(list: List[List[Int]]): Array[List[Int]] ={

 var arraybuffer = ArrayBuffer[List[Int]]()

 list.foreach(x => { if (list.exists(l => isDominatedCell(x, l))) {arraybuffer += x }})

 return arraybuffer.toArray}

 def isDominatedCell(cell1: List[Int], cell2: List[Int]): Boolean ={

 var flag=true

 for(i<-0 to cell1.length-1)

 { if(cell1(i)<=cell2(i))

 {flag=false}}

 return flag

 }

}

-72-

simpleSkylineCalculation.scala

object skylineCalculation extends Serializable {

 def calculate(x: Iterator[Array[Double]]): Iterator[Array[Double]] = {

 var tempList = x.toList

 var i = 0

 var listLength = tempList.length

 while (i < listLength - 1) {

 var k = i + 1

 while (k < listLength) {

 if (dominationCondition.isDominated(tempList(i),tempList(k))) {

 tempList = tempList.take(k) ++ tempList.drop(k + 1)

 k = k - 1

 listLength = listLength - 1

 }

 else if (dominationCondition.isDominated(tempList(k),tempList(i))) {

 tempList = tempList.take(i) ++ tempList.drop(i + 1)

 listLength = listLength - 1

 i = i - 1

 k = listLength

 }

 k = k + 1

 }

 i = i + 1

 }

 return tempList.toIterator

 }

}

 -73-

SFSSkylineCalculation.scala

object SFSSkylineCalculation extends Serializable {

 def calculate(x: Iterator[Array[Double]]): Iterator[Array[Double]] = {

 var arraybuffer = ArrayBuffer[Array[Double]]()

 val array = x.toArray

 arraybuffer += array(0)

 for (i<-1 to array.length - 1)

 {

 var j=0

 var breaked = false

 breakable

 {

 while (j < arraybuffer.length) {

 if (dominationCondition.isDominated(array(i), arraybuffer(j))) {

 arraybuffer.remove(j)

 j-=1

 }

 else if (dominationCondition.isDominated(arraybuffer(j), array(i))) {

 breaked = true

 break()

 }

 j += 1

 }

 }

 if(!breaked)

 arraybuffer+=array(i)

 }

 return arraybuffer.toIterator

}

 def addScoreAndCalculate(x: Iterator[Array[Double]]):Iterator[Array[Double]]={

 val y = addScoringFunction(x)

 val ysort = sortByScoringFunction(y)

 val result = calculate(ysort.map(x=>x._1))

 return result

 }

 }

-74-

def calculatePartition(previousSkylines: ArrayBuffer[Array[Double]], enteredPartition: Itera-

tor[Array[Double]]): Iterator[Array[Double]]= {

 var wasEmpty=false

 val array = enteredPartition.toArray

 if(previousSkylines.length==0){

 previousSkylines += array(0)

 wasEmpty=true

 }

 for (i <- 0 to array.length - 1) {

 var j = 0

 var breaked = false

 breakable {

 while (j < previousSkylines.length) {

 if (dominationCondition.isDominated(array(i), previousSkylines(j))) {

 previousSkylines.remove(j)

 j -= 1

 }

 else if (dominationCondition.isDominated(previousSkylines(j), array(i))) {

 breaked = true

 break()

 }

 if(wasEmpty & i==0)

 {

 breaked=true

 break()

 }

 j += 1

 }

 }

 if (!breaked) {

 previousSkylines += array(i)

 }

 }

 return previousSkylines.toIterator

 }

 -75-

dominationCondition.scala

def sortByScoringFunction(iterator: Iterator[(Array[Double], Double)]):Iterator[(Array[Double],

Double)]=

 {

 var array=iterator.toArray

 array.sortBy(x => - x._2)

 return array.toIterator

 }

 def addScoringFunction(array:Iterator[Array[Double]]): Iterator[(Array[Double], Double)] ={

 array.map(x => (x, 0))

 .map(x => {

 var sum =0.0

 for (i<-0 to x._1.length - 1)

 {

 sum += math.log(x._1(i)+1)

 }

 (x._1,sum)

 })

 }

}

object dominationCondition extends Serializable {

 def isDominated(x: Array[Double], y:Array[Double]): Boolean = {

 return isSmaller(x,y) & isSmallerEqual(x,y)}

 def isSmaller(x: Array[Double], y:Array[Double]):Boolean = {

 val size = x.length

 var flag = false

 var i = 0

 for (i <- 0 to size - 1) {

 if (x(i) < y(i))

 flag = true}

 return flag}

 def isSmallerEqual(x: Array[Double], y:Array[Double]):Boolean = {

 val size = x.length

 var flag = true

 var i = 0

 for (i <- 0 to size - 1) {

 if (x(i) > y(i))

 flag = false}

 return flag

 }

}

