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Abstract 

This dissertation was written as a part of the MSc in Data Science at the International 

Hellenic University. During the last decade, database technologies have been studied ex-

tensively to comply to the Big Data era and the demands for results that lead to complex, 

decision making processes. The implementation of an efficient skyline computation al-

gorithm has gained a lot of attention because it offers interesting results from multi-crite-

ria queries. In this thesis, different skyline algorithms are implemented in the Apache 

Spark platform and their performance in a distributed environment is evaluated and dis-

cussed.  
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1 Introduction 

Today, after years of radical technological evolution data are everywhere. They come at 

large volumes, in many forms and are easily accessible. Individuals and organizations are 

challenged to adjust to this fact and change their process of decision making. A com-

pany’s manager is now able to base their decision regarding the location of a potentially 

new store on collected information rather than their personal instinct. A consumer that 

wishes to buy a new device, is more equipped to take the right decision when they rely 

on the actual data rather than the seller’s suggestions. On the other hand, it is not always 

the case that a decision can be made by simply processing data and retrieving the optimal 

suggestion. A very common challenge is to process the data in a way that yields a wide 

range of useful suggestions the user can review and base their decisions on. 

Skyline vectors were introduced in 2001 as a way of satisfying this need and are still 

widely discussed in scientific literature.  

1.1 The skyline problem 

The skyline as a term was introduced by Borzsonyi [1] who issued the maximal vector 

computation problem in database applications. Given a set of tuples having an ordering 

relation on each dimension, Skyline is a subset of all the tuples that are not dominated by 

any other tuple of the original set. A tuple 𝑎 dominates another tuple 𝑏 (𝑎 ≺  𝑏) when 

the values of each of 𝑎’s attributes are bigger than or equal to the corresponding values 

of 𝑏. A real-world example of Skyline exists in an online mobile-phone store. A user is 

browsing the database aiming to find the best results for a non-expensive phone with an 

adequately large screen size. These two characteristics are most probably highly anti-

correlated, therefore if the results of the user’s search query were ordered based on the 

prices of the available phones, the user would have to ignore many of the top results due 

to their small screen size and vice versa. A Skyline query, set to maximize the screen 

attribute and minimize the price, would return to the user a variety of phone options with 

the property that no other phone exists having the same or smaller price and the same or 

bigger screen at the same time. The user could then examine their options and decide their 
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preference between cheaper phones with smaller screens or more expensive phones with 

larger screens. An interesting property of the Skyline operator is that any point 𝑝𝑀 that 

maximizes a monotone scoring function applied on the data, is included in the skyline. 

Therefore, the example’s user will find the best phone according to their preference, re-

gardless of whether this preference is mostly towards cheap phones or phones with big 

screens. Additionally, every point of the skyline is a maximal point of a monotone func-

tion. This means that each of the phones returned from the example’s skyline query could 

match at least one user’s specific preference. 

 

Figure 1 The price versus size skyline points 

Although the term skyline calculation was not present earlier, the problem roots to the 

older mathematical problem of finding the maximal vectors on a set of n d-dimensional 

vectors in the Cartesian product 𝑈1 × 𝑈2 × … ×  𝑈𝑑 . 

1.2 The maximal vector computation and the par-
tially ordered set 

Maximal vectors have grown a lot of attention to mathematicians between 1970 – 1980  

because they compose a set of interesting vectors in a partially ordered set [2][3]. Partial 

orders help generalizing the concept of total orders, (where a binary comparison exists 

between every element, e.g. one-dimensional sets), to multidimensional sets. In a partially 

ordered set, there exists a comparison between two elements, 𝑥 ≥ 𝑦, if and only if 𝑥𝑖 ≥
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𝑦𝑖 for every dimension 𝑖.  Thus, not all elements of the set are comparable. The relation 

≤ in a partially ordered state is reflexive, antisymmetric, and transitive. [30] 

 An element 𝑥 is a maximal vector of a set when exists no 𝑦 for which 𝑦 ≥  𝑥. For 

example, between the  (2,3,1), (4,2,3), (1,6,3), (2,4,3) elements of a set, (2,3,1) is the 

only element which is not a maximal vector. The computational complexity of the maxi-

mal vector problem is calculated to be  

• 𝐶𝑑(𝑛) ≤ 𝑂(𝑛𝑙𝑜𝑔2𝑛) for 𝑑 =  2, 3,   

• 𝐶𝑑(𝑛) ≤  𝑂(𝑛(log2 𝑛)𝑑−2) for 𝑑 ≥  4, and  

• 𝐶𝑑(𝑛) ≥  𝑂(⌈log2 𝑛!⌉) for 𝑑 ≥  2. [1] 

The algorithms for calculating the maximal vector can be easily adjusted to return the 

minimal vector of a set. The union of those two sets produces the convex hull of the set 

which is relevant to several problems in areas like computer graphics, design automation 

and pattern recognition. 

 

 

Figure 2 Example of a 2d convex hull graph (source: 

https://www.originlab.com/fileExchange/details.aspx?fid=355) 

  

One-dimensional sets can be easily calculated after 𝑛 − 1 comparisons (𝑛 being the num-

ber of elements) using a 𝑚𝑎𝑥 operator. 2-dimensional sets can be also computed effort-

lessly by firstly pre-sorting the set according to one dimension. Thus, the skyline compu-

tation mostly concerns > 2 −dimensional datasets. 
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1.3 Skyline computation in the Apache Spark plat-
form 

Designing an efficient skyline calculation algorithm becomes gradually more difficult as 

the volume of data increases. For a limited size of data, a simple SQL query is able to 

return results in a satisfying period of time. When the input of the algorithm becomes 

bigger, more sophisticated algorithms must be introduced. Moreover, in the era of Big 

Data, a single processing machine cannot always handle such calculations and the need 

for algorithms that are designed for distributed execution are more than necessary.  

 This thesis aims to implement efficient skyline calculation algorithms in Apache 

Spark, a cluster-based platform for parallel and distributed programming. Those algo-

rithms are designed with respect to the skyline literature but are adjusted to the unique 

architecture of Apache Spark. In chapter 2 previous research conducted on the Skyline 

problem will be introduced. The literature’s algorithms, designed for single machines, 

distributed environments and Apache Spark, will be analyzed while the characteristics of 

a distributed computing system are set forth. Chapter 3 pertains to the Apache Spark plat-

form, focusing on Spark’s architecture and programming environment. Inside chapter 4, 

the algorithms designed for this thesis are analyzed. Spark’s execution plans formed for 

those algorithms are shown and optimization techniques used to improve the algorithms’ 

efficiency are described. In chapter 5 the algorithms’ performance in a single unit and in 

the Hadoop environment is recorded, discussing each algorithms’ results. The final chap-

ter contains the thesis’ conclusions regarding the Spark architecture’s effect on the pro-

cess of designing an efficient Skyline calculation algorithm as well as suggestions for 

future work.  
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2 Literature review on the sky-
line calculation 

Stephan Borzsonyi et al. [1] were the first to propose several algorithms for constructing 

a skyline operator as an extension of the core SQL operators. Those algorithms were able 

to consider only specified attributes of the database and their domination preference (𝑚𝑖𝑛 

or 𝑚𝑎𝑥).  The user of our example would be able to ignore other attributes like weight 

and battery consumption and aim to minimize the price and maximize the screen size. 

 Borszonyi presented a baseline Skyline nested SQL query, composed by the core SQL 

operators, stating that it performs poorly on a large amount of data, and new algorithms 

need to be developed for the skyline problem. The algorithms proposed are based on 

block-nested loops and divide-and-conquer methods, while the use of R-trees is also 

shortly introduced.  

 The block-nested algorithm uses the driver’s memory to temporarily store non-dom-

inated points that are then compared and replaced (in case of domination) from an incom-

ing, previously unexamined point. Timestamps are used to determine the order of the 

comparisons and temporary files to store candidate skyline points in case of memory 

overloads. 

 The Divide-and-Conquer algorithm recursively partitions the dataset based on the me-

dian of some dimension until a partition contains one or a few points and the skyline 

computation is easily applied. The skyline of the whole dataset is obtained by recursively 

merging those partitions while eliminating dominated points 

 

SELECT * FROM Hotels h 

WHERE h.city = ’Nassau’ AND NOT EXISTS(  

SELECT * FROM Hotels h1 WHERE h1.city = ’Nassau’  

AND h1.distance <= h.distance AND h1.price <= h.price  

AND (h1.distance < h.distance OR h1.price < h.price)); 

 

Script 1: example of skyline computation using nested SQL [1] 
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𝑀 Input; a set of 𝑑-dimensional points 

𝑅 Output; a set of 𝑑-dimensional points 

𝑇 Temporary file; a set of 𝑑 −dimensional points 

𝑆 Main memory; a set pf 𝑑 −dimensional points 

𝑝 ≺ 𝑞 Point 𝑝 is dominated by point 𝑞 

 

function SkylineBNL(𝑀) 

begin 

//initialization 

𝑅 ≔ ∅, 𝑇 ≔ ∅, 𝑆 ≔ ∅  

𝐶𝑜𝑢𝑛𝑡𝐼𝑛 ∶= 0, 𝐶𝑜𝑢𝑛𝑡𝑂𝑢𝑡 ≔ 0 

//Scanning the database repeatedly 

while ¬𝐸𝑂𝐹(𝑀) do begin 

 foreach 𝑝 ∈ 𝑆 do 

  if 𝑇𝑖𝑚𝑒𝑆𝑡𝑎𝑚𝑝(𝑝) = 𝐶𝑜𝑢𝑛𝑡𝐼𝑛 then 𝑠𝑎𝑣𝑒(𝑅, 𝑝), 𝑟𝑒𝑙𝑒𝑎𝑠𝑒(𝑝) 

 𝑙𝑜𝑎𝑑(𝑀, 𝑝), 𝑇𝑖𝑚𝑒𝑆𝑡𝑎𝑚𝑝(𝑝) ≔ 𝐶𝑜𝑢𝑛𝑡𝑂𝑢𝑡 

 𝐶𝑜𝑢𝑛𝑡𝐼𝑛 ≔ 𝐶𝑜𝑢𝑛𝑡𝐼𝑛 + 1 

 foreach 𝑞 ∈ 𝑆\{𝑝} do begin 

  if 𝑝 ≻ 𝑞 then 𝑟𝑒𝑙𝑒𝑎𝑠𝑒(𝑝), break 

  if 𝑝 ≺ 𝑞 then 𝑟𝑒𝑙𝑒𝑎𝑠𝑒(𝑞) 

 end 

 if  ¬𝑀𝑒𝑚𝑜𝑟𝑦𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 then begin 

  𝑠𝑎𝑣𝑒(𝑇, 𝑝), 𝑟𝑒𝑙𝑒𝑎𝑠𝑒(𝑝) 

  𝐶𝑜𝑢𝑛𝑡𝑂𝑢𝑡 ≔ 𝐶𝑜𝑢𝑛𝑡𝑂𝑢𝑡 + 1 

 end 

 

 if 𝐸𝑂𝐹(𝑀)then begin 

  𝑀 ≔ 𝑇, 𝑇 ≔ ∅  

 end 

end 

//Flushing the memory 

foreach 𝑝 ∈ 𝑆 do 𝑠𝑎𝑣𝑒(𝑅, 𝑝), 𝑟𝑒𝑙𝑒𝑎𝑠𝑒(𝑝) 

return 𝑅 

end 

Script 2: the BNL algorithm [1] 
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During the same year Kian-Lee Tan et al. [4] proposed Bitmap and B+-tree based algo-

rithms that produced, in contrast to BNL and DC, progressive results. The first, converts 

each tuple p to a sequence of 𝑚 bits. Those bits are calculated based on the total distinct 

values each dimension contains throughout the dataset. The bitmaps are then stored and 

processed as bit-slices. The decision over a skyline point is calculated much more effi-

ciently because the calculations are conducted on bits. Moreover, a point calculated to be 

a skyline point can be instantly output as such and deleted from memory and further con-

sideration.  

 The B+-tree based algorithm transforms and maps multi-dimensional into one-dimen-

sional data. B+-trees are used to index the transformations. That results to excluding 

function SkylineBasic(𝑀, 𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛) 

begin 

if |𝑀| = 1 then return 𝑀 

𝑃𝑖𝑣𝑜𝑡 ≔ 𝑀𝑒𝑑𝑖𝑎𝑛{𝑚𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛|𝑚 ∈ 𝑀}  

(𝑃1, 𝑃2) ∶= 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛(𝑀, 𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛, 𝑃𝑖𝑣𝑜𝑡) 

𝑆1 ≔ 𝑆𝑘𝑦𝑙𝑖𝑛𝑒𝐵𝑎𝑠𝑖𝑐(𝑃1, 𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛) 

𝑆2 ≔ 𝑆𝑘𝑦𝑙𝑖𝑛𝑒𝐵𝑎𝑠𝑖𝑐(𝑃2, 𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛) 

return 𝑆1⨃𝑀𝑒𝑟𝑔𝑒𝐵𝑎𝑠𝑖𝑐(𝑆1, 𝑆2, 𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛) 

end 

 

function MergeBasic(𝑆1, 𝑆2, 𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛) 

begin 

if 𝑆 == {𝑝} then 𝑅 ≔ {𝑞 ∈ 𝑆2|𝑝 ⊀ 𝑞} 

else if 𝑆2 = {𝑞} then begin 

 𝑅 ≔ 𝑆2 

 foreach 𝑝 ∈ 𝑆 do if 𝑝 ≺ 𝑞 then 𝑅 ≔ ∅ 

end else begin 

 𝑃𝑖𝑣𝑜𝑡 ≔ 𝑀𝑒𝑑𝑖𝑎𝑛{𝑝𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛−1|𝑝 ∈ 𝑆1} 

 𝑆1,1, 𝑆1,2 ≔ 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛(𝑆1, 𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 − 1, 𝑃𝑖𝑣𝑜𝑡) 

 𝑆2,1, 𝑆2,2 ≔ 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛(𝑆2, 𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 − 1, 𝑃𝑖𝑣𝑜𝑡)  

 𝑅1 ≔ 𝑀𝑒𝑟𝑔𝑒𝐵𝑎𝑠𝑖𝑐(𝑆1,1, 𝑆2,1, 𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛) 

 𝑅2 ≔ 𝑀𝑒𝑟𝑔𝑒𝐵𝑎𝑠𝑖𝑐(𝑆1,2, 𝑆2,2, 𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛) 

 𝑅3 ≔ 𝑀𝑒𝑟𝑔𝑒𝐵𝑎𝑠𝑖𝑐(𝑆1,1, 𝑆2, 𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 − 1) 

 𝑅 ≔ 𝑅1⨃𝑅3  

  

end 

return 𝑅 

end 

Script 3: Divide-and-Conquer algorithm [1] 
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points that are obviously dominated as well as producing some skyline points in a short 

period of time. 

 

 

 

foreach point 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑑) in the database 

let 𝑥𝑖 be the 𝑞𝑖th distinct value in dimension 𝑖 

𝐴 ≔ 𝐵𝑖𝑡𝑆𝑙𝑖𝑐𝑒(𝑞1, 1) 

for 𝑖 = 2 to 𝑑 

𝐴 ≔ 𝐴 & 𝐵𝑖𝑡𝑆𝑙𝑖𝑐𝑒(𝑞1, 𝑖) 

𝐵 ≔ 𝐵𝑖𝑡𝑆𝑙𝑖𝑐𝑒(𝑞1 − 1, 1) 

for 𝑖 = 2 to 𝑑  

𝐵 ≔ 𝐵 | 𝐵𝑖𝑡𝑆𝑙𝑖𝑐𝑒(𝑞1 − 1, 𝑖) 

𝐶 ≔ 𝐴 & 𝐵 

If 𝐶 == 0 

 Output 𝑥 

 

Script 4: Bitmap algorithm [4] 

Script 5: B+-tree algorithm 
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At 2002 Donald Kossmann also focused on progressive skyline computation, and more 

specifically on online implementations [5]. In these cases, the user focuses on receiving 

the first skyline points in an efficient period and does not demand the whole skyline vector 

until they investigate those points. In contrast to the Bitmap and B+-tree based algorithms, 

Kossmann designs an algorithm that returns fair early results. That is, results that are 

balanced and not in favor of one specific dimension. In addition, it provides the possibility 

to the user to adjust their preferences while the algorithm is running (to accelerate the 

return of skyline points that are neighbors of a returned one). It uses Nearest Neighbor 

Script 5: B+-tree-based algorithm [4] 

for 𝑖 = 1 to 𝑑 

𝑓𝑖 ≔ 𝑇𝑟𝑢𝑒 

𝑡𝑖 ≔ 𝑡𝑟𝑎𝑣𝑒𝑟𝑠𝑒𝑇𝑟𝑒𝑒𝑀𝑎𝑥(𝑟𝑜𝑜𝑡, 𝑖) 

 𝑚𝑎𝑥𝑖 ≔ 𝑚𝑎𝑥𝑉𝑎𝑙𝑢𝑒(𝑡𝑖) 

 𝑚𝑖𝑛𝑖 ≔ 𝑚𝑖𝑛𝑉𝑎𝑙𝑢𝑒(𝑡𝑖) 

𝑚𝑛 ≔ 𝑚𝑎𝑥𝑖=1
𝑑 𝑚𝑖𝑛𝑖 

𝑚𝑥 ≔ 𝑚𝑎𝑥𝑖=1
𝑑 𝑚𝑎𝑥𝑖 

for 𝑖 = 1 to 𝑑 

 if 𝑚𝑛 > 𝑚𝑎𝑥𝑖 

  𝑓𝑖 ≔ 𝐹𝑎𝑙𝑠𝑒 

𝑗 ≔ 1 

𝑆 ≔ ∅ 

while there are some partitions to be searched 

 for 𝑖 = 1 to 𝑑 

  if 𝑚𝑎𝑥𝑖 == 𝑚𝑥 

   𝑃𝑗 ≔ 𝑡𝑖 

   𝑆𝑗 ≔ ∅ 

   𝑡𝑖 ≔ 𝑔𝑒𝑡𝑁𝑒𝑥𝑡𝐿𝑒𝑓𝑡𝐸𝑙𝑒𝑚𝑒𝑛𝑡(𝑡𝑖) 

   while (𝑚𝑎𝑥𝑉𝑎𝑙𝑢𝑒(𝑡𝑖) == 𝑚𝑥) 

    𝑚𝑛 ∶= max(𝑚𝑛, 𝑚𝑖𝑛𝑉𝑎𝑙𝑢𝑒(𝑡𝑖)) 

    𝑃𝑗 ≔ 𝑃𝑗 ∪ 𝑡𝑖 

    𝑡𝑖 ≔ 𝑔𝑒𝑡𝑁𝑒𝑥𝑡𝐿𝑒𝑓𝑡𝐸𝑙𝑒𝑚𝑒𝑛𝑡(𝑡𝑖) 

   𝑚𝑎𝑥𝑖 ≔ 𝑚𝑎𝑥𝑉𝑎𝑙𝑢𝑒(𝑡𝑖) 

  𝑆𝑗 ≔ 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑘𝑦𝑙𝑖𝑛𝑒(𝑃𝑗) 

  𝑆 ≔ 𝑆 ∪ 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑁𝑒𝑤𝑆𝑘𝑦𝑙𝑖𝑛𝑒(𝑆𝑗 , 𝑆) 

  𝑗 ≔ 𝑗 + 1 

  𝑚𝑥 ≔ 𝑚𝑎𝑥𝑖=1
𝑑 𝑚𝑎𝑥𝑖 

  for 𝑖 = 1 to 𝑑 

   if 𝑚𝑛 > 𝑚𝑎𝑥𝑖 

    𝑓𝑖 ≔ 𝐹𝑎𝑙𝑠𝑒 
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methods to partition the dataset into regions and to exclude those regions that are evi-

dently dominated by other. 

 

  

Some papers proposed alterations on the previous algorithms to further improve optimi-

zation. Dimitris Papadias, in his paper “An Optimal and Progressive Algorithm for Sky-

line Queries” [6] also uses a tree-based Nearest Neighbor technique that avoids redundant 

calculations. Jan Chomicki [7] proposed pre-sorting the tuples before performing BNL, 

taking into advantage the fact that in a pre-sorted dataset, a tuple cannot be dominated by 

subsequent tuples. Other papers focus on different types on databases. [8] focuses on 

streaming data. [9],[10] and [11] propose algorithms for uncertain data (due to measure-

ment/quantization errors, data staleness, and multiple repeated measurements etc.).  

 All the above approaches offer effective results when applied on traditional RDBM 

systems, where data are stored and processed from single machines. The architecture of 

those machines though creates limitations regarding the volume of data they can store and 

process in main memory as well as the coordination of the processes. Figure 3 shows that 

since 2004, skyline computation in distributed environments is an emerging field of re-

search and will be discussed further in the next paragraph. 

Input: Dataset 𝐷 

  Distance function 𝑓 (e.g., Euclidean distance) 

𝑇 ≔ {(−∞, ∞)}  

while 𝑇 ≠ ∅ do 

(𝑚𝑥 , 𝑚𝒚) ≔ 𝑡𝑎𝑘𝑒𝐸𝑙𝑒𝑚𝑒𝑛𝑡(𝑇) 

 if ∃ 𝑏𝑜𝑢𝑛𝑑𝑒𝑑𝑁𝑁𝑆𝑒𝑎𝑟𝑐ℎ(𝑂, 𝐷, (𝑚𝑥, 𝑚𝑦), 𝑓)) then  

 (𝑛𝑥, 𝑛𝑦) ≔ 𝑏𝑜𝑢𝑛𝑑𝑒𝑑𝑁𝑁𝑆𝑒𝑎𝑟𝑐ℎ(𝑂, 𝐷, (𝑚𝑥, 𝑚𝑦), 𝑓) 

 𝑇 ≔ 𝑇 ∪ {(𝑛𝑥, 𝑚𝑦), (𝑚𝑥, 𝑛𝑦)} 

 return n 

 end if 

end while 

Script 6: NN-based algorithm  [5] 
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Figure 3: distributed and centralized Skyline publications per year [12] 

 

2.1 Skyline computation in distributed environ-
ments 

Before reviewing the recent research on skyline algorithms for distributed systems, it is 

important to clarify what a distributed system is. 

2.1.1 Distributed computing systems 

While many definitions exist until now, their common ground is that distributed systems 

require the use of multiple processors. This paper will follow the definition of Henri E. 

Bal et la [13]:  

 

 

 The subject of the distribution varies among different architectures. Some systems 

distribute processing logic and elements, while others distribute tasks based on the func-

tion of the system’s hardware unit (printers, fax, etc.)  Based on this definition the pro-

cessors of a distributed system do not share primary memory. This differentiates the 

Definition. “A distributed computing system consists of multiple autonomous proces-

sors that do not share primary memory but cooperate by sending messages over a 

communications network.” 
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systems’ processors from multi-processors (processors that share the same memory) and 

therefore distinguishes the terms distributed and parallel processing, although in many 

cases, the distributed processors use parallel computations. The types of communication 

networks between the distributed systems’ processors vary among different architectures. 

Closely coupled distributed systems contain processors physically near each other, there-

fore their communication cost is minimal. Loosely coupled systems are set in LAN work-

stations or even more globally set in WAN networks, like the Internet.  

 Distributed systems provide many benefits as opposed to local systems. They offer 

higher performance, due to the parallel execution over multiple processors depending on 

the volume of the dataset and the task an application is set to execute. They provide higher 

fault tolerance in the case of a processor’s failure. While the risk of this failure is low, it 

can sometimes be critical and lead to data loss and require the termination and restart of 

the application. Contemporary distributed systems often provide duplications of data be-

tween the processors, and a partial failure of one processor does not affect the functioning 

of the others, while the lost data can be replaced instantly by their duplicates. Moreover, 

some applications require exclusively the use of a distributed environment, for example 

multi-national company applications and email services. [13] 

2.1.2 Distributed file systems 

Distributed computing systems initiated the need for sharing data mechanisms across the 

multiple processors. The first limited and inconvenient approach was to use user-initiated 

file transfer for remote file access. Until the early ‘80s the distributed file systems litera-

ture started to recognize the need of resembling the local filesystem user experience (net-

work transparency). A major evolution breakthrough came with LOCUS, a discontinued 

distributed filesystem which was created at UCLA between 1980 – 1983. The two inno-

vative properties of LOCUS were the location transparency and the data replication, as a 

fault tolerance method. [14] 

The Hadoop Distributed File System 

Today, one of the most preferred DFSs for distributed computing is the Hadoop Distrib-

uted File System (HDFS). Together with the Hadoop MapReduce, the Hadoop Ecosystem 

was created as an open source alternative of Google’s File System and MapReduce, that 

were used as a model for processing and generating large data sets. 
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 HDFS follows a master/slave architecture, consisting of a Namenode, several 

Datanodes, and the HDFS client. The NameNode is responsible of the namespace struc-

ture and the filesystem metadata. The Datanodes store the HDFS data in the form of 

blocks in the local file systems. The blocks that are physically close are organized in 

racks. The Datanodes receive commands from the Namenode for data block replication, 

removal of replicas, re-registrations or shutdowns and reporting node information to the 

Namenode. The HDFS client is responsible for exporting the HDFS file system interface 

to applications, reading data directly from Datanodes and setting node-to-node pipelines 

in which it enters data and writes the output result. HDFS uses block replication as a fault-

tolerance method assuring by default that none of the Datanodes contains more than one 

replica of any block and none of the racks contains more than two replicas of the same 

block. 

 Hadoop MapReduce, like Google’s MapReduce, is a software framework for pro-

cessing and generating large data sets. It most effectively performs on top of the HDFS. 

A job in MapReduce separates the data into chunks and using map performs parallel tasks 

in each of them. The outputs of the chunks are sorted by the framework and then proceed 

to the reduce tasks. The MapReduce framework forces the input and output to be formed 

as < 𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒 > pairs sets. [15] 

 

Figure 4: HDFS architecture [15] 
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2.1.3 Distributed skyline algorithms 

Skyline computation in a distributed environment offers important advantages. The size 

of the dataset is not restrictive because it does not need to fit into a single machine’s 

memory. It is easily scalable; the integration of an additional node into the system requires 

less cost and effort than to upgrade the core machine’s hardware. Most importantly, par-

allel processing decreases significantly the computational cost of an algorithm. Local-

based algorithms though, do not exploit the above benefits, being optimized for the hard-

ware characteristics of a single machine. The research of skyline algorithms that apply 

well in distributed systems has gained a lot of attention, aiming to decrease the high pro-

cessing cost of a skyline algorithm.  

 According to A. Vlachou [12], all the distributed skyline algorithms literature aims to 

minimize the execution time of the algorithm taking into consideration the total pro-

cessing time, the number of queried peers and the network traffic of the execution and the 

contradiction towards each other.  

 A baseline approach proposes the horizontal partitioning of the dataset into chunks 

and locally calculating the skyline points of each chunk. The results are then collected by 

the coordinator which calculates the final skyline tuples. This approach, called all local 

skylines (ALS) [16] does not guarantee that the local skylines are few enough to fit and 

be processed in main memory. Additionally, the algorithm calculates and transfers all the 

local skylines, without using smart methods to distinguish those that are dominated by 

tuples of another partition. This leads to expensive bandwidth consumption. The effec-

tiveness of this approach depends on the local and centralized skyline algorithms used. 

 In 2006, Zhiyong Huang et al. was the first to research skyline algorithms in non-

centralized, share-nothing systems [17]. His paper concerned constrained skyline query-

ing in distributed mobile systems and more specifically in wireless mobile ad hoc net-

works (MANETs). By using a breadth-first approach, the device that produces the query, 

sends it to all its neighbors which then return their local skylines and transfer the query 

to their neighbors. If a depth-first approach is used, the querying device sends the query 

to only one of its neighbors which propagates it to one of their neighbors. The skyline 

tuples are collected once the device does not find another neighbor and are being merged 
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through the same path. For further traffic optimization, along with the query, a significant 

tuple is sent to the next device to help pruning their local dataset. 

 

Vlachou et al. introduced Skypeer [18], a subspace skyline query algorithm for peer-to-

peer systems that consist of many peers and fewer super-peers (peers with enhanced ca-

pabilities). The algorithm aims to decrease the workload of the simple peers by relying 

on the super-peers. The term ext-domination and ext-skyline are presented. Ext-domina-

tion of a tuple q by a tuple p exists when 𝑝[𝑖] > (instead of ≥ ) 𝑞[𝑖] for each dimension 𝑖 

of the set. It also uses mapping functions and thresholds to further optimize the algorithm. 

algorithm local_skyline(𝑝𝑜𝑠𝑜𝑟𝑔, 𝑡𝑝𝑓𝑙𝑡) 

input: 𝑝𝑜𝑠𝑜𝑟𝑔 is the location of the query originator 

  𝑑 is the distance of interest 

  𝑡𝑝𝑓𝑙𝑡 is the filtering tuple 

Output: reduced local skyline and updated filtering tuple 

 

If (𝑚𝑖𝑛𝑑𝑖𝑠𝑡(𝑝𝑜𝑠𝑜𝑟𝑔, 𝑀𝐵𝑅𝑖) > 𝑑) return; 

𝑠𝑘𝑖𝑝 ∶= 𝑇𝑟𝑢𝑒 

foreach attribute 𝑗 of 𝑅𝑖 

 If (𝑡𝑝𝑓𝑙𝑡 . 𝑝𝑗 > 𝑙𝑗) 𝑠𝑘𝑖𝑝 ≔ 𝐹𝑎𝑙𝑠𝑒 break; 

if (𝑠𝑘𝑖𝑝) return; else 𝑆𝐾𝑖 ≔ ∅ 

foreach tuple 𝑡𝑝𝑗 in 𝑅𝑖 

 if (𝑑𝑖𝑠𝑡(𝑝𝑜𝑠𝑜𝑟𝑔, 𝑡𝑝𝑗) > 𝑑) continue; 

 𝑜𝑢𝑡 ∶= 𝐹𝑎𝑙𝑠𝑒 

 foreach skyline point 𝑠𝑝𝑘 in 𝑆𝐾𝑖 

  if ∀𝑙 > 1, 𝑠𝑝𝑘 . 𝑖𝑑𝑙 < 𝑡𝑝𝑗 . 𝑖𝑑𝑙) 𝑜𝑢𝑡 ≔ 𝑇𝑟𝑢𝑒 break; 

 if (! 𝑜𝑢𝑡) add 𝑡𝑝𝑗 into 𝑆𝐾𝑖 

𝑖𝑑𝑥 ∶= 𝑛𝑢𝑙𝑙, 𝑉𝐷𝑅𝑀 ≔ 0 

foreach skyline point 𝑠𝑝𝑘 in 𝑆𝐾𝑖 

 if (∀𝑙, 𝑡𝑝𝑓𝑙𝑡 . 𝑝𝑡 < 𝑠𝑝𝑘. 𝑝𝑙) remove 𝑠𝑝𝑘 from 𝑆𝐾𝑖 

 else if (𝑉𝐷𝑅𝑘 > 𝑉𝐷𝑅𝑚)    𝑖𝑑𝑥 ≔ 𝑘,    𝑉𝐷𝑅𝑚 = 𝑉𝐷𝑅𝑘 

if (𝑉𝐷𝑅𝑚 > 𝑉𝐷𝑅𝑓𝑙𝑡)  𝑡𝑝𝑓𝑙𝑡 = 𝑡𝑝𝑖𝑑𝑧 

Script 7: Zhiyong Huang’s algorithm [17] 
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The paper of Bin Cui et al. presents PaDSkyline [19], which aims to optimize distributed 

constrained skyline queries in a network environment without assuming any overlay 

structures. PaDSkyline at first uses MBR (n-dimensional minimum bounding box of the 

local relation Ri) to partition the dataset into incomparable groups and eliminate groups 

that disjoint with the query’s constrains.   

Algorithm 1 local subspace skyline computation 

input: 𝑈 is the location of the query originator 

𝑆𝐾𝑌𝑈 ≔ {∅} 

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ∶= 𝑀𝐴𝑋_𝐼𝑁𝑇 

𝑝 ≔ 𝑛𝑒𝑥𝑡 𝑝𝑜𝑖𝑛𝑡 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑓(𝑝) 

while (𝑓(𝑝) < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) do 

 if 𝑝 is not dominated by any point in 𝑆𝐾𝑌𝑈 based on 𝑈 then 

  remove from 𝑆𝐾𝑌𝑈 the points dominated by 𝑝 

  𝑆𝐾𝑌𝑈 ≔ 𝑆𝐾𝑌𝑈 ∪ {𝑝} 

  𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ≔ 𝑚𝑖𝑛𝑝𝑖∈𝑆𝐾𝑌𝑈
(𝑑𝑖𝑠𝑡𝑈(𝑝𝑖)) 

 end if 

 𝑝 ≔ 𝑛𝑒𝑥𝑡 𝑝𝑜𝑖𝑛𝑡 

end while 

return 𝑆𝐾𝑌𝑈 

Algorithm 2 Super-peer merging of subspace skylines 

input: 𝑈 denotes the query dimensions 

𝑆𝐾𝑌𝑈 ≔ {∅} 

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ∶= 𝑀𝐴𝑋_𝐼𝑁𝑇 

𝑆𝐾𝑈𝑈1
… 𝑆𝐾𝑌𝑈𝑁𝑠𝑝

 the super-peers’ set of local subspace skyline points 

𝑆𝐾𝑌𝑈𝑎
≔ the list whith the minimum first element 

𝑝 ≔ next point based on 𝑆𝐾𝑌 

𝑝 ≔ 𝑛𝑒𝑥𝑡 𝑝𝑜𝑖𝑛𝑡 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑓(𝑝) 

while (𝑓(𝑝) < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) do 

 if 𝑝 is not dominated by any point in 𝑆𝐾𝑌𝑈 based on 𝑈 then 

  remove from 𝑆𝐾𝑌𝑈 the points dominated by 𝑝 

  𝑆𝐾𝑌𝑈 ≔ 𝑆𝐾𝑌𝑈 ∪ {𝑝} 

  𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ≔ 𝑚𝑖𝑛𝑝𝑖∈𝑆𝐾𝑌𝑈
(𝑑𝑖𝑠𝑡𝑈(𝑝𝑖)) 

 end if 

 𝑝 ≔ 𝑛𝑒𝑥𝑡 𝑝𝑜𝑖𝑛𝑡 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑆𝐾𝑌 

end while 

return 𝑆𝐾𝑌 

Script 8: The Skypeer algorithms [18] 
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 DSL (Distributed SkyLine) proposed by Wu et al. [20] partitions the tuples based on 

regions using a multi-level hierarchy. The low-level partitions calculate the local skylines 

which are then merged to the higher-level partition. The data partitioning is determined 

by CAN, a distributed, decentralized P2P infrastructure, based on a logical d-dimensional 

Cartesian coordinate space, which incorporates a distributed hash table (DHT) for point 

and server multi-dimensional indexing. Next an intra-group query execution takes place 

in each group. 

 

Algorithm icmpPartition(𝑆, 𝐶) 

input: 𝑆 is the set of data sites 

  𝐶 is the set of constrains in the skyline query 

Output: an incomparable partition of 𝑆 

foreach 𝑆𝑖 ∈ 𝑆 

 𝑟𝑀𝐵𝑅𝑖 ≔ 𝑀𝐵𝑅𝑖 ∩ 𝐶𝑖 

 If (𝑟𝑀𝐵𝑅𝑖 == ∅)     𝑆 ≔ 𝑆 − {𝑆𝑖} 

∏ 𝑆 = {{𝑆1′}} // 𝑆1′ is the current 1st element in 𝑆 

foreach 𝑆𝑖 ∈ 𝑆 − {𝑆1′} 

 𝑆𝑖̅ = ∅ 

 foreach 𝑆𝑖 ∈ ∏ 𝑆 

  if (∃𝑆𝑗 ∈ 𝑆𝑖  𝑠. 𝑡. 𝑆𝑗 𝑎𝑛𝑑 𝑆𝑖  𝑎𝑟𝑒 𝑛𝑜𝑡 𝑖𝑛𝑐𝑜𝑚𝑝𝑎𝑟𝑎𝑏𝑙𝑒) 

   ∏ 𝑆 =  ∏ 𝑆 − {𝑆𝑖};      𝑆𝑖̅ = 𝑆𝑖̅ ∪ 𝑆𝑖 

  ∏ 𝑆 =  ∏ 𝑆 ∪ {{𝑆𝑖} ∪ 𝑆𝑖̅} 

Script 9.1: group partitioning phase of PaDSkyline [19] 

Algorithm groupSkyline(𝐶, 𝑆𝑜𝑟𝑔, 𝑝𝑙𝑎𝑛) 

input: 𝑆𝑜𝑟𝑔 is the query originator site identifier 

  𝐶 is the set of constrains in the skyline query 

  𝑝𝑙𝑎𝑛 is the query execution plan in the group 

Output: the constrained skyline within the group 

Compute local skyline 𝑅𝑔 and get the initial filtering points set 𝐹𝑐 

Send 〈𝐶, 𝑆𝑔, 𝑝𝑙𝑎𝑛′, 𝐹𝑐〉 to next site(s) in 𝑝𝑙𝑎𝑛 

repeat 

 Receive result reply from a group member 𝑆𝑖 

 Merge 𝑆𝑖 . 𝑅𝑖 with 𝑅𝑔, remove duplicates and false positives 

until all group members have replied 

return 𝑅𝑔 to 𝑆𝑜𝑟𝑔 

 

Script 9.2: local skyline execution of PaDSkyline [19] 
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Wang et al.’s objective was the proposition of effective distributed skyline queries in 

BATON networks. The peers organized in a binary tree and each peer is responsible for 

a certain region of the dataspace. Load balancing is achieved by splitting and merging 

techniques and sampling. Later the algorithm was generalized further with Skyframe [22].  

2.1.4 Distributed Skyline computation in Apache Spark 

 

Although Spark is one of the most popular frameworks for parallel data processing, few 

attempts have been made in literature for implementing a skyline operator in Spark. 

Spark’s architecture differentiates from those of the systems used in the publications men-

tioned in the previous chapter. One of the core differences is that Spark’s nodes do not 

exchange information with each other, but all the communication appears between the 

cluster’s manager and the nodes. In addition, Spark implements optimization techniques 

during the execution of the scripts.  

In 2015, a skyline operator was introduced for Spark as part of a correlation framework 

for spatio-temporal events [24].  It followed the ideas presented in [23]. A grid partition-

ing schema is created which is then represented as a bitstring. This is then used to prune 

the data of the partitions. The details of this implementation are not described in literature. 

In 2016 Konstantinos Paparidis  [25] evaluated the processing time of angle, random and 

grid partitioning skyline algorithms in Apache Spark using the standalone deploy mode. 

Algorithm PaDSkyline(𝑆, 𝐶) 

input: 𝑆 is the set of data sites 

  𝐶 is the set of constrains in the skyline query 

Output: the constrained skyline 

∏ 𝑆 ≔ 𝑖𝑐𝑚𝑝𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛(𝑆, 𝐶) 

foreach group 𝑔𝑖 ∈ ∏ 𝑆 in parallel 

 send 〈𝐶, 𝑆𝑜𝑟𝑔, 𝑔𝑖 , 𝑝𝑙𝑎𝑛〉 to 𝑔𝑖’s group head 

repeat 

 receive result reply from a group 𝑔𝑖’s head 

 report 𝑔𝑖 . 𝑟𝑒𝑠𝑢𝑙𝑡 

until all group heads have replied 

Script 9.3: The PaDSkyline algorithm [19] 
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3 Spark 

Apache Spark started as a research project at UC Berkeley in the AMPLab, which focuses 

on big data analytics. Spark’s goal is to expand the MapReduce capabilities while still 

being a highly fault-tolerant cluster computing framework. The main disadvantage of 

MapReduce is that it uses acyclic data flow. Τhe distinctive jobs are run sequentially and 

between them, the jobs’ input/output is read from and written to the stable memory, in-

creasing the I/O cost.  In Spark, on the other hand, the data are transferred in-memory 

between transformations, which makes it efficient for data mining, iterative programming 

and streaming applications. [31] 

3.1 Spark architecture 

 

Figure 5 The Spark Architecture (source: https://www.youtube.com/watch?v=ZTFGwQaXJm8) 

3.1.1 Programming Languages  

Spark’s early versions (2012) were written exclusively in Scala, a concise and fast 

programming language that is both object-oriented and functional. Scala is statically 

typed and interoperates well with the Java Runtime Environment. In 2013 a Python API 

was included in the Spark Core release and since 2015 Spark provides an API for the R 

programming language.  

3.1.2 Spark Libraries 

Spark provides four libraries, each serving different purposes:  
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Spark SQL, first released in 2014, provides a DataFrame API for relational oper-

ators that can accept SQL queries, offering high optimization level due to Spark’s lazy 

evaluation. It introduces Catalyst, an extensible optimizer through which a variety of data 

sources can be used including semi-structured JSON data, and data manipulation is pos-

sible via user-defined functions. (source: https://spark.apache.org/sql/) 

GraphX is used for graphs and graph-parallel computation. It offers an abstraction 

extending Spark’s RDD abstraction which is discussed in the next paragraphs, named Re-

silient Distributed Graph which links records with vertices and edges in a graph and pro-

vides a set of graph computations. (source: https://spark.apache.org/graphx/) 

MLlib is a library for distributed machine learning. It consists of a variety of 

broadly used machine learning algorithms written in a scalable and fast manner, taking 

into advantage the parallelisms of Spark. (source: https://spark.apache.org/mllib/) 

Spark Streaming provides scalable and fault-tolerant processing of data 

streams. It divides the input streams into batches that are then processed using Spark’s 

functionalities, and lead to the result streams. This library contains a high-level abstrac-

tion called discretized stream (DStream) that is internally represented as a collection of 

RDDs. (source: https://spark.apache.org/streaming/) 

3.1.3 Spark Execution 

Spark applications are coordinated by the SparkContext object in the user’s driver (main) 

program. SparkContext is then connected to the cluster manager, which is responsible for 

the resource allocation. Via the manager, Spark sets executors that run computations and 

store local data on each node. Finally, it sends the driver’s code to the executors and 

SparkContext sends tasks to the executors to run. (source: 

https://spark.apache.org/docs/latest/cluster-overview) 

 

Figure 6 Spark execution (source: 

https://spark.apache.org/docs/latest/cluster-overview.html) 
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3.1.4 Cluster Managers 

The Spark engine is unable to identify the cluster manager responsible for the application. 

Currently four different cluster managers are supported. The standalone manager is 

integrated in Spark and it allows the application to be deployed in cluster mode if Spark 

is built in each of the cluster’s nodes. Moreover, the application can be deployed locally, 

in a single machine, for testing and debugging reasons. The Apache Mesos cluster 

manager, which supports Hadoop MapReduce, enables building and running applications 

in a distributed system by abstracting CPU, memory and other resources from machines. 

Mesos can perform dynamic resource allocation between Spark and other frameworks as 

well as dynamically scale the application’s partitions. Hadoop Yarn manager, which 

supports Hadoop 2, separates the functionalities of resource management and job 

scheduling/monitoring into different daemons.  Spark can also be built on Kubernetes, an 

open-source system for automating deployment, scaling, and management of 

containerized applications, although this manager is still in experimental mode. (source: 

https://spark.apache.org/docs/latest/cluster-overview) 

3.1.5 Storage Systems 

Like cluster managers, Spark is agnostic regarding the storage system used in an applica-

tion. This allows the processing of existing data as well as the combination of data from 

different data sources. It can use local, distributed file systems (like HDFS), key-value 

stores like S3 and Cassandra and also connect with Apache Hive as a data catalogue. 

3.2 Spark programming environment 

Spark’s two main abstractions are resilient distributed datasets (RDD) and parallel trans-

formations applied on them. 

3.2.1 RDDs 

RDDs are fault-tolerant, parallel data structures that represent a read-only collection of 

objects partitioned across a set of machines. The intermediate results of RDD calculations 

are stored and processed in-memory, which leads to massive improvement of the appli-

cations’ performance.  A user is equipped with a large amount of available RDD opera-

tions and can control an RDD’s persistence and partitioning procedure. They are based 
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on coarse-grained transformations like map, reduce, filter etc. Spark uses lazy evaluation 

for these transformations, seeking an efficient plan for implementing the user’s instruc-

tions; The transformations return an RDD object which represents the transformation’s 

result without processing the data. Only when an action is set on an RDD, Spark creates 

an execution plan for the transformations that result to it. Actions are operators that return 

a result in the base memory or write into the storage system. In a case of a node failure, 

Spark uses the transformation pipeline log rather than the actual data, to revive the data 

in a former safe state. This improves the fault tolerance of the application.  Internally, 

each RDD is characterized by five main properties:  

• A list of partitions  

• A function for computing each split  

• A list of dependencies on other RDDs  

• Optionally, a Partitioner for key-value RDDs  

• Optionally, a list of preferred locations to compute each split on  

(source: https://github.com/apache/spark/blob/mas-

ter/core/src/main/scala/org/apache/spark/rdd/RDD.scala) 

A word count example 

• In the first line, a local file is parallelized into an RDD object according to the 

Spark configuration. Each element of this RDD is a line of the text.  

• Next, each line of the RDD is split into different words and the RDD now consists 

of ‘word’ elements.  

• In the last line, each word is transformed into a < 𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒 > pair where key is 

the word and value is the integer ‘1’. All the pairs that share the same word (𝑘𝑒𝑦) 

are then aggregated, having as value the addition of their separate values.   

• Finally, all the RDD elements (different text words) are returned to the driver. 

val text = sc.textFile("mytextfile.txt")   

val counts = text.flatMap(line => line.split(" ")) 

.map(word => (word,1)).reduceByKey(_+_).collect() 

Script 10: Example of a word count using Spark RDDs in Scala 
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Creating an RDD object 

RDD variables can be created by pointing to an existing RDD of the cluster, distributing 

a main-memory Array-like object or distributing a file that is placed in the driver. 

In the first two examples, the SparkContext object separates the data into blocks and cre-

ates a partition for each one of them. By default, each partition is 128MB. If the program-

mer decides to split the data into more partitions, they add the number of partitions as an 

argument to the function. 

RDD transformations 

Transformations are functions that are acted upon an RDD object and return one or more 

RDD objects. RDDs are immutable objects, which means that the transformations do not 

change the parent RDD object they are acted upon but result to another child RDD(s) 

containing the applied changes. By applying multiple transformations, a Directed Acyclic 

Graph (DAG) of transformations is built for all the RDDs that resulted to the final RDD. 

The DAG is used as a logical execution plan. 

 

Figure 7 linage of RDD objects (source: https://jaceklaskowski.gitbooks.io/mastering-apache-

spark/content/spark-rdd-lineage.html) 

One way to categorize transformations is to divide them into narrow and wide transfor-

mations. Narrow transformations only require processing the data of a single partition. 

Spark interprets a sequence of narrow as a pipeline that results to a single stage to be 

executed. Examples of narrow operators are map and filter. Wide transformations may 

val data = Array(1, 2, 3, 4, 5) 

val distData = sc.parallelize(data) // RDD from Array object 

val distFile = sc.textFile("data.txt") // RDD from textFile 

val newRDD = distFile.map( x => x + 1 ) // RDD from another RDD 

Script 11: different ways of creating an RDD 
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need data from more partitions to be executed. Spark must execute a shuffle event to 

reform the partitions of the RDD. Shuffle is used when regrouping is necessary across the 

partitions. This operator is costly and complex since it containts disk I/O, data serializa-

tion, and network I/O and should be used only if necessary. Examples of wide transfor-

mations are groupByKey and reduceByKey. 

 

 

Most common transformations: 

General 

• map(func): a function is executed for each element of an RDD object and the result 

is another distributed RDD object 

• filter(func): results to an RDD object that does not contain those elements that 

when inputted in the function return False.  

Figure 8 Example of a narrow transformation blue: partition of 

parent RDD, orange: partition of child RDD (source: Transfor-

mations and actions a visual guide training http://training.data-

bricks.com/visualapi.pdf) 

Figure 9 Example of a wide transformation (source: Trans-

formations and actions a visual guide training http://train-

ing.databricks.com/visualapi.pdf) 
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• flatmap(func): It has the same logic as map but returns the result of a function as 

a single element. For that reason, the function should return an array type rather 

than a single element. 

• mapPartitions(func): performs an action to the elements of each partition. The out-

put is the transformed partition. 

• reduceByKey(func, [numPartitions]): The input is a set of (𝐾, 𝑉) pairs and the 

function aggregates the 𝑉 values that share the same key (𝐾). The type of the 

function is (𝑉, 𝑉) → 𝑉. Optionally, the result is repartitioned to the number of 

partitions. 

Math / Statistical 

• sample(withReplacement, fraction, seed): Operates like any sample operator, re-

turning a random fraction of the elements with, or without replacement. 

Set Theory / Relational 

• union(otherDataset): Returns the pairs (𝐴, 𝐵) of two datasets, 𝐴 and 𝐵 

• intersection(otherDataset): returns the intersection of two datasets 𝐴 and 𝐵 

Data Structure / I/O 

• coalesce(numPartitions): reduces the number of partition of an RDD object.  

• repartition(numPartitions): Performs shuffling of the elements and repartitions 

them to a given number of partitions. Source: [27] 

RDD Actions  

Actions are functions that input an RDD and result to non-RDD objects. They trigger the 

execution of the DAG formed for this RDD object. Since they return a non-RDD object 

no further transformations can be performed on an action result. 

Most common actions 

General 

• reduce(func): Aggregates the elements of an object using a (𝐴, 𝐵) → 𝐶 function. 

• collect(): Returns to the driver an array of the RDD’s elements. 

• forEach (func): Forces a function to each element of the object.   

Math / Statistical 

• count(): Counts and returns the number of the RDD object’s elements  

Data Structure / I/O 
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• saveAsTextFile(path): Writes the object to a local, or HDFS text file depending 

on the type of the String path. Source: [27] 

RDD functions 

By observing the list of actions and transformations available, it is noticeable that many 

operators (like map, filter, flatMap, mapPartitions) require a function argument, that 

specifies how the operator should work. Those functions can be anonymous syntax func-

tions or static functions of a global singleton object. 

In this example, 𝑓𝑙𝑎𝑡𝑀𝑎𝑝 takes as an argument an anonymous function: 𝑙𝑖𝑛𝑒𝑠 =>

 𝑙𝑖𝑛𝑒𝑠. 𝑠𝑝𝑙𝑖𝑡(" "). The left part of the function (before =>) is equivalent to the parameter 

of a function. The right part is equivalent to the body of a function. Anonymous functions 

are able to identify the returned argument when it is needed and writing a ‘return’ com-

mand is not necessary. The same example using an external function: 

3.2.2 Application initialization 

Regardless of the supported programming languages Spark supports, in order to build 

Spark applications, the programmer needs to add the Spark distribution dependency on 

the project, with respect to the compatibility of the distribution and the language versions. 

Inside the script, the SparkContext, an object that tells Spark how to access the cluster, is 

initialized having a SparkConf object as an argument. With SparkConf, the programmer 

can adjust all the parameters needed for the Spark application. 

 

val data = sc.textFile("spark_test.txt")  

val flatmapFile = data.flatMap(lines => lines.split(" ")) 

Script 11.1: Anonymous syntax function 

def tokenize (lines: String): Array[String] = {   

return lines.split() }  

val data = sc.textFile("spark_test.txt")  

val flatmapFile = data.flatMap(tokenize) 

Script 11.2: External function 

val conf = new SparkConf().setAppName(appName).setMaster(master)  

Val sc = new SparkContext(conf) 
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Each Spark application can have only one SparkContext object. The appName of this 

example code is the name that the programmer wants to be displayed on the cluster UI. 

The master contains the URL of the cluster which is managed either by Spark, Yarn, or 

Mesos. [27] 

3.2.3 RDD Persistence 

As aforementioned, once the RDD object is created, the user can transform or apply an 

action on it. The data of the object are not loaded in memory and the transformations are 

not executed until an action is applied on the object. Then Spark creates computation 

tasks that run on each node machine and return only the result of the computation. If more 

than one actions are performed throughout the program’s code for a single RDD object, 

the tasks are re-executed to create each of the actions result. In some cases, Spark is able 

to persist the intermediate data of the RDD in order not to be recalculated. To optimize 

the application’s performance though, the programmer can demand that an RDD is per-

sisted in memory and un-persist it when it is no longer necessary by calling rdd.persist() 

and rdd.unpersist() respectively. [27] 

3.2.4 Shared Variables 

A user inserts functions to each transformation they use. These functions can use variables 

in the scope they are created, which in most cases is the worker node where these variables 

are copied. For further optimization, Spark provides two shared variable abstractions, 

broadcast variables and accumulators. The former, ensures that a variable which is 

wrapped in a broadcast object is sent to the workers only once instead of packaging it 

with every closure. Accumulators are variables which are read only from the driver, which 

concentrates values from workers using an associative operation. They are useful for 

counting and summing elements. [27] 

 

Script 12: Spark initialization 
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4 Algorithmic techniques for 
distributed skyline computa-
tion on Spark 

During this chapter the thesis’ algorithms for distributed skyline calculation in Apache 

Spark are described and the RDD transformations and functions used are presented. 

4.1 Problem description 

The algorithms aim to input a dataset of multidimensional numerical points and return 

the minimum skyline points taking into consideration the dominance in every dimension. 

The algorithms aim to provide an efficient and scalable solution without previous 

knowledge of the dataset’s distribution and size. The code is written in Scala using the 

Spark API. All the proposed algorithms follow the literature’s common patterns for de-

signing distributed skyline computation algorithms. In this manner, three stages are per-

formed:  

• Partition the dataset into chunks  

• Perform skyline calculation in each chunk  

• Gather the local skyline tuples locally and perform skyline computation in the 

driver 

4.2 Algorithmic approaches 

4.2.1 All Local Skyline 

The first algorithm is the implementation of the baseline approach for distributed skyline 

calculation called ALS [16]. According to it, the skyline points of each node are calcu-

lated in parallel and are then returned to the core machine. Then a skyline calculation is 

performed for all the returned points and the result is output. This approach offers mini-

mum interference for optimization reasons from the programmer and relies on the opti-

mization tools of Spark. 
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Spark implementation 

The first step of the algorithm’s implementation in Spark is the parallelization of the input 

source into an RDD object. Primarily, each element of the source is a 〈𝑆𝑡𝑟𝑖𝑛𝑔〉 line con-

taining 𝑑 float numbers, separated by space (where 𝑑 is the number of the dataset’s di-

mensions). Through a sequence of map functions this element is split and the  〈𝑆𝑡𝑟𝑖𝑛𝑔〉 

elements of the split are converted to  〈𝐷𝑜𝑢𝑏𝑙𝑒〉. In order to perform a parallel skyline 

calculation for each partition as the algorithm dictates, 𝑚𝑎𝑝𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠 is used and the 

skyline calculation method is passed as an argument. 

Algorithm SparkALS 

Input: 𝐷 a multidimensional database 

Output: 𝑆 a set of skyline points 

𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑅𝐷𝐷 ≔ 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑖𝑧𝑒 𝐷 𝑖𝑛𝑡𝑜 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠 

foreach 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 in 𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑅𝐷𝐷 do in parallel 

 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 ≔ 𝑔𝑒𝑡𝑆𝑘𝑦𝑙𝑖𝑛𝑒𝑃𝑜𝑖𝑛𝑡𝑠(𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛) 

𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑀𝑎𝑖𝑛 ≔ 𝑐𝑜𝑙𝑙𝑒𝑐𝑡_𝑡𝑜_𝑚𝑎𝑖𝑛_𝑚𝑒𝑚𝑜𝑟𝑦(𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑅𝐷𝐷) 

𝑆 ≔ 𝑔𝑒𝑡𝑆𝑘𝑦𝑙𝑖𝑛𝑒𝑃𝑜𝑖𝑛𝑡𝑠(𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑀𝑎𝑖𝑛) 

return 𝑆 

val rdd2 = rdd 

 .map(x=>x.split(" ")) 

 .map(x => x.map( y => y.toDouble)) 

 .mapPartitions(skylineCalculation.calculate) 

Figure 10 graph representation of ALS in Spark 

Script 13: Pseudocode of ALS in Spark 
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The result is an RDD object whose elements are arrays of 〈𝐷𝑜𝑢𝑏𝑙𝑒〉 numbers, that repre-

sent the Skyline points of each partition.  

 Next, those elements are collected in main memory as an 〈𝐼𝑡𝑒𝑟𝑎𝑡𝑜𝑟〉 object and the 

same skyline calculation method is executed for this object. Finally, the result is written 

in a *.csv file. 

There is only one action programmed, therefore, Spark execution manager creates one 

job having a single stage. The DAG created from the ALS algorithm is displayed below. 

val mainMemorySkylines = skylineCalculation.calculate( 

 rdd2.collect().toIterator) 

 val write = new writeOutputToCSV(mainMemorySkylines, "ALS.csv") 

Figure 11: DAG of ALS 
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4.2.2 Nested SQL Query using Spark SQL 

This algorithm explores the functionalities and optimization techniques of Spark SQL. 

An SQL query for skyline calculation is passed to the Dataframe object, which is then 

optimized by the Catalyst optimizer that Spark SQL contains. The result of the query is 

the Skyline Dataframe. 

Spark Implementation 

The parallelization of the input source for this algorithm, does not create an RDD object 

but the Spark SQL’s Dataframe abstraction which is handled differently. Initially, after 

the Dataframe object creation, a database table is formed that includes the object’s con-

tent. The table is then used for the Skyline SQL query execution. Finally, in order to save 

the query’s result in a single file, the Dataframe object is coalesced into one partition 

which is then collected in the driver’s memory and written in file. 

 

The skyline query String is formed inside the 𝑐𝑟𝑒𝑎𝑡𝑒𝑆𝑘𝑦𝑙𝑖𝑛𝑒𝑄𝑢𝑒𝑟𝑦𝑆𝑡𝑟𝑖𝑛𝑔 function. 

This takes as an argument the number of the dimensions and compares each dimension 

of the tuples as described in the pseudocode script. 

Algorithm SparkNestedSQLSkylineCalculation 

Input: 𝐷 a multidimensional database 

Output: 𝑆 a set of skyline points 

𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑅𝐷𝐹 ≔ 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑖𝑧𝑒 𝐷 𝑖𝑛𝑡𝑜 𝑎 𝑆𝑝𝑎𝑟𝑘 𝐷𝑎𝑡𝑎𝑓𝑟𝑎𝑚𝑒 𝑂𝑏𝑗𝑒𝑐𝑡 

𝑆 ≔ 𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑅𝐷𝐹. 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑆𝑄𝐿𝑄𝑢𝑒𝑟𝑦( 

 “SELECT * FROM dataframe df 

 WHERE NOT EXISTS(  

 SELECT * FROM dataframe df1 WHERE 

 df1.i <= df.i for each dimension i  

 AND (df1.i < df.i for at least one dimension i);” 

 ) 
 

return 𝑆 

df.createOrReplaceTempView("dataset") //table creation 

val datasetLength = df.columns.length //extracting the dimensions size 

//executing the skyline query     

val df2 = confsql.sql(createSkylineQueryString(datasetLength,false)) 

//writing the result to a space separated csv 

df2.coalesce(1) 

 .write.format("com.databricks.spark.csv") 

 .option("delimiter"," ").save("./output") 
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The Catalyst optimizer at first analyses the logical plan of the execution which then seeks 

to optimize it into a new, more effective plan. The primal logical plan is following the 

script’s instructions:  

 

Figure 12 DAG of pre-optimization Nested SQL 

def createSkylineQueryString(length: Int, header: Boolean ): String = { 

    var query = "SELECT * FROM dataset AS d WHERE NOT EXISTS (" + 

      "SELECT * FROM dataset AS d1 WHERE " 

    var i = 0 

    for (i <- 0 to length -2) { 

      query = query + "d1._c" + i + " <= d._c" + i + " AND " 

    } 

    query = query + "( " 

    var j = 0 

    for (j <- 0 to length -3) { 

      query = query + "d1._c" + j + " < d._c" + j + " OR " 

    } 

    query = query + "d1._c" + (length-2) + " < d._c" + (length-2) + " ))" 

    return query 

  } 
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The optimized plan instead of filters uses LeftAntiJoin, a powerful operator that finds 

values from one table that are not present in another table. 

 

Figure 13 DAG of post-optimization Nested SQL 

The final DAG Spark creates is a physical representation of the optimized plan. 
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Figure 14 Physical representation of Nested SQL DAG 

4.2.3 Grid Partitioning Algorithm 

This algorithm aims to reduce the points collected in main memory. It projects the points 

of the dataset into equally sized cells. Each cell may contain 0 or more points of the da-

taset.  

 

Figure 15 Dataset separated into cells 
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The cells are then examined and those that certainly cannot contain skyline points are 

eliminated. For the rest of the cells each partition’s skylines are calculated in parallel and 

their results are merged in main memory when the final skyline points are calculated. 

Grid formation 

For the formation of the grid, the 𝑚𝑖𝑛 and 𝑚𝑎𝑥 values of every dimension of the database 

are necessary. The programmer sets the number of divisions each dimension should have. 

The matrix is then formed by calculating the boundaries of each cell for each dimension. 

A point of the dataset belongs to a cell when the value of each of its dimensions lied inside 

the cell’s boundaries.  

Cell elimination 

For a cell to be eliminated, it should be certain that another cell’s points are dominating 

one-by-one all its points. In order to avoid further calculations and memory usage, the 

elimination process takes into consideration only the cells’ index which reveals their rel-

ative position. For example, if the dataset has three dimensions, 𝑐𝑒𝑙𝑙1,3,1 is the first cell 

in the dimension-1, third in dimension-2 and first in dimension-3.  

 Based on the Skyline definition, it can be derived that: 

Corollary: A cell a with index x1, x2, … , xn where n is the number of dimensions, cannot 

contain skyline points if and only if there exists a cell b with index y1, y2, … , yn where 

yi < xi for each dimension i and b is non-empty. 

Algorithm gridMatrixCreation 

Input: 𝐷: a multidimensional database 

  𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝑇𝑦𝑝𝑒: the number of divisions each dimension should have 

Output: 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑖𝑒𝑠: a matrix containing the boundaries of each dimension 

𝑚𝑖𝑛𝑖 ≔ 𝐷𝑖 . 𝑚𝑖𝑛,    𝑚𝑎𝑥𝑖 ≔ 𝐷𝑖 . 𝑚𝑎𝑥 for each 𝐷’s dimension 𝑖 

foreach dimension 𝑖 of 𝐷 

 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 ≔ (𝑚𝑎𝑥𝑖 − 𝑚𝑖𝑛𝑖)/𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝑇𝑦𝑝𝑒 

 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑖𝑒𝑠𝑖0 ≔ 𝑚𝑖𝑛𝑖 

 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑖𝑒𝑠𝑖𝑗 ≔ 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑖𝑒𝑠𝑖,𝑗−1 + 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 for every j until 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑖𝑒𝑠𝑖𝑗 == 𝑚𝑎𝑥𝑖 

return 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑖𝑒𝑠 

 

 

𝑆 ≔ 𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑅𝐷𝐹. 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑆𝑄𝐿𝑄𝑢𝑒𝑟𝑦( 

 “SELECT * FROM dataframe df 

 WHERE NOT EXISTS(  

 SELECT * FROM dataframe df1 WHERE 

 df.i <= df1.i for each dimension i  

 AND (df.i < df1.i for at least one dimension i);” 

 ) 
 

return 𝑆 
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Following the corollary, an algorithm is constructed that takes as an argument the index 

of all the non-empty cells and returns the eliminated cells. The algorithm contains a vol-

ume of data small enough to be executed efficiently in the driver’s machine and avoid 

network and I/O cost. 

After the eliminated cells are extracted, they are sent to the nodes and the points each 

node contains are filtered not to be contained in those cells. Using the remaining nodes, 

the skyline nodes are calculated, at first in parallel for each node, and then in main 

memory. 

Algorithm getEliminatedCells 

Input: 𝐶: an array of the index value of every non-empty cell (𝑒. 𝑔. 𝑖𝑛𝑑𝑒𝑥 = (1,0,3) 

Output: 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑𝐶𝑒𝑙𝑙𝑠: an array containing the indexes of the dominated cells  

𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑𝐶𝑒𝑙𝑙𝑠 ≔ {∅} 

foreach 𝑖𝑛𝑑𝑒𝑥 ∈ 𝐶 

 𝑖𝑓 ∃ 𝑖𝑛𝑑𝑒𝑥2 ∈ 𝐶 such that 𝑖𝑛𝑑𝑒𝑥2. 𝑖 < 𝑖𝑛𝑑𝑒𝑥. 𝑖 for each dimension 𝑖: 

  𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑𝐶𝑒𝑙𝑙𝑠. 𝑎𝑑𝑑(𝑖𝑛𝑑𝑒𝑥) 

return 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑𝐶𝑒𝑙𝑙𝑠 

 

Figure 16 Dominated cells in 

Grid Partitioning 
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Spark implementation 

Once the source file is read and parallelized, the programmer sets the number of divisions 

each dimension should have. Then the division boundaries of each dimension are calcu-

lated. 

Using the divisions’ boundaries, each node calculates the cells their elements belong to. 

Then all the not empty cells are collected from this RDD object and the dominated cells 

are calculated. 

 

Algorithm sparkGridPartitioning 

Input: 𝐷 a multidimensional database 

Output: 𝑆 a set of skyline points 

𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑅𝐷𝐷 ≔ 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑖𝑧𝑒 𝐷 𝑖𝑛𝑡𝑜 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠 

𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑖𝑒𝑠 ≔ 𝑔𝑟𝑖𝑑𝑀𝑎𝑡𝑟𝑖𝑥𝐶𝑟𝑒𝑎𝑡𝑖𝑜𝑛(𝐷, 𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝐷𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝑠) 

do in parallel: append to each point of 𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑅𝐷𝐷 its cell index 

𝑛𝑒𝐶𝑒𝑙𝑙𝑠 ≔ collect all the distinct cell indexes found in 𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑅𝐷𝐷 

𝑒𝑙𝑖𝑚𝑖𝑛𝑎𝑡𝑒𝑑𝐶𝑒𝑙𝑙𝑠 ≔ 𝑔𝑒𝑡𝐸𝑙𝑖𝑚𝑖𝑛𝑎𝑡𝑒𝑑𝐶𝑒𝑙𝑙𝑠(𝑛𝑒𝐶𝑒𝑙𝑙𝑠) 

𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝑅𝐷𝐷. 𝑓𝑖𝑙𝑡𝑒𝑟𝐼𝑛𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙(𝑑𝑒𝑙𝑒𝑡𝑒 𝑝𝑜𝑖𝑛𝑡𝑠 𝑤𝑖𝑡ℎ 𝑐𝑒𝑙𝑙 𝑖𝑛𝑑𝑒𝑥 𝑖𝑛 𝑒𝑙𝑖𝑚𝑖𝑛𝑎𝑡𝑒𝑑𝐶𝑒𝑙𝑙𝑠) 

foreach 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 in 𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑅𝐷𝐷 do in parallel 

 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 ≔ 𝑔𝑒𝑡𝑆𝑘𝑦𝑙𝑖𝑛𝑒𝑃𝑜𝑖𝑛𝑡𝑠(𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛) 

𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑀𝑎𝑖𝑛 ≔ 𝑐𝑜𝑙𝑙𝑒𝑐𝑡_𝑡𝑜_𝑚𝑎𝑖𝑛_𝑚𝑒𝑚𝑜𝑟𝑦(𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑅𝐷𝐷) 

𝑆 ≔ 𝑔𝑒𝑡𝑆𝑘𝑦𝑙𝑖𝑛𝑒𝑃𝑜𝑖𝑛𝑡𝑠(𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑀𝑎𝑖𝑛) 

 

  

 

  val divisionType=3 

  val cellGrid = new CellGrid(rdd, divisionType) 

  val divisionBoundaries = cellGrid.getDivisionBoundaries() 
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 Each node filters its tuples and returns only the points that are not a part of the dominated 

cells.  

 

Then, for each partition, the algorithm calculates the local skyline points using the SFS 

Skyline calculation technique which is described in the next paragraph. Finally, the re-

sulted local skylines are collected into the driver and the global skyline points are calcu-

lated and extracted. 

The execution plan Spark creates consists of 4 core jobs. The first two, return the min 

and max values of the dataset and are executed for each dimension during the creation of 

the grid boundaries. The next job is terminated once the distinct non-empty cells are ex-

tracted from the RDD object and written in main memory. The last job terminates when 

each local skyline tuple is collected and is used for the final skyline calculation. Minor 

jobs are not mentioned because they do not affect significantly the efficiency of the algo-

rithm. 

val zippedRdd = addLocalDivisionPoints(rdd) 

    .map(x => x 

 .map(y => ( y._1._1, y._1._2, gridCalculation.getDimensionGridCell(y)))) 

    .map(x => (x, x.map(y => y._3))) 

    .map(x => x.swap) 

    .map(x => (x._1.toList, x._2)) 

    .map(x => (x._1, x._2.toIterable)) 

def addLocalDivisionPoints(rdd:RDD[Array[Double]])  = 

  { 

    rdd.map(x => x.zipWithIndex) 

      .map(x => x.map(y => (y, divisionPointsB.value(y._2)))) 

  } 

val necells = zippedRdd.map(x => x._1).distinct().collect() 

val dominatedCells = getDominatedCells(necells.toList) 

 

val filteredCellsRDD = filterDominated(zippedRdd) 

    .map(x => x._2.map(y => y._1).toArray) 
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4.3 Skyline calculation techniques 

Regardless of whether the skyline points are calculated for each node in parallel, or in the 

driver, the inputs and outputs of the skyline calculation are of the same object type. When 

performing a node skyline calculation, the input is the points of a single partition of an 

RDD object. The output is stored in the same partition before being merged with every 

partition’s output in the driver. In main memory, the input is a collection of local skyline 

points and after the calculation the output is written in file. Two approaches for the skyline 

calculation were examined. The first, simpleSkylineCalculation compares each point of 

the input with the rest. If a domination condition exists during the comparison, the dom-

inated point is deleted from the dataset. The second SFSkylineComputation, is the imple-

mentation of Ilaria Bartolini’s algorithm [29];It first sorts the dataset in ascending order 

according to a monotone preference function. The first point is inserted to a candidate list 

and the components of the list are compared with the rest of points. If a point dominates 

one or more points of the list, that points are deleted. If the point is not dominated by any 

point of the list, it is inserted in the list.  

 During the first experiments, it became appreciable that SFSkylineComputation was 

a lot more efficient than the simpleSkylineCalculation and was for that reason integrated 

in each of the thesis’ algorithms. 

 

Algorithm simpleSkylineCalculation 

Input: 𝐷 a set of points 

Output: 𝑆 a set of skyline points 

𝑆 ≔ 𝐷 

foreach point 𝑝1 in 𝑆 \\loop1 

 foreach point 𝑝2 ≠ 𝑝1 \\loop2 

  if 𝑝1. 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑠(𝑝2) 

   remove 𝑝2 from 𝑆 

  else if 𝑝2. 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑠(𝑝1) 

   remove 𝑝1 from 𝑆 

   exit loop2 

return 𝑆 
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4.4 Optimization of the algorithms 

The Apache Spark architecture and its components’ functionalities have a key role to the 

effectiveness of the algorithms. It is highly important that the algorithms are programmed 

so that they take advantage of the Spark capabilities in an optimal manner. 

 As aforementioned in chapter 3, a major cause of delays in a Spark program is the 

shuffling operators. They result to highly expensive data movements and replications 

across different nodes and should be avoided whenever possible. The cost of each 

Algorithm SFSkylineCalculation 

Input: 𝐷 a set of points 

Output: 𝑆 a set of skyline points 

Add score on each tuple of 𝐷  

Sort 𝐷 according to their score  

Initiate 𝑆 ∶=  𝐷(0) 

foreach point 𝑝1 in 𝐷 except 𝐷(0) \\loop1 

 𝑡𝑜𝐵𝑒𝐴𝑑𝑑𝑒𝑑 ≔ 𝑇𝑟𝑢𝑒 

 foreach 𝑝2 in 𝑆 \\loop2 

  if 𝑝1. 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑠(𝑝2) 

   remove 𝑝2 from 𝑆 

  else if 𝑝2. 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑠(𝑝1) 

   𝑡𝑜𝐵𝑒𝐴𝑑𝑑𝑒𝑑 ≔ 𝐹𝑎𝑙𝑠𝑒 

   exit loop2 

 if  𝑡𝑜𝐵𝑒𝐴𝑑𝑑𝑒𝑑 == 𝑇𝑟𝑢𝑒 

  𝑆. 𝑎𝑑𝑑(𝑝1) 

return 𝑆 

  

 

Algorithm dominates 

Input: 𝑝1,𝑝2 points 

Output: 𝑏𝑜𝑜𝑙𝑒𝑎𝑛𝑉𝑎𝑙𝑢𝑒 True or False 

𝑏𝑜𝑜𝑙𝑒𝑎𝑛𝑉𝑎𝑙𝑢𝑒 ≔ (𝑝1. 𝑖 ≤ 𝑝2. 𝑖 for each dimension 𝑖) AND 

    (𝑝1. 𝑖 < 𝑝2. 𝑖 for at least one dimension 𝑖) 

Return 𝑏𝑜𝑜𝑙𝑒𝑎𝑛𝑉𝑎𝑙𝑢𝑒 
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shuffling operator varies, with groupByKey being the most expensive. For that reason, in 

all three algorithm implementations, the -byKey algorithms are avoided. For example, in 

the grid partitioning algorithm the tuples are not grouped or aggregated according to their 

grid cell, but each tuple’s cell is appended to the RDD element. The non-empty cells are 

extracted from the RDD object by a distinct operator which causes minor shuffling be-

tween the nodes. 

 The algorithms take advantage of the Broadcast functionality of Spark. Some of the 

algorithms’ operators require data that are stored in the driver’s memory. Spark requires 

those data to be copied in each node in order to participate in an RDD function’s result. 

When the data are broadcasted instead, they are stored in each machine rather than each 

node, and the redundant memory allocation is avoided. For that reason, variables neces-

sary for some parallel calculations like the dominated grid cells and the dimension’s 

boundaries are broadcasted instead of copied. 

 The grid partitioning algorithm, being the most complex of the three, requires a se-

quence of actions and transformation to be executed in the same RDD objects. By default, 

when Spark recognizes an action, it plans a job that contains all the transformations ap-

pearing between the RDD object’s creation and action. When those transformations ap-

pear again later in the program, Spark re-executes them resulting to unnecessary calcula-

tions. The grid partitioning algorithm uses the persist function when suitable, to maintain 

the transformed object after an action is performed on it. 

 One of the costliest phases of all the algorithms is the collection and skyline calcula-

tion executed in the driver. By using the simple skyline calculation, every tuple is com-

pared with every other tuple until a domination relation between them appears. In order 

to collect and compute the final skyline points efficiently and not overload the driver’s 

memory, an adjustment of the SFS Skyline method is used. The first tuple collected in 

the driver, is inserted into an 〈𝐴𝑟𝑟𝑎𝑦𝐵𝑢𝑓𝑓𝑒𝑟〉 object. Each new collected tuple is com-

pared only with this object which is updated when a skyline point is detected or domi-

nated. The elements of the Buffered Array, after all the points are examined, form the 

final skyline points of the dataset. This method achieves to avoid redundant comparisons 

between the tuples.  
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5 Performance evaluation us-
ing a multi-core machine and 
a cluster of machines 

During this chapter, the results of experiments on the three algorithmic approaches are 

presented and discussed. Each approach offers different pros and cons and it is difficult 

to weight their efficiency without testing them in various environments using different 

input sources.  

5.1 Algorithms strengths and weaknesses 

5.1.1 ALS 

Advantages 

The All Local Skyline algorithm implements the simplest approach to distributed skyline 

computation. By relying on Spark’s default partitioning method, the data do not need to 

be accessed before the computation of the local skyline points. It is also highly likely that 

each partition follows the same distribution with the whole dataset, which means that the 

skyline points retrieved from every partition are at a certain level relative to the final 

skyline points.  In addition, costly shuffling operations between partitions are not present. 

Likewise, the collection of those points and the driver’s skyline computation is not based 

on complex procedures.  

Disadvantages 

The main disadvantage of ALS is that the local skyline points are calculated for each 

partition without performing a prior mass elimination of points, as opposed to the grid 

partitioning approach. Moreover, scaling the volume of the local skyline points that are 

finally collected in main memory affects dramatically the skyline computation time. 

While the computational cost of distributed calculations can be easily reduced by append-

ing more nodes in the cluster, the hardware of the central machine is restrictive to high 

scalability. 
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5.1.2 Nested SQL 

Advantages 

This approach relies heavily on the optimization techniques of SparkSQL’s Catalyst op-

timizer. While single-machine SQL commands perform redundant non-scalable calcula-

tions, SparkSQL is designed to efficiently use the cluster’s distribution and optimize the 

queries’ plan according to it. 

Disadvantages 

The Catalyst optimizer seeks to optimize the application’s queries for an effective, dis-

tributed execution. The query itself though is not always capable of transforming the 

problem’s solution in the most detailed and efficient approach, unlike the RDDs and the 

agility they offer to the programmer. In other words, the optimization and execution of 

the algorithm’s plan is a black box to the programmer, who is provided with limited meth-

ods of affecting it. 

5.1.3 Grid Partitioning 

Advantages 

Grid partitioning is able to perform early eliminations of tuples the volume of which de-

pends highly on the distribution of the dataset. While this adds more tasks to be executed, 

the calculations for grid elimination are applied in a small volume of data in the driver, 

without network delays. By filtering the eliminated cells from the RDD object the local 

skyline calculations are executed more quickly in each partition and finally the tuples 

returned for the main memory skyline calculation are reduced as well.  

Disadvantages 

It is controvertible whether the addition of the grid elimination tasks and the filtering 

methods to the execution plan reduces the volume data in such level that the performance 

of the algorithm increases. In addition, the programmer must optimally adjust the number 

of divisions each dimension should have according to the volume and distribution of the 

dataset, the characteristics of the cluster and the hardware capabilities of the driver.  

 

5.2 Dataset 

To evaluate the efficiency of the algorithms, a collection of datasets is created. Each da-

taset contains randomly generated float numbers following a specific distribution. Figures 
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17-20 display the distributions used for the algorithms’ evaluation and the skyline tuples 

each produces. 

 

 

 

Figure 17 skyline points in a uniform dataset 

Figure 18 skyline points in a correlated dataset 
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As the figures indicate, the distribution of a database highly affects the number of Skyline 

points it contains. While the majority of the tuples in correlated data are dominated, in 

anticorrelated data a significant number of tuples is skyline points. An efficient skyline 

calculation algorithm should perform well on any type of distribution without prior 

knowledge of this type. 

Figure 19 skyline points in an anticorrelated dataset 

Figure 20 skyline points in a gaussian dataset 
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Since the thesis’ algorithms are implemented in Spark, which is a platform for parallel 

and distributed data processing, the scalability of the algorithms is evaluated by applying 

them on databases of various sizes, from 1.000.000 to 100.000.000 tuples. 

5.3 Performance on Standalone mode 

The algorithms are firstly evaluated on a single machine, with Intel Core I7 having 4 cores 

and 8 threads. The data examined have 100.000 3-dimension (small), 500.000 4-dimen-

sion (medium) and 1.000.000 5-dimension (large) tuples. 

 

Figure 21 Execution duration in standalone mode 

The Nested SQL algorithm is always slower than the other two algorithms. It should be 

noted that the algorithm’s results were able to be retrieved only for small and medium 

data and exclusively large uniform data. When excluding Nested SQL, the graph becomes 

more interesting regarding the efficiency of ALS and Grid Partitioning. 
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Figure 22 Execution duration of ALS and Grid Partitioning in standalone mode 

The figure shows that the difference between the two algorithms in standalone mode is 

small at all cases. ALS is always slightly better with the exception of large anticorrelated 

data. Moreover, anticorrelated data require more time to be processed since they contain 

more skyline tuples. 

5.4 Performance on a Hadoop cluster 

The algorithms are executed using Hadoop’s Yarn with 1.000.000 and 10.000.000 tuples, 

and 4 and 8 executors. The datasets used are retrieved from the Hadoop Distributed 

Filesystem, and consist of 3-dimensional tuples of each distribution type. The local sky-

line calculation and the total processing time can be compared by observing figures 23-

26. Nested SQL algorithm was not able to return results due to time-out errors. 
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Figure 23 Algorithms’ performance in 1000000 tuples, 4 executors 

 

 

Figure 24 Algorithms’ performance in 10000000 tuples, 4 executors 
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Figure 25 Algorithms’ performance in 100000 tuples, 8 executors 

 

 

Figure 26 Algorithms’ performance in 10000000 tuples, 4 executors 

 

Regarding the distribution of the datasets, it is noticed that under these circumstances it 

does not affect noticeably the total execution of the algorithms. 

An easy observation is that ALS is significantly more efficient in both cases. Although 

Grid Partitioning offers sophisticated ways of early elimination of tuples and calculates 

the local skylines in a slightly shorter period, this is achieved with a serious cost. Figure 

27 shows in detail on which stages, during the execution, Grid Partitioning delays the 

execution time. 
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Figure 27 Grid Partitioning Stages Duration 

The figure shows that although the local skyline calculation in Grid Partitioning is quicker 

than in ALS, the cost of calculating each dimension’s boundaries is very high. Indeed, for 

this calculation, costly  𝑚𝑖𝑛 and 𝑚𝑎𝑥 actions are performed for each tuple’s dimension, 

requiring coordination between the nodes. On the other hand, the driver calculates the 

dominated cells instantly, confirming that its memory and executors are adequate for this 

task. Another costly procedure of Grid Partitioning is the collection of the non-empty 

cells from the RDD object to driver’s memory. 

 Next, the scalability of the algorithms is examined. They are executed using 8 execu-

tors in 1.000.000, 10.000.000, 50.000.000 and 100.000.000 uniform distributed tuples. 

The results are displayed below. 

0

20

40

60

80

100

120

140

160

180

uniform correlated anticorrelated gaussian

Grid Partitioning Stages Duration

time for division points calculation time of dominated cells calculation

time of local skyline calculation



-58- 

 

Figure 28 Scalability of ALS and Grid Partitioning 

It is clear that the performance of the ALS algorithm, unlike Grid Partitioning, is almost 

not affected by the volume of the input data, despite the fact that more skylines tuples are 

returned to the driver program. 

 The overall results were in favor of the ALS algorithm and along with the insights 

gained from multiple attempts before reaching to the final structure of the algorithms can 

indicate some inferences: 

• Apache Spark’s architecture allows pipelined calculations performed on each 

node to be executed in a fairly short time. This can be noticed by the minor dif-

ference of ALS and Grid Partitioning when computing the local skyline calcula-

tions, although Grid Partitioning’s tuples at that point are significantly reduced. 

• Multiple actions add a cost to the execution of the algorithms that should not be 

neglected. The calculation of the grid cells almost doubles the duration of the ex-

ecution due the 𝑚𝑖𝑛 and 𝑚𝑎𝑥 values extracted for each dimension of the dataset. 

The collection of the non-empty from the RDD object to the driver cells is also 

very time consuming.  

• Persist, unpersist and broadcast functions increased the efficiency of the algo-

rithms. 

• Shuffling operators, on the other hand, increase the execution time and should 

only be used if completely necessary. 
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• SparkSQL’s optimizer was not able to adapt efficiently to the given query. While 

the SQL approach was able to handle adequately small-sized datasets, it failed 

during the scaling of the data, due to its expensive broadcast operations. 
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6 Conclusions and future work 

This chapter presents the conclusions derived after the completion of the thesis and offers 

ideas for potential future work. 

 The objective of this dissertation was the implementation and evaluation of efficient, 

scalable Skyline calculation algorithms using the Apache Spark framework and the Scala 

programming language. It provided motivation for the basic acquisition of the Scala pro-

gramming environment, the Skyline calculation problem and more importantly the archi-

tecture and programming environment of the constantly evolving Apache Spark frame-

work.  The algorithms designed where based on propositions from related scientific liter-

ature and where adapted to Apache Spark’s architecture. 

The three algorithmic approaches implemented are ALS, Nested SQL and Grid Par-

titioning. In ALS, local skyline tuples are calculated for each node which are then merged 

in main memory to result to the final skyline tuples. In nested SQL, the result is retrieved 

by performing an SQL query, which is automatically optimized by Spark’s Catalyst op-

timizer. The Grid Partitioning algorithm separates the data space into cells and performs 

early elimination of tuples that are contained in dominated cells. Those algorithms where 

executed in both a single machine and a Hadoop environment using multiple executors. 

The results have shown that ALS is the most suitable approach among the three for Sky-

line calculation on Spark, due to the simplicity of the execution’s DAG. Nested SQL has 

proven inadequate on large-scale datasets while the Grid Partitioning algorithm’s cell 

elimination cost was not counterbalanced by the minor cost reduction of the local Skyline 

calculation. Choosing to use alterations of the SFS skyline calculation rather than the 

basic skyline calculation, reduced significantly the driver’s and partitions’ calculation 

time, thus is proven to be suitable for Skyline querying in Spark. 

Overall, the experiments have shown that designing an efficient Spark Skyline calcu-

lation algorithm cannot entirely rely on the propositions of the existing distributed Sky-

line calculation research papers because of Spark’s distinct architecture. The lack of com-

munication between the worker nodes compels for mostly pipelined workflows and min-

imized data exchanges among the workers, and between the nodes and the driver.  

 Besides the three implemented algorithms, there are many other algorithmic ap-

proaches that can be adjusted in the Spark platform and be evaluated. Angle-based Space 
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Partitioning, Kian-Lee Tan’s [4]  approach of transforming the tuples into bitmaps, are 

just a few examples of approaches potentially useful for Spark.  

The SparkSQL abstraction of Spark, could also benefit by the addition of a Skyline 

query operator that is programmed to return rapid, efficient and scalable results, instead 

of relying to the restrictive SQL commands. Since Spark supports streaming data, skyline 

algorithms can also be designed for data of such type, allowing the application of Skyline 

calculation to real world problems just like the search of a mobile phone between multiple 

different stores .  

 In general, distributed Skyline calculation literature, which until today consists mostly 

of approaches based on peer-to-peer environments, can be enriched with publications 

concerning efficient Skyline calculation on Apache Spark, and other master/worker-based 

distributed systems. 
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6.1 Code 

skylineMain.scala 

  

object skylineMain { 

  def main(args: Array[String]) { 

    val conf = new SparkConf().setAppName("skylineCalculator 

    val sc = new SparkContext(conf) 

    val now = System.nanoTime 

    val algorithm = args(1) 

 

    algorithm match { 

      case "nestedSQL" => new nestedSQL(args(0), args(2).toDouble) 

      case "gp" => new gridPartitioning(args(0), sc, args(2).toDouble) 

      case "rddBasicSFS" => new rddBasicSFS(args(0), sc, args(2).toDouble) 

      case _ => println("algorithm not yet implemented") 

    } 

 

    val timeElapsed = System.nanoTime - now 

    println("total time elapsed: "+ timeElapsed.asInstanceOf[Double] / 1000000000.0) 

  } 

} 
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algorithms.ALS.scala 

 

  

class ALS(inputPath: String, sc: SparkContext,  samplingRate: Double) extends Serializable { 

  val inputingTime = System.nanoTime 

  

  val rdd = sc.textFile(inputPath).sample(withReplacement = false, samplingRate) 

  println("rdd created") 

  println("number of tuples: "+1000000000*samplingRate) 

  println("number of rdd's partitions:" + rdd.getNumPartitions)  

  val rdd2 = rdd.map(x=>x.split(" ")).map(x => x.map( y => y.toDouble)).mapPartitions(SFSSkyline-

Calculation.addScoreAndCalculate) 

  rdd2.persist() 

  println("number of local skylines: "+rdd2.count()) 

  val localSkylinesTime = System.nanoTime 

  println("time of extracting local skyline points:"+(localSkylinesTime-inputingTime).asIn-

stanceOf[Double] / 1000000000.0) 

  var partitionSkylines = ArrayBuffer[Array[Double]]() 

  rdd2.collect.foreach(x => SFSSkylineCalculation.calculatePartition(partitionSkylines, Itera-

tor(x)) 

  ) 

  println("skyline completed. total skylines:"+partitionSkylines.length) 

  println("time of extracting final skylines:"+(System.nanoTime-localSkylinesTime).asIn-

stanceOf[Double] / 1000000000.0) 

} 
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algorithms.gridPartitioning.scala 

class gridPartitioning (inputPath: String, sc: SparkContext,  samplingRate: Double) extends Seri-

alizable { 

  val rdd = sc.textFile(inputPath).sample(withReplacement = false,  samplingRate: Double) 

    .map(x=>x.split(" ")) 

    .map(x => x.map( y => y.toDouble)) 

  println("number of tuples:"+1000000000*samplingRate) 

  println("rdd created") 

  println("number of rdd's partitions: " + rdd.getNumPartitions) 

  

  val divisionType=5 

  val beforeGridCalculation = System.nanoTime 

  val partition = new Partition(rdd, divisionType) 

  val divisionPoints = partition.getDivisionPoints() 

  val afterGridCalculation = System.nanoTime 

  println("time for division points calculation: "+(afterGridCalculation-beforeGridCalcula-

tion).asInstanceOf[Double] / 1000000000.0) 

  val divisionPointsB = sc.broadcast(divisionPoints) 

  val emptySet = List[Array[(Double, Int, Int)]]() 

  val zippedRdd = addLocalDivisionPoints(rdd) 

    .map(x => x.map(y => ( y._1._1, y._1._2, gridCalculation.getDimensionGridCell(y)))) 

    .map(x => (x, x.map(y => y._3))) 

    .map(x => x.swap) 

    .map(x => (x._1.toList, x._2)) 

    .map(x => (x._1, x._2.toIterable)) 

  zippedRdd.persist()  

  rdd.unpersist() 

  

  val necells = zippedRdd.map(x => x._1).distinct().collect() 

  println("total number of cells:" + necells.length) 

  val beforeCellElimination = System.nanoTime 

  val dominatedCells = getDominatedCells(necells.toList) 

val afterCellElimination = System.nanoTime 

  

  println("number of dominated cells:" + dominatedCells.size) 

  println("time of dominated cells calculation:"+(afterCellElimination-beforeCellElimina-

tion).asInstanceOf[Double] / 1000000000.0) 

  

  val dominatedCellsB = sc.broadcast(dominatedCells) 

  

  val filteredCellsRDD = filterDominated(zippedRdd) 

    .map(x => x._2.map(y => y._1).toArray) 
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  filteredCellsRDD.persist() 

  zippedRdd.unpersist() 

  val nOfTuples = filteredCellsRDD.count() 

  println("number of tuples after cell elimination:" + nOfTuples) 

  val beforeLocalSkylines = System.nanoTime 

  val skylinedRDD=filteredCellsRDD.mapPartitions(SFSSkylineCalculation.addScoreAndCalculate) 

  val skylinedRDDwithIndex = addLocalDivisionPoints(skylinedRDD) 

    .map(x => x.map(y => ( y._1._1, y._1._2, gridCalculation.getDimensionGridCell(y)))) 

    .map(x => (x, x.map(y => y._3))) 

    .map(x => x.swap) 

    .map(x => (x._1.toList, x._2)) 

    .map(x => (x._1, x._2.toIterable)) 

  skylinedRDDwithIndex.persist() 

  filteredCellsRDD.unpersist() 

  println("number of local skylines in all the partitions:"+skylinedRDDwithIndex.count()) 

  val afterLocalSkylines = System.nanoTime 

  println("time of local skyline calculation:"+(afterLocalSkylines-beforeLocalSkylines).asIn-

stanceOf[Double] / 1000000000.0) 

var partitionSkylines = ArrayBuffer[Array[Double]]() 

  skylinedRDDwithIndex.map(x => x._2.map(y => y._1).toArray).collect.foreach(x=>SFSSkylineCalcu-

lation.calculatePartition(partitionSkylines,Iterator(x))) 

  println("skyline completed. total skylines:"+partitionSkylines.length) 

  println("time of extracting final skylines:"+(System.nanoTime-afterLocalSkylines).asIn-

stanceOf[Double] / 1000000000.0) 

def filterDominated(rdd:RDD[(List[Int], Iterable[(Double,Int,Int)])]): RDD[(List[Int], Itera-

ble[(Double,Int,Int)])]={ 

    return rdd.filter(x => !(dominatedCellsB.value contains x._1))} 

def addLocalDivisionPoints(rdd:RDD[Array[Double]])  = { 

    rdd.map(x => x.zipWithIndex) 

      .map(x => x.map(y => (y, divisionPointsB.value(y._2))))} 

def getDominatedCells(list: List[List[Int]]): Array[List[Int]] ={ 

    var arraybuffer = ArrayBuffer[List[Int]]() 

    list.foreach(x => { if (list.exists(l => isDominatedCell(x, l))) {arraybuffer += x }}) 

    return arraybuffer.toArray} 

  def isDominatedCell(cell1: List[Int], cell2: List[Int]): Boolean ={ 

    var flag=true 

    for(i<-0 to cell1.length-1) 

    { if(cell1(i)<=cell2(i)) 

      {flag=false}} 

    return flag 

  } 

} 
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simpleSkylineCalculation.scala 

 

  

object skylineCalculation extends Serializable { 

  

  def calculate(x: Iterator[Array[Double]]): Iterator[Array[Double]] = { 

    var tempList = x.toList 

    var i = 0 

    var listLength = tempList.length 

    while (i < listLength - 1) { 

      var k = i + 1 

      while (k < listLength) { 

        if (dominationCondition.isDominated(tempList(i),tempList(k))) { 

          tempList = tempList.take(k) ++ tempList.drop(k + 1) 

          k = k - 1 

          listLength = listLength - 1 

        } 

        else if (dominationCondition.isDominated(tempList(k),tempList(i))) { 

          tempList = tempList.take(i) ++ tempList.drop(i + 1) 

          listLength = listLength - 1 

          i = i - 1 

          k = listLength 

        } 

        k = k + 1 

      } 

      i = i + 1 

    } 

    return tempList.toIterator 

  } 

} 
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SFSSkylineCalculation.scala 

 

  

object SFSSkylineCalculation extends Serializable { 

  def calculate(x: Iterator[Array[Double]]): Iterator[Array[Double]] = { 

    var arraybuffer = ArrayBuffer[Array[Double]]() 

    val array = x.toArray 

    arraybuffer += array(0) 

    for (i<-1 to array.length - 1) 

      { 

        var j=0 

        var breaked = false 

        breakable 

        { 

          while (j < arraybuffer.length) { 

            if (dominationCondition.isDominated(array(i), arraybuffer(j))) { 

              arraybuffer.remove(j) 

              j-=1 

            } 

            else if (dominationCondition.isDominated(arraybuffer(j), array(i))) { 

              breaked = true 

              break() 

            } 

            j += 1 

          } 

        } 

            if(!breaked) 

              arraybuffer+=array(i) 

      } 

    return arraybuffer.toIterator 

} 

  def addScoreAndCalculate(x: Iterator[Array[Double]]):Iterator[Array[Double]]={ 

    val y = addScoringFunction(x) 

    val ysort = sortByScoringFunction(y) 

    val result = calculate(ysort.map(x=>x._1)) 

    return result 

  }  

  } 
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def calculatePartition(previousSkylines: ArrayBuffer[Array[Double]], enteredPartition: Itera-

tor[Array[Double]]): Iterator[Array[Double]]= { 

    var wasEmpty=false 

    val array = enteredPartition.toArray 

    if(previousSkylines.length==0){ 

        previousSkylines += array(0) 

        wasEmpty=true 

      } 

    for (i <- 0 to array.length - 1) { 

      var j = 0 

      var breaked = false 

      breakable { 

        while (j < previousSkylines.length) { 

          if (dominationCondition.isDominated(array(i), previousSkylines(j))) { 

            previousSkylines.remove(j) 

            j -= 1 

          } 

          else if (dominationCondition.isDominated(previousSkylines(j), array(i))) { 

            breaked = true 

            break() 

          } 

          if(wasEmpty & i==0) 

            { 

              breaked=true 

              break() 

            } 

          j += 1 

        } 

      } 

      if (!breaked) { 

        previousSkylines += array(i) 

      } 

    } 

    return previousSkylines.toIterator 

  } 
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dominationCondition.scala 

def sortByScoringFunction(iterator: Iterator[(Array[Double], Double)]):Iterator[(Array[Double], 

Double)]= 

  { 

    var array=iterator.toArray 

    array.sortBy(x => - x._2) 

    return array.toIterator 

  } 

 

  def addScoringFunction(array:Iterator[Array[Double]]): Iterator[(Array[Double], Double)] ={ 

    array.map(x => (x, 0)) 

      .map(x => { 

        var sum =0.0 

        for (i<-0 to x._1.length - 1) 

        { 

          sum += math.log(x._1(i)+1) 

        } 

        (x._1,sum) 

      }) 

  } 

} 

object dominationCondition extends Serializable { 

  def isDominated(x: Array[Double], y:Array[Double]): Boolean = { 

    return isSmaller(x,y) & isSmallerEqual(x,y)} 

  def isSmaller(x: Array[Double], y:Array[Double]):Boolean = { 

    val size = x.length 

    var flag = false 

    var i = 0 

    for (i <- 0 to size - 1) { 

      if (x(i) < y(i)) 

        flag = true} 

    return flag} 

  def isSmallerEqual(x: Array[Double], y:Array[Double]):Boolean = { 

    val size = x.length 

    var flag = true 

    var i = 0 

    for (i <- 0 to size - 1) { 

      if (x(i) > y(i)) 

        flag = false} 

    return flag 

  } 

} 


