293 research outputs found

    Processing large raster and vector data in apache spark

    Get PDF
    Spatial data processing frameworks in many cases are limited to vector data only. However, an important type of spatial data is raster data which is produced by sensors on satellites but also by high resolution cameras taking pictures of nano structures, such as chips on wafers. Often the raster data sets become large and need to be processed in parallel on a cluster environment. In this paper we demonstrate our STARK framework with its support for raster data and functionality to combine raster and vector data in filter and join operations. To save engineers from the burden of learning a programming language, queries can be formulated in SQL in a web interface. In the demonstration, users can use this web interface to inspect examples of raster data using our extended SQL queries on a Apache Spark cluster

    Efficient processing of large-scale spatio-temporal data

    Get PDF
    Millionen Geräte, wie z.B. Mobiltelefone, Autos und Umweltsensoren senden ihre Positionen zusammen mit einem Zeitstempel und weiteren Nutzdaten an einen Server zu verschiedenen Analysezwecken. Die Positionsinformationen und übertragenen Ereignisinformationen werden als Punkte oder Polygone dargestellt. Eine weitere Art räumlicher Daten sind Rasterdaten, die zum Beispiel von Kameras und Sensoren produziert werden. Diese großen räumlich-zeitlichen Datenmengen können nur auf skalierbaren Plattformen wie Hadoop und Apache Spark verarbeitet werden, die jedoch z.B. die Nachbarschaftsinformation nicht ausnutzen können - was die Ausführung bestimmter Anfragen praktisch unmöglich macht. Die wiederholten Ausführungen der Analyseprogramme während ihrer Entwicklung und durch verschiedene Nutzer resultieren in langen Ausführungszeiten und hohen Kosten für gemietete Ressourcen, die durch die Wiederverwendung von Zwischenergebnissen reduziert werden können. Diese Arbeit beschäftigt sich mit den beiden oben beschriebenen Herausforderungen. Wir präsentieren zunächst das STARK Framework für die Verarbeitung räumlich-zeitlicher Vektor- und Rasterdaten in Apache Spark. Wir identifizieren verschiedene Algorithmen für Operatoren und analysieren, wie diese von den Eigenschaften der zugrundeliegenden Plattform profitieren können. Weiterhin wird untersucht, wie Indexe in der verteilten und parallelen Umgebung realisiert werden können. Außerdem vergleichen wir Partitionierungsmethoden, die unterschiedlich gut mit ungleichmäßiger Datenverteilung und der Größe der Datenmenge umgehen können und präsentieren einen Ansatz um die auf Operatorebene zu verarbeitende Datenmenge frühzeitig zu reduzieren. Um die Ausführungszeit von Programmen zu verkürzen, stellen wir einen Ansatz zur transparenten Materialisierung von Zwischenergebnissen vor. Dieser Ansatz benutzt ein Entscheidungsmodell, welches auf den tatsächlichen Operatorkosten basiert. In der Evaluierung vergleichen wir die verschiedenen Implementierungs- sowie Konfigurationsmöglichkeiten in STARK und identifizieren Szenarien wann Partitionierung und Indexierung eingesetzt werden sollten. Außerdem vergleichen wir STARK mit verwandten Systemen. Im zweiten Teil der Evaluierung zeigen wir, dass die transparente Wiederverwendung der materialisierten Zwischenergebnisse die Ausführungszeit der Programme signifikant verringern kann.Millions of location-aware devices, such as mobile phones, cars, and environmental sensors constantly report their positions often in combination with a timestamp to a server for different kinds of analyses. While the location information of the devices and reported events is represented as points and polygons, raster data is another type of spatial data, which is for example produced by cameras and sensors. This Big spatio-temporal Data needs to be processed on scalable platforms, such as Hadoop and Apache Spark, which, however, are unaware of, e.g., spatial neighborhood, what makes them practically impossible to use for this kind of data. The repeated executions of the programs during development and by different users result in long execution times and potentially high costs in rented clusters, which can be reduced by reusing commonly computed intermediate results. Within this thesis, we tackle the two challenges described above. First, we present the STARK framework for processing spatio-temporal vector and raster data on the Apache Spark stack. For operators, we identify several possible algorithms and study how they can benefit from the underlying platform's properties. We further investigate how indexes can be realized in the distributed and parallel architecture of Big Data processing engines and compare methods for data partitioning, which perform differently well with respect to data skew and data set size. Furthermore, an approach to reduce the amount of data to process at operator level is presented. In order to reduce the execution times, we introduce an approach to transparently recycle intermediate results of dataflow programs, based on operator costs. To compute the costs, we instrument the programs with profiling code to gather the execution time and result size of the operators. In the evaluation, we first compare the various implementation and configuration possibilities in STARK and identify scenarios when and how partitioning and indexing should be applied. We further compare STARK to related systems and show that we can achieve significantly better execution times, not only when exploiting existing partitioning information. In the second part of the evaluation, we show that with the transparent cost-based materialization and recycling of intermediate results, the execution times of programs can be reduced significantly

    Vectorization of Large Amounts of Raster Satellite Images in a Distributed Architecture Using HIPI

    Full text link
    Vectorization process focus on grouping pixels of a raster image into raw line segments, and forming lines, polylines or poligons. To vectorize massive raster images regarding resource and performane problems, weuse a distributed HIPI image processing interface based on MapReduce approach. Apache Hadoop is placed at the core of the framework. To realize such a system, we first define mapper function, and then its input and output formats. In this paper, mappers convert raster mosaics into vector counterparts. Reduc functions are not needed for vectorization. Vector representations of raster images is expected to give better performance in distributed computations by reducing the negative effects of bandwidth problem and horizontal scalability analysis is done.Comment: In Turkish, Proceedings of International Artificial Intelligence and Data Processing Symposium (IDAP) 201

    Development of a New Framework for Distributed Processing of Geospatial Big Data

    Get PDF
    Geospatial technology is still facing a lack of “out of the box” distributed processing solutions which are suitable for the amount and heterogeneity of geodata, and particularly for use cases requiring a rapid response. Moreover, most of the current distributed computing frameworks have important limitations hindering the transparent and flexible control of processing (and/or storage) nodes and control of distribution of data chunks. We investigated the design of distributed processing systems and existing solutions related to Geospatial Big Data. This research area is highly dynamic in terms of new developments and the re-use of existing solutions (that is, the re-use of certain modules to implement further specific developments), with new implementations continuously emerging in areas such as disaster management, environmental monitoring and earth observation. The distributed processing of raster data sets is the focus of this paper, as we believe that the problem of raster data partitioning is far from trivial: a number of tiling and stitching requirements need to be addressed to be able to fulfil the needs of efficient image processing beyond pixel level. We attempt to compare the terms Big Data, Geospatial Big Data and the traditional Geospatial Data in order to clarify the typical differences, to compare them in terms of storage and processing backgrounds for different data representations and to categorize the common processing systems from the aspect of distributed raster processing. This clarification is necessary due to the fact that they behave differently on the processing side, and particular processing solutions need to be developed according to their characteristics. Furthermore, we compare parallel and distributed computing, taking into account the fact that these are used improperly in several cases. We also briefly assess the widely-known MapReduce paradigm in the context of geospatial applications. The second half of the article reports on a new processing framework initiative, currently at the concept and early development stages, which aims to be capable of processing raster, vector and point cloud data in a distributed IT ecosystem. The developed system is modular, has no limitations on programming language environment, and can execute scripts written in any development language (e.g. Python, R or C#)

    Geospatial big data analysis in a computer cluster environment for earth observation applications

    Get PDF
    Εθνικό Μετσόβιο Πολυτεχνείο--Μεταπτυχιακή Εργασία. Διεπιστημονικό-Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών (Δ.Π.Μ.Σ.) “Γεωπληροφορική

    GeoFog4Health: a fog-based SDI framework for geospatial health big data analysis

    Get PDF
    Spatial Data Infrastructure (SDI) is an important framework for sharing geospatial big data using the web. Integration of SDI with cloud computing led to emergence of Cloud-SDI as a tool for transmission, processing and analysis of geospatial data. Fog computing is a paradigm where embedded computers are employed to increase the throughput and reduce latency at the edge of the network. In this study, we developed and evaluated a Fog-based SDI framework named GeoFog4Health for mining analytics from geo-health big data. We built prototypes using Intel Edison and Raspberry Pi for studying the comparative performance. We conducted a case study on Malaria vector-borne disease positive maps of Maharastra state in India. The proposed framework had provision of lossless data compression for reduced data transfer. Also, overlay analysis of geospatial data was implemented. In addition, we discussed energy savings, cost analysis and scalability of the proposed framework with respect to efficient data processing. We compared the performance of the proposed framework with the state-of-the-art Cloud-SDI in terms of analysis time. Results and discussions showed the efficacy of the proposed system for enhanced analysis of geo-health big data generated from a variety of sensing frameworks

    Map Generation from Large Scale Incomplete and Inaccurate Data Labels

    Full text link
    Accurately and globally mapping human infrastructure is an important and challenging task with applications in routing, regulation compliance monitoring, and natural disaster response management etc.. In this paper we present progress in developing an algorithmic pipeline and distributed compute system that automates the process of map creation using high resolution aerial images. Unlike previous studies, most of which use datasets that are available only in a few cities across the world, we utilizes publicly available imagery and map data, both of which cover the contiguous United States (CONUS). We approach the technical challenge of inaccurate and incomplete training data adopting state-of-the-art convolutional neural network architectures such as the U-Net and the CycleGAN to incrementally generate maps with increasingly more accurate and more complete labels of man-made infrastructure such as roads and houses. Since scaling the mapping task to CONUS calls for parallelization, we then adopted an asynchronous distributed stochastic parallel gradient descent training scheme to distribute the computational workload onto a cluster of GPUs with nearly linear speed-up.Comment: This paper is accepted by KDD 202

    Spatial Processing in Cloud-Based Architectures

    Get PDF
    With spatial data, traditionally associated with on-premises GIS solutions, takes part in organization-wide digital transformation architectures, the resulting cloud-native data pipelines will become a reference architecture as workflows begin to extend further out to the edge, fog and individual units as distributed computing environments. This work explores the current landscape of that progression, affected industries and most impacted markets
    corecore